1
|
Sun X. Dilemma in prevention of pertussis infection among infants under six months in China. Expert Rev Vaccines 2025; 24:138-145. [PMID: 39869378 DOI: 10.1080/14760584.2025.2459745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Pertussis poses a significant threat to infants under six months due to their immature immune systems, limited maternal antibody protection, and constraints in the vaccination schedule. Despite vaccination efforts, this group remains highly susceptible to severe complications. Addressing these challenges is crucial for improving the health outcomes of infants in China. AREAS COVERED This review examines the primary challenges in preventing pertussis infections among infants under six months in China, focusing on factors such as underdeveloped immune system and inadequate maternal antibody protection. It analyzes limitations in current vaccination strategies and the impact of socio-cultural factors, healthcare resource distribution, and surveillance inadequacies. A comprehensive literature search was conducted to identify potential solutions, including enhancing maternal immunization, adjusting early vaccination strategies, increasing vaccine coverage, and developing new vaccines. The review synthesizes current research findings and data to provide a detailed overview of these issues. EXPERT OPINION Infants under six months are particularly vulnerable to pertussis. Early and effective prevention strategies, such as enhanced maternal immunization and adjusted vaccination schedules, are needed. Increasing vaccine coverage and developing safer, more immunogenic vaccines are essential. Policymakers should prioritize these measures to reduce pertussis incidence and complications among infants in China.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
2
|
Kakati B, Deorari AK. The Changing Landscape of Neonatal Infections: Evolution and Advances in Bacteriology. Indian Pediatr 2025; 62:461-463. [PMID: 40266494 DOI: 10.1007/s13312-025-00078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Affiliation(s)
- Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, 248016, India
| | - Ashok Kumar Deorari
- Department of Neonatology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, 248016, India.
| |
Collapse
|
3
|
Kim SY, Son J, Kim M, Baek CY, Kim MY, Shin A, Lee D, Kim H. Astragalus Extract Mixture HT042 Reverses Cyclophosphamide-Induced Immunosuppression Through Dual Modulation of Innate and Adaptive Immunity. Int J Mol Sci 2025; 26:4850. [PMID: 40429990 PMCID: PMC12112177 DOI: 10.3390/ijms26104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Deficiencies in immune function increase susceptibility to infections and chronic diseases by impairing immune surveillance and tolerance mechanisms, especially in children with immature immune systems. Chronic inflammation associated with immune dysfunction can impair childhood by suppressing the GH-IGF-1. HT042 is composed of Astragalus mongholicus, Eleutherococcus senticosus, and Phlomis umbrosa, which are medicinal herbs that are traditionally utilized in East Asia to promote growth and enhance immune function; thus, HT042 itself holds potential as an immunomodulator. We evaluated the immunomodulatory effects of HT042 in a cyclophosphamide (CYP)-induced immunosuppressed mouse model, as well as in ex vivo primary splenocytes and RAW 264.7 macrophages. HT042 demonstrated remarkable immune-enhancing effects, including the restoration of weight loss and hematological parameters, as well as enhancing NK cell activity. Primary splenocytes treated with HT042 showed increased expression of CD3, CD4, and CD8, along with Th subset transcription factors (T-bet, GATA3, RORγt, Foxp3) and corresponding cytokines (IFN-γ, IL-4, IL-17, IL-10). In RAW 264.7 macrophages, HT042 increased nitric oxide production and upregulated NOS2, COX-2, and inflammatory cytokines (IL-6, IL-1β, TNF-α). It is noteworthy that HT042 enhances both innate and adaptive immune pathways, particularly via T cell modulation and macrophage activation, as this study is among the first to demonstrate such effects in the context of CYP-induced immunosuppression.
Collapse
Affiliation(s)
- Se-Young Kim
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM) NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Republic of Korea; (S.-Y.K.); (M.K.); (M.-Y.K.)
| | - Joohee Son
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (J.S.); (C.Y.B.)
| | - Minju Kim
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM) NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Republic of Korea; (S.-Y.K.); (M.K.); (M.-Y.K.)
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (J.S.); (C.Y.B.)
| | - Mi-Yeon Kim
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM) NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Republic of Korea; (S.-Y.K.); (M.K.); (M.-Y.K.)
| | - Ari Shin
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (J.S.); (C.Y.B.)
| | - Hocheol Kim
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM) NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Republic of Korea; (S.-Y.K.); (M.K.); (M.-Y.K.)
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| |
Collapse
|
4
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2025; 57:563-586. [PMID: 39258739 PMCID: PMC11982438 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Sara D. Lawhon
- Department of Veterinary PathobiologyTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Robert O. Watson
- Department of Microbial Pathogenesis & ImmunologyTexas A&M University, School of MedicineCollege StationTexasUSA
- Present address:
Division of Infectious DiseasesDepartment of Medicine, Vanderbilt University Medical CenterNashvilleTNUSA
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| |
Collapse
|
5
|
Tiemessen CT. Human models that inform antiretroviral therapy-free remission with perinatally acquired HIV infection. Curr Opin HIV AIDS 2025; 20:249-256. [PMID: 39946194 PMCID: PMC11970615 DOI: 10.1097/coh.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
PURPOSE OF REVIEW Rare persons who achieve disease-control despite high viral loads (viraemic nonprogressors) or maintain virologic control in the absence of antiretroviral therapy (ART) (elite controllers) or following ART interruption (posttreatment controllers) possess protective factors that can be harnessed for interventions to achieve ART-free remission. This review broadly summarizes these phenotypes in adults and children, and updates on findings important in informing strategies for ART-free remission in children with HIV. RECENT FINDINGS To date, only a few individual cases of posttreatment control have been described in children. Smaller HIV reservoir size with very early ART initiation in neonates with in-utero acquired HIV associates with improved virological and immunological outcomes. Nine new cases of ART-free remission in children were recently described - 4 from the P1115 trial, and 5 males from the Ucwaningo Lwabantwana study in South Africa. A striking reduction in the decay of intact proviruses was observed over three decades on suppressive ART in two early-treated twins with HIV. SUMMARY The unique environment of perinatal HIV infection favours effective restriction and decay of the HIV-1 reservoir with suppressive ART initiated very early. Sex and population differences require consideration in ongoing studies to inform ART-free remission.
Collapse
Affiliation(s)
- Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Crofts KF, Holbrook BC, Page CL, Gillespie RA, D'Agostino RB, Sangesland M, Ornelles DA, Kanekiyo M, Alexander-Miller MA. Antibody function predicts viral control in newborn monkeys immunised with an influenza virus HA stem nanoparticle. Nat Commun 2025; 16:3785. [PMID: 40263387 PMCID: PMC12015251 DOI: 10.1038/s41467-025-59149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
The lack of an approved influenza vaccine for infants <6 months, coupled with the requirement for annual updates of current vaccines, warrants the development of a universal vaccine that can confer protection in young infants. Here we test the ability of a ferritin nanoparticle universal influenza vaccine (H1ssF) containing the stem region of hemagglutinin (HA) adjuvanted with AddaVax to elicit responses in newborn African green monkeys (AGM). Vaccinated newborns show robust HA stem-specific IgG responses but, despite the high antibody levels, viral load in the lung following H1N1 Ca09 challenge is variable among animals. Further analysis indicates that viral clearance is correlated with the presence of antibodies with neutralizing and antibody-dependent cellular phagocytosis activity. Our findings show that newborn AGM can generate functional HA stem-specific antibodies for viral clearance following vaccination with H1ssF+AddaVax and support further investigation of H1ssF as a universal vaccine for this vulnerable human population.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Courtney L Page
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ralph B D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maya Sangesland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Kasahara M, Sakamoto S. Progress of pediatric liver transplantation: In Japan and beyond. Chin Med J (Engl) 2025; 138:894-904. [PMID: 40143432 PMCID: PMC12037100 DOI: 10.1097/cm9.0000000000003520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 03/28/2025] Open
Abstract
ABSTRACT Organ transplantation, particularly pediatric liver transplantation (LT), has transformed medical practice over the past six decades, providing life-saving interventions for children with end-stage liver disease. This review demonstrated the historical milestones of pediatric organ transplantation, emphasizing Japan's contributions, mainly through the National Center for Child Health and Development. While early transplantation efforts in the 1950s and 1960s faced significant challenges, breakthroughs in preservation methods, immunosuppressive therapies, surgical techniques, and innovations such as living donor LT in Asia have greatly improved success rates. Japan's pediatric LT landscape is distinct, primarily due to its reliance on living donor LT, shaped by cultural and religious influences that have traditionally restricted deceased donor organ donation. This review manuscript discusses Japan's pioneering role in expanding the indications for pediatric LT to include rare conditions such as inherited metabolic disorders and hepatoblastoma. It highlights recent innovations such as hyper-reduced lateral segment grafts, machine perfusion, and minimally invasive surgery that have further improved outcomes. International collaboration has facilitated the sharing of expertise, advancing pediatric liver transplantation practice worldwide. Despite these achievements, challenges remain, particularly in light of Japan's declining birth rate, which threatens the sustainability of pediatric transplant services. This review emphasizes the need for centralized transplant facilities, greater awareness of brain-dead organ donation, and continued medical advances to ensure that pediatric LT remains a viable, life-saving option for future generations.
Collapse
Affiliation(s)
- Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
8
|
Slowinski SP, Kido AK, Alexander LW, Shirdon AH, Bruns EL. Disease resistance is more costly at younger ages: An explanation for the maintenance of juvenile susceptibility in a wild plant. Proc Natl Acad Sci U S A 2025; 122:e2419192122. [PMID: 40184176 PMCID: PMC12002266 DOI: 10.1073/pnas.2419192122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
High juvenile susceptibility drives infectious disease epidemics across kingdoms, yet the evolutionary mechanisms that maintain this susceptibility are unclear. We tested the hypothesis that juvenile susceptibility is maintained by high costs of resistance by quantifying the genetic correlation between host fitness and age-specific innate resistance to a fungal pathogen in a wild plant. We separately measured the resistance of 45 genetic families of the wild plant, Silene latifolia, to its endemic fungal pathogen, Microbotryum lychnidis-dioicae, at four ages in a controlled inoculation experiment. We then grew these same families in a field common garden and tracked survival and fecundity over a 2-y period and quantified the correlation between age-specific resistance and fitness in the field. We found significant fitness costs associated with disease resistance at juvenile but not at adult host stages. We then used an age-structured compartmental model to show that the magnitude of these costs is sufficient to prevent the evolution of higher juvenile resistance in models, allowing the disease to persist. Taken together, our results show that costs of resistance vary across host lifespan, providing an evolutionary explanation for the maintenance of juvenile susceptibility.
Collapse
Affiliation(s)
- Samuel P. Slowinski
- Department of Biology, University of Maryland, College Park, MD20784
- School of Biological Sciences, University of New England, Biddeford, ME04005
| | - Allyson K. Kido
- Department of Biology, University of Maryland, College Park, MD20784
- Marine-Estuarine-Environmental Sciences Graduate program, University of Maryland, Baltimore, MD21250
| | - Laura W. Alexander
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA94720
| | - Andrea H. Shirdon
- Department of Biology, University of Maryland, College Park, MD20784
- Department of Biology, Indiana University, Bloomington, IN47405
| | - Emily L. Bruns
- Department of Biology, University of Maryland, College Park, MD20784
| |
Collapse
|
9
|
Aljehani SM, Zaidan TIA, AlHarbi NO, Alharbi S. Cryptococcus albidus fungemia and probable meningitis in very preterm newborn: a case report and review of the literature. BMC Pediatr 2025; 25:269. [PMID: 40175917 PMCID: PMC11963497 DOI: 10.1186/s12887-025-05614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND In pediatric and neonatal age groups, infections from non-neoformans Cryptococcus species, notably Cryptococcus albidus, are rarely encountered. C. albidus is an emerging fungal pathogen that causes severe diseases in immunosuppressed patients; furthermore, it has rarely been reported to cause diseases in immunocompetent patients. Several cases have been described in adults who were severely immunosuppressed. Importantly, the clinical symptoms in these reported cases include fungemia, meningitis, keratitis, pulmonary and cutaneous infections. Individuals at risk include neutropenic patients, those with indwelling intravenous devices, those on prolonged steroid or antibiotic use, and those with impaired immune systems and prematurity. The susceptibility of preterm infants with low birth weight to infections, particularly fungal ones, remains a significant concern. This report presents a rare case of fungemia and meningitis due to C. albidus in a preterm neonate, emphasizing the clinical significance and potential implications for future treatment and management. This report aims to alert physicians of the rarity of C. albidus infections in pediatric patients and to review the clinical significance, pathology, treatment, and outcomes. CASE PRESENTATION We report the first case of C. albidus fungemia and meningitis in a very low-birth-weight, preterm infant of 31 weeks. Notably, the patient was admitted for lifesaving treatment from the Alleith Hospital due to prematurity. The patient received surfactant due to ARDS, TPN, and fluconazole prophylaxis. On day 11, features of sepsis were observed and the blood culture grew C. albidus, which was sensitive to liposomal agents. CSF evaluation suggested meningitis. The patient improved following a six-week treatment regimen with liposomal formulations of amphotericin B at a dosage of 5 mg/kg body weight once daily, notably administered without 5-fluorocytosine, and experienced no sequelae. CONCLUSIONS This case report underscores the importance of early diagnosis and appropriate antifungal treatment for managing rare fungal infections in vulnerable populations, such as preterm infants. Moreover, it highlights the need for improved diagnostic platforms and comprehensive management protocols for rare pathogens in neonatal settings.
Collapse
MESH Headings
- Humans
- Infant, Newborn
- Antifungal Agents/therapeutic use
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/drug therapy
- Fungemia/diagnosis
- Fungemia/drug therapy
- Fungemia/microbiology
- Meningitis, Cryptococcal/diagnosis
- Meningitis, Cryptococcal/drug therapy
- Meningitis, Cryptococcal/microbiology
- Male
- Infant, Premature
- Amphotericin B/therapeutic use
- Cryptococcus/isolation & purification
- Cryptococcosis/diagnosis
- Cryptococcosis/drug therapy
- Female
- Fluconazole/therapeutic use
- Meningitis, Fungal/diagnosis
- Meningitis, Fungal/drug therapy
Collapse
Affiliation(s)
- Sameera Mohmmed Aljehani
- Department of Pediatric-Infectious Diseases, King Abdulaziz Hospital, Almahjar Street, Jeddah, 22425, Saudi Arabia.
| | - Tasneem Ibraheem A Zaidan
- Department of Pediatric-Infectious Diseases, King Abdulaziz Hospital, Almahjar Street, Jeddah, 22425, Saudi Arabia
| | - Noora Obaid AlHarbi
- Department of Pediatric-Infectious Diseases, King Abdulaziz Hospital, Almahjar Street, Jeddah, 22425, Saudi Arabia
| | - Shurooq Alharbi
- Department of Pediatric-Infectious Diseases, King Abdulaziz Hospital, Almahjar Street, Jeddah, 22425, Saudi Arabia
| |
Collapse
|
10
|
Jia Y, Qi X, Yu X, Dong M, Wu J, Li J, He J, Ma Z, Zhang X, Xie Y, Guo Y, Mao R, Huang Y, Li F, Zhu H, Zhang J. Accuracy of International Guidelines in Identifying Normal Liver Histology in Chinese Patients With HBeAg-Positive Chronic HBV Infection. J Viral Hepat 2025; 32:e14024. [PMID: 39535479 DOI: 10.1111/jvh.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
We evaluated the diagnostic accuracy of various international guideline criteria for identifying HBeAg-positive chronic HBV infection patients with no significant liver disease. A total of 1108 HBeAg-positive CHB patients were retrospectively enrolled. The guidelines assessed included those from the European Association for the Study of the Liver (EASL) 2017, the American Association for the Study of the Liver Disease (AASLD) 2018, the Asian Pacific Association for the Study of the Liver (APASL) 2015 and the Chinese Society of Hepatology (CSH) 2022. The CSH criteria demonstrated a higher proportion of patients with G0-1 and S0-1 (82.9%) compared to the EASL (75.9%), AASLD (75.3%) and APASL groups (58.8%). Additionally, the CSH criteria exhibited a significantly higher predictive value (AUC 0.782, 95% CI 0.754-0.809) than the EASL (AUC 0.765, 95% CI 0.737-0.793), AASLD (AUC 0.749, 95% CI 0.720-0.778) and APASL (AUC 0.720, 95% CI 0.690-0.750) criteria for identifying G0-1 and S0-1. Adding quantitative HBsAg levels (> 104 IU/mL) to the EASL, AASLD and APASL criteria improved diagnostic performance. Consequently, the CSH guideline thresholds showed higher accuracy in identifying Chinese HBeAg-positive patients with no significant liver disease compared to EASL, AASLD and APASL criteria, emphasising the importance of considering quantitative HBsAg in the evaluation of HBeAg-positive chronic HBV infection.
Collapse
Affiliation(s)
- Yidi Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun Qi
- Department of Liver Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, The First Hospital of Quanzhou, Fujian Medical University, Fujian, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxuan Ma
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiran Xie
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Liver Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing' An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Tisseyre M, Collier M, Beeker N, Kaguelidou F, Treluyer JM, Chouchana L. Prenatal Exposure to Proton Pump Inhibitors and Risk of Serious Infections in Offspring During the First Year of Life: A Nationwide Cohort Study. Drug Saf 2025; 48:265-277. [PMID: 39630354 DOI: 10.1007/s40264-024-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 02/16/2025]
Abstract
INTRODUCTION AND OBJECTIVE Proton pump inhibitor (PPI) use in children increases the risk of infections, prompting inquiry into the impact of prenatal PPIs exposure on serious infections in offspring. As a research gap in this area exists, this study aimed to address it by assessing the association between prenatal PPIs exposure and serious infections in infants during their first year of life. METHODS Using the French health insurance data warehouse (SNDS) (2013-2018), we conducted a retrospective cohort study on singleton, full-term liveborn non-immunocompromised infants, stratified by PPI use during the first three months of life (early-life use). Proton pump inhibitor dispensing in ambulatory care settings during pregnancy defined exposure. Outcomes concerned any serious infections in offspring aged between 3 and 12 months. Adjusted odds ratios (aORs) were estimated using logistic regression with multivariable models to control for potential confounders. RESULTS Of the 2,485,545 infants included, 497,060 (23.3%) were prenatally exposed to PPIs and 97,767 (4.6%) had PPI use during the first three months of life. Prenatal PPI exposure was associated with serious infections in offspring (aOR, 1.09 [95% CI, 1.07-1.10]) in infants without early-life PPIs use. No association was found for infants with early-life PPI use (aOR, 1.05 [95% CI, 1.00-1.11]). Gastrointestinal infections were the sole site with persistent significance. CONCLUSION Prenatal PPI exposure is common and is not associated with a major risk of serious infections in infants during their first year. However, even after adjusting for several confounding factors, a weak association remains, especially in infants without early-life PPI use. While offering reassurance, adherence to clinical guidelines is still crucial.
Collapse
Affiliation(s)
- Mylène Tisseyre
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France.
| | - Mathis Collier
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nathanaël Beeker
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Florentia Kaguelidou
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Centre d'Investigations Cliniques, INSERM CIC1426, Hôpital Robert Debré, APHP. Nord, Paris, France
| | - Jean-Marc Treluyer
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laurent Chouchana
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Tucker MH, Kalamvoki M, Tilak K, Raje N, Sampath V. The immunogenetic basis of severe herpes simplex infections in neonates and children: a review. Pediatr Res 2025; 97:1370-1380. [PMID: 39827257 DOI: 10.1038/s41390-025-03830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Human herpes simplex virus (HSV) is a double stranded DNA virus with two distinct types, HSV-1 and HSV-2. The global burden of HSV is high with an estimated 2/3 of the adult population seropositive for at least one of these types of HSV. HSV rarely causes life-threatening disease in immunocompetent children and adults. However, in neonates and children with a developmentally immature immune system it can cause disseminated disease and herpes simplex encephalitis (HSE). Recent studies in children and neonates suggest that genetic risk-factors can contribute to severe HSV phenotypes in neonates and children. In particular, genetic defects in the Toll Like Receptor 3 (TLR3) signaling pathway that attenuate the type I interferon response to HSV are being increasingly recognized in children with severe phenotypes of HSV. In this review, we discuss the epidemiology and immunological aspects of HSV disease in neonates and children and provide an in-depth review of the studies characterizing the role of inborn errors in the TLR3 pathway and other immune genes in HSV. We highlight the need for future research to identify the immunogenetic basis of severe or recurrent HSV disease in neonates and children. IMPACT: Review the epidemiology and phenotypes of herpes simplex virus (HSV) infection in neonates and children. Discuss the mechanisms of immunity against HSV highlighting the developmental vulnerability of neonates and infants to severe HSV disease. Explore in depth the genes and immune pathways that underlie genetic predisposition to severe HSV disease in neonates and children, and outline strategies for multi-disciplinary clinical evaluation of severe disease.
Collapse
Affiliation(s)
- Megan H Tucker
- Department of Neonatology, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kedar Tilak
- Department of Neonatology, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikita Raje
- Department of Allergy and Immunology, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Venkatesh Sampath
- Department of Neonatology, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
13
|
Fox MM, Hassan A, Wiley KS, Kwon D, Knorr DA. Regulatory T-Cells During Pregnancy Relate to Women's Own Childhood History of Microbial Exposure. Am J Hum Biol 2025; 37:e70013. [PMID: 40022470 PMCID: PMC12001746 DOI: 10.1002/ajhb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVES Previous studies found that children with siblings, farm residence, and other proxies of greater microbial contacts had lower rates of hyper-responsive immune disorders. Yet, scientific debate persists regarding whether the human immune system is educated in early life primarily as a function of pathogenic or benign microbial exposures, or both. Furthermore, pregnancy relies on women's intrinsic immunosuppressive function, yet it remained unknown how immunoregulation in pregnant women relates to early-life microbial exposures. Here, we conduct a preliminary examination of whether childhood microbial exposures prime women's pregnancy-related immunoregulatory capacity. METHODS We administered retrospective questionnaires to estimate 55 pregnant women's early-life exposure to pathogenic (e.g., illness) and benign (e.g., pets; rural residence) microbes. Tolerogenic regulatory T-cells (Tregs) and Treg subtypes were measured by flow cytometry from peripheral blood. RESULTS Results show that proxies for both pathogenic and benign exposures were positively associated with Treg concentrations. CONCLUSIONS These findings offer insights that may help elucidate the relative contributions of early-life pathogenic ("hygiene hypothesis") and benign ("old friends hypothesis") microbial exposures toward the expansion of the Treg compartment. Human evolutionary history is characterized by changing microbial exposures as human residency patterns, living environments, and subsistence strategies changed. In this context, our findings suggest the possibility of less gestational pathology in human evolutionary past conditions typified by richer diversity of microbial exposure.
Collapse
Affiliation(s)
- Molly M. Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Adiba Hassan
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Kyle S. Wiley
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Sociology and Anthropology, The University of Texas El Paso, El Paso, TX, 79968 USA
| | - Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Delaney A. Knorr
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708 USA
| |
Collapse
|
14
|
Cao J, Cui X, Lu H, Wang H, Ma W, Yue Z, Zhen K, Wei Q, Li H, Jiang S, Ying W. Regional and longitudinal dynamics of human milk protein components assessed by proteome analysis on a fast and robust micro-flow LC-MS/MS system. Food Chem 2025; 465:141981. [PMID: 39550967 DOI: 10.1016/j.foodchem.2024.141981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC-MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome. In total, 2796 proteins were identified. Among these proteins, CPM, ACSL1, and RPL13 changed significantly during lactation, and SCP2, GALK1 and GALE changed significantly between regions. Bioinformatics analysis revealed that human milk is altered by complex interactions between genetic and environmental factors. Our results not only reveal the regional and longitudinal patterns of change in human milk proteome but also provide theoretical basis and technical support for the production and quality control of infant formula.
Collapse
Affiliation(s)
- Junxia Cao
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, PR China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Xinling Cui
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China; Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hai Lu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhan Yue
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Kemiao Zhen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Qiaosi Wei
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing 100016, PR China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Shilong Jiang
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing 100016, PR China; C-16(th) FL,Star City, No10, Jiuxianqiao Rd, Chaoyang District, Beijing, 100016, PR China.
| | - Wantao Ying
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, PR China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China.
| |
Collapse
|
15
|
Ayalew H, Xu C, Liu Q, Wang J, Wassie T, Wu S, Qiu K, Qi G, Zhang H. Maternal derived antibodies and avian β-defensins expression patterns and their correlation in the yolk sac tissue of different chicken breeds (Gallus gallus). Poult Sci 2025; 104:104758. [PMID: 39813860 PMCID: PMC11782828 DOI: 10.1016/j.psj.2024.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
The expression of maternal derived antibodies (MDAs) and avian β-defensins (AvBDs) in yolk sac tissue may be age-specific and influenced by breed, thereby immunological window difference in hatchlings. This study investigated the mRNA expression of MDAs and AvBDs in the yolk sac tissues of Beijing You and Hy-Line Gray chickens from the embryonic day (ED)7 to 3 days after hatch (DAH). Hy-Line showed a higher embryo bodyweight and a lower residual yolk weight at ED17 (P < 0.05). The expression of IgY and FcRY was higher in the Hy-Line (P < 0.05). In Beijing You, IgA level decreased from ED15 to 19 but peaked from day old hatch to 3 DAH. In Hy-Line, IgA increased from ED19 to 3 DAH (P < 0.05). IgY increased from ED17 to day old hatch (DOH), but declined from DOH to 3 DAH in Beijing You, whereas in Hy-Line, it declined from ED9 to 15 and ED19 to 3 DAH (P < 0.05). FcRY expression declined from DOH to 3 DAH in Beijing You and from ED19 to 3 DAH in Hy-Line (P < 0.05). The expression of AvBD5 increased from ED7 to 13 and ED19 to 3 DAH, and decreased from ED13 to 19 in both breeds. A similar expression patterns of AvBD10 was observed in breeds, increased from ED7 to 11, followed by a decline after ED11. AvBD12 expression peaked at ED17 in Beijing You and from ED15 to 17 in Hy-Line (P < 0.05), then declined from ED17 to 3 DAH in both breeds. The study observed temporal expression development patterns of AvBD5 and AvBD10 in both breeds and AvBD12 in Beijing You, with a correlation coefficient of R2 > 0.5. Overall, the lower yolk residue for faster growth of chickens compromised the expression of MDAs and AvBDs, except for IgA and AvBD5. These results suggest a broader immunological window and highlight the need to focus on maintaining specific MDAs and AvBDs in the strategies of embryonic feeding.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiongge Liu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Teketay Wassie
- Oregon Health and Science University, Department of Molecular Microbiology and Immunology, Portland, Oregon, USA
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Ray JG, Butler EA, Grandi SM, Cohen E. Maternal-Newborn ABO Blood Group Congruence Among Consecutive Births and Risk of Serious Neonatal Infection: Retrospective Cohort Study. Pediatr Infect Dis J 2025:00006454-990000000-01194. [PMID: 39854201 DOI: 10.1097/inf.0000000000004728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
BACKGROUND Differing ABO blood groups between a mother and her fetus may confer a lower risk of serious neonatal infection. How sensitization in the first pregnancy influences this phenomenon in a subsequent pregnancy is unclear. Accordingly, this study determined whether maternal-newborn ABO blood group incongruence in a first pregnancy further modifies the risk of serious infection in a subsequent pregnancy marked by ABO incongruency. METHODS This population-based retrospective cohort study used linked patient-level datasets in Ontario, Canada, from 2008 to 2022. Included were mothers with 2 consecutive live births, with recorded maternal and newborn ABO blood group data. The exposure considered both first- and second-born siblings' ABO blood group congruency with their mother. The outcome was a serious neonatal infection within 27 days after birth. Logistic regression models generated adjusted odds ratios (aORs) and 95% confidence intervals (CIs), adjusted for gestational age at birth. RESULTS Included were 14,739 mother-infant triads. Relative to maternal-newborn congruency in the second pregnancy, incongruent ABO blood groups in the second pregnancy were associated with an aOR of 0.72 (95% CI, 0.53-0.97) for a serious neonatal infection arising in the second-born infant. However, if the first and second siblings each had incongruent ABO blood groups with their mother, the aOR of serious infection in the second-born infant was not significantly lower [0.74 (95% CI, 0.52-1.06)]. CONCLUSIONS Second-born infants whose ABO blood group was incongruent with that of their mother had a lower risk of serious neonatal infection. However, ABO incongruence from a prior birth did not modify that relation.
Collapse
Affiliation(s)
- Joel G Ray
- From the ICES, Toronto, Ontario, Canada
- Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Emily Ana Butler
- From the ICES, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sonia M Grandi
- From the ICES, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health
| | - Eyal Cohen
- From the ICES, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Palacios A, Kumar A, Caliwag FMC, Becerril-Garcia MA. Neonatal Immunity to Candida: Current Understanding and Contributions of Murine Models. Crit Rev Immunol 2025; 45:63-76. [PMID: 39976518 DOI: 10.1615/critrevimmunol.2024055053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Neonatal candidiasis poses significant clinical challenges due to its potential for severe morbidity and mortality in vulnerable infants. Due to their underdeveloped immune system, neonates are at a higher risk for infections caused by Candida species. They can vary from mild to severe, including penetrating deep tissues, bloodstream spread, and dissemination to organs. The immune system of newborns is marked by a limited innate immune response, with lower levels of pro-inflammatory cytokines. Adaptive immunity, important for lasting protection, also experiences delayed maturation with weakened Th1 and Th17 responses. These shortcomings result in a higher vulnerability to Candida infections during infancy. Murine models have been crucial in understanding the reasons behind this susceptibility. These models assist in examining how different immune elements, like neutrophils, macrophages, and T cells, and their interactions are involved in Candida infections. Moreover, they offer an understanding of how early-life exposure to Candida affects immune responses and may aid in developing possible therapeutic plans. In this article we review current results from research to provide a thorough summary and critical insights into neonatal immune response to Candida, highlighting the importance of using murine models in this field of study. Understanding these immune dynamics is essential for creating specific treatments and preventive strategies to prevent newborns from Candida infections, ultimately improving neonatal health outcomes.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Isra University Faculty of Medicine and Allied Medical Sciences, Hyderabad, Sindh Pakistan
| | | | - Miguel A Becerril-Garcia
- Universidad Autónoma de Nuevo León School of Medicine, Department of Microbiology, Monterrey, Nuevo León México
| |
Collapse
|
18
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
19
|
O'Leary ET, Baskar S, Dionne A, Gauvreau K, Howard TS, Jackson LB, Whitehill RD, Mah DY. Epicardial pacing outcomes in infants with heart block: Lead and device complications from a multicenter experience. Heart Rhythm 2025; 22:170-180. [PMID: 39009296 DOI: 10.1016/j.hrthm.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Infants with complete heart block (CHB) require epicardial pacemaker (PM) insertion. Prior studies described epicardial pacing outcomes in infants and children, although they were limited by small or heterogeneous populations. OBJECTIVE This study aimed to explore patient- and procedure-level associations with device complications in infants with CHB who received a permanent PM. METHODS This was a multicenter, retrospective cohort study including infants receiving an epicardial PM between 2000 and 2021 for CHB. The primary outcome was time to device-related adverse event: lead failure requiring revision; pocket infection; exit block requiring increased pacing output; or lead-related coronary artery compression. Time-to-event analysis was performed by the Kaplan-Meier method with a multivariable Cox proportional hazards model. RESULTS There were 174 infants who received an epicardial PM (282 bipolar, 39 unipolar leads) for CHB. Median age and weight at PM were 93.5 days and 4.5 kg, respectively. Pacing indication was postoperative CHB in 63% and congenital CHB in 37%. The median follow-up was 2.1 years. The primary outcome occurred in 26 infants at a median time to event of 0.6 year. Age ≤90 days at PM implantation was the most significant risk factor for a device-related adverse event (hazard ratio, 7.02; P < .001), primarily driven by pocket infections. Lead failure occurred in 3% of leads with a 5- and 10-year freedom from failure of 93% and 83%, respectively. CONCLUSION Device complications affect 15% of infants receiving a permanent PM for heart block. Age ≤90 days at PM implantation is especially associated with infectious complications. Epicardial lead durability appears similar to previously reported pediatric experiences.
Collapse
Affiliation(s)
- Edward T O'Leary
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts.
| | - Shankar Baskar
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Kimberlee Gauvreau
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Taylor S Howard
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lanier B Jackson
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Heart Program of South Carolina, Medical University of South Carolina, Charleston, South Carolina
| | - Robert D Whitehill
- Children's Healthcare of Atlanta Cardiology, Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia
| | - Douglas Y Mah
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
20
|
Ayalew H, Xu C, Adane A, Sanchez ALB, Li S, Wang J, Wu S, Qiu K, Qi G, Zhang H. Ontogeny and function of the intestinal epithelial and innate immune cells during early development of chicks: to explore in ovo immunomodulatory nutrition. Poult Sci 2025; 104:104607. [PMID: 39693955 PMCID: PMC11720616 DOI: 10.1016/j.psj.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Intestinal epithelial cells (IECs) and innate immune cells in the gastrointestinal tract (GIT) of chickens play crucial roles in pathogens defense and maintaining gut health. However, their effectiveness influenced with their developmental and functional stages during pre and post hatch periods of chick. During embryonic development, differentiation and migration of these innate immune systems are tightly regulated by diverse cellular and molecular factors. The maturation and functionality of IECs are histologically evident starting embryonic day (ED) 14. Moreover, the innate immun cells, such as dendritic cells (DCs), macrophages, natural killer (NK) cells, and gamma-delta (γδ) T cells have showed developmental expression varation, while most identified by the 3rd days of incubation and capable of responsing to their cognate ligands of pathogens by ED 17, it may not efficient during posthatch period. In modern poultry production, in ovo feeding of bioactive substances is a topic of interest to maximize the protection capability of hatched chicks by enhancing improvement on the development of innate immune systems. However, their actions and effects on each distinct innate immune involved response are inconsistent and not clearly understood. Thus, summarizing the ontogeny and function of IECs, innate immunity systems, and interaction mechanisms of in ovo feeding of bioactive substances could provide baseline information for designing targeted in ovo feeding interventions to modulate cell waise specific innate immune systems.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Assefa Adane
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Astrid Lissette Barreto Sanchez
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siman Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Rezai T, Fell-Hakai S, Guleria S, Toldi G. The Role of Breast Milk Cell-Free DNA in the Regulation of the Neonatal Immune Response. Nutrients 2024; 16:4373. [PMID: 39770994 PMCID: PMC11678730 DOI: 10.3390/nu16244373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The neonatal period is a critical phase for the development of the intestinal immune system, marked by rapid adaptation to the external environment and unique nutritional demands. Breast milk plays a pivotal role in this transition, yet the mechanisms by which it influences neonatal mucosal immunity remain unclear. This review examines the potential mechanisms by which cell-free DNA (cfDNA) in breast milk may impact neonatal immune development, particularly through Toll-like receptor 9 (TLR9) signalling and gut microbiota interactions. We propose that cfDNA in breast milk interacts with TLR9 on the apical surface of neonatal intestinal epithelial cells, potentially serving as an initial anti-inflammatory stimulus before the establishment of commensal bacteria. This hypothesis is supported by the high concentration and stability of cfDNA in breast milk, as well as the known activation of TLR9 by mitochondrial DNA in breast milk. The review emphasises the need for further empirical research to validate these interactions and their implications for neonatal health, suggesting that understanding these dynamics could lead to improved strategies for neonatal care and disease prevention.
Collapse
Affiliation(s)
| | | | | | - Gergely Toldi
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand; (T.R.); (S.F.-H.); (S.G.)
| |
Collapse
|
22
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
23
|
Wu Z, Tien NTN, Bæk O, Zhong J, Klabunde B, Nguyen TT, Yen NTH, Long NP, Nguyen DN. Regulation of host metabolism and defense strategies to survive neonatal infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167482. [PMID: 39213794 DOI: 10.1016/j.bbadis.2024.167482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Two distinct defense strategies, disease resistance (DR) and disease tolerance (DT), enable a host to survive infectious diseases. Newborns, constrained by limited energy reserves, predominantly rely on DT to cope with infection. However, this approach may fail when pathogen levels surpass a critical threshold, prompting a shift to DR that can lead to dysregulated immune responses and sepsis. The mechanisms governing the interplay between DR and DT in newborns remain poorly understood. Here, we compare metabolic traits and defense strategies between survivors and non-survivors in Staphylococcus epidermidis (S. epidermidis)-infected preterm piglets, mimicking infection in preterm infants. Compared to non-survivors, survivors displayed elevated DR during the initial phase of infection, followed by stronger DT in later stages. In contrast, non-survivors showed clear signs of respiratory and metabolic acidosis and hyperglycemia, together with exaggerated inflammation and organ dysfunctions. Hepatic transcriptomics revealed a strong association between the DT phenotype and heightened oxidative phosphorylation in survivors, coupled with suppressed glycolysis and immune signaling. Plasma metabolomics confirmed the findings of metabolic regulations associated with DT phenotype in survivors. Our study suggests a significant association between the initial DR and subsequent DT, which collectively contributes to improved infection survival. The regulation of metabolic processes that optimize the timing and balance between DR and DT holds significant potential for developing novel therapeutic strategies for neonatal infection.
Collapse
Affiliation(s)
- Ziyuan Wu
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Jingren Zhong
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Björn Klabunde
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tinh Thu Nguyen
- Department of Pediatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
24
|
Rühle J, Schwarz J, Dietz S, Rückle X, Schoppmeier U, Lajqi T, Poets CF, Gille C, Köstlin-Gille N. Impact of perinatal administration of probiotics on immune cell composition in neonatal mice. Pediatr Res 2024; 96:1645-1654. [PMID: 38278847 PMCID: PMC11772233 DOI: 10.1038/s41390-024-03029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Newborns and especially preterm infants are much more susceptible to infections than adults. The pathogens causing infections in newborns are often detectable in the intestinal flora of affected children even before disease onset. Therefore, it seems reasonable to prevent dysbiosis in newborns and preterm infants. An approach followed in many neonatal intensive care units (NICUs) is to prevent infections in preterm infants with probiotics however their mechanisms of action of probiotics are incompletely understood. Here, we investigated the effect of perinatal probiotic exposure on immune cells in newborn mice. METHODS Pregnant mice were orally treated with a combination of Lactobacillus acidophilus and Bifidobacterium bifidum (Infloran®) from mid-pregnancy until the offspring were harvested. Immune cell composition in organs of the offspring were analyzed by flow cytometry. RESULTS Perinatal probiotic exposure had profound effects on immune cell composition in the intestine, liver and lungs of newborn mice with reduction of myeloid and B cells and induction of T cells in the probiotic treated animals' organs at weaning. Furthermore, probiotic exposure had an effect on T cell development in the thymus. CONCLUSION Our results contribute to a better understanding of the interaction of probiotics with the developing immune system. IMPACT probiotics have profound effects on immune cell composition in intestines, livers and lungs of newborn mice. probiotics modulate T cell development in thymus of newborn mice. effects of probiotics on neonatal immune cells are particularly relevant in transition phases of the microbiome. our results contribute to a better understanding of the mechanisms of action of probiotics in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Xenia Rückle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Ulrich Schoppmeier
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany.
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
25
|
Lucore JM, Beehner JC, White AF, Sinclair LF, Martins VA, Kovalaskas SA, Ordoñez JC, Bergman TJ, Benítez ME, Marshall AJ. High temperatures are associated with decreased immune system performance in a wild primate. SCIENCE ADVANCES 2024; 10:eadq6629. [PMID: 39612329 PMCID: PMC11619714 DOI: 10.1126/sciadv.adq6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Rising temperatures due to climate change are predicted to threaten the persistence of wild animals, but there is little evidence that climate change has pushed species beyond their thermal tolerance. The immune system is an ideal avenue to assess the effects of climate change because immune performance is sensitive to changes in temperature and immune competency can affect reproductive success. We investigate the effect of rising temperatures on a biomarker of nonspecific immune performance in a wild population of capuchin monkeys and provide compelling evidence that immune performance is associated with ambient temperature. Critically, we found that immune performance in young individuals is more sensitive to high temperatures compared to other age groups. Coupled with evidence of rising temperatures in the region, our results offer insight into how climate change will affect the immune system of wild mammals.
Collapse
Affiliation(s)
- Jordan M. Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy F. White
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Durham University, Durham, UK
| | - Lorena F. Sinclair
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | | | - Sarah A. Kovalaskas
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Juan Carlos Ordoñez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Thore J. Bergman
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcela E. Benítez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Andrew J. Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Wei X, Liang J, Zhang H, Yan C, Lu X, Chen Y, Li L. Clinical features and risk factors of Klebsiella pneumoniae infection in premature infants: a retrospective cohort study. BMC Infect Dis 2024; 24:1311. [PMID: 39550549 PMCID: PMC11569604 DOI: 10.1186/s12879-024-10201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND With the continuous advancement of modern medical technology, the survival rate of premature infants has significantly increased. Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens causing neonatal infections, particularly posing a serious risk to premature infants. This study aimed to analyze the clinical characteristics, antibiotic susceptibility profiles, and treatment outcomes of K. pneumoniae infections in these infants. METHODS We retrospectively compared cases of K. pneumoniae infection in premature and term infants admitted in a tertiary hospital from January 2017 to December 2022 in China. Clinical and microbiological characteristics were evaluated. Data analysis was performed using the Statistical Package for the Social Sciences (SPSS), with statistical significance defined as P < 0.05. RESULTS We enrolled 166 premature infants and 68 term infants. In premature infants, fetal distress, patent ductus arteriosus, patent foramen ovale, enteritis, anemia, hypoproteinemia, bloodstream infections, abdominal infection, mechanical ventilation, nasogastric feeding, drainage tube, parenteral nutrition, and prior exposure to carbapenem antibiotics were identified as significant risk factors for K. pneumoniae infections in univariate analysis. Furthermore, septic shock, bloodstream infections, abdominal infections, indwelling catheters, drainage tubes, parenteral nutrition, and previous exposure to glycopeptide antibiotics were significantly correlated with mortality. Independent risk factors for K. pneumoniae infections in premature infants included fetal distress (OR: 3.702, [95% CI: 1.056-12.986], P = 0.041), enteritis (OR: 4.434, [95% CI: 1.066-18.451], P = 0.041), anemia (OR: 4.028, [95% CI: 1.550-10.466], P = 0.004), bloodstream infections (OR: 1.221, [95% CI: 0.061-1.802], P = 0.022), mechanical ventilation (OR: 4.974, [95% CI: 1.685-14.685], P = 0.004) and prior exposure to carbapenem antibiotic (OR: 14.738, [95% CI: 2.393-90.767], P = 0.004). Additionally, abdominal infections (OR: 8.598, [95% CI: 2.000-36.957], P = 0.004) and indwelling catheters (OR: 7.698, [95% CI: 0.998-59.370], P = 0.050) were positive predictors of mortality. CONCLUSION K. pneumoniae isolates exhibit a notable prevalence of infection, poor treatment outcomes, and elevated resistance in preterm neonates. These findings enhance our understanding of K. pneumoniae infections and their association with clinical outcomes among premature infants.
Collapse
Affiliation(s)
- Xiaofen Wei
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Jiahui Liang
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Huan Zhang
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Chenglan Yan
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Xiangjun Lu
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Yan Chen
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Linlin Li
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China.
| |
Collapse
|
27
|
Fernandez M, Pezier T, Papadopoulos S, Laurent F, Werts C, Lacroix-Lamandé S. Deleterious intestinal inflammation in neonatal mice treated with TLR2/TLR6 agonists. J Leukoc Biol 2024; 116:1142-1156. [PMID: 38872374 DOI: 10.1093/jleuko/qiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
By providing innate immune modulatory stimuli, the early-life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors by Toll-like receptor (TLR) ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice. Surprisingly, the stimulation of TLR2/TLR6 led to the death of the neonatal mice, which was not observed in adult mice. The TLR2/TLR6 agonist administration induced higher systemic and intestinal inflammation in both adult and neonatal mice when compared with TLR2/TLR1 agonist. The mortality of neonatal mice was interferon γ dependent and involved the intestinal production of interleukin-22 and interleukin-17A. This study clearly demonstrates that targeting TLRs as new control strategy of neonatal infections has to be used with caution. Depending on its heterodimeric form, TLR2 stimulation can induce more or less severe adverse effects relying on the age-related immune functions of the host.
Collapse
Affiliation(s)
- Mégane Fernandez
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Tiffany Pezier
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Stylianos Papadopoulos
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Fabrice Laurent
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| | - Catherine Werts
- Centre National de la Recherche Scientifique UMR6047, Institut National de la Santé et de la Recherche Médicale U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sonia Lacroix-Lamandé
- Infectiologie et Santé Publique, Université de Tours, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-37380 Nouzilly, France
| |
Collapse
|
28
|
Butler EA, Ray JG, Cohen E. Maternal-Newborn ABO Blood Groups and Risk of Bacterial Infection in Newborns. JAMA Netw Open 2024; 7:e2442227. [PMID: 39476233 PMCID: PMC11525604 DOI: 10.1001/jamanetworkopen.2024.42227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/08/2024] [Indexed: 11/02/2024] Open
Abstract
Importance Newborn immunity largely relies on maternal-fetal transfer of antibodies in utero. Incongruency in ABO blood groups between a mother and newborn may be associated with protection against serious infections, but data specific to newborn bacterial infections are lacking. Objective To ascertain the association between maternal-newborn ABO blood group incongruence and lower risk of bacterial infection in newborns. Design, Setting, and Participants This cohort study used linked patient-level datasets for all singleton live births between January 1, 2014, and December 31, 2020, in hospitals and health centers in Ontario, Canada. The cohort comprised maternal-newborn pairs with known ABO blood groups. Data analysis was conducted between February and May 2024. Exposure Maternal-newborn ABO blood group incongruence vs congruence. Main Outcomes and Measures The primary outcome was a bacterial infection arising in newborns within 30 days of birth. Bacterial infection was cultured from either blood, cerebrospinal fluid, urine, or lung specimen. Secondary outcomes were a bacterial infection with 7 days and 90 days of birth. Modified Poisson regression generated adjusted relative risks (ARRs) and 95% CIs, adjusted for neonatal sex and preterm birth. Results A total of 138 207 maternal-newborn pairs (maternal mean [SD] age, 31.8 [5.1] years among those with ABO blood group incongruency and 31.5 [5.1] years among those with ABO blood group congruency; newborn mean [SD] gestational age, 38.5 [2.3] weeks among those with incongruency and 38.4 [2.5] weeks among those with congruency; 19 475 males [51.3%] with incongruency and 52 041 males [51.9%] with congruency) were analyzed. Of these pairs, 37 953 (27.5%) had ABO blood group incongruency and 100 254 (72.5%) had ABO blood group congruency. Within 30 days of birth, 328 (8.6 per 1000) newborns in the incongruent group and 1029 (10.3 per 1000) newborns in the congruent group experienced a bacterial infection, corresponding to an ARR of 0.91 (95% CI, 0.81-1.03). The ARRs for bacterial infection within 7 days and 90 days of birth were 0.89 (95% CI, 0.73-1.09) and 0.86 (95% CI, 0.78-0.94), respectively. Conclusions and Relevance This cohort study found no association between maternal-newborn ABO blood group incongruence and risk of bacterial infection in newborns within 30 and 7 days of birth. However, incongruence was associated with a decreased risk of bacterial infection within 90 days of birth.
Collapse
Affiliation(s)
- Emily Ana Butler
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Joel G Ray
- ICES, Toronto, Ontario, Canada
- Department of Medicine, St Michael's Hospital, Toronto, Ontario, Canada
| | - Eyal Cohen
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Manfroi B, Cuc BT, Sokal A, Vandenberghe A, Temmam S, Attia M, El Behi M, Camaglia F, Nguyen NT, Pohar J, Salem-Wehbe L, Pottez-Jouatte V, Borzakian S, Elenga N, Galeotti C, Morelle G, de Truchis de Lays C, Semeraro M, Romain AS, Aubart M, Ouldali N, Mahuteau-Betzer F, Beauvineau C, Amouyal E, Berthaud R, Crétolle C, Arnould MD, Faye A, Lorrot M, Benoist G, Briand N, Courbebaisse M, Martin R, Van Endert P, Hulot JS, Blanchard A, Tartour E, Leite-de-Moraes M, Lezmi G, Ménager M, Luka M, Reynaud CA, Weill JC, Languille L, Michel M, Chappert P, Mora T, Walczak AM, Eloit M, Bacher P, Scheffold A, Mahévas M, Sermet-Gaudelus I, Fillatreau S. Preschool-age children maintain a distinct memory CD4 + T cell and memory B cell response after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadl1997. [PMID: 39292802 DOI: 10.1126/scitranslmed.adl1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/19/2024] [Indexed: 09/20/2024]
Abstract
The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.
Collapse
Affiliation(s)
- Benoît Manfroi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Bui Thi Cuc
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Aurélien Sokal
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), 92110 Clichy, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, 75015 Paris, France
| | - Mohamed El Behi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Francesco Camaglia
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ngan Thu Nguyen
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Jelka Pohar
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Immunology and Cellular Immunotherapy (ICI) Group, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Layale Salem-Wehbe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Valentine Pottez-Jouatte
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Sibyline Borzakian
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Narcisse Elenga
- Service de Pédiatrie, Centre Hospitalier de Cayenne, 97300 French Guiana
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, Paris-Saclay University, 94275 Le Kremlin-Bicêtre, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Camille de Truchis de Lays
- Service de Pédiatrie. Hôpital Jean-Verdier, AP-HP, Hôpitaux Universitaires Paris Seine-Saint-Denis, 93140 Bondy, France
| | - Michaela Semeraro
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Anne-Sophie Romain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Mélodie Aubart
- INSERM U1163, Genetic Predisposition to Infectious Diseases, Imagine Institute, Université Paris Cité, Paris F-75015, France
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Naim Ouldali
- Department of General Pediatrics, Pediatric Infectious Disease and Internal Medicine, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France
- Paris Cité University, INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution (IAME), 75018 Paris, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Claire Beauvineau
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, 75005 Paris, France
| | - Romain Berthaud
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Célia Crétolle
- Département de Pédiatrie, Service de Chirurgie viscérale pédiatrique, Hôpital Universitaire Necker-Enfants Malades, GH Paris Centre, 75015 Paris, France
| | - Marc Duval Arnould
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Albert Faye
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Mathie Lorrot
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Grégoire Benoist
- Service de pédiatrie générale et hôpital de jour allergologie, CHU Ambroise-Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Nelly Briand
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, 75908 Paris Cedex 15, France
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peter Van Endert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Jean-Sébastien Hulot
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
| | - Anne Blanchard
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
- Sorbonne Paris Cité, Paris Descartes University, 75015 Paris, France
| | - Eric Tartour
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Department of Immunology, Hôpital Européen Georges-Pompidou, AP-HP, CEDEX 15, 75908 Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, 75015 Paris, France
| | - Mickael Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Pascal Chappert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthieu Mahévas
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Simon Fillatreau
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
30
|
Azarmi M, Seyed Toutounchi N, Hogenkamp A, Thijssen S, Overbeek SA, Garssen J, Folkerts G, Van't Land B, Braber S. Human Milk Oligosaccharides in Combination with Galacto- and Long-Chain Fructo-Oligosaccharides Enhance Vaccination Efficacy in a Murine Influenza Vaccination Model. Nutrients 2024; 16:2858. [PMID: 39275175 PMCID: PMC11397401 DOI: 10.3390/nu16172858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Early-life nutrition significantly impacts vaccination efficacy in infants, whose immune response to vaccines is weaker compared to adults. This study investigated vaccination efficacy in female C57Bl/6JOlaHsd mice (6 weeks old) fed diets with 0.7% galacto-oligosaccharides (GOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1), 0.3% human milk oligosaccharides (HMOS), or a combination (GFH) for 14 days prior to and during vaccination. Delayed-type hypersensitivity (DTH) was measured by assessing ear swelling following an intradermal challenge. Influvac-specific IgG1 and IgG2a levels were assessed using ELISAs, while splenic T and B lymphocytes were analyzed for frequency and activation via flow cytometry. Additionally, cytokine production was evaluated using murine splenocytes co-cultured with influenza-loaded dendritic cells. Mice on the GFH diet showed a significantly enhanced DTH response (p < 0.05), increased serological IgG1 levels, and a significant rise in memory B lymphocytes (CD27+ B220+ CD19+). GFH-fed mice also exhibited more activated splenic Th1 cells (CD69+ CXCR3+ CD4+) and higher IFN-γ production after ex vivo restimulation (p < 0.05). These findings suggest that GOS/lcFOS and HMOS, particularly in combination, enhance vaccine responses by improving memory B cells, IgG production, and Th1 cell activation, supporting the potential use of these prebiotics in infant formula for better early-life immune development.
Collapse
Affiliation(s)
- Mehrdad Azarmi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia A Overbeek
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Belinda Van't Land
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
- Department of Pediatric Immunology, Wilhelmina Children Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| |
Collapse
|
31
|
Farrokhi A, Atre T, Salitra S, Aletaha M, Márquez AC, Gynn M, Fidanza M, Jo S, Rolf N, Simmons K, Duque-Afonso J, Cleary ML, Seif AE, Kollmann T, Gantt S, Reid GSD. Early-life infection depletes preleukemic cells in a mouse model of hyperdiploid B-cell acute lymphoblastic leukemia. Blood 2024; 144:809-821. [PMID: 38875504 PMCID: PMC11375503 DOI: 10.1182/blood.2024025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT Epidemiological studies report opposing influences of infection on childhood B-cell acute lymphoblastic leukemia (B-ALL). Although infections in the first year of life appear to exert the largest impact on leukemia risk, the effect of early pathogen exposure on the fetal preleukemia cells (PLC) that lead to B-ALL has yet to be reported. Using cytomegalovirus (CMV) infection as a model early-life infection, we show that virus exposure within 1 week of birth induces profound depletion of transplanted E2A-PBX1 and hyperdiploid B-ALL cells in wild-type recipients and in situ-generated PLC in Eμ-ret mice. The age-dependent depletion of PLC results from an elevated STAT4-mediated cytokine response in neonates, with high levels of interleukin (IL)-12p40-driven interferon (IFN)-γ production inducing PLC death. Similar PLC depletion can be achieved in adult mice by impairing viral clearance. These findings provide mechanistic support for potential inhibitory effects of early-life infection on B-ALL progression and could inform novel therapeutic or preventive strategies.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Maryam Aletaha
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ana Citlali Márquez
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Matthew Gynn
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Alix E. Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Tobias Kollmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Soren Gantt
- Department of Microbiology, Infection, and Immunology, Université de Montreal, Montreal, QC, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Adiga V, Bindhu H, Ahmed A, Chetan Kumar N, Tripathi H, D’Souza G, Dias M, Shivalingaiah S, Rao S, K N S, Hawrylowicz C, Dwarkanath P, Vyakarnam A. Immune profiling reveals umbilical cord blood mononuclear cells from South India display an IL-8 dominant, CXCL-10 deficient polyfunctional monocyte response to pathogen-associated molecular patterns that is distinct from adult blood cells. Clin Exp Immunol 2024; 217:263-278. [PMID: 38695079 PMCID: PMC11310697 DOI: 10.1093/cei/uxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1β, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1β in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.
Collapse
Affiliation(s)
- Vasista Adiga
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Hima Bindhu
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Himanshu Tripathi
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | | | - Srishti Rao
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Shanti K N
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Catherine Hawrylowicz
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| | - Pratibha Dwarkanath
- Division of Nutrition, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
33
|
Sun J, Liu X, Wu T, Guan S, Fu X, Cui L, Gao S, Chen ZJ. Association between endometrial thickness and birthweight of singletons from vitrified-warmed cycles: a retrospective cohort study. Reprod Biomed Online 2024; 49:103736. [PMID: 38772201 DOI: 10.1016/j.rbmo.2023.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 05/23/2024]
Abstract
RESEARCH QUESTION What is the association between endometrial thickness (EMT) and the birthweight of singleton infants born from frozen-thawed embryo transfer cycles? DESIGN This retrospective cohort study was conducted from January 2016 to December 2019. Participants were categorized into a natural cycle (NC, n = 8132) group and hormone replacement therapy (HRT, n = 4975) group. Only singleton deliveries were included. The primary outcomes were measures of birthweight and relevant indexes. Multivariable logistic regression and multivariable-adjusted linear regression models that incorporated restricted cubic splines were used. RESULTS In the HRT group, the risk of delivering a small for gestational age (SGA) infant was increased in women with an EMT <8.0 mm (adjusted odds ratio [aOR] 1.85, 95% confidence interval [CI] 1.17-2.91) compared with women with an EMT of 8.0 to <12.0 mm, and increased with an EMT ≥12.0 mm (aOR 1.85, 95% CI 1.03-3.33). An inverted U-shaped relationship was found between EMT and birthweight in women with HRT. No significant differences were shown in birthweight z-score, or being SGA or large for gestational age, in singletons among the three EMT groups in the natural cycles. CONCLUSIONS A thinner endometrium seen in women undergoing HRT cycles was associated with a lower birthweight z-score, as well as a higher risk of SGA. However, no significant association was observed between EMT and birthweight z-score or SGA in the NC group. It is noteworthy that a thicker endometrium was not associated with a higher birthweight in frozen-thawed embryo transfer (FET) cycles. Women with a thin endometrium who achieve pregnancy require specialized attention, particularly if they are undergoing FET with HRT cycles.
Collapse
Affiliation(s)
- Jiwei Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China; School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaojie Liu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tong Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shengnan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Xiao Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Linlin Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shanshan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Butler EA, Grandi SM, Matai L, Wang X, Cohen E, Ray JG. Differences in maternal-newborn ABO blood groups and risk of serious infant infection. QJM 2024; 117:512-519. [PMID: 38402542 PMCID: PMC11290255 DOI: 10.1093/qjmed/hcae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND During pregnancy, various maternal IgG antibodies are transferred to the developing fetus, some of which may protect the newborn against infection. If a mother and her fetus have different A, B or O (ABO) blood groups, then transferred maternal antibodies may plausibly protect the infant against infection. AIM To determine if maternal-newborn ABO blood group incongruence vs. congruence is associated with a lower risk of serious infection in the infant. DESIGN Retrospective population-based cohort. METHODS We used linked patient-level datasets for all singleton hospital livebirths from 2008 to 2022 in Ontario, Canada, with known maternal and newborn ABO blood groups. We used a dichotomous exposure state, either ABO blood group congruent (N = 114 507) or incongruent (N = 43 074). The main outcome of interest was the risk of serious infant infection within 27 days, and from 28 to 365 days, after birth. Cox proportional hazard models generated hazard ratios and 95% confidence intervals, and were adjusted for maternal age, world region of origin, residential income quintile and gestational age at birth. RESULTS Relative to maternal-newborn congruency, incongruent ABO blood group was associated with an adjusted hazard ratio of 0.88 (95% CI: 0.80-0.97) for serious neonatal infection within 27 days of birth, and 0.93 (95% CI: 0.90-0.96) for serious infection between 28 and 365 days after birth. CONCLUSIONS Maternal-newborn ABO incongruence may be associated with a lower relative risk of a serious infant infection within 27 days, and from 28 to 365 days, after birth.
Collapse
Affiliation(s)
- E A Butler
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- ICES, Toronto, ON, Canada
| | - S M Grandi
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- ICES, Toronto, ON, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - X Wang
- ICES, Toronto, ON, Canada
| | - E Cohen
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- ICES, Toronto, ON, Canada
| | - J G Ray
- ICES, Toronto, ON, Canada
- Department of Medicine, St Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
35
|
England RN, Drapeau EM, Alameh MG, Hosseinzadeh R, Weissman D, Hensley SE. Evaluation of mRNA-LNP and adjuvanted protein SARS-CoV-2 vaccines in a maternal antibody mouse model. NPJ Vaccines 2024; 9:110. [PMID: 38890316 PMCID: PMC11189435 DOI: 10.1038/s41541-024-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Maternal antibodies (matAbs) protect against a myriad of pathogens early in life; however, these antibodies can also inhibit de novo immune responses against some vaccine platforms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) matAbs are efficiently transferred during pregnancy and protect infants against subsequent SARS-CoV-2 infections. It is unknown if matAbs inhibit immune responses elicited by different types of SARS-CoV-2 vaccines. Here, we established a mouse model to determine if SARS-CoV-2 spike-specific matAbs inhibit immune responses elicited by recombinant protein and nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccines. We found that SARS-CoV-2 mRNA-LNP vaccines elicited robust de novo antibody responses in mouse pups in the presence of matAbs. Recombinant protein vaccines were also able to circumvent the inhibitory effects of matAbs when adjuvants were co-administered. While additional studies need to be completed in humans, our studies raise the possibility that mRNA-LNP-based and adjuvanted protein-based SARS-CoV-2 vaccines have the potential to be effective when delivered very early in life.
Collapse
Affiliation(s)
- Ross N England
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Drapeau
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Grayck MR, McCarthy WC, Solar M, Balasubramaniyan N, Zheng L, Orlicky DJ, Wright CJ. Implications of neonatal absence of innate immune mediated NFκB/AP1 signaling in the murine liver. Pediatr Res 2024; 95:1791-1802. [PMID: 38396130 DOI: 10.1038/s41390-024-03071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown. METHODS Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes. RESULTS We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis. This is associated with absent hepatic p65/NFκB signaling and impaired expression of anti-apoptotic target genes. Hepatic c-Jun/AP1 activity was attenuated in endotoxemic P3 mice, with resulting upregulation of pro-apoptotic factors. CONCLUSIONS These results demonstrate that developmental absence of innate immune p65/NFκB and c-Jun/AP1 signaling, and target gene expression is associated with apoptotic injury in neonatal mice. More work is needed to determine if this contributes to long-term hepatic dysfunction, and whether immunomodulatory approaches can prevent this injury. IMPACT Various aspects of developmental immaturity of the innate immune system may help explain the increased risk of infection in the neonatal period. In adult models of inflammation and infection, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for a protective, pro-inflammatory transcriptome and regulation of apoptosis. We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis associated with absent hepatic p65/NFκB signaling and c-Jun/AP1 activity. We believe that these results may explain in part hepatic dysfunction with neonatal sepsis, and that there may be unrecognized developmental and long-term hepatic implications of early life exposure to systemic inflammatory stress.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
37
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Chan C, Conway JM. Comparative analysis of within-host dynamics of acute infection and viral rebound dynamics in postnatally SHIV-infected ART-treated infant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595130. [PMID: 38826467 PMCID: PMC11142125 DOI: 10.1101/2024.05.21.595130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host. Traditionally, acute HIV infection has been modeled with a standard model of viral dynamics initially developed to explore viral decay during treatment, while viral rebound has necessitated extensions of that standard model to incorporate explicit immune responses. Previous efforts to fit these models to viral load data have underscored differences between the two infection stages, such as increased viral clearance rate and increased death rate of infected cells during rebound. However, these findings have been predicated on viral load measurements from disparate adult individuals. In this study, we aim to bridge this gap, in infants, by comparing the dynamics of acute infection and viral rebound within the same individuals by leveraging an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Ten infant Rhesus macaques (RMs) orally challenged with SHIV.C.CH505 375H dCT and given ART at 8 weeks post-infection. These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We use the HIV standard viral dynamics model fitted to viral load measurements in a nonlinear mixed effects framework. We find that the primary difference between acute infection and rebound is the increased death rate of infected cells during rebound. We use these findings to generate hypotheses on the effects of adaptive immune responses. We leverage these findings to formulate hypotheses to elucidate the observed results and provide arguments to support the notion that delayed viral rebound is characterized by a stronger CD8+ T cell response.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
38
|
de Armas LR, Dinh V, Iyer A, Pallikkuth S, Pahwa R, Cotugno N, Rinaldi S, Palma P, Vaz P, Lain MG, Pahwa S. Accelerated CD8 + T cell maturation in infants with perinatal HIV infection. iScience 2024; 27:109720. [PMID: 38706858 PMCID: PMC11068557 DOI: 10.1016/j.isci.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
In perinatal HIV infection, early antiretroviral therapy (ART) initiation is recommended but questions remain regarding infant immune responses to HIV and its impact on immune development. Using single cell transcriptional and phenotypic analysis we evaluated the T cell compartment at pre-ART initiation of infants with perinatally acquired HIV from Maputo, Mozambique (Towards AIDS Remission Approaches cohort). CD8+ T cell maturation subsets exhibited altered distribution in HIV exposed infected (HEI) infants relative to HIV exposed uninfected infants with reduced naive, increased effectors, higher frequencies of activated T cells, and lower frequencies of cells with markers of self-renewal. Additionally, a cluster of CD8+ T cells identified in HEI displayed gene profiles consistent with cytotoxic T lymphocytes and showed evidence for hyper expansion. Longitudinal phenotypic analysis revealed accelerated maturation of CD8+ T cells was maintained in HEI despite viral control. The results point to an HIV-directed immune response that is likely to influence reservoir establishment.
Collapse
Affiliation(s)
- Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vinh Dinh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Akshay Iyer
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paula Vaz
- Instituto Nacional de Saúde, Marracuene, Maputo Province, Mozambique
| | | | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Cui Z, Xu H, Wu F, Chen J, Zhu L, Shen Z, Yi X, Yang J, Jia C, Zhang L, Zhou P, Li MJ, Zhu L, Duan S, Yao Z, Yu Y, Liu Q, Zhou J. Maternal circadian rhythm disruption affects neonatal inflammation via metabolic reprograming of myeloid cells. Nat Metab 2024; 6:899-913. [PMID: 38561509 DOI: 10.1038/s42255-024-01021-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Disruption of circadian rhythm during pregnancy produces adverse health outcomes in offspring; however, the role of maternal circadian rhythms in the immune system of infants and their susceptibility to inflammation remains poorly understood. Here we show that disruption of circadian rhythms in pregnant mice profoundly aggravates the severity of neonatal inflammatory disorders in both male and female offspring, such as necrotizing enterocolitis and sepsis. The diminished maternal production of docosahexaenoic acid (DHA) and the impaired immunosuppressive function of neonatal myeloid-derived suppressor cells (MDSCs) contribute to this phenomenon. Mechanistically, DHA enhances the immunosuppressive function of MDSCs via PPARγ-mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieves neonatal inflammation induced by maternal rhythm disruption. These observations collectively demonstrate a previously unrecognized role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.
Collapse
Affiliation(s)
- Zhaohai Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
| | - Haixu Xu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fan Wu
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Zhu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuxia Shen
- Department of Cardiology, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xianfu Yi
- Department of Bioinformatics, Tianjin, China
| | - Jinhao Yang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunhong Jia
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | | | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Qiang Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases, Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
40
|
Tisseyre M, Collier M, Beeker N, Kaguelidou F, Treluyer JM, Chouchana L. In Utero Exposure to Antibiotics and Risk of Serious Infections in the First Year of Life. Drug Saf 2024; 47:453-464. [PMID: 38409516 DOI: 10.1007/s40264-024-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION AND OBJECTIVE Given the high prevalence of antibiotic prescription during pregnancy in France and previous studies suggesting an increased risk of infection in offspring with such exposures, our study aimed to investigate the association between prenatal exposure to systemic antibiotics and serious infections in full-term infants during their first year of life. METHODS We conducted a retrospective population-based cohort study on singleton, full-term liveborn non-immunocompromised infants, using the French National Health Data System (SNDS) between 2012 and 2021. Systemic antibiotic dispensing in ambulatory care settings during pregnancy defined the exposure. Outcomes concerned serious infections (i.e., infections requiring hospitalization) in offspring identified between 3 and 12 months of life, hence excluding infections of maternal origin. Adjusted odds ratios (aORs) were estimated using logistic regression with multivariate models to control for potential confounders. RESULTS Of 2,836,630 infants included, 39.6% were prenatally exposed to systemic antibiotics. Infants prenatally exposed to antibiotics had a higher incidence of serious infections compared with unexposed infants {aOR 1.12 [95% confidence interval (95% CI) 1.11-1.13]}. Similar associations were observed according to the timing of exposure during pregnancy, antibiotic class, and site of infections. The strongest association was observed when infants were prenatally exposed to three or more antibiotic courses during pregnancy [aOR 1.21 (95% CI 1.19-1.24)]. Limitations include residual confounders, such as genetic susceptibility to infections and the role of the underlying pathogen agent. CONCLUSION Prenatal exposure to systemic antibiotics is very common and is associated with a weak yet significant associations with subsequent serious infectious events during the first year of life. While our study revealed associations, it is important to note that causation cannot be established, given the acknowledged limitations, including potential confounding by indication.
Collapse
Affiliation(s)
- Mylène Tisseyre
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France.
| | - Mathis Collier
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France
- Unité de Recherche Clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nathanaël Beeker
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France
- Unité de Recherche Clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Florentia Kaguelidou
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France
- Centre d'Investigations Cliniques, INSERM CIC1426, Hôpital Robert Debré, APHP.Nord, Paris, France
| | - Jean-Marc Treluyer
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France
- Unité de Recherche Clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laurent Chouchana
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- EA7323, Evaluation thérapeutique et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France
| |
Collapse
|
41
|
Çıplak G, Becerir C, Sarı FN, Alyamaç Dizdar E. Effect of Maternal Coronavirus Disease on Preterm Morbidities. Am J Perinatol 2024; 41:e1835-e1840. [PMID: 37257488 DOI: 10.1055/s-0043-1769471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Coronavirus disease (COVID-19) during pregnancy may have an impact on preterm morbidities due to the inflammatory nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exposure to intrauterine inflammation could result in adverse consequences in preterm infants. We aimed to determine the effect of maternal coronavirus disease on preterm morbidities at a tertiary neonatal intensive care unit. STUDY DESIGN This observational cohort study compared the clinical outcomes of preterm infants < 37 gestational weeks with and without maternal COVID-19. The study was conducted in a tertiary-level neonatal intensive care unit between March 2020 and December 2021. Demographics and clinical data of the study groups were collected from the medical files. RESULTS A total of 254 infants (127 in the maternal COVID-19 group and 127 in the control group) were included in the study. Respiratory distress syndrome, early and late neonatal sepsis, intraventricular hemorrhage, patent ductus arteriosus (PDA), necrotizing enterocolitis, bronchopulmonary dysplasia, and retinopathy of prematurity rates were similar between groups. In the subgroup analysis, the rate of PDA was significantly higher in preterm infants ≤1,500 g with maternal SARS-CoV-2 infection (38 vs. 15% p = 0.023). Presence of maternal COVID-19 was found to be an independent predictor for PDA in very low birthweight infants, as revealed by multivariate analyses (odds ratio: 3.4; 95% confidence interval: 1.12-10.4; p = 0.031). Mortality rates and duration of hospitalization were similar in both groups. CONCLUSION Our results suggest that COVID-19 infection during pregnancy seems to have no adverse effect on preterm morbidities and mortality. However, maternal COVID-19 was found to be a risk factor for PDA in preterm infants ≤1,500 g. KEY POINTS · The effect of maternal COVID-19 on preterm morbidities still has not well defined.. · Maternal COVID-19 seems to have no adverse effect on preterm morbidities and mortality.. · The exact impact of the COVID-19 on fetal/neonatal health is yet to be clarified..
Collapse
Affiliation(s)
- Gökçe Çıplak
- Department of Neonatology, Neonatal Intensive Care Unit, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Cem Becerir
- Department of Neonatology, Neonatal Intensive Care Unit, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Fatma N Sarı
- Department of Neonatology, Neonatal Intensive Care Unit, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Evrim Alyamaç Dizdar
- Department of Neonatology, Neonatal Intensive Care Unit, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
42
|
Smits HH, Jochems SP. Diverging patterns in innate immunity against respiratory viruses during a lifetime: lessons from the young and the old. Eur Respir Rev 2024; 33:230266. [PMID: 39009407 PMCID: PMC11262623 DOI: 10.1183/16000617.0266-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
Respiratory viral infections frequently lead to severe respiratory disease, particularly in vulnerable populations such as young children, individuals with chronic lung conditions and older adults, resulting in hospitalisation and, in some cases, fatalities. The innate immune system plays a crucial role in monitoring for, and initiating responses to, viruses, maintaining a state of preparedness through the constant expression of antimicrobial defence molecules. Throughout the course of infection, innate immunity remains actively involved, contributing to viral clearance and damage control, with pivotal contributions from airway epithelial cells and resident and newly recruited immune cells. In instances where viral infections persist or are not effectively eliminated, innate immune components prominently contribute to the resulting pathophysiological consequences. Even though both young children and older adults are susceptible to severe respiratory disease caused by various respiratory viruses, the underlying mechanisms may differ significantly. Children face the challenge of developing and maturing their immunity, while older adults contend with issues such as immune senescence and inflammaging. This review aims to compare the innate immune responses in respiratory viral infections across both age groups, identifying common central hubs that could serve as promising targets for innovative therapeutic and preventive strategies, despite the apparent differences in underlying mechanisms.
Collapse
Affiliation(s)
- Hermelijn H Smits
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
44
|
Conti MG, Piano Mortari E, Nenna R, Pierangeli A, Sorrentino L, Frasca F, Petrarca L, Mancino E, Di Mattia G, Matera L, Fracella M, Albano C, Scagnolari C, Capponi M, Cinicola B, Carsetti R, Midulla F. SARS-CoV-2-specific mucosal immune response in vaccinated versus infected children. Front Cell Infect Microbiol 2024; 14:1231697. [PMID: 38601739 PMCID: PMC11004290 DOI: 10.3389/fcimb.2024.1231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
The anti-COVID-19 intramuscular vaccination induces a strong systemic but a weak mucosal immune response in adults. Little is known about the mucosal immune response in children infected or vaccinated against SARS-CoV-2. We found that 28% of children had detectable salivary IgA against SARS-CoV-2 even before vaccination, suggesting that, in children, SARS-CoV-2 infection may be undiagnosed. After vaccination, only receptor-binding domain (RBD)-specific IgA1 significantly increased in the saliva. Conversely, infected children had significantly higher salivary RBD-IgA2 compared to IgA1, indicating that infection more than vaccination induces a specific mucosal immune response in children. Future efforts should focus on development of vaccine technologies that also activate mucosal immunity.
Collapse
Affiliation(s)
- Maria Giulia Conti
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Raffaella Nenna
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Capponi
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bianca Cinicola
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabio Midulla
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Li C, Zhao M, Liu X, Li Y, Xu B, Zhou L, Sun X, Sun W, Kang N, Ji Z, Li T, An H, Wang F, Wu C, Ye JY, Zhang JR, Wang Q, Zhao X, Li Z, Liu W. Ion channel TRPV2 is critical in enhancing B cell activation and function. J Exp Med 2024; 221:e20221042. [PMID: 38353705 PMCID: PMC10866685 DOI: 10.1084/jem.20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.
Collapse
Affiliation(s)
- Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meng Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xiaohang Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing-Ying Ye
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhanguo Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
46
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
47
|
Jung E, Romero R, Suksai M, Gotsch F, Chaemsaithong P, Erez O, Conde-Agudelo A, Gomez-Lopez N, Berry SM, Meyyazhagan A, Yoon BH. Clinical chorioamnionitis at term: definition, pathogenesis, microbiology, diagnosis, and treatment. Am J Obstet Gynecol 2024; 230:S807-S840. [PMID: 38233317 PMCID: PMC11288098 DOI: 10.1016/j.ajog.2023.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 04/05/2023]
Abstract
Clinical chorioamnionitis, the most common infection-related diagnosis in labor and delivery units, is an antecedent of puerperal infection and neonatal sepsis. The condition is suspected when intrapartum fever is associated with two other maternal and fetal signs of local or systemic inflammation (eg, maternal tachycardia, uterine tenderness, maternal leukocytosis, malodorous vaginal discharge or amniotic fluid, and fetal tachycardia). Clinical chorioamnionitis is a syndrome caused by intraamniotic infection, sterile intraamniotic inflammation (inflammation without bacteria), or systemic maternal inflammation induced by epidural analgesia. In cases of uncertainty, a definitive diagnosis can be made by analyzing amniotic fluid with methods to detect bacteria (Gram stain, culture, or microbial nucleic acid) and inflammation (white blood cell count, glucose concentration, interleukin-6, interleukin-8, matrix metalloproteinase-8). The most common microorganisms are Ureaplasma species, and polymicrobial infections occur in 70% of cases. The fetal attack rate is low, and the rate of positive neonatal blood cultures ranges between 0.2% and 4%. Intrapartum antibiotic administration is the standard treatment to reduce neonatal sepsis. Treatment with ampicillin and gentamicin have been recommended by professional societies, although other antibiotic regimens, eg, cephalosporins, have been used. Given the importance of Ureaplasma species as a cause of intraamniotic infection, consideration needs to be given to the administration of antimicrobial agents effective against these microorganisms such as azithromycin or clarithromycin. We have used the combination of ceftriaxone, clarithromycin, and metronidazole, which has been shown to eradicate intraamniotic infection with microbiologic studies. Routine testing of neonates born to affected mothers for genital mycoplasmas could improve the detection of neonatal sepsis. Clinical chorioamnionitis is associated with decreased uterine activity, failure to progress in labor, and postpartum hemorrhage; however, clinical chorioamnionitis by itself is not an indication for cesarean delivery. Oxytocin is often administered for labor augmentation, and it is prudent to have uterotonic agents at hand to manage postpartum hemorrhage. Infants born to mothers with clinical chorioamnionitis near term are at risk for early-onset neonatal sepsis and for long-term disability such as cerebral palsy. A frontier is the noninvasive assessment of amniotic fluid to diagnose intraamniotic inflammation with a transcervical amniotic fluid collector and a rapid bedside test for IL-8 for patients with ruptured membranes. This approach promises to improve diagnostic accuracy and to provide a basis for antimicrobial administration.
Collapse
Affiliation(s)
- Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Mahidol University, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Offer Erez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Agustin Conde-Agudelo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Bo Hyun Yoon
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
48
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
49
|
Vergadi E, Kolliniati O, Lapi I, Ieronymaki E, Lyroni K, Alexaki VI, Diamantaki E, Vaporidi K, Hatzidaki E, Papadaki HA, Galanakis E, Hajishengallis G, Chavakis T, Tsatsanis C. An IL-10/DEL-1 axis supports granulopoiesis and survival from sepsis in early life. Nat Commun 2024; 15:680. [PMID: 38263289 PMCID: PMC10805706 DOI: 10.1038/s41467-023-44178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/03/2023] [Indexed: 01/25/2024] Open
Abstract
The limited reserves of neutrophils are implicated in the susceptibility to infection in neonates, however the regulation of neutrophil kinetics in infections in early life remains poorly understood. Here we show that the developmental endothelial locus (DEL-1) is elevated in neonates and is critical for survival from neonatal polymicrobial sepsis, by supporting emergency granulopoiesis. Septic DEL-1 deficient neonate mice display low numbers of myeloid-biased multipotent and granulocyte-macrophage progenitors in the bone marrow, resulting in neutropenia, exaggerated bacteremia, and increased mortality; defects that are rescued by DEL-1 administration. A high IL-10/IL-17A ratio, observed in newborn sepsis, sustains tissue DEL-1 expression, as IL-10 upregulates while IL-17 downregulates DEL-1. Consistently, serum DEL-1 and blood neutrophils are elevated in septic adult and neonate patients with high serum IL-10/IL-17A ratio, and mortality is lower in septic patients with high serum DEL-1. Therefore, IL-10/DEL-1 axis supports emergency granulopoiesis, prevents neutropenia and promotes sepsis survival in early life.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece.
| | - Ourania Kolliniati
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Lapi
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Lyroni
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Eleni Diamantaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology/Neonatal Intensive Care Unit, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Galanakis
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christos Tsatsanis
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
50
|
Chen HJ, Galley JD, Verosky BG, Yang FT, Rajasekera TA, Bailey MT, Gur TL. Fetal CCL2 signaling mediates offspring social behavior and recapitulates effects of prenatal stress. Brain Behav Immun 2024; 115:308-318. [PMID: 37914098 PMCID: PMC10872760 DOI: 10.1016/j.bbi.2023.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
Maternal stress during pregnancy is prevalent and associated with increased risk of neurodevelopmental disorders in the offspring. Maternal and offspring immune dysfunction has been implicated as a potential mechanism by which prenatal stress shapes offspring neurodevelopment; however, the impact of prenatal stress on the developing immune system has yet to be elucidated. Furthermore, there is evidence that the chemokine C-C motif chemokine ligand 2 (CCL2) plays a key role in mediating the behavioral sequelae of prenatal stress. Here, we use an established model of prenatal restraint stress in mice to investigate alterations in the fetal immune system, with a focus on CCL2. In the placenta, stress led to a reduction in CCL2 and Ccr2 expression with a concomitant decrease in leukocyte number. However, the fetal liver exhibited an inflammatory phenotype, with upregulation of Ccl2, Il6, and Lbp expression, along with an increase in pro-inflammatory Ly6CHi monocytes. Prenatal stress also disrupted chemokine signaling and increased the number of monocytes and microglia in the fetal brain. Furthermore, stress increased Il1b expression by fetal brain CD11b+ microglia and monocytes. Finally, intra-amniotic injections of recombinant mouse CCL2 partially recapitulated the social behavioral deficits in the adult offspring previously observed in the prenatal restraint stress model. Altogether, these data suggest that prenatal stress led to fetal inflammation, and that fetal CCL2 plays a role in shaping offspring social behavior.
Collapse
Affiliation(s)
- Helen J Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Branden G Verosky
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Felix T Yang
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Therese A Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, United States; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States; Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, Columbus OH, United States.
| |
Collapse
|