1
|
Fratzke AP, van Schaik EJ, Samuel JE. Immunogenicity and Reactogenicity in Q Fever Vaccine Development. Front Immunol 2022; 13:886810. [PMID: 35693783 PMCID: PMC9177948 DOI: 10.3389/fimmu.2022.886810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium which, in humans, causes the disease Q fever. Although Q fever is most often a mild, self-limiting respiratory disease, it can cause a range of severe syndromes including hepatitis, myocarditis, spontaneous abortion, chronic valvular endocarditis, and Q fever fatigue syndrome. This agent is endemic worldwide, except for New Zealand and Antarctica, transmitted via aerosols, persists in the environment for long periods, and is maintained through persistent infections in domestic livestock. Because of this, elimination of this bacterium is extremely challenging and vaccination is considered the best strategy for prevention of infection in humans. Many vaccines against C. burnetii have been developed, however, only a formalin-inactivated, whole cell vaccine derived from virulent C. burnetii is currently licensed for use in humans. Unfortunately, widespread use of this whole cell vaccine is impaired due to the severity of reactogenic responses associated with it. This reactogenicity continues to be a major barrier to access to preventative vaccines against C. burnetii and the pathogenesis of this remains only partially understood. This review provides an overview of past and current research on C. burnetii vaccines, our knowledge of immunogenicity and reactogenicity in C. burnetii vaccines, and future strategies to improve the safety of vaccines against C. burnetii.
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - James E. Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
2
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell 2015; 6:480-503. [PMID: 25944045 PMCID: PMC4491048 DOI: 10.1007/s13238-015-0164-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Most pathogens initiate their infections at the human mucosal surface. Therefore, mucosal vaccination, especially through oral or intranasal administration routes, is highly desired for infectious diseases. Meanwhile, protein-based antigens provide a safer alternative to the whole pathogen or DNA based ones in vaccine development. However, the unique biopharmaceutical hurdles that intranasally or orally delivered protein vaccines need to overcome before they reach the sites of targeting, the relatively low immunogenicity, as well as the low stability of the protein antigens, require thoughtful and fine-tuned mucosal vaccine formulations, including the selection of immunostimulants, the identification of the suitable vaccine delivery system, and the determination of the exact composition and manufacturing conditions. This review aims to provide an up-to-date survey of the protein antigen-based vaccine formulation development, including the usage of immunostimulants and the optimization of vaccine delivery systems for intranasal and oral administrations.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
4
|
Brown EL, Nishiyama Y, Dunkle JW, Aggarwal S, Planque S, Watanabe K, Csencsits-Smith K, Bowden MG, Kaplan SL, Paul S. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection. J Biol Chem 2012; 287:9940-9951. [PMID: 22303018 DOI: 10.1074/jbc.m111.330043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.
Collapse
Affiliation(s)
- Eric L Brown
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030,; Department of Extracellular Matrix Biology, The Texas A&M University Institute of Biosciences and Technology, Houston, Texas 77030, and.
| | - Yasuhiro Nishiyama
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Jesse W Dunkle
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | - Shreya Aggarwal
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Stephanie Planque
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Keri Csencsits-Smith
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - M Gabriela Bowden
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sheldon L Kaplan
- Department of Pediatrics, Baylor College of Medicine and the Texas Children's Hospital, Houston, Texas 77030
| | - Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030,.
| |
Collapse
|
5
|
Van Roey GA, Arias MA, Tregoning JS, Rowe G, Shattock RJ. Thymic stromal lymphopoietin (TSLP) acts as a potent mucosal adjuvant for HIV-1 gp140 vaccination in mice. Eur J Immunol 2011; 42:353-63. [PMID: 22057556 PMCID: PMC3378695 DOI: 10.1002/eji.201141787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/23/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
Abstract
The development of a successful vaccine against HIV is likely to require the induction of strong and long-lasting humoral immune responses at the mucosal portal of virus entry. Hence, the design of a vaccine strategy able to induce mucosal antibodies and in particular specific IgA, may be crucial to providing immune protection. Nasal immunisation is known to induce specific IgG and IgA responses in the cervicovaginal mucosa; however, there is an urgent need for the development of safe, effective and accessible mucosal adjuvants for nasal application in humans. To reduce the potential for adverse events associated with some nasal adjuvants, we have assessed whether the B-cell-activating cytokines APRIL, BAFF and TSLP enhance humoral immune responses to HIV-1 gp140. Following intranasal immunisation, TSLP but not APRIL or BAFF induced strong humoral responses both in serum and mucosa. The adjuvant effect of TSLP on humoral responses was similar to that of cholera toxin (CT). The use of TSLP as an adjuvant skewed both the cellular and humoral immune responses towards Th2 cells. This is the first time that TSLP has been demonstrated to have a positive effect as a mucosal adjuvant, and specifically to promote mucosal and systemic responses to HIV gp140.
Collapse
Affiliation(s)
- Griet A Van Roey
- Centre for Infection and Immunity, Division of Clinical Science, St. George's University of London, Cranmer Terrace, London, UK
| | | | | | | | | |
Collapse
|
6
|
Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr Top Microbiol Immunol 2011; 354:157-79. [PMID: 21203884 DOI: 10.1007/82_2010_119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4(+) T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4(+) CCR5(+) memory T cells occurs in the gut and vaginal mucosa within the first 10-14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8(+) cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8(+) CTL, CD4(+) T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.
Collapse
|
7
|
Roux X, Dubuquoy C, Durand G, Tran-Tolla TL, Castagné N, Bernard J, Petit-Camurdan A, Eléouët JF, Riffault S. Sub-nucleocapsid nanoparticles: a nasal vaccine against respiratory syncytial virus. PLoS One 2008; 3:e1766. [PMID: 18335041 PMCID: PMC2262139 DOI: 10.1371/journal.pone.0001766] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 02/06/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10-11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). METHODOLOGY AND PRINCIPAL FINDINGS The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8(+) T cells and IFN-gamma-producing CD4(+) T cells. CONCLUSIONS/SIGNIFICANCE This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV.
Collapse
Affiliation(s)
- Xavier Roux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Catherine Dubuquoy
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Guillaume Durand
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Thi-Lan Tran-Tolla
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Nathalie Castagné
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Julie Bernard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Agnès Petit-Camurdan
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | | | - Sabine Riffault
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
8
|
DuBois AB, Freytag LC, Clements JD. Evaluation of combinatorial vaccines against anthrax and plague in a murine model. Vaccine 2007; 25:4747-54. [PMID: 17482725 PMCID: PMC1929014 DOI: 10.1016/j.vaccine.2007.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/23/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
In this study, we examine the potential of a combinatorial vaccine consisting of the lead-candidate antigens for the next generations of vaccines against anthrax (rPA) and plague (F1-V) with the specific objective of determining synergy or interference between the vaccine components when they are administered separately or together by both traditional parenteral immunization (SC) and mucosal immunization (IN) in the presence of appropriate adjuvants. The most significant findings of the study reported here are that (1) a combinatorial vaccine consisting of equal amounts of F1-V and rPA administered SC is effective at eliciting a robust serum and bronchoalveolar lavage (BAL) antigen-specific IgG and IgG1 response against both antigens in immunized animals, and when administered IN, a robust antigen-specific IgG2a response in the serum and BAL is also induced; (2) there were few instances where either synergy or interference was observed in the combined vaccine administered by either route and those differences occurred soon after the final immunization and were not sustained over time; (3) IN immunization was as effective as SC immunization for induction of antigen-specific serum and BAL antibody responses using the same amount of antigen; (4) the IgG1/IgG2a ratios suggest a strongly biased Type 2 response following SC immunization, while IN immunization produced a more balanced Type 1/Type 2 response; (5) the IgG1/IgG2a ratio was influenced by the route of immunization, the adjuvant employed, and the nature of the antigen. As with previously published studies, there were still detectable levels of circulating anti-F1-V and anti-rPA even 6 months post-primary immunization. These studies provide important insights into the development of new generation biodefense vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/genetics
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bronchoalveolar Lavage Fluid/immunology
- Disease Models, Animal
- Female
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Plague Vaccine/administration & dosage
- Plague Vaccine/genetics
- Plague Vaccine/immunology
- Pore Forming Cytotoxic Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
Collapse
Affiliation(s)
- Amanda B DuBois
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
9
|
Pahar B, Cantu MA, Zhao W, Kuroda MJ, Veazey RS, Montefiori DC, Clements JD, Aye PP, Lackner AA, Lovgren-Bengtsson K, Sestak K. Single epitope mucosal vaccine delivered via immuno-stimulating complexes induces low level of immunity against simian-HIV. Vaccine 2006; 24:6839-49. [PMID: 17050045 DOI: 10.1016/j.vaccine.2006.06.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/07/2006] [Accepted: 06/20/2006] [Indexed: 11/16/2022]
Abstract
The difficulty in developing an effective vaccine to contain the HIV/AIDS epidemic coupled with the fact that primary HIV-1 infection typically occurs via mucosal sites has increased emphasis on vaccine approaches that protect at mucosal surfaces. In this study we employed HIV and simian-HIV (SHIV)-derived T helper (Th) and cytotoxic T lymphocyte (CTL) single epitopes incorporated into immuno-stimulating complexes (ISCOM) as a candidate immunogens. Immunized rhesus macaques (Macaca mulatta) were challenged with CCR5-tropic SHIV(SF162p4). On the day of challenge, low levels of virus-neutralizing antibodies (Ab) and CTLs were detected in ISCOM-immunized macaques. Greater than 10(5) viral RNA copies per ml of plasma in 2/5 immunized and 3/4 control macaques were detected within 3 weeks post-challenge. Depletion of CD4+ T cells from gut-associated lymphoid tissues (GALT) was observed by post-challenge day (PCD) 14 in all macaques regardless immunization. Nonetheless, lower viral loads and relatively better preservation of peripheral CD4+ T cells following the SHIV infection was observed in ISCOM-immunized macaques. We predict that if coadministered with additional epitopes and/or more efficacious mucosal delivery system or route, HIV/SIV-derived peptide vaccines may have potential to elicit heterologous protection.
Collapse
Affiliation(s)
- Bapi Pahar
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
It is well-established that most pathogens that cause infectious diseases enter the host via mucosal membranes of the respiratory, digestive and genital tracts. Some parenterally administered vaccines induce protection against mucosal pathogens. However, there is increasing evidence that mucosal protection is better afforded by mucosal vaccination, particularly for the induction of memory responses. Mucosal vaccines must pass several difficult hurdles before entering the host and inducing an effective and protective immune response. This review deals with present and past efforts in devising effective mucosal vaccines using delivery systems and immunopotentiating adjuvants for protein-based vaccines. The paper will conclude with the authors' opinion on how the field will or should progress in the future and what will be the required components of ideal future mucosal vaccines that can induce immunological memory.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
11
|
Abstract
HIV poses a serious health threat in the world. Mucosal transmission of HIV through the genitourinary tract may be the most important route of transmission. Intranasal immunisations induce vaginal and systemic immune responses. Various protein-, DNA- and RNA-based immunopotentiating adjuvants/delivery systems and live bacterial and viral vectors are available for intranasal immunisations, and these systems may differ in their ability to induce a specific type of immune response (e.g., a cytotoxic T cell versus an antibody response). As the protection against HIV may require both cytotoxic T cell and antibodies, a combination of adjuvants/delivery systems for combinations of mucosal and parenteral immunisations may be required in order to develop a protective anti-HIV vaccine.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA.
| | | |
Collapse
|
12
|
Leavell S, Wright B, Scappino L, Sirriyah J, Chen C, Clements JD, Burkhard MJ. Induction of serum and mucosal FIV-specific immune responses by intranasal immunization with p24Gag. Vaccine 2005; 23:1471-8. [PMID: 15670883 DOI: 10.1016/j.vaccine.2004.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
We examined the ability of FIV p24Gag to induce systemic and mucosal FIV-specific immune responses when delivered as a nasal immunogen alone, or with a mucosal adjuvant, Escherichia coli heat labile toxin LT(R192G). Nasal immunization with p24Gag alone induced FIV-specific immune responses but overall responses were weak, transient, and/or present only in a few animals. Co-administration of LT(R192G) resulted in strong FIV-specific serum IgG and enhanced salivary IgA responses. Moreover, FIV-specific IgA was detected in vaginal wash fluid from 6/6 cats co-immunized with LT(R192G) and p24Gag versus 1/6 immunized with p24Gag alone. This is the first report detailing induction of systemic or mucosal FIV-specific immune responses by nasal immunization alone. As such, this study demonstrates that nasal immunization of cats can be a relevant and effective route for the delivery of candidate vaccines. However, while nasal immunization of cats with p24Gag induces antigen-specific systemic immune responses, development of strong systemic and mucosal immune responses requires co-administration of a mucosal adjuvant, such as LT(R192G).
Collapse
Affiliation(s)
- Sarah Leavell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Akagi T, Ueno M, Hiraishi K, Baba M, Akashi M. AIDS vaccine: Intranasal immunization using inactivated HIV-1-capturing core-corona type polymeric nanospheres. J Control Release 2005; 109:49-61. [PMID: 16256237 DOI: 10.1016/j.jconrel.2005.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
Polymeric nanospheres have been widely used in biomedical applications, such as drug, gene and vaccine delivery systems. Nanospheres with entrapped antigens have recently been shown to possess significant potential as vaccine delivery systems and adjuvants. We previously reported that concanavalin A-immobilized polystyrene nanospheres (Con A-NS) could efficiently capture HIV-1 particles and intranasal immunization with inactivated HIV-1-capturing nanospheres (HIV-NS) induced vaginal anti-HIV-1 IgA antibody responses in mice. In addition, vaginal washes from intranasally immunized mice were capable of neutralizing HIV-1. Moreover, simian/human immunodeficiency virus KU-2-capturing nanospheres (SHIV-NS) immunized macaques exhibited partial protection when vaginally and systemically challenged with pathogenic viruses. HIV-NS is suggested to be particularly suitable to enhance antigen delivery to dendritic cells (DCs). In this study, we investigated the mucosal antibody response in mice after the intravaginal or intranasal immunization in detail with using different sized (360, 660, 940 and 1230 nm) HIV-NS. The amount of immobilized Con A to NS was dependent on the surface area of the particle. Moreover, Con A-NS with different sizes could equally capture inactivated HIV-1. Intravaginal or intranasal immunization by HIV-NS with diameters ranging 360 to 1230 nm significantly induced vaginal antibody responses. However, significant differences on vaginal anti-HIV-1 gp120 IgA and IgG antibodies were not found after intravaginal or intranasal immunization with different sized HIV-NS. These results suggest that HIV-NS provides an efficient vaccine delivery system for the induction of a mucosal immune response and the development of a mucosal vaccine.
Collapse
Affiliation(s)
- Takami Akagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
14
|
Kawamura M, Wang X, Uto T, Sato K, Ueno M, Akagi T, Hiraishi K, Matsuyama T, Akashi M, Baba M. Induction of dendritic cell-mediated immune responses against HIV-1 by antigen-capturing nanospheres in mice. J Med Virol 2005; 76:7-15. [PMID: 15778965 DOI: 10.1002/jmv.20317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prophylactic vaccines, designed to elicit potent humoral and cellular immune responses to human immunodeficiency virus type 1 (HIV-1) antigens in mucosa, are the important approach to the protection of individuals against HIV-1 infection, since HIV-1 transmission is largely a result of sexual contact. In this study, a novel strategy has been developed to induce HIV-1-specific immune responses, which involves inactivated HIV-1-caputring concanavalin A (Con A)-immobilized nanospheres (HIV-NS) and their interaction with bone marrow (BM)-derived dendritic cells. HIV-NS were taken up by dendritic cells via cytoskeleton-dependent but mannose-binding site-independent phagocytosis. Serial stimulations to unprimed T-cells with HIV-1 gp120-capturing NS-pulsed dendritic cells could induce antigen-specific T-cell response. Intranasal administration of fluorescein isothiocyanate-labeled nanospheres (NS) in mice proved that the particles were taken up into pulmonary dendritic cells. Analysis of mice receiving intranasal immunizations with HIV-NS revealed that the mice efficiently induced the antibodies against HIV-1 in the genital tract and specific cytotoxic T-cells in the spleen. These results suggest that the use of HIV-1-NS may provide a novel and promising approach for the induction of humoral and cellular immune responses to HIV-1.
Collapse
Affiliation(s)
- Masaki Kawamura
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Glynn A, Roy CJ, Powell BS, Adamovicz JJ, Freytag LC, Clements JD. Protection against aerosolized Yersinia pestis challenge following homologous and heterologous prime-boost with recombinant plague antigens. Infect Immun 2005; 73:5256-61. [PMID: 16041052 PMCID: PMC1201190 DOI: 10.1128/iai.73.8.5256-5261.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Yersinia pestis-derived fusion protein (F1-V) has shown great promise as a protective antigen against aerosol challenge with Y. pestis in murine studies. In the current study, we examined different prime-boost regimens with F1-V and demonstrate that (i) boosting by a route other than the route used for the priming dose (heterologous boosting) protects mice as well as homologous boosting against aerosol challenge with Y. pestis, (ii) parenteral immunization is not required to protect mice against aerosolized plague challenge, (iii) the route of immunization and choice of adjuvant influence the magnitude of the antibody response as well as the immunoglobulin G1 (IgG1)/IgG2a ratio, and (iv) inclusion of an appropriate adjuvant is critical for nonparenteral immunization.
Collapse
Affiliation(s)
- Audrey Glynn
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, 1430 Tulane Avenue, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
16
|
Manocha M, Pal PC, Chitralekha KT, Thomas BE, Tripathi V, Gupta SD, Paranjape R, Kulkarni S, Rao DN. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine 2005; 23:5599-617. [PMID: 16099080 DOI: 10.1016/j.vaccine.2005.06.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/20/2005] [Indexed: 12/13/2022]
Abstract
The predominant route of HIV infection is through the sexual transmission via M cells. Most of the peptide and protein vaccines show poor transport across the epithelial barrier and are commonly administered by parenteral route. In the present study four HIV peptides from envelope (gp 41-LZ (leucine zipper), gp 41-FD (fusion domain) and gp120-C2) and regulatory (Nef) region in poly lactic-co-glycolide (PLG) micro-particle delivery were evaluated in mice of outbred and with different genetic background to compare immune response versus MHC restriction. Out of the combinational and single routes of immunization attempted, the single route maintained the IgG, IgA and sIgA in sera and washes for longer duration as compared to combinational routes in which the response was declined. The study demonstrated that single intranasal immunization offered significantly higher immune response (p<0.05) over oral and rectal mucosal routes in terms of inducing systemic as well as mucosal response. Also, the specific activity measurement of IgA and IgG in sera and sIgA in washes were correlating to the antibody titers. However, the intramuscular route of immunization generated systemic response only. The entrapment of plant lectin UEA-1 a ligand specific for M cells in micro-particle further enhanced the immune response in all the mucosal routes. The IgG isotypes generated were of IgG1 and IgG2a/2b in sera for all the peptides. The T cell proliferation response study with and without UEA-1 lectin in micro-particles showed significantly high (p<0.05) stimulation index (SI) with intranasal immunization for all the peptides from cells collected from spleen (SP), peyer's patches (PP) and lamina propria (LP) with SI in the order LP cells>PP>or=SP. The cytokine measurement profile of IL-2, IFN-gamma and IL-6 and low levels of IL-4 in the cultural supernatants of SP, PP and LP showed mixed CD4(+) Th1 and Th2 immune response. The p24 assay showed high percent inhibition of HIV-IIIB virus with sera and washes obtained from intranasal route. Thus, overall the study highlighted the combination of UEA-1 lectin with HIV peptides in micro-particles through intranasal immunization generated systemic as well as mucosal immune response.
Collapse
Affiliation(s)
- Monika Manocha
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Induction of immune responses following oral immunization is frequently dependent upon the co-administration of appropriate adjuvants that can initiate and support the transition from innate to adaptive immunity. The three bacterial products with the greatest potential to function as mucosal adjuvants are the ADP-ribosylating enterotoxins (cholera toxin and the heat-labile enterotoxin of Escherichia coli), synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN), and monophosphoryl lipid A (MPL). The mechanism of adjuvanticity of the ADP-ribosylating enterotoxins is the subject of considerable debate. Our own view is that adjuvanticity is an outcome and not an event. It is likely that these molecules exert their adjuvant function by interacting with a variety of cell types, including epithelial cells, dendritic cells, macrophages, and possibly B- and T-lymphocytes. The adjuvant activities of CpG and MPL are due to several different effects they have on innate and adaptive immune responses and both MPL and CpG act through MyD88-dependent and -independent pathways. This presentation will summarize the probable mechanisms of action of these diverse mucosal adjuvants and discuss potential synergy between these molecules for use in conjunction with plant-derived vaccines.
Collapse
Affiliation(s)
- L C Freytag
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
18
|
Glynn A, Freytag LC, Clements JD. Effect of homologous and heterologous prime–boost on the immune response to recombinant plague antigens. Vaccine 2005; 23:1957-65. [PMID: 15734068 DOI: 10.1016/j.vaccine.2004.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/07/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
Among the pathogens that have been identified as potential agents of biological warfare or bioterrorism, Yersinia pestis is one of the main concerns due to the severity and potential transmissibility of the pneumonic form of the disease in humans. There are no approved vaccines for protection against pneumonic plague, but a Y. pestis-derived fusion protein (F1-V) has shown great promise as a protective antigen in murine studies. In the current study, we examine different prime-boost regimens, including parenteral, mucosal, and transcutaneous delivery, in order to explore the effect of changing the route of prime and boost on the ability of recombinant F1-V to promote the development of long-lasting, high-titer antibodies. The most significant findings of the study reported here are that (1) intranasal and subcutaneous immunizations are both effective and essentially equivalent for induction of serum and bronchioalveolar anti-F1-V IgG1 responses when a single booster dose is administered by the same (homologous) route, (2) heterologous boosting can be as or more effective than homologous boosting for induction of either serum or bronchioalveolar anti-F1-V IgG1 responses, and (3) anti-F1 and anti-V total IgG responses were highest in animals primed intranasally and boosted by any route when compared to animals primed transcutaneously or subcutaneously. As with previously published studies, there were still significant levels of circulating anti-F1-V antibodies 1 year post-primary immunization. These studies provide important insights into the development of new-generation biodefense vaccines.
Collapse
Affiliation(s)
- Audrey Glynn
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, 1430 Tulane Avenue, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
19
|
Chen Y, Helmus R, McClane B, Hoffman R, Watkins S, Wehrli T, Gupta P. Use of a Clostridium perfringens vector to express high levels of SIV p27 protein for the development of an oral SIV vaccine. Virology 2004; 329:226-33. [PMID: 15518803 DOI: 10.1016/j.virol.2004.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/14/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Clostridium perfringens is a normal bacterial flora of the small and large intestines of humans and other animals. The current study investigates the potential use of a noncytotoxic C. perfringens as an oral vaccine vehicle for expression and intestinal delivery of a large amount of SIV antigens. Here we report the construction of a recombinant C. perfringens vaccine vector expressing high levels of SIV p27 during sporulation. Following oral administration of this recombinant C. perfringens vaccine vector to mice, large amounts of intact p27 protein were detected in the terminal ileum where the majority of Peyer's Patches (PPs) are located. Furthermore, dendritic cells (DCs) beneath the mucosal surface in the PPs were able to capture SIV p27 antigen, when PPs were exposed to C. perfringens expressing SIV p27 antigen. In addition, uptake of C. perfringens was able to induce maturation of mouse DCs. These results support the potential use of C. perfringens as an oral SIV/HIV vaccine vector.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens, Viral/analysis
- Antigens, Viral/biosynthesis
- Cell Differentiation
- Clostridium perfringens/genetics
- Clostridium perfringens/metabolism
- Clostridium perfringens/pathogenicity
- Dendritic Cells/immunology
- Female
- Gene Deletion
- Gene Products, gag/analysis
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Genetic Vectors
- Ileum/immunology
- Intestinal Mucosa/immunology
- Mice
- Mice, Inbred BALB C
- Peyer's Patches/immunology
- Peyer's Patches/microbiology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/biosynthesis
- SAIDS Vaccines/immunology
- Simian Immunodeficiency Virus/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yue Chen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Seabrook TJ, Bloom JK, Iglesias M, Spooner ET, Walsh DM, Lemere CA. Species-specific immune response to immunization with human versus rodent Aβ peptide. Neurobiol Aging 2004; 25:1141-51. [PMID: 15312960 DOI: 10.1016/j.neurobiolaging.2003.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 10/31/2003] [Accepted: 12/19/2003] [Indexed: 11/21/2022]
Abstract
Amyloid beta (A beta) immunization of amyloid precursor protein (APP)-transgenic (tg) mice with human A beta induces humoral immunity, however, the immune response to endogenous rodent A beta is unknown. Fourteen-month J20 APP-tg mice and non-tg littermates were immunized subcutaneously followed by chronic intranasal boosting with human or rodent A beta peptide and adjuvant LT(R192G). Rodent A beta-immunized APP-tg mice had anti-rodent A beta antibody levels of 257.8 micrograms/ml and those immunized with human A beta had anti-human A beta antibodies of 120.8 micrograms/ml. Non-tg littermates had anti-rodent and anti-human A beta antibody concentrations of 98.8 and 231.1 microgram/ml, respectively. Inter-species cross-reactivity was minimal. Anti-human A beta antibodies were predominately IgG1 and IgG2b, while anti-rodent A beta antibodies were equally IgG1, IgG2a, and IgG2b. Anti-human A beta antibodies recognized an epitope within human A beta1-9. Anti-rodent A beta antibodies did not stain Alzheimer's disease (AD) plaques but bound some plaques in APP-tg mice. Splenocytes proliferated modestly to their respective antigen and secreted low levels of IL-2 and IFN-gamma. Therefore, immunizing APP-tg and non-tg mice with rodent A beta resulted in a species-specific humoral response with modest T cell reactivity.
Collapse
Affiliation(s)
- Timothy J Seabrook
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Debates are still being waged over what is the best strategy for developing a potent AIDS vaccine. All the obvious approaches to making AIDS vaccines have been tried in the past two decades without much success. It is clear that new thinking and a revision of prevailing dogmas needs to be in place if we really want a vaccine. Conventional envelope-based antibody-inducing vaccines do not appear to hold promise, and broadly-neutralizing antibodies are now being searched as an alternative to the failed approach with subunit vaccines. The current consensus is that cellular immune responses, especially those mediated by CD8 cytotoxic/suppressor (CTL) and CD4 helper T lymphocytes, are needed to control HIV. Vaccines capable of inducing cell-mediated responses are, therefore, considered critical for controlling the spread of HIV. DNA-based vaccines triggering CTL reaction are currently thought to be an answer, but will they fulfill the promise? In the following paragraphs, a critical assessment of the state of the art will be provided in an attempt to analyze what we know and still don't know. The focus of this review is primarily on mucosal vaccines-a relatively new area in AIDS research. The update on V-1 Immunitor, the first mucosal AIDS vaccine available commercially, is provided within this context. Some of the reviewed concepts may be disputable, but without departure from the uninspiring consensus no substantial progress in the AIDS vaccine field can be envisioned.
Collapse
|
22
|
Nicollier-Jamot B, Ogier A, Piroth L, Pothier P, Kohli E. Recombinant virus-like particles of a norovirus (genogroup II strain) administered intranasally and orally with mucosal adjuvants LT and LT(R192G) in BALB/c mice induce specific humoral and cellular Th1/Th2-like immune responses. Vaccine 2004; 22:1079-86. [PMID: 15003634 DOI: 10.1016/j.vaccine.2003.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 10/06/2003] [Accepted: 10/15/2003] [Indexed: 11/15/2022]
Abstract
We investigated the immune response induced by mucosal immunization of BALB/c mice with virus-like particles (VLPs) of a genogroup II norovirus, Dijon171/96 virus, produced in the baculovirus system. VLPs administered alone by the intranasal route induced a high serum antibody response as well as fecal IgA, which were enhanced when the heat-labile Escherichia coli toxin or its non toxic mutant LT(R192G) was coadministered. In these conditions, the oral route was also efficient. Cytokine production by cells from different lymphoid tissues was then assessed after in vitro restimulation. A Th1/Th2-like response was observed in cervical lymph node and Peyer's patch (PP) cell cultures from mice intranasally or orally immunized with either adjuvant indicating that, on the assumption that T cells are the primary cells producing the cytokines after in vitro restimulation, specific T lymphocytes are present in the intestine after intranasal immunization.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/isolation & purification
- Antibody Formation/immunology
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Feces/chemistry
- Feces/virology
- Female
- Immunity, Cellular/immunology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred BALB C
- Norovirus/immunology
- Spleen/cytology
- Spleen/virology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Béatrice Nicollier-Jamot
- Laboratoire de Microbiologie Médicale et Moléculaire, UFRs Médecine et Pharmacie, Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Kang SM, Yao Q, Guo L, Compans RW. Mucosal immunization with virus-like particles of simian immunodeficiency virus conjugated with cholera toxin subunit B. J Virol 2003; 77:9823-30. [PMID: 12941891 PMCID: PMC224576 DOI: 10.1128/jvi.77.18.9823-9830.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To enhance the efficiency of antigen uptake at mucosal surfaces, CTB was conjugated to simian immunodeficiency virus (SIV) virus-like particles (VLPs). We characterized the immune responses to the Env and Gag proteins after intranasal administration. Intranasal immunization with a mixture of VLPs and CTB as an adjuvant elicited higher levels of SIV gp160-specific immunoglobulin G (IgG) in sera and IgA in mucosae, including saliva, vaginal-wash samples, lung, and intestine, as well as a higher level of neutralization activities than immunization with VLPs alone. Conjugation of CTB to VLPs also enhanced the SIV VLP-specific antibodies in sera and in mucosae to similar levels. Interestingly, CTB-conjugated VLPs showed higher levels of cytokine (gamma interferon)-producing splenocytes and cytotoxic-T-lymphocyte activities of immune cells than VLPs plus CTB, as well as an increased level of both IgG1 and IgG2a serum antibodies, which indicates enhancement of both Th1- and Th2-type cellular immune responses. These results demonstrate that CTB can be an effective mucosal adjuvant in the context of VLPs to induce enhanced humoral, as well as cellular, immune responses.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
24
|
Lemere CA, Spooner ET, Leverone JF, Mori C, Iglesias M, Bloom JK, Seabrook TJ. Amyloid-beta immunization in Alzheimer's disease transgenic mouse models and wildtype mice. Neurochem Res 2003; 28:1017-27. [PMID: 12737526 DOI: 10.1023/a:1023203122036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease is the most prevalent form of dementia worldwide. Therapies are desperately needed to prevent and cure the disease. Mouse models of amyloid-beta deposition [APP and PSAPP transgenic (tg) mice] have been useful in determining the role of amyloid-beta (A beta) in both the pathogenesis and cognitive changes in AD. In addition, they have allowed scientists to investigate potential AD therapies in living animals. Active and passive A beta immunizations have been employed successfully in APP and PSAPP tg mice to lower cerebral A beta levels and improve cognition. Optimization of immunization protocols and characterization of immune responses in wildtype mice have been reported. Based on the promising results of A beta immunization studies in mice, a clinical trial was initiated for A beta vaccination in humans with AD. Although no adverse effects were reported in the Phase I safety trials, about 5% of AD patients in the phase II clinical trial developed meningoencephalitis, ending the trial prematurely in March 2002. Studies in AD mouse models and wildtype mice may help elucidate the mechanism for these unwanted side effects and will be useful for testing newer, safer vaccines for future use in human clinical trials.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Department of Neurology, Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ambrose Z, Thompson J, Larsen K, Kuller L, Panicali DL, Clements JD, Agy M, Montefiori DC, Hu SL, Bosch ML. Evidence for immune-mediated reduction of viral replication in Macaca nemestrina mucosally immunized with inactivated SHIV(89.6). Virology 2003; 308:178-90. [PMID: 12706101 DOI: 10.1016/s0042-6822(03)00027-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although most HIV-1 infections worldwide result from heterosexual transmission, most vaccine candidates have focused on induction of systemic immunity and protection. We hypothesized that combining systemic priming with mucosal boosting would induce mucosal immunity that would protect from intravaginal challenge. Macaques were primed systemically with recombinant vaccinia viruses and boosted mucosally using inactivated SHIV(89.6) plus adjuvant. Other animals received protein boosts with adjuvant alone. Priming and boosting induced antiviral IgG and IgA antibodies. Such antibodies were induced to a lesser degree in animals receiving boosts alone. Anti-SHIV T cell responses were induced only in the prime-boost animals. Immunized animals and controls were challenged intravaginally with SHIV(89.6) and significant reductions in proviral and viral RNA loads were observed in the prime-boost animals. The boost-only animals did not have significant viral load reductions. These data suggest that cellular immunity was required for protection from intravaginal challenge. This immunization regimen provides a promising lead for vaccine development.
Collapse
Affiliation(s)
- Zandrea Ambrose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kang SM, Compans RW. Enhancement of mucosal immunization with virus-like particles of simian immunodeficiency virus. J Virol 2003; 77:3615-23. [PMID: 12610137 PMCID: PMC149534 DOI: 10.1128/jvi.77.6.3615-3623.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is the most potent known mucosal adjuvant, but its toxicity precludes its use in humans. Here, in an attempt to develop safe and effective mucosal adjuvants, we compared immune responses to simian immunodeficiency virus (SIV) virus-like particles (VLPs) after intranasal coimmunization with RANTES, CpG oligodeoxynucleotides (ODN), or CT. Antibody analysis demonstrated that RANTES and CpG ODN had capacities for mucosal adjuvanticity, i.e., for enhancing serum and vaginal antibodies specific to SIV Env, similar to those for CT. RANTES and CpG ODN skewed serum antibodies predominantly to the immunoglobulin G2a isotype. Most importantly, RANTES and CpG ODN were more effective than CT in increasing neutralizing titers of both serum and vaginal antibodies. After intranasal coadministration with VLPs, RANTES or CpG ODN also induced increased levels of gamma interferon (IFN-gamma)-producing lymphocyte and cytotoxic T-lymphocyte activities in both spleen and lymph nodes but did not increase the levels of interleukin-4-producing lymphocytes. The results suggest that RANTES and CpG ODN enhance immune responses in a T-helper-cell-type-1 (Th1)-oriented manner and that they can be used as effective mucosal adjuvants for enhancing both humoral and cellular immune responses in the context of VLPs, which are particulate antigens.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
27
|
Abstract
Vaccines play important roles in preventing infectious diseases caused by different pathogens. However, some pathogens such as HIV-1 challenge current vaccine strategy. Poor immunogenicity and the high mutation rate of HIV-1 make great difficulties in inducing potent immune responses strong enough to prevent infection via vaccination. Epitope-vaccine, which could intensively enhance predefined epitope-specific immune responses, was suggested as a new strategy against HIV-1 and HIV-1 mutation. Epitope-vaccines afford powerful approaches to elicit potent, broad and complete immune protection against not only primary homologous viral isolates but also heterologous viral mutants. Although most studies are still preliminary now, epitope-vaccine as a novel strategy against the AIDS epidemic has great developmental potential. To trigger T-cell-dependent IgG antibody responses and improve affinities of the epitope-specific antibodies, approaches such as recombinant multi-epitope-vaccination and prime-boosting vaccination were suggested. Cellular immune responses, especially CTL responses, could also be elicited and enhanced in addition to humoral immune responses. Developed epitope-vaccines activating both arms of the immune system would benefit prevention and immunotherapy not only against HIV but also other chronic infections.
Collapse
Affiliation(s)
- Zuqiang Liu
- Laboratory of Immunology, Research Center for Medical Science, Department of Biology, Tsinghua University, Beijing 100084, PR China
| | | | | |
Collapse
|
28
|
Spooner ET, Desai RV, Mori C, Leverone JF, Lemere CA. The generation and characterization of potentially therapeutic Abeta antibodies in mice: differences according to strain and immunization protocol. Vaccine 2002; 21:290-7. [PMID: 12450704 DOI: 10.1016/s0264-410x(02)00464-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have shown that in various mouse models of Alzheimer's disease (AD), amyloid beta-protein (Abeta) antibodies generated by Abeta peptide immunization resulted in the prevention of Abeta plaque formation in brains of young mice, decreased Abeta plaque burdens in older mice and improved cognition. The purpose of this study was to optimize Abeta immunization protocols for future trials in transgenic mouse models of AD. The timing and titers of Abeta antibody production, as well as epitope(s) and imunoglobulin isotypes, were compared between two different mouse strains (C57BL/6 and B6D2F1) and five treatment protocols: (1). chronic Abeta nasal administration, (2). repeated Abeta intraperitoneal (i.p.) injection, (3). one i.p. injection followed by chronic Abeta nasal administration, (4). chronic and concurrent Abeta nasal administration + Abeta i.p. injection, and (5). untreated controls. B6D2F1 mice generated Abeta antibodies earlier and in higher quantities than the C57BL/6 mice, indicating that B6D2F1 mice are more responsive to Abeta immunization. For both strains, mice that received the combination of Abeta nasal + Abeta i.p. injection showed the highest antibody titers. Epitope mapping experiments indicated that the mouse anti-Abeta antibodies recognize residues within Abeta1-15. Immunoglobulin isotyping demonstrated that the Abeta antibodies are of the Th-2 anti-inflammatory type, IgG1 and IgG2b, with a few IgM. Currently there is no effective therapy for Alzheimer's disease; thus if Abeta immunization proves effective, it would be a significant step in the prevention and/or treatment of this devastating disease.
Collapse
Affiliation(s)
- Edward T Spooner
- Center for Neurologic Diseases, Brigham & Woman's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115-5716, USA
| | | | | | | | | |
Collapse
|
29
|
La Rosa C, Wang Z, Brewer JC, Lacey SF, Villacres MC, Sharan R, Krishnan R, Crooks M, Markel S, Maas R, Diamond DJ. Preclinical development of an adjuvant-free peptide vaccine with activity against CMV pp65 in HLA transgenic mice. Blood 2002; 100:3681-9. [PMID: 12393676 DOI: 10.1182/blood-2002-03-0926] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epitope vaccines have shown promise for inducing cellular immune responses in animal models of infectious disease. In cases where cellular immunity was augmented, peptide vaccines composed of covalently linked minimal cytotoxic T-lymphocyte (CTL) and T-helper (T(H)) epitopes generally showed the most efficacy. To address a clinical vaccine strategy for cytomegalovirus (CMV) in the context of HCT (hematopoietic cell transplantation), we observed that linking the synthetically derived pan-DR epitope peptide (PADRE) or one of several tetanus T(H) epitopes to the immunodominant human leukocyte antigen (HLA) A*0201-restricted CTL epitope from CMV-pp65 to create a fusion peptide caused robust cytotoxic cellular immune responses in HLA A*0201/K(b) transgenic mice. Significantly, the fusion peptides are immunogenic when administered in saline solution by either subcutaneous or intranasal routes. CpG-containing single-stranded DNA (ss-oligodeoxynucleotide [ODN]) added to the fusion peptides dramatically up-regulated immune recognition by either route. Notably, target cells that either expressed full-length pp65 protein from vaccinia viruses or were sensitized with the CTL epitope encoded in the vaccine were recognized by splenic effectors from immunized animals. Visualization of murine peptide-specific CTL by flow cytometry was accomplished using an HLA A*0201 tetramer complexed with the pp65(495-503) CTL epitope. T(H)-CTL epitope fusion peptides in combination with CpG ss-ODN represent a new strategy for parenteral or mucosal delivery of vaccines in a safe and effective manner that has applicability for control or prophylaxis of infectious disease, especially in situations such as vaccination of donors or recipients of HCT, where highly inflammatory adjuvants are not desired.
Collapse
Affiliation(s)
- Corinna La Rosa
- Laboratory of Vaccine Research, Division of Virology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lemere CA, Spooner ET, Leverone JF, Mori C, Clements JD. Intranasal immunotherapy for the treatment of Alzheimer's disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol Aging 2002; 23:991-1000. [PMID: 12470794 DOI: 10.1016/s0197-4580(02)00127-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide, yet there is currently no effective treatment or cure. Extracellular deposition of amyloid-beta protein (Abeta) in brain is a key neuropathological characteristic of AD. In 1999, Schenk et al. first reported that an injected Abeta vaccine given to PDAPP mice, an AD mouse model displaying Abeta deposition in brain, led to the lowering of Abeta levels in brain. In 2000, we demonstrated that intranasal (i.n.) immunization with human synthetic Abeta1-40 peptide for 7 months led to a 50-60% reduction in cerebral Abeta burden in PDAPP mice; serum Abeta antibody titers were low (approximately 26 microg/ml). More recently, we have optimized our i.n. Abeta immunization protocol in wild-type (WT) mice. When low doses Escherichia coli heat-labile enterotoxin (LT) were given as a mucosal adjuvant with Abeta i.n., there was a dramatic 12-fold increase in Abeta antibody titers in WT B6D2F1 mice treated two times per week for 8 weeks compared to those of mice receiving i.n. Abeta without adjuvant. A non-toxic form of LT, designated LT(R192G), showed even better adjuvanticity; anti-Abeta antibody titers were 16-fold higher than those seen in mice given i.n. Abeta without adjuvant. In both cases, the serum Abeta antibodies recognized epitopes within Abeta1-15 and were of the immunoglobulin (Ig) isotypes IgG2b, IgG1, IgG2a and low levels of IgA. This new and improved Abeta vaccine protocol is now being tested in AD mouse models with the expectation that higher Abeta antibody titers may be more effective in reducing cerebral Abeta levels.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
31
|
BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ. Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 2002; 106:113-21. [PMID: 11972639 PMCID: PMC1782698 DOI: 10.1046/j.1365-2567.2002.01396.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parenteral injection of a lipopeptide containing a human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope from the human cytomegalovirus (HCMV) immunodominant matrix protein pp65 efficiently induces systemic CTL responses in HLA-A*0201 transgenic mice. In this study, we demonstrate that intranasal (i.n.) administration of this lipopeptide, covalently linked to a universal T helper (Th) epitope (PADRE), also induces potent systemic CTL responses. Immune responses were substantially reduced when the unlipidated peptide analogue was used (P<0.01). The induced CTL were CD8+, major histocompatibility complex (MHC) class I-restricted and CMV specific. Moreover, i.n. administration of this lipidated peptide elicited both systemic and local mucosal CD4+ T-cell proliferative responses, as well as antigen-specific delayed type hypersensitivity (DTH) immune responses. In contrast, mice receiving the unlipidated peptide analogue developed substantially reduced Th or DTH responses (P<0.05). These results highlight the usefulness and potential of lipopeptides delivered via mucosal routes as painless, safe, and non-invasive vaccines.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
32
|
Lu X, Clements JD, Katz JM. Mutant Escherichia coli heat-labile enterotoxin [LT(R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine 2002; 20:1019-29. [PMID: 11803061 DOI: 10.1016/s0264-410x(01)00452-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Influenza vaccines capable of inducing both systemic and mucosal antibody responses are highly desirable. Optimal induction of mucosal IgA is accomplished by mucosal delivery of vaccine. Mucosal adjuvants may improve the immunogenicity and efficacy of vaccines delivered by this route. Here, we compare the adjuvant activities of a mutant of heat-labile enterotoxin from Escherichia coli [LT(R192G)] with those of the wildtype LT (wtLT) for oral vaccination with inactivated influenza vaccine in BALB/c mice. Compared with administration of oral influenza vaccine alone, co-administration of vaccine with LT(R192G) provided enhanced protection from infection in the upper and lower respiratory tract equivalent to and at similar doses as that obtained with wtLT. Likewise, LT(R192G) augmented virus-specific IgG and IgA responses in serum, lung and nasal washes and the numbers of virus-specific antibody-forming cells in spleen, lung and Peyer's patches in a manner comparable to wtLT. Virus-specific splenic CD4(+) cells from mice administered oral vaccine with either adjuvant produced a mixed Th1- and Th2-type cytokine response pattern. Taken together, these results indicate that LT(R192G), like wtLT, is a potent adjuvant for oral vaccination of mice with influenza vaccine.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
33
|
Coffin SE, Clark SL. Induction of intestinal rotavirus-specific antibodies in respiratory, but not gut, lymphoid tissues following mucosal immunization of mice with inactivated rotavirus. Virology 2001; 291:235-40. [PMID: 11878893 DOI: 10.1006/viro.2001.1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intranasal (i.n.), but not oral, immunization of mice with inactivated rotavirus induces protection against challenge. To understand the mechanisms by which i.n. immunization with inactivated rotavirus evokes protective immunity, we examined the site of rotavirus-specific B cell activation and the origins of intestinal IgA-secreting B cells following i.n. inoculation of mice with inactivated rhesus rotavirus. We found that (1) i.n., but not oral, inoculation induced partial protection after challenge; (2) i.n., but not oral, inoculation induced production of rotavirus-specific IgM, IgA, and IgG by intestinal lymphoid tissues; and (3) after i.n. inoculation, nasal-associated lymphoid tissues (NALT) and bronchial lymph nodes (BLN) were the sites of initial production of rotavirus-specific antibodies. These studies indicate that after inoculation with inactivated rotavirus, virus-specific effector B cells may be more easily activated in respiratory, compared to intestinal, lymphoid tissues. Additional studies are needed to determine if these observations are due to fundamental differences in the microenvironment of NALT and BLN compared to Peyer's patches or are a function of the anatomic differences between the respiratory and the gastrointestinal tracts.
Collapse
Affiliation(s)
- S E Coffin
- Division of Immunologic and Infectious Diseases, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
34
|
Belyakov IM, Hel Z, Kelsall B, Kuznetsov VA, Ahlers JD, Nacsa J, Watkins DI, Allen TM, Sette A, Altman J, Woodward R, Markham PD, Clements JD, Franchini G, Strober W, Berzofsky JA. Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat Med 2001; 7:1320-6. [PMID: 11726972 DOI: 10.1038/nm1201-1320] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Given the mucosal transmission of HIV-1, we compared whether a mucosal vaccine could induce mucosal cytotoxic T lymphocytes (CTLs) and protect rhesus macaques against mucosal infection with simian/human immunodeficiency virus (SHIV) more effectively than the same vaccine given subcutaneously. Here we show that mucosal CTLs specific for simian immunodeficiency virus can be induced by intrarectal immunization of macaques with a synthetic-peptide vaccine incorporating the LT(R192G) adjuvant. This response correlated with the level of T-helper response. After intrarectal challenge with pathogenic SHIV-Ku2, viral titers were eliminated more completely (to undetectable levels) both in blood and intestine, a major reservoir for virus replication, in intrarectally immunized animals than in subcutaneously immunized or control macaques. Moreover, CD4+ T cells were better preserved. Thus, induction of CTLs in the intestinal mucosa, a key site of virus replication, with a mucosal AIDS vaccine ameliorates infection by SHIV in non-human primates.
Collapse
Affiliation(s)
- I M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morris CB, Thanawastien A, Sullivan DE, Clements JD. Identification of a peptide capable of inducing an HIV-1 Tat-specific CTL response. Vaccine 2001; 20:12-5. [PMID: 11567739 DOI: 10.1016/s0264-410x(01)00271-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although Tat-specific CTL responses are elicited in HIV-infected patients and in non-human primate models, specific CTL epitopes within Tat have not been identified. In this study, we mucosally immunized mice with recombinant, full-length Tat protein or individual Tat-specific, overlapping peptides to map putative H-2d-restricted, Tat-specific CTL epitopes. Standard chromium release assays from splenocytes of immunized animals identified a peptide (QPKTACTNC) capable of inducing Tat-specific CTL responses. This newly-identified epitope lies within a region of low sequence variability among HIV-1 subtypes, suggesting its potential use in a multicomponent AIDS vaccine.
Collapse
Affiliation(s)
- C B Morris
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
36
|
Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK. Recombinant Norwalk virus-like particles administered intranasally to mice induce systemic and mucosal (fecal and vaginal) immune responses. J Virol 2001; 75:9713-22. [PMID: 11559804 PMCID: PMC114543 DOI: 10.1128/jvi.75.20.9713-9722.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Norwalk virus-like particles (rNV VLPs) were administered to BALB/c mice by the intranasal (i.n.) route to evaluate the induction of mucosal antibody responses. The results were compared to systemic and mucosal responses observed in new and previous studies (J. M. Ball, M. E. Hardy, R. L. Atmar, M. E. Connor, and M. K. Estes, J. Virol. 72:1345-1353, 1998) after oral administration of rNV VLPs. Immunizations were given in the presence or absence of a mucosal adjuvant, mutant Escherichia coli heat-labile toxin LT(R192G). rNV-specific immunoglobulin G (IgG) and fecal IgA were evaluated by enzyme-linked immunosorbent assay. The i.n. delivery of rNV VLPs was more effective than the oral route at inducing serum IgG and fecal IgA responses to low doses of rNV particles. Vaginal responses of female mice given VLPs by the i.n. and oral routes were also examined. All mice that received two immunizations with low doses i.n. (10 or 25 microg) of rNV VLPs and the majority of mice that received two high doses orally (200 microg) in the absence of adjuvant had rNV-specific serum IgG, fecal, and vaginal responses. Additional experiments evaluated whether rNV VLPs can function as a mucosal adjuvant by evaluating the immune responses to two soluble proteins, keyhole limpet hemocyanin and chicken egg albumin. Under the conditions tested, rNV VLPs did not enhance the serum IgG or fecal IgA response to these soluble proteins when coadministered by the i.n. or oral route. Low doses of nonreplicating rNV VLPs are immunogenic when administered i.n. in the absence of adjuvant, and addition of adjuvant enhanced the magnitude and duration of these responses. Recombinant NV VLPs represent a candidate mucosal vaccine for NV infections in humans.
Collapse
Affiliation(s)
- R A Guerrero
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The nasal route for vaccination offers some important opportunities, especially for the prophylaxis of respiratory diseases. Vaccination via the respiratory tract is reviewed and the deposition and clearance of antigens in the deep lung and nose are described and contrasted. Lymphoid structures in the respiratory tract differ according to species; the rat and mouse have a well developed nose-associated lymphoid tissue, while in man, the structure known as Waldeyer's ring (that includes the tonsils), is important as an induction site. The immune response following intranasal administration can provide protection at the administration site and at various effector sites as part of the common mucosal immune system. A number of formulation considerations are important when designing novel systems for nasal administration as are physiological factors such as mucociliary clearance.
Collapse
Affiliation(s)
- S S Davis
- Institute of Pharmaceutical Sciences, University of Nottingham, Boots Science Building, Science Road, University Park, NG7 2RD, Nottingham, UK.
| |
Collapse
|
38
|
Abstract
Many of the vaccines in use today were designed on an empirical basis with little understanding of the mechanism of protective immunity or knowledge of the protective antigens. Certain of these vaccines, based on killed or attenuated bacteria or viruses, are associated with unacceptable side-effects. New generation vaccines based on recombinant proteins or naked DNA have considerably improved safety profiles, but are often poorly immunogenic, especially when administered by mucosal routes. This is a particular problem with oral delivery; where high doses of antigen are required to generate even modest immune responses. In contrast, nasal delivery of antigens with a range of adjuvants or delivery systems has been shown to generate relatively potent immune responses and to protect against infection in animal models. Advances in immunology have demonstrated that a variety of cellular and humoral immune effector mechanisms, that are regulated by distinct Th1 and Th2 subtypes of T cells, mediate protection against different infectious diseases. The identification of adjuvants and immunomodulators, that can promote the selective induction of these distinct populations of T cells, has now made it possible to rationally design safe and effective mucosal vaccines against a range of infectious diseases of man.
Collapse
Affiliation(s)
- E A McNeela
- Infection and Immunity Group, Institute of Immunology, National University of Ireland, Co. Kildare, Maynooth, Ireland
| | | |
Collapse
|
39
|
Belyakov IM, Ahlers JD, Clements JD, Strober W, Berzofsky JA. Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6454-62. [PMID: 11086085 DOI: 10.4049/jimmunol.165.11.6454] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the interplay between cytokines and adjuvants to optimize the induction of CTL by a mucosal HIV peptide vaccine. We show synergy between IL-12 and GM-CSF when administered together with the HIV peptide PCLUS3-18IIIB and cholera toxin (CT) in the induction of CTL activity and protection against mucosal viral transmission. Further, we examine the efficacy of mutant Escherichia coli labile toxin, LT(R192G), as a less toxic adjuvant than CT. LT(R192G) was as effective as or more effective than CT at inducing a mucosal CTL response. Moreover, LT(R192G) was as effective without IL-12 as CT was when combined with IL-12, and the response elicited by LT(R192G) with the vaccine was not further enhanced by the addition of IL-12. GM-CSF synergized with LT(R192G) without exogenous IL-12. Therefore, LT(R192G) may induce a more favorable cytokine response by not inhibiting IL-12 production. In particular, less IL-4 is made after LT(R192G) than CT immunization, and the response is less susceptible to anti-IL-12 inhibition. Thus, the choice of mucosal adjuvant affects the cytokine environment, and the mucosal response and protection can be enhanced by manipulating the cytokine environment with synergistic cytokine combinations incorporated in the vaccine.
Collapse
MESH Headings
- 3T3 Cells
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/chemical synthesis
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/physiology
- Administration, Rectal
- Amino Acid Sequence
- Animals
- Cytokines/administration & dosage
- Cytokines/physiology
- Cytotoxicity, Immunologic/immunology
- Drug Synergism
- Epitopes, T-Lymphocyte/immunology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- HIV-1/immunology
- Immunity, Innate
- Interleukin-12/administration & dosage
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/virology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peyer's Patches/cytology
- Peyer's Patches/immunology
- Peyer's Patches/virology
- Spleen/cytology
- Spleen/immunology
- Spleen/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- I M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Kurella S, Manocha M, Sabhnani L, Thomas B, Rao DN. New age adjuvants and delivery systems for subunit vaccines. Indian J Clin Biochem 2000; 15:83-100. [PMID: 23105272 PMCID: PMC3454077 DOI: 10.1007/bf02867548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dramatic advancements in the field of vaccinology has led to the formulation of chemically well defined vaccines composed of synthetic peptides and recombinant proteins derived from the immunologically dominant regions of the pathogens. Though these subunit vaccines are safer compared to the traditional vaccines they are known to be poorly immunogenic. This necessitates the use of adjuvants to enhance the immunogenicity of these vaccine formulations. The most common adjuvant for human use is alum. Research in the past has focused on the development of systemic immunity using conventional immunization protocols. In the present are, the emphasis is on the development and formulation of alternative adjuvants and delivery systems in generating systemic as well as mucosal immunity. This review mainly focuses on a variety of adjuvants (particulate as well as non-particulate) used with protective antigens of HIV, malaria, plague, leprosy using modified delivery vehicles. The experience of our laboratory and other researchers in this field clearly proves that these new age adjuvants and delivery systems undoubtedly generate enhanced immune response-both humoral and cell mediated. The choice of antigens, the nature of adjuvant used and the mode of delivery employed have a profound effect on the type of immune response generated. Besides the quantity, the quality of the antibodies generated also play a vital role in protection against these diseases. Some of the adjuvants and delivery systems used promoted high titre and affinity antibodies, which were shown to be cytophilic in nature, an important criteria in providing protection to the host. Thus the studies on these adjuvants/delivery systems with respect to various infectious diseases indicate their active role in efficient modulation of immune response along with safety and permissibility.
Collapse
Affiliation(s)
- S Kurella
- Department of Biochemistry, All India Institute Of Medical Sciences, 110029 New Delhi, India
| | | | | | | | | |
Collapse
|