1
|
Knetsch TGJ, Ubbink M. Production and compositional analysis of full-length influenza virus hemagglutinin in Nanodiscs: Insights from multi-angle light scattering. Protein Expr Purif 2025; 227:106641. [PMID: 39653304 DOI: 10.1016/j.pep.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
The global threat of pandemics highlights the urgency of developing innovative vaccine strategies. Viral spike proteins are the primary antigens recognized by the immune system and serve as key targets for vaccine development. This study reports the production of full-length Influenza A virus surface glycoprotein, hemagglutinin (HA), and its incorporation into Nanodiscs (NDs). HA was expressed in insect cells and purified using detergents, maintaining its functional integrity. Characterisation by size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) confirmed that HA could be incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) NDs as a single trimer. SEC-MALS was instrumental in analysing the composition of NDs, which included HA, membrane scaffold proteins, lipids, and glycans. These findings provide a robust framework for the production and reconstitution of glycoproteins in NDs, and offers valuable insights into the study of multi-component nanoparticles using MALS. Our work highlights the potential of NDs for studying viral glycoproteins and advances the development of well-defined recombinant ND-based vaccines.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Kang H, Martinez MR, Aves KL, Okholm AK, Wan H, Chabot S, Malik T, Sander AF, Daniels R. Capsid virus-like particle display improves recombinant influenza neuraminidase antigen stability and immunogenicity in mice. iScience 2024; 27:110038. [PMID: 38883830 PMCID: PMC11179578 DOI: 10.1016/j.isci.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Supplementing influenza vaccines with additional protective antigens such as neuraminidase (NA) is a promising strategy for increasing the breadth of the immune response. Here, we improved the immunogenicity and stability of secreted recombinant NA (rNA) tetramers by covalently conjugating them onto the surface of AP205 capsid virus-like particles (cVLPs) using a Tag/Catcher ligation system. cVLP display increased the induction of IgG2a subclass anti-NA antibodies, which exhibited cross-reactivity with an antigenically distant homologous NA. It also reduced the single dose rNA amounts needed for protection against viral challenge in mice, demonstrating a dose-sparing effect. Moreover, effective cVLP-display was achieved across different NA subtypes, even when the conjugation was performed shortly before administration. Notably, the rNA-cVLP immunogenicity was retained upon mixing or co-administering with commercial vaccines. These results highlight the potential of this approach for bolstering the protective immune responses elicited by influenza vaccines.
Collapse
Affiliation(s)
- Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kara-Lee Aves
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Kathrine Okholm
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sylvie Chabot
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tahir Malik
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Adam F Sander
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- AdaptVac, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Falcón A, Martínez-Pulgarín S, López-Serrano S, Reytor E, Cid M, Nuñez MDC, Córdoba L, Darji A, Escribano JM. Development of a Fully Protective Pandemic Avian Influenza Subunit Vaccine in Insect Pupae. Viruses 2024; 16:829. [PMID: 38932122 PMCID: PMC11209067 DOI: 10.3390/v16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/administration & dosage
- Pupa/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Chickens
- Influenza A Virus, H7N1 Subtype/immunology
- Influenza A Virus, H7N1 Subtype/genetics
- Baculoviridae/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Humans
- Vaccine Development
- Moths/immunology
- Pandemics/prevention & control
Collapse
Affiliation(s)
- Ana Falcón
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | | | - Sergi López-Serrano
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Edel Reytor
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | - Miguel Cid
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | | | - Lorena Córdoba
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ayub Darji
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - José M. Escribano
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| |
Collapse
|
4
|
Tu T, Rathnayaka T, Kato T, Mizutani K, Saotome T, Noguchi K, Kidokoro SI, Kuroda Y. Design and Escherichia coli Expression of a Natively Folded Multi-Disulfide Bonded Influenza H1N1-PR8 Receptor-Binding Domain (RBD). Int J Mol Sci 2024; 25:3943. [PMID: 38612753 PMCID: PMC11012049 DOI: 10.3390/ijms25073943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Refolding multi-disulfide bonded proteins expressed in E. coli into their native structure is challenging. Nevertheless, because of its cost-effectiveness, handiness, and versatility, the E. coli expression of viral envelope proteins, such as the RBD (Receptor-Binding Domain) of the influenza Hemagglutinin protein, could significantly advance research on viral infections. Here, we show that H1N1-PR8-RBD (27 kDa, containing four cysteines forming two disulfide bonds) expressed in E. coli and was purified with nickel affinity chromatography, and reversed-phase HPLC was successfully refolded into its native structure, as assessed with several biophysical and biochemical techniques. Analytical ultracentrifugation indicated that H1N1-PR8-RBD was monomeric with a hydrodynamic radius of 2.5 nm. Thermal denaturation, monitored with DSC and CD at a wavelength of 222 nm, was cooperative with a midpoint temperature around 55 °C, strongly indicating a natively folded protein. In addition, the 15N-HSQC NMR spectrum exhibited several 1H-15N resonances indicative of a beta-sheeted protein. Our results indicate that a significant amount (40 mg/L) of pure and native H1N1-PR8-RBD can be produced using an E. coli expression system with our refolding procedure, offering potential insights into the molecular characterization of influenza virus infection.
Collapse
Affiliation(s)
- Thao Tu
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| | - Tharangani Rathnayaka
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| | - Toshiyo Kato
- NMR Group, Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.K.); (K.N.)
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama 230-0045, Kanagawa, Japan;
| | - Tomonori Saotome
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka-shi 940-2188, Niigata, Japan; (T.S.); (S.-i.K.)
| | - Keiichi Noguchi
- NMR Group, Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.K.); (K.N.)
| | - Shun-ichi Kidokoro
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka-shi 940-2188, Niigata, Japan; (T.S.); (S.-i.K.)
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Tokyo, Japan; (T.T.); (T.R.)
| |
Collapse
|
5
|
He J, Kam YW. Insights from Avian Influenza: A Review of Its Multifaceted Nature and Future Pandemic Preparedness. Viruses 2024; 16:458. [PMID: 38543823 PMCID: PMC10975894 DOI: 10.3390/v16030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Avian influenza viruses (AIVs) have posed a significant pandemic threat since their discovery. This review mainly focuses on the epidemiology, virology, pathogenesis, and treatments of avian influenza viruses. We delve into the global spread, past pandemics, clinical symptoms, severity, and immune response related to AIVs. The review also discusses various control measures, including antiviral drugs, vaccines, and potential future directions in influenza treatment and prevention. Lastly, by summarizing the insights from previous pandemic control, this review aims to direct effective strategies for managing future influenza pandemics.
Collapse
Affiliation(s)
| | - Yiu-Wing Kam
- Division of Natural and Applied Science, Duke Kunshan University, No. 8 Duke Avenue, Kunshan 215316, China;
| |
Collapse
|
6
|
Atwa AS, Gomaa L, Elmenofy W, Amer HM, Ahmed BM. Expression of recombinant Florida clade 2 hemagglutinin in baculovirus expression system: A step for subunit vaccine development against H3N8 equine influenza virus. Open Vet J 2024; 14:350-359. [PMID: 38633177 PMCID: PMC11018420 DOI: 10.5455/ovj.2024.v14.i1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Equine influenza (EI) is a transmissible viral respiratory sickness of the Equidae family. Two viruses, H7N7 and H3N8 caused EI; however, H7N7 has not been detected for decades. H3N8 has circulated and bifurcated into Eurasian and American lineages. The latter subsequently diversified into Kentucky, South America, and Florida sub-lineages. Florida clade 1 (FC1) and Florida clade 2 (FC2) strains are the only circulating EI viruses (EIVs) in the meantime. Immunization is considered the major means for the prevention and control of EI infection. Using disparate technologies and platforms, several vaccines have been developed and commercialized. According to the recommendations of the World Organization for Animal Health (WOAH), all commercial vaccines shall comprise representatives of both FC1 and FC2 strains. Unfortunately, most of the commercially available vaccines were not updated to incorporate a representative of FC2 strains. Aim The purpose of this research was to develop a new EI vaccine candidate that incorporates the hemagglutinin (HA) antigen from the currently circulating FC2. Methods In this study, we report the expression of the full-length recombinant HA gene of FC2 in the baculovirus expression system. Results The HA recombinant protein has been proven to maintain its biological characteristics by hemadsorption (HAD) and hemagglutination tests. Moreover, using a reference-specific serum, the specificity of the HA has been confirmed through the implementation of immunoperoxidase and western immunoblotting assays. Conclusion In conclusion, we report the expression of specific biologically active recombinant HA of FC2, which would act as a foundation for the generation of an updated EI subunit or virus vector vaccine candidates.
Collapse
Affiliation(s)
- Ahmed S. Atwa
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lamis Gomaa
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Wael Elmenofy
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Haitham M. Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Basem M. Ahmed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Pan TX, Huang HB, Zhang JL, Li JY, Li MH, Zhao DY, Li YN, Zheng W, Ma RG, Wang N, Shi CW, Wang CF, Yang GL. Lactobacillus plantarum surface-displayed Eimeria tenella profilin antigens with FliC flagellin elicit protection against coccidiosis in chickens. Poult Sci 2023; 102:102945. [PMID: 37516003 PMCID: PMC10405095 DOI: 10.1016/j.psj.2023.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023] Open
Abstract
Coccidiosis is a parasitic disease in the intestine caused by the genus Eimeria that poses a substantial economic threat to the broiler breeding industry. The misuse of chemoprophylaxis and live oocyst vaccines has a negative impact on chicken reproductivity. Therefore, there is a pressing need to develop safe, convenient, and effective vaccines. Lactic acid bacteria can be used as a means to deliver mucosal vaccines against intestinal pathogens, which is a promising strategy. In this study, a recombinant Lactobacillus plantarum (L. plantarum) with surface-expressed antigens constructed from the fusion of Eimeria tenella (E. tenella) antigen profilin and the Salmonella enterica serovar Typhimurium flagellin protein FliC was created. After oral immunization with the recombinant L. plantarum, T-cell differentiation was analyzed by flow cytometry, and specific antibody levels were determined via indirect ELISA. Oocyst shedding, body weight, and cecum lesions were assessed as measures of protective immunity after challenge with E. tenella. The results of this study demonstrate the effectiveness of recombinant L. plantarum as an immunization agent for chickens. Specific IgA titers in the intestine and specific IgG antibody titers in the serum were significantly higher in chickens immunized with recombinant L. plantarum (P < 0.001). Additionally, the levels of IL-2 (P < 0.05) and IFN-γ (P < 0.01) in the serum were markedly increased. Recombinant L. plantarum induced T-cell differentiation, resulting in a higher proportion of CD4+ and CD8+ T cells in splenocytes (P < 0.001). Fecal oocyst shedding in the immunized group was significantly reduced (P < 0.001). Additionally, recombinant L. plantarum significantly relieved pathological damage in the cecum, as evidenced by lesion scores (P < 0.01) and histopathological cecum sections. In conclusion, the present study provides evidence to support the possibility of using L. plantarum as a promising carrier for the delivery of protective antigens to effectively protect chickens against coccidiosis.
Collapse
Affiliation(s)
- Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Lin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dong-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Ning Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wei Zheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rui-Geng Ma
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Zak AJ, Hoang T, Yee CM, Rizvi SM, Prabhu P, Wen F. Pseudotyping Improves the Yield of Functional SARS-CoV-2 Virus-like Particles (VLPs) as Tools for Vaccine and Therapeutic Development. Int J Mol Sci 2023; 24:14622. [PMID: 37834067 PMCID: PMC10572262 DOI: 10.3390/ijms241914622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA (P.P.)
| |
Collapse
|
9
|
Palatnik-de-Sousa I, Wallace ZS, Cavalcante SC, Ribeiro MPF, Silva JABM, Cavalcante RC, Scheuermann RH, Palatnik-de-Sousa CB. A novel vaccine based on SARS-CoV-2 CD4 + and CD8 + T cell conserved epitopes from variants Alpha to Omicron. Sci Rep 2022; 12:16731. [PMID: 36202985 PMCID: PMC9537284 DOI: 10.1038/s41598-022-21207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 deaths. Currently used vaccines reduced severity and mortality but not virus transmission or reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, which although highly antigenic suffered many mutations in SARS-CoV-2 variants, escaping vaccine-generated immune responses. Multiepitope vaccines based on 100% conserved epitopes of multiple proteins of all SARS-CoV-2 variants, rather than a single highly mutating antigen, could offer more long-lasting protection. In this study, a multiepitope multivariant vaccine was designed using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong HLA binding CD4+ and CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended epitope-conservancy analysis performed using GISAID metadata of 3,630,666 SARS-CoV-2 genomes of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes, with the vast majority greater than 99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly hydrophobic and non-toxic. The vaccine has good molecular docking with TLR4 and promoted, without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL-2, IFN-γ, lower levels of IL-12, TGF-β and IL-10, and no IL-6. Experimental in vivo studies should validate the vaccine's further use as preventive tool with cross-protective properties.
Collapse
Affiliation(s)
- Iam Palatnik-de-Sousa
- Department of Electrical Engeneering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Stephany Christiny Cavalcante
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paula Fonseca Ribeiro
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Antônio Barbosa Martins Silva
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Ciro Cavalcante
- Department of Pharmacy, Campus Professor Antônio Garcia Filho, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Virus Network, Baltimore, MD, USA
| | - Clarisa Beatriz Palatnik-de-Sousa
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute for Immunological Investigation (III), INCT, National Council for Scientific and Technological Development (CNPq), São Paulo, Brazil.
| |
Collapse
|
10
|
Li P, Xu Y, Cao Y, Ding Z. Polypeptides Isolated from Lactococcus lactis Alleviates Lipopolysaccharide (LPS)-Induced Inflammation in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms23126733. [PMID: 35743169 PMCID: PMC9224536 DOI: 10.3390/ijms23126733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The main purpose of the present study was to evaluate the anti-inflammatory activity of Lactococcus lactis BL52 and isolate active substances responsible for anti-inflammatory activity. Head-kidney (HK) macrophages were used for in vitro bioassay-guided isolation, and the structure of the two peptides was identified by mass spectrometry analysis. Lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella were also examined to evaluate the in vivo anti-inflammatory activity of active substances. Two active peptides were isolated by HPLC from L. lactis BL52, and an in vitro anti-inflammatory assay demonstrated that peptide ALBL1 and ALBL2 dose-dependently inhibited LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β and inflammatory factors NO and PGE 2 production in macrophages (p < 0.05). After being treated with 20 mg/Kg peptide ALBL1 and ALBL2, the expression levels of TNF-α, IL-6, IL-1β, NO, and PGE 2 were significantly inhibited (p < 0.05). Results from the in vivo test showed that when the concentration of peptide ALBL1 and ALBL2 reached 30 mg/Kg, the LPS-induced upregulations of TNF-α, IL-6, IL-1β, NO, and PGE 2 were prevented. In addition, peptide ALBL1 and ALBL2 blocked the expression of Toll-like receptor 2 (TLR2) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of IκBα. Moreover, C. idella treated with peptide ALBL1 and ALBL2 can relieve pathological inflammatory responses caused by LPS. These results suggest that the anti-inflammatory properties of peptide ALBL1 and ALBL2 might be a result from the inhibition of IL-6, IL-1β, and TNF-α expressions through the downregulation of Toll2/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Pei Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China;
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China;
| | - Youqing Xu
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Correspondence: or (Y.X.); or (Z.D.)
| | - Yupo Cao
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China;
| | - Zhaokun Ding
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Correspondence: or (Y.X.); or (Z.D.)
| |
Collapse
|
11
|
Trombetta CM, Marchi S, Montomoli E. The baculovirus expression vector system: a modern technology for the future of influenza vaccine manufacturing. Expert Rev Vaccines 2022; 21:1233-1242. [DOI: 10.1080/14760584.2022.2085565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
- VisMederi Research srl, Siena, Italy
| |
Collapse
|
12
|
Yao JY, Zhang CS, Yuan XM, Huang L, Hu DY, Yu Z, Yin WL, Lin LY, Pan XY, Yang GL, Wang CF, Shen JY, Zhang HQ. Oral Vaccination With Recombinant Pichia pastoris Expressing Iridovirus Major Capsid Protein Elicits Protective Immunity in Largemouth Bass (Micropterus salmoides). Front Immunol 2022; 13:852300. [PMID: 35309312 PMCID: PMC8931665 DOI: 10.3389/fimmu.2022.852300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Largemouth bass iridovirus (LMBV) can cause high mortality and lead to heavy economic loss in the cultivation of largemouth bass, but there was no effective treatment. Here, the present study constructed a recombinant Pichia pastoris expressing LMBV major capsid protein (MCPD). The recombinant GS115-pW317-MCPD was then used to immunize largemouth bass via oral administration, and mucosal immune response mediated by immunoglobulins (Igs) was measured after oral immunization. Serum antibody levels were measured by ELISA, neutralizing antibody titers were determined by serum neutralization test (SNT), antigen presentation-related gene expressions were detected by RT-PCR, and the histopathological characteristics of immunized fish were assessed after challenging with 0.1 ml 107.19 TCID50/ml LMBV. The relative percentage survival (RPS) was also determined. Our results showed that the serum antibody titers of immunized fish were significantly higher than that of control groups (P < 0.05). IgT and IgM expressions in gut were increased significantly after vaccination with GS115-pW317-MCPD; however, much stronger response in gut was observed as compared with gill. The expression levels of major histocompatibility complex (MHC) II, CD8, and T-cell receptor (TCR) were significantly elevated in GS115-pW317-MCPD group (P < 0.05), while CD4 and MHC I transcription levels remained unchanged after oral immunization (P > 0.05). The RPS of fish orally immunized with 1.0 × 108 CFU/g GS115-pW317-MCPD was reached up to 41.6% after challenge with 0.1 ml 109.46 TCID50/ml LMBV. Moreover, orally immunizing with GS115-pW317-MCPD can relieve the pathological damage caused by LMBV. Therefore, GS115-pW317-MCPD showed a promising potential against LMBV.
Collapse
Affiliation(s)
- Jia-Yun Yao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- *Correspondence: Jia-Yun Yao, ; Hai-Qi Zhang, ; Chun-Feng Wang,
| | - Cheng-Sai Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xue-Mei Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lei Huang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Da-Yan Hu
- Development Center of Huzhou Agricultural Science and Technology, Huzhou, China
| | - Zhe Yu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Wen-Lin Yin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Ling-Yun Lin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiao-Yi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Gui-lian Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- *Correspondence: Jia-Yun Yao, ; Hai-Qi Zhang, ; Chun-Feng Wang,
| | - Jin-Yu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Hai-Qi Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- *Correspondence: Jia-Yun Yao, ; Hai-Qi Zhang, ; Chun-Feng Wang,
| |
Collapse
|
13
|
Arunachalam AB, Post P, Rudin D. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. NPJ Vaccines 2021; 6:144. [PMID: 34857771 PMCID: PMC8640007 DOI: 10.1038/s41541-021-00403-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
The influenza vaccine field has been constantly evolving to improve the speed, scalability, and flexibility of manufacturing, and to improve the breadth and longevity of the protective immune response across age groups, giving rise to an array of next generation vaccines in development. Among these, the recombinant influenza vaccine tetravalent (RIV4), using a baculovirus expression vector system to express recombinant haemagglutinin (rHA) in insect cells, is the only one to have reached the market and has been studied extensively. We describe how the unique structural features of rHA in RIV4 improve protective immune responses compared to conventional influenza vaccines made from propagated influenza virus. In addition to the sequence integrity, characteristic of recombinant proteins, unique post-translational processing of the rHA in insect cells instills favourable tertiary and quaternary structural features. The absence of protease-driven cleavage and addition of simple N-linked glycans help to preserve and expose certain conserved epitopes on HA molecules, which are likely responsible for the high levels of broadly cross-reactive and protective antibodies with rare specificities observed with RIV4. Furthermore, the presence of uniform compact HA oligomers and absence of egg proteins, viral RNA or process impurities, typically found in conventional vaccines, are expected to eliminate potential adverse reactions to these components in susceptible individuals with the use of RIV4. These distinct structural features and purity of the recombinant HA vaccine thus provide a number of benefits in vaccine performance which can be extended to other viral targets, such as for COVID-19.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA.
| | - Penny Post
- Regulatory Affairs, Protein Sciences, a Sanofi Company, 1000 Research Parkway, Meriden, CT, 06450, USA
| | - Deborah Rudin
- Global Medical Affairs, Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA
| |
Collapse
|
14
|
Zahmati S, Taghizadeh M, Haghighat S, Jalalirad R, Mahdavi M. Recombinant hemagglutinin of swine H1N1 influenza virus expression in the insect cells: Formulation in Montanide ISA71 adjuvant and the potency studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1546-1553. [PMID: 35317113 PMCID: PMC8917850 DOI: 10.22038/ijbms.2021.57053.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
Objectives Influenza is a highly contagious disease, which affects the respiratory system and seasonal influenza is common throughout the world. Influenza vaccination is an effective way to reduce the risk of death and hospitalization. This study aims at the expression of swine recombinant hemagglutinin protein in the baculovirus expression system and it offers a comparison of the immunologic parameters with the commercial vaccine. Materials and Methods The HA gene from the swine H1N1 strain of the Influenza virus was cloned into the Bac-To-Bac expression system in pFastBAC HTA vector and was transformed into Escherichia coli TOP10 strain. After the confirmation, the vector was transfected into the SF9 insect cell line. The recombinant HA was evaluated by SDS-PAGE and western blot. After formulation in Montanide ISA71 adjuvant, the immunization test was performed comparatively with Alum adjuvant, commercial vaccine in four groups of BALB/c mice, of which one group was control without any vaccination. Two weeks after the last immunization, the antibody response was assessed with HI assay, and experimental mice were challenged with mouse-adapted Influenza A/PR8/34 (H1N1) virus through nasal inhalation. Results The immunoassay results revealed that the candidate vaccine induced the antibody response as the commercial one did but it did not significantly reduce the mortality rate, body loss, and severe fever. Conclusion To summarize, the results showed that the recombinant protein with the MontanideTM ISA- 71 adjuvant developed a more appropriate level of immunity than Alum adjuvant, so it might be used as a safe and reliable vaccine against H1N1 virus for further research.
Collapse
Affiliation(s)
- Sara Zahmati
- Department of Microbiology, Faculty of Advanced science and Technology, Tehran Medical sciences Islamic Azad University, Tehran, Iran
| | - Morteza Taghizadeh
- Department of Research and Development, Razi Vaccine and Serum Research institute, Agricultural Research Education and Extension Organization
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced science and Technology, Tehran Medical sciences Islamic Azad University, Tehran, Iran
| | | | - Mehdi Mahdavi
- Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
- Advanced Therapy Medicinal Product Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education
- Culture and Research, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Lim J, Cheong Y, Kim YS, Chae W, Hwang BJ, Lee J, Jang YH, Roh YH, Seo SU, Seong BL. RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102438. [PMID: 34256061 DOI: 10.1016/j.nano.2021.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Birds/virology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Pandemics
- RNA/genetics
- RNA/immunology
- RNA/therapeutic use
Collapse
Affiliation(s)
- Jongkwan Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Yonsei University, Seoul, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Ting-Hui-Lin, Chia MY, Lin CY, Yeh YQ, Jeng US, Wu WG, Lee MS. Improving immunogenicity of influenza virus H7N9 recombinant hemagglutinin for vaccine development. Vaccine 2020; 37:1897-1903. [PMID: 30857635 DOI: 10.1016/j.vaccine.2018.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022]
Abstract
Human infections of novel avian influenza A virus (H7N9) emerged in early 2013 and caused about 40% case-fatality through 2017. Therefore, development of influenza H7N9 vaccines is critical for pandemic preparedness. Currently, there are three means of production of commercial influenza vaccines: egg-based, mammalian cell-based, and insect cell-based platforms. The insect cell-based platform has the advantage of high speed in producing recombinant protein. In this study, we evaluate the stability and immunogenicity of two different influenza H7 HA expression constructs generated using the baculovirus system, including membrane-based full-length HA (mH7) and secreted ectodomain-based H7 (sH7). The mH7 construct could form an oligomer-rosette structure and had a high hemagglutinin (HA) titer 8192. In contrast to mH7, the sH7 construct could not form an oligomer-rosette structure and did not have HA titer before cross-linking with anti-His antibody. Thermal stability tests showed that the sH7 and mH7 constructs were unstable at 43 °C and 52 °C, respectively. In a mice immunization study, the mH7 construct but not the sH7 construct could induce robust HI and neutralizing antibody titers. In conclusion, further development of the mH7 vaccine candidate is desirable.
Collapse
Affiliation(s)
- Ting-Hui-Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Guey Wu
- College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
17
|
Wu Y, Wu X, Chen J, Hu J, Huang X, Zhou B. A novel protein chip for simultaneous detection of antibodies against four epidemic swine viruses in China. BMC Vet Res 2020; 16:162. [PMID: 32456688 PMCID: PMC7249397 DOI: 10.1186/s12917-020-02375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At present, pig industry in China is faced with the complex situation of mixed infection caused by multiple pathogens. It is urgent to develop some new high-throughput molecular diagnosis assays to simultaneously detect pathogens or antibodies. Biochip array technology has made it possible to screen thousands of samples simultaneously; it has been twice named as one of the top 10 scientific and technological breakthroughs. Studies have reported encouraging results using protein biochips for detecting antibodies against avian infectious bronchitis virus and ruminant bluetongue virus, but the research of this technology for the diagnosis of swine diseases is still sparse. RESULTS In this study, a novel protein chip was developed that can simultaneously detect the antibodies of four important swine viruses as follow, classical swine fever virus (CSFV), porcine parvovirus (PPV), Japanese encephalitis virus (JEV), and porcine reproductive and respiratory syndrome virus (PRRSV). Four prokaryotic expression plasmids pET-32a-E2 of CSFV, -VP2 of PPV, -EDIII of JEV, and -N of PRRSV were induced by IPTG (Isopropyl β-D-1-Thiogalactopyranoside) and overexpressed in E.coli, respectively. The purified proteins were identified by Western blotting and then printed on epoxy-coated glass slides. The optimized parameters of this diagnostic chip showed that the spotting concentrations of E2、VP2、EDIII、N proteins were 0.2, 0.4, 0.4, and 0.4 mg/mL. The optimal primary and secondary antibody dilutions were 1:50 and 1: 600. Compared with the commercial ELISA (Enzyme-linked immunosorbent assay) kits, the positive and negative coincidence rates of this chip were 95.8% ~ 100 and 86.2% ~ 100%, as well as, no cross-reaction. CONCLUSION This protein chip provided a fast, specific, and sensitive method for simultaneous detection of antibodies in clinical serum samples. Compared with traditional methods, this protein chip can monitor very small amount of serum.
Collapse
Affiliation(s)
- Yue Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfei Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Sharma J, Shepardson K, Johns LL, Wellham J, Avera J, Schwarz B, Rynda-Apple A, Douglas T. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18211-18224. [PMID: 32233444 DOI: 10.1021/acsami.9b21776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuous evolution of influenza A virus (IAV) requires the influenza vaccine formulations to be updated annually to provide adequate protection. Recombinant protein-based vaccines provide safer, faster, and a more scalable alternative to the conventional embryonated egg approach for developing vaccines. However, these vaccines are typically poorer in immunogenicity than the vaccines containing inactivated or attenuated influenza viruses and require administration of a large antigen dosage together with potent adjuvants. The presentation of protein antigens on the surface of virus-like particles (VLP) provides an attractive strategy to rapidly induce stronger antigen-specific immune responses. Here we have examined the immunogenic potential and protective efficacy of P22 VLPs conjugated with multiple copies of the globular head domain of the hemagglutinin (HA) protein from the PR8 strain of IAV in a murine model of influenza pathogenesis. Using a covalent attachment strategy (SpyTag/SpyCatcher), we conjugated the HA globular head, which was recombinantly expressed in a genetically modified E. coli strain and found to refold as a monomer, to preassembled P22 VLPs. Immunization of mice with this P22-HAhead conjugate provided full protection from morbidity and mortality following infection with a homologous IAV strain. Moreover, the P22-HAhead conjugate also elicited an accelerated and enhanced HA head specific IgG response, which was significantly higher than the soluble HA head, or the admixture of P22 and HA head without the need for adjuvants. Thus, our results show that the HA head can be easily prepared by in vitro refolding in a modified E. coli strain, maintaining its intact structure and enabling the induction of a strong immune response when conjugated to P22 VLPs, even when presented as a monomer. These results also demonstrate that the P22 VLPs can be rapidly modified in a modular fashion, resulting in an effective vaccine construct that can generate protective immunity without the need for additional adjuvants.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly Shepardson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Laura L Johns
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Julia Wellham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - John Avera
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Matrivax Research and Development Corporation, Boston, Massachusetts 02118, United Sates
| | - Benjamin Schwarz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Immunity to Pulmonary Pathogens section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, United States
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Wu J, Wang Y, Wei Y, Xu Z, Tan X, Wu Z, Zheng J, Liu GD, Cao Y, Xue C. Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin. Virol J 2020; 17:55. [PMID: 32316996 PMCID: PMC7175539 DOI: 10.1186/s12985-020-01325-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hemagglutinin (HA), as the surface immunogenic protein, is the most important component of influenza viruses. Previous studies showed that the stability of HA was significant for HA's immunogenicity, and many efforts have been made to stabilize the expressed HA proteins. METHODS In this study, the protein disulfide isomerases (PDIs) were investigated for the ability to improve the stability of HA protein. Two members of the PDIs family, PDI and ERp57, were over-expressed or down-expressed in 293 T cells. The expression of H3 HA and PDIs were investigated by real-time qPCR, western-blot, immunofluorescence assay, and flow cytometry. The stability of HA was investigated by western-blot under non-reducing condition. Moreover, BALB/c mice were immunized subcutaneously twice with the vaccine that contained HA proteins from the ERp57-overexpressed and conventional 293 T cells respectively to investigate the impact of ERp57 on the immunogenicity of H3N2 HA. RESULTS The percentage of the disulfide-bonded HA trimers increased significantly in the PDIs-overexpressed 293 T cells, and ERp57 was more valid to the stability of HA than PDI. The knockdown of ERp57 by small interfering RNA significantly decreased the percentage of the disulfide-bonded HA trimers. HA proteins from ERp57-overexpressed 293 T cells stimulated the mice to generate significantly higher HA-specific IgG against H1N1 and H3N2 viruses than those from the conventional cells. The mice receiving H3 HA from ERp57-overexpressed 293 T cells showed the better resistance against H1N1 viruses and the higher survival rate than the mice receiving H3 HA from the conventional cells. CONCLUSION ERp57 could improve the stability and immunogenicity of H3N2 HA.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.,Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Yang Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ying Wei
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xin Tan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhihui Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jing Zheng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA, 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Lye PY, Noor SM, Shohaimi SA, Junoh NF, Tan SC, Iwamoto S, Kotani E, Norazmi MN, Nagamine T, Mori H, Liew MW. Process development for quantitation and vaccine efficacy assessment of recombinant hemagglutinin-neuraminidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
22
|
Khulape SA, Maity HK, Pathak DC, Ramamurthy N, Ramakrishnan S, Chellappa MM, Dey S. Evaluation of a fusion gene-based DNA prime-protein boost vaccination strategy against Newcastle disease virus. Trop Anim Health Prod 2019; 51:2529-2538. [PMID: 31209691 DOI: 10.1007/s11250-019-01967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023]
Abstract
The low potency of genetic immunization has to date impeded development of commercial vaccines against major infectious diseases. The aim of this study was to develop and evaluate a fusion gene-based DNA prime-protein boost vaccination strategy to improve the efficacy of both DNA and subunit vaccines against Newcastle disease virus (NDV). The fusion (F) protein, a viral surface glycoprotein, is responsible for the cell membrane fusion and spread, also is one of the major targets for immune response. In this study, groups of chickens were vaccinated twice intramuscularly at 14-day interval either with plasmid DNA encoding F protein gene of NDV or with recombinant F protein alone or with plasmid DNA and boosted with the recombinant F protein and compared with birds that were vaccinated with live NDV vaccine. The immune response was evaluated by indirect ELISA, lymphocyte transformation test, virus neutralization test, cytokine analysis, immunophenotyping of peripheral blood mononuclear cells, and protective efficacy study against virulent NDV challenge virus infection. Chickens in prime-boost group developed a higher level of humoral and cellular immune responses as compared with those immunized with plasmid or protein alone. The DNA prime-protein boost using F protein of NDV yielded 91.6% protection against virulent NDV challenge infection better than immunization with DNA vaccine (66.6%) or rF protein (83.3%) alone. These findings suggest that the "DNA prime-protein boost" approach using full-length F gene could enhance the immune response against NDV in the chickens.
Collapse
Affiliation(s)
- Sagar A Khulape
- Directorate on Foot and Mouth Disease Virus, Mukteshwar-Kumaon, Nainital, Uttarakhand, India
| | - Hemanta Kumar Maity
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Dinesh Chandra Pathak
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Narayan Ramamurthy
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Saravanan Ramakrishnan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243 122, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| |
Collapse
|
23
|
Ni Y, Guo J, Turner D, Tizard I. An Improved Inactivated Influenza Vaccine with Enhanced Cross Protection. Front Immunol 2018; 9:1815. [PMID: 30140267 PMCID: PMC6094167 DOI: 10.3389/fimmu.2018.01815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Current inactivated influenza vaccines are strain-specific and poorly effective against variant or mismatched viruses. They are standardized based on their hemagglutinin (HA) or ability to induce strain-specific hemagglutination inhibition (HAI) antibodies. The HA is known to undergo major conformational changes when exposed to the low pH environment of endosomes (pH 5.0 and 37°C), which are required for membrane fusion during virus cell entry. In an effort to improve these vaccines, influenza antigens treated under various low pH conditions were evaluated for increased cross-reactive antibody response and cross protection. It was found that a full range of structural and antigenic changes in HA could be induced by varying low pH treatment conditions from the mild (low pH at ≤25°C) to the strong (low pH at ≥37°C) as determined by analysis of potency, HA morphology, protease sensitivity, and reactivity with an anti-HA2 domain (CD) antibody. Inactivated antigens of both H1N1 and H3N2 strains treated at mild low pH conditions (0–25°C) exhibited only moderate HA structural and antigenic changes and markedly increased antibody response against HA2, the highly conserved part of HA, and cross protection against heterologous challenge in mice by up to 30% in survival. By contrast, antigen treated with low pH at 37°C showed more extensive structural and antigenic changes, and induced much less of an increase in antibody response against HA2, but a greater increase with response against HA1, and did not provide any increased cross protection. These results suggest that the increased response against HA2 obtained with the mild low pH treatment is associated with the increased cross protection. These antigens treated at the mild low pH conditions remained capable of inducing a high level of strain-specific HAI antibodies. Thus, they could readily be formulated as an inactivated influenza vaccine which not only provides the same strain-specific protection but also an increased cross protection against heterologous viruses. Such a vaccine could be particularly beneficial in cases of vaccine mismatch.
Collapse
Affiliation(s)
- Yawei Ni
- KJ Biosciences LLC, College Station, TX, United States
| | - Jianhua Guo
- KJ Biosciences LLC, College Station, TX, United States
| | - Debra Turner
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Ian Tizard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Ustinov NB, Zavyalova EG, Smirnova IG, Kopylov AM. The Power and Limitations of Influenza Virus Hemagglutinin Assays. BIOCHEMISTRY (MOSCOW) 2018; 82:1234-1248. [PMID: 29223151 DOI: 10.1134/s0006297917110025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Influenza virus hemagglutinins (HAs) are surface proteins that bind to sialic acid residues at the host cell surface and ensure further virus internalization. Development of methods for the inhibition of these processes drives progress in the design of new antiviral drugs. The state of the isolated HA (i.e. combining tertiary structure and extent of oligomerization) is defined by multiple factors, like the HA source and purification method, posttranslational modifications, pH, etc. The HA state affects HA functional activity and significantly impacts the results of numerous HA assays. In this review, we analyze the power and limitations of currently used HA assays regarding the state of HA.
Collapse
Affiliation(s)
- N B Ustinov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
25
|
Dunkle LM, Izikson R, Patriarca PA, Goldenthal KL, Muse D, Cox MMJ. Randomized Comparison of Immunogenicity and Safety of Quadrivalent Recombinant Versus Inactivated Influenza Vaccine in Healthy Adults 18-49 Years of Age. J Infect Dis 2017; 216:1219-1226. [PMID: 28968871 DOI: 10.1093/infdis/jix478] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/06/2017] [Indexed: 11/12/2022] Open
Abstract
Background Seasonal influenza vaccines are transitioning to quadrivalent formulations including the hemagglutinins of influenza A subtypes H1N1 and H3N2 and B lineages Yamagata and Victoria. Methods A new quadrivalent recombinant influenza vaccine (RIV4) was compared directly with a standard-dose, egg-grown, quadrivalent-inactivated influenza vaccine (IIV4) for immunogenicity and safety in adults 18-49 years of age. The coprimary endpoints for noninferiority were hemagglutination inhibition seroconversion rates and postvaccination geometric mean titer ratios for each antigen using US regulatory criteria. Reactogenicity solicited for 7 days, other safety events collected for 28 days, and serious or medically attended adverse events collected for 6 months after vaccination comprised the safety evaluation. Results The immunogenicity of RIV4 was comparable to that of IIV4; the coprimary noninferiority criteria were met for 3 antigens, and the antibody responses to the fourth antigen, influenza B/Brisbane/60/2008, were low in each group, making comparisons uninterpretable. Systemic and injection site reactions were mild, transient, and similar in each group, whereas none of the spontaneously reported adverse events, serious or nonserious, were considered related to study vaccine. Conclusions This first head-to-head comparison of recombinant versus inactivated quadrivalent influenza vaccines in 18-49 year old adults showed comparable immunogenicity, safety, and tolerability for both vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Derek Muse
- Jean Brown Research, Salt Lake City, Utah
| | | |
Collapse
|
26
|
Wang Y, Zhang Y, Wu J, Lin Y, Wu Z, Wei Y, Wei X, Qin J, Xue C, Liu GD, Cao Y. Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice. Virus Res 2017; 242:16-23. [PMID: 28912070 DOI: 10.1016/j.virusres.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 01/20/2023]
Abstract
Since February 2013, H7N9 influenza virus, causing human infections with high mortality in China, has been a potential pandemic threat. The H7N9 viruses are found to diverge into distinct genotypes as other influenza viruses; thus a vaccine that can provide sufficient cross-protection against different genotypes of H7N9 viruses is urgently needed. Our previous studies demonstrated that the HA-based structural design approach by introducing a CFLLC minidomain into transmembrane domain (TM) of H1, H5 or H9 hemagglutinin (HA) proteins by replacing with H3 subtype HA TM could enhance their cross-protection. In this study, we used Sf9 insect cell expression system to express recombinant H7 HA proteins H7-53WT, in which HA gene was derived from H7N9-53 strain, and H7-53TM containing CFLLC minidomian by replacing its TM domain with H3 HA TM. We investigated whether introduction of CFLLC minidomain into H7 HA (H7-53TM) could increase its cross-reactivity and cross-protection against different genotypes of H7N9 viruses. The results showed that the H7-53TM either with or without squalene adjuvant induced increased HI antibodies, serum IgG antibodies, and IFN-γ production to a panel of 7 H7N9 viruses in mice. Vaccinated animals with H7-53TM alone showed complete protection against challenge with heterologous H7N9-MCX strain, while H7-53WT alone showed incomplete protection (80%). Furthermore, mice vaccinated with H7-53TM HA showed less body weight loss and less pulmonary lesions and inflammation after challenge with homologous or heterologous H7N9 viruses, comparing to H7-53WT. In summary, this study presents a better subunit vaccine candidate (H7-53TM) against potential H7N9 pandemic.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialing Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhihui Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaona Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianru Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
27
|
A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res 2017; 143:97-105. [DOI: 10.1016/j.antiviral.2017.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
|
28
|
Yang G, Yao J, Yang W, Jiang Y, Du J, Huang H, Gu W, Hu J, Ye L, Shi C, Shan B, Wang C. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide. Vet Parasitol 2017; 236:7-13. [DOI: 10.1016/j.vetpar.2017.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
|
29
|
Honda-Okubo Y, Rajapaksha H, Sajkov D, Gordon D, Cox MMJ, Petrovsky N. Panblok-H1+advax H1N1/2009pdm vaccine: Insights into rapid development of a delta inulin adjuvanted recombinant pandemic influenza vaccine. Hum Vaccin Immunother 2017; 13:1-11. [PMID: 28301280 PMCID: PMC5489286 DOI: 10.1080/21645515.2017.1279765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Harinda Rajapaksha
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Dimitar Sajkov
- c Australian Respiratory and Sleep Medicine Institute , Adelaide , Australia
| | - David Gordon
- d Microbiology and Infectious Diseases Department , Flinders Medical Centre , Adelaide , Australia
| | | | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| |
Collapse
|
30
|
Yao JY, Yuan XM, Xu Y, Yin WL, Lin LY, Pan XY, Yang GL, Wang CF, Shen JY. Live recombinant Lactococcus lactis vaccine expressing immobilization antigen (i-Ag) for protection against Ichthyophthirius multifiliis in goldfish. FISH & SHELLFISH IMMUNOLOGY 2016; 58:302-308. [PMID: 27663853 DOI: 10.1016/j.fsi.2016.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. Lactobacillus strains have a number of properties that make them attractive candidates as delivery vehicles for the presentation to the mucosa of compounds with pharmaceutical interest, in particular vaccines. Here, the present study was conducted to evaluate a live recombinant Lactococcus lactis vaccine expressing immobilization antigen (IAG-52X) in protection against I. multifiliis. A 1266 bp gene fragment containing a potential antigenic epitope of the 48 kDa immobilization antigen of I. multifiliis was assembled from six synthetic ohgonucleotides and cloned into pSIP409 and electrotransformed into Lactobacillus plantarum NC8. The recombinant vaccine candidate was then orally fed into goldfish. The expression of immune-related genes: complement component 3 (C3), MHC I, IgM gene in blood from goldfish at different time points after immunization were evaluated. Immunized fish were than challenged with a lethal dose of infectious I. multifiliis. The cumulative mortality and relative percentage survival (RPS) were also determined. Our results showed that the antibody level in the blood and skin of the immunized fish was statistically significant (P < 0.05) in relation to the control groups. Goldfish orally immunized with NC8-pSIP409- IAG-52X had high serum antibody titers that ranged from 32 to 256 after 28d post immunization, while fish fed with NC8-pSIP409 or PBS had no detectable immobilizing antibody response. Expression of IgM, C3, MHC I genes in the group immunized with IAG-52X were significantly (P < 0.05) up regulated as compared with control group, indicating that different immune cells were actively involved in cellular immune response. The results showed that the average survival rate of fish orally immunized with 108 and 106NC8-pSIP409-IAG-52X was 60% and 50% respectively. Therefore, NC8-pSIP409-IAG-52X could become a promising oral vaccine candidate against I. multifiliis.
Collapse
Affiliation(s)
- Jia-Yun Yao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Xue-Mei Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yang Xu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Wen-Lin Yin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Ling-Yun Lin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Xiao-Yi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jin-Yu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
31
|
Lin Q, Yang K, He F, Jiang J, Li T, Chen Z, Li R, Chen Y, Li S, Zhao Q, Xia N. Production of Influenza Virus HA1 Harboring Native-Like Epitopes by Pichia pastoris. Appl Biochem Biotechnol 2016; 179:1275-89. [PMID: 27040529 DOI: 10.1007/s12010-016-2064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
The outbreak of the H5N1 highly pathogenic avian influenza which exhibits high variation had brought a serious threat to the safety of humanity. To overcome this high variation, hemagglutinin-based recombinant subunit vaccine with rational design has been considered as a substitute for traditional virion-based vaccine development. Here, we expressed HA1 part of the hemagglutinin protein using the Pichia pastoris expression system and attained a high yield of about 120 mg/L through the use of fed-batch scalable fermentation. HA1 protein in the culture supernatant was purified using two-step ion-exchange chromatography. The resultant HA1 protein was homogeneous in solution in a glycosylated form, as confirmed by endoglycosidase H treatment. Sedimentation velocity tests, silver staining of protein gels, and immunoblotting were used for verification. The native HA1 reacted well with conformational, cross-genotype, neutralizing monoclonal antibodies, whereas a loss of binding activity was noted with the denatured HA1 form. Moreover, the murine anti-HA1 serum exhibited a virus-capture capability in the hemagglutination inhibition assay, which suggests that HA1 harbors native-like epitopes. In conclusion, soluble HA1 was efficiently expressed and purified in this study. The functional glycosylated protein will be an alternative for the development of recombinant protein-based influenza vaccine.
Collapse
Affiliation(s)
- Qingshan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Kunyu Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Fangping He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Jie Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Zhenqin Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Rui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| |
Collapse
|
32
|
Dunkle LM, Izikson R. Recombinant hemagglutinin influenza vaccine provides broader spectrum protection. Expert Rev Vaccines 2016; 15:957-66. [DOI: 10.1080/14760584.2016.1203261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lisa M. Dunkle
- Clinical Research, Protein Sciences Corporation, Meriden, CT, USA
| | - Ruvim Izikson
- Clinical Research, Protein Sciences Corporation, Meriden, CT, USA
| |
Collapse
|
33
|
Nishioka R, Satomura A, Yamada J, Kuroda K, Ueda M. Rapid preparation of mutated influenza hemagglutinins for influenza virus pandemic prevention. AMB Express 2016; 6:8. [PMID: 26797882 PMCID: PMC4722048 DOI: 10.1186/s13568-016-0179-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
Influenza viruses have periodically caused pandemic due to frequent mutation of viral proteins. Influenza viruses have two major membrane glycoproteins: hemagglutinin (HA) and neuraminidase (NA). Hemagglutinin plays a crucial role in viral entry, while NA is involved in the process of a viral escape. In terms of developing antiviral drugs, HA is a more important target than NA in the prevention of pandemic, since HA is likely to change the host specificity of a virus by acquiring mutations, thereby to increase the risk of pandemic. To characterize mutated HA functions, current approaches require immobilization of purified HA on plastic wells and carriers. These troublesome methods make it difficult to respond to emerging mutations. In order to address this problem, a yeast cell surface engineering approach was investigated. Using this technology, human HAs derived from various H1N1 subtypes were successfully and rapidly displayed on the yeast cell surface. The yeast-displayed HAs exhibited similar abilities to native influenza virus HAs. Using this system, human HAs with 190E and 225G mutations were shown to exhibit altered recognition specificities from human to avian erythrocytes. This system furthermore allowed direct measurement of HA binding abilities without protein purification and immobilization. Coupled with the ease of genetic manipulation, this system allows the simple and comprehensive construction of mutant protein libraries on yeast cell surface, thereby contributing to influenza virus pandemic prevention.
Collapse
|
34
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Redda YT, Venkatesh G, Kalaiyarasu S, Bhatia S, Kumar DS, Nagarajan S, Pillai A, Tripathi S, Kulkarni DD, Dubey SC. Expression and purification of recombinant H5HA1 protein of H5N1 avian influenza virus in E. coli and its application in indirect ELISA. J Immunoassay Immunochem 2016; 37:346-58. [PMID: 26829111 DOI: 10.1080/15321819.2015.1135160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The PCR amplified HA1 fragment of H5N1 (H5HA1) avian influenza virus (AIV) hemagglutinin gene was cloned into pET28a (+) expression vector and expressed in Rosetta Blue (DE3) pLysS cells. The recombinant H5HA1 (rH5HA1) protein purified by passive gel elution after SDS-PAGE of the inclusion bodies reacted specifically with H5N1 serum in Western blot analysis. A subtype specific indirect enzyme linked immunosorbent assay (iELISA) using the rH5HA1 protein as the coating antigen was developed for detecting antibodies to H5 subtype of AIV. The assay had 89.04% sensitivity and 95.95% specificity when compared with haemagglutination inhibition test. The Kappa value of 0.842 indicated a perfect agreement between the tests. The iELISA developed can be used for serosurveillance of avian influenza in chickens.
Collapse
Affiliation(s)
- Y T Redda
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - G Venkatesh
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - S Kalaiyarasu
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - S Bhatia
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - D Senthil Kumar
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - S Nagarajan
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - A Pillai
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - S Tripathi
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - D D Kulkarni
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| | - S C Dubey
- a ICAR - National Institute of High Security Animal Diseases , Anand Nagar, Bhopal , Madhya Pradesh , India
| |
Collapse
|
36
|
Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:241-61. [PMID: 26820861 DOI: 10.1007/978-1-4939-3043-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.
Collapse
|
37
|
Cox MMJ, Izikson R, Post P, Dunkle L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:97-108. [PMID: 26478817 DOI: 10.1177/2051013615595595] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flublok is the first recombinant hemagglutinin (HA) vaccine licensed by the US Food and Drugs Administration for the prevention of influenza in adults aged 18 and older. The HA proteins produced in insect cell culture using the baculovirus expression system technology are exact analogues of wild type circulating influenza virus HAs. The universal HA manufacturing process that has been successfully scaled to the 21,000L contributes to rapid delivery of a substantial number of doses. This review discusses the immunogenicity, efficacy and safety data from five pivotal clinical studies used to support licensure of trivalent Flublok for adults 18 years of age and older in the United States. The trial data demonstrate that the higher antigen content in Flublok results in improved immunogenicity. Data further suggest improved efficacy and a slightly lower local reactogenicity compared with standard inactivated influenza vaccine, despite the presence of more antigen (statistically significant). Flublok influenza vaccine can include HAs designed to mimic 'drift' in influenza viruses as the process of predicting antigenic drift advances and, at a minimum, could address late appearing influenza viruses. The implementation of the latter will require support from regulatory authorities.
Collapse
Affiliation(s)
- Manon M J Cox
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT 06450, USA
| | - Ruvim Izikson
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT, USA
| | - Penny Post
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT, USA
| | - Lisa Dunkle
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT, USA
| |
Collapse
|
38
|
Pourebrahimi F, Shahriari S, Salehifar M, Mozafari H. Partitioning of Vanillin in Aqueous Two-Phase Systems Formed by Cholinium Chloride and K3PO4. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatemeh Pourebrahimi
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University
| | - Shahla Shahriari
- Department of Chemical Engineering, Shahr-e-Qods Branch, Islamic Azad University
| | - Mania Salehifar
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University
| | - Hamid Mozafari
- Department of Agronomy and Plant Breeding, Shahr-e-Qods Branch, Islamic Azad University
| |
Collapse
|
39
|
Development a scalable production process for truncated human papillomavirus type-6 L1 protein using WAVE Bioreactor and hollow fiber membrane. Appl Microbiol Biotechnol 2015; 100:1231-1240. [DOI: 10.1007/s00253-015-6974-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/16/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
|
40
|
Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus. Vaccine 2015. [PMID: 26207590 DOI: 10.1016/j.vaccine.2015.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel avian-origin influenza A H7N9 virus emerged in China in 2013 and continues to cause sporadic human infections with mortality rates approaching 35%. Currently there are no approved human vaccines for H7N9 virus. Recombinant approaches including hemagglutinin (HA) and virus-like particles (VLPs) have resulted in experimental vaccines with advantageous safety and manufacturing characteristics. While high immunogenicity of VLP vaccines has been attributed to the native conformation of HA arranged in the regular repeated patterns within virus-like structures, there is limited data regarding molecular organization of HA within recombinant HA vaccine preparations. In this study, the full-length recombinant H7 protein (rH7) of A/Anhui/1/2013 (H7N9) virus was expressed in Sf9 cells. We showed that purified full-length rH7 retained functional ability to agglutinate red blood cells and formed oligomeric pleomorphic subviral particles (SVPs) of ∼20nm in diameter composed of approximately 10 HA0 molecules. No significant quantities of free monomeric HA0 were observed in rH7 preparation by size exclusion chromatography. Immunogenicity and protective efficacy of rH7 SVPs was confirmed in the mouse and ferret challenge models suggesting that SVPs can be used for vaccination against H7N9 virus.
Collapse
|
41
|
Meghrous J, Khramtsov N, Buckland BC, Cox MM, Palomares LA, Srivastava IK. Dissolved carbon dioxide determines the productivity of a recombinant hemagglutinin component of an influenza vaccine produced by insect cells. Biotechnol Bioeng 2015; 112:2267-75. [DOI: 10.1002/bit.25634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/01/2015] [Accepted: 05/01/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jamal Meghrous
- Protein Sciences Corporation; 1000 Research Parkway Meriden Connecticut 06450
| | - Nikolai Khramtsov
- Protein Sciences Corporation; 1000 Research Parkway Meriden Connecticut 06450
| | - Barry C. Buckland
- Protein Sciences Corporation; 1000 Research Parkway Meriden Connecticut 06450
- University College London; London; United Kingdom
| | - Manon M.J. Cox
- Protein Sciences Corporation; 1000 Research Parkway Meriden Connecticut 06450
| | - Laura A. Palomares
- Protein Sciences Corporation; 1000 Research Parkway Meriden Connecticut 06450
- Instituto de Biotecnologí; a; Universidad Nacional Autónoma de México; Cuernavaca Mexico
| | | |
Collapse
|
42
|
Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 2015; 33:3456-62. [DOI: 10.1016/j.vaccine.2015.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022]
|
43
|
Wang J, Hilchey SP, Hyrien O, Huertas N, Perry S, Ramanunninair M, Bucher D, Zand MS. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza. PLoS One 2015; 10:e0129858. [PMID: 26103163 PMCID: PMC4478018 DOI: 10.1371/journal.pone.0129858] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA’s, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA’s. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.
Collapse
Affiliation(s)
- Jiong Wang
- Division of Nephrology, Department of Medicine and the Rochester Center for Biodefense Immune Modeling, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shannon P. Hilchey
- Division of Nephrology, Department of Medicine and the Rochester Center for Biodefense Immune Modeling, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ollivier Hyrien
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nelson Huertas
- Division of Nephrology, Department of Medicine and the Rochester Center for Biodefense Immune Modeling, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sheldon Perry
- Division of Nephrology, Department of Medicine and the Rochester Center for Biodefense Immune Modeling, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Manojkumar Ramanunninair
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Doris Bucher
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine and the Rochester Center for Biodefense Immune Modeling, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester Center for Health Informatics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Luo L, Nishi K, MacLeod E, Sabara MI. Expression and Characterization of HA1 Protein of Highly Pathogenic H5N1 Avian Influenza Virus for Use in a Serodiagnostic Assay. Transbound Emerg Dis 2015; 64:432-441. [PMID: 26040437 DOI: 10.1111/tbed.12382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/28/2022]
Abstract
The hemagglutinin ectodomain (HA1 subunit) from highly pathogenic avian influenza (HPAI) isolate (A/chicken/Vietnam/14/2005) was cloned and expressed using a baculovirus expression vector. Biosynthesis, glycosylation and secretion of the HA1 proteins, with natural or a melittin signal peptide at the N-terminus and a six-histidine (6xHis) tag at the C-terminus, were examined in insect cells. A 40-kDa unglycosylated precursor and a fully processed, mature form of the HA1 protein migrated around 52 kDa were detected by SDS-PAGE and confirmed by Western blot using H5N1-specific antibody. Treatment of tunicamycin and peptide-N-glycosidase F (PNGase F) further revealed that the recombinant HA1 proteins produced in insect cells were indeed glycosylated with N-linked oligosaccharide side chains. Time-course experiments showed that substitution of the HA natural sequence with the signal sequence from honeybee melittin promoted a high level of expression and efficient secretion of the HA1. A high yield, 37 μg/ml, of HA1 protein was obtained from recombinant baculovirus-infected cell culture supernatant. In addition, the cell surface expression of rHA1 was detected by indirect immunofluorescent staining and showed biological activity on hemadsorption assays. Recombinant HA1 protein-based ELISA was evaluated and appeared to be sensitive and specific for the rapid detection of H5 subtype-specific antibodies in serum samples. No cross-reactivity to antibodies from 15 other influenza A subtypes was detected. Taken together, the newly developed recombinant HA1-based ELISA could offer an alternative to other diagnostic approaches for the specific detection of H5 avian influenza virus infection.
Collapse
Affiliation(s)
- L Luo
- National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - K Nishi
- National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - E MacLeod
- National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - M I Sabara
- National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Li X, van Oers MM, Vlak JM, Braakman I. Folding of influenza virus hemagglutinin in insect cells is fast and efficient. J Biotechnol 2015; 203:77-83. [PMID: 25828453 DOI: 10.1016/j.jbiotec.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 01/19/2023]
Abstract
Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined in mammalian cells. In different mammalian cell lines the protein follows the same folding pathway with identical folding intermediates, but folds with very different kinetics. To examine the effect of cellular context on HA folding and to test to which extent insect cells would support the HA folding process, we expressed HA in Sf9 insect cells. Strikingly, in this invertebrate system HA folded faster and more efficiently, still via the same folding intermediates as in vertebrate cells. Our results suggest that insect cells provide a highly efficient and effective folding environment for influenza virus HA and the ideal production platform for HA (emergency) vaccines.
Collapse
Affiliation(s)
- Xin Li
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
46
|
Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim YK, Jang MH, Hwang I. Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:62-72. [PMID: 25065685 DOI: 10.1111/pbi.12235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Oral
- Animals
- Antibody Formation/drug effects
- Antibody Formation/immunology
- Antibody Specificity/drug effects
- Antibody Specificity/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Dose-Response Relationship, Immunologic
- Endoplasmic Reticulum/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Plants, Genetically Modified
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/prevention & control
- Pneumonia/virology
- Recombinant Fusion Proteins/metabolism
- Saponins/immunology
- Vaccination
Collapse
Affiliation(s)
- Goeun Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea; Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dormitzer P, Tsai T, Del Giudice G. New technologies for influenza vaccines. Hum Vaccin Immunother 2014; 8:45-58. [DOI: 10.4161/hv.8.1.18859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Huber VC. Influenza vaccines: from whole virus preparations to recombinant protein technology. Expert Rev Vaccines 2014; 13:31-42. [PMID: 24192014 DOI: 10.1586/14760584.2014.852476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.
Collapse
Affiliation(s)
- Victor C Huber
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E Clark Street, Vermillion, SD 57069, USA
| |
Collapse
|
49
|
Shi SH, Yang WT, Yang GL, Cong YL, Huang HB, Wang Q, Cai RP, Ye LP, Hu JT, Zhou JY, Wang CF, Li Y. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice. Virology 2014; 464-465:166-176. [DOI: 10.1016/j.virol.2014.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/04/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
50
|
Pion C, Courtois V, Husson S, Bernard MC, Nicolai MC, Talaga P, Trannoy E, Moste C, Sodoyer R, Legastelois I. Characterization and immunogenicity in mice of recombinant influenza haemagglutinins produced in Leishmania tarentolae. Vaccine 2014; 32:5570-6. [PMID: 25131728 DOI: 10.1016/j.vaccine.2014.07.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/17/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022]
Abstract
The membrane displayed antigen haemagglutinin (HA) from several influenza strains were expressed in the Leishmania tarentolae system. This non-conventional expression system based on a parasite of lizards, can be readily propagated to high cell density (>10(8)cells/mL) in a simple incubator at 26°C. The genes encoding HA proteins were cloned from six influenza strains, among these being a 2009 A/H1N1 pandemic strain from swine origin, namely A/California/07/09(H1N1). Soluble HA proteins were secreted into the cell culture medium and were easily and successfully purified via a His-Tag domain fused to the proteins. The overall process could be conducted in less than 3 months and resulted in a yield of approximately 1.5-5mg of HA per liter of biofermenter culture after purification. The recombinant HA proteins expressed by L. tarentolae were characterized by dynamic light scattering and were observed to be mostly monomeric. The L. tarentolae recombinant HA proteins were immunogenic in mice at a dose of 10μg when administered twice with an oil-in-water emulsion-based adjuvant. These results suggest that the L. tarentolae expression system may be an alternative to the current egg-based vaccine production.
Collapse
Affiliation(s)
- Corinne Pion
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Virginie Courtois
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Stéphanie Husson
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Marie-Clotilde Bernard
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Marie-Claire Nicolai
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Philippe Talaga
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Emanuelle Trannoy
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Catherine Moste
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Régis Sodoyer
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France; Technology Research Institute Bioaster, 317 Avenue Jean-Jaurès, 69007 Lyon, France.
| | - Isabelle Legastelois
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| |
Collapse
|