1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Zhang Y, Wang A, Zhao W, Qin J, Zhang Y, Liu B, Yao C, Long J, Yuan M, Yan D. Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin a in intestinal immunity. Gut Microbes 2025; 17:2450871. [PMID: 39812329 PMCID: PMC11740685 DOI: 10.1080/19490976.2025.2450871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin. The abundance of Bacteroides thetaiotaomicron, considered a representative differential bacterium of metformin responsiveness, and the level of secretory immunoglobulin A (SIgA) in intestinal immunity increased significantly in responder recipient mice following metformin treatment. In contrast, no significant alterations in B. thetaiotaomicron and SIgA were observed in non-responder recipient mice. The study of IgA-/- mice confirmed that downregulated expression or deficiency of SIgA resulted in non-response to metformin, meaning that metformin was unable to improve dysfunctional glucose metabolism and reduce intestinal and adipose tissue inflammation, ultimately leading to systemic insulin resistance. Furthermore, supplementation with succinate, a microbial product of B. thetaiotaomicron, potentially reversed the non-response to metformin by inducing the production of SIgA. In conclusion, we demonstrated that upregulated SIgA, which could be regulated by succinate, was functionally involved in metformin response through its influence on immune cell-mediated inflammation and insulin resistance. Conversely, an inability to regulate SIgA may result in a lack of response to metformin.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia’an Qin
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Yao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Taylor H, Uhlig HH, Powrie F. Autoimmunity in inflammatory bowel disease: a holobiont perspective. Curr Opin Immunol 2025; 94:102557. [PMID: 40252635 DOI: 10.1016/j.coi.2025.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
Adaptive immunity towards self-antigens (autoimmunity) and intestinal commensal microbiota is a key feature of inflammatory bowel disease (IBD). Considering mucosal adaptive immunity from a holobiont perspective, where the host and its microbiome form a single physiological unit, emphasises the challenge of avoiding damaging responses to self-antigen and symbiotic microbial communities in the gut while protecting against potential pathogens. Intestinal tolerance mechanisms prevent maladaptive T and B cell responses to microbial, environmental, and self-antigens, which drive inflammation. We discuss the spectrum of antimicrobial and autoantibody responses and highlight mechanisms by which common IBD-associated adaptive immune responses contribute to disease.
Collapse
Affiliation(s)
- Henry Taylor
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Holm H Uhlig
- Centre for Human Genetics, University of Oxford, Oxford, UK; Translational Gastroenterology Liver Unit, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Matsumoto K, Noguchi A, Miyamoto F, Inoue R, Hirai H, Miwa T, Nakagawa Y, Higashimura Y. Intestinal D-amino acids content is highly related to intestinal IgA production upon soluble dietary fiber ingestion in mice. Food Chem 2025; 487:144719. [PMID: 40373723 DOI: 10.1016/j.foodchem.2025.144719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Soluble dietary fiber (SDF) induces intestinal IgA production. Mechanistically, this has primarily been explained by intestinal bacteria producing short-chain fatty acids (SCFAs) as metabolites from the SDF. Here, we aimed to identify factors other than SCFAs that contribute to SDF-induced intestinal IgA production. SDF ingestion (3 % of the diet) for 9-12 weeks induced a four-fold increase in fecal IgA production in BALB/cA mice. The total SCFA concentration in the cecum tends to show a positive correlation with fecal IgA content (ρ = 0.5734, P = 0.0513), while the content of D-amino acids (D-AAs), inducers of IgA, in the cecum and colon exhibited a strongly positive correlation with the IgA content (ρ = 0.7805, P < 0.001). Bacterial flora analysis of fecal samples revealed that certain bacterial species were highly correlated with IgA production. These findings suggest that D-AAs play an important role in SDF-induced intestinal IgA production.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Ayaka Noguchi
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Funa Miyamoto
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Ryo Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotouge, Hirakata, Osaka 573-0101, Japan
| | - Hirokazu Hirai
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Tomohiro Miwa
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yoshinori Nakagawa
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
6
|
Dang S, Zhang X, Zhang Y, Zhang H. New thoughts on the intestinal microbiome-B cell-IgA axis and therapies in IgA nephropathy. Autoimmun Rev 2025; 24:103835. [PMID: 40360014 DOI: 10.1016/j.autrev.2025.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
IgA nephropathy (IgAN), as the most common chronic glomerulonephritis worldwide, is often triggered by mucosal infections and follows a chronic progression, with the majority of patients ultimately progressing to end-stage renal disease (ESRD) during their lifetimes. Since the mystery of its complete pathogenesis has not been fully solved, the resulting lack of effective early diagnosis and treatment greatly affects the prognosis of patients. Given the well-defined pathological feature of IgA deposition in the mesangial region, the source and role of pathogenic IgA has been focused on. Starting from the microbiology and immunity of the gut, we systematically review both the physiological and the pathological process of microbiome-B cell-IgA axis, from microbial-induced IgA production to the role of IgA in the intestinal immune milieu, and ultimately end up with the various aspects of microbiome-B cell-IgA axis in the pathogenesis of IgAN as well as the corresponding therapeutic initiatives available. Our retrospective review helps researchers to systematically understand the complex role between intestinal flora dysbiosis and pathogenic IgA in IgAN. This understanding provides a foundation for in-depth explorations to uncover more detailed pathogenic mechanisms and to develop more precise and effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shaoqing Dang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyu Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Shacklett BL. Mucosal immunity in acute HIV: a review of recent work. Curr Opin HIV AIDS 2025; 20:193-198. [PMID: 39903645 PMCID: PMC11968210 DOI: 10.1097/coh.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW This review summarizes recent research literature relevant to mucosal immunity and acute/early HIV infection. RECENT FINDINGS Recent findings include new insights on the HIV transmission "bottleneck" at mucosal surfaces, the impact of acute HIV on germinal centers and mucosal B-cell function, the expression of cytotoxic effector molecules by mucosal CD8 + T-cells, and an enhanced understanding of the impact of acute HIV on innate cell-mediated defenses including mucosa-associated invariant T-cells invarant natural killer T-cells and natural killer cells. SUMMARY Now more than 40 years since the beginning of the HIV/AIDS pandemic, extensive research has elucidated the dynamics of HIV replication and the corresponding host response. However, the vast majority of HIV-related immunopathogenesis studies have focused on innate and adaptive immune responses in peripheral blood. Mucosal tissues serve as the primary portals of entry for HIV and house the majority of the body's lymphocytes. Innate and adaptive immune responses in mucosal tissues are of particular relevance during the acute phase of HIV disease, as successful defenses can both limit viral dissemination within the host and prevent transmission to a new host, yet until recently these responses were poorly understood.
Collapse
Affiliation(s)
- Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
8
|
Gill T. Exploring the Mucosal Immune Response in Axial Spondyloarthritis Through Immunoglobulin A-Coated Microbiota. Rheum Dis Clin North Am 2025; 51:283-293. [PMID: 40246441 DOI: 10.1016/j.rdc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In this review, we focus on the mucosal immune response through Immunoglobulin A (IgA)-coated microbes and their role in gut dysbiosis in axial spondyloarthritis (axSpA) and associated inflammatory bowel disease. IgA-coated microbes contribute significantly to the microbial dysbiosis observed in axSpA, potentially driving gut inflammation and translocating outside of the gut and initiating systemic immune activation, thus contributing to disease pathogenesis. These insights will provide new avenues for understanding and treating axSpA and other immune-mediated inflammatory disorders by targeting specific host immune-microbe interactions.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Casey Eye Insitute, Oregon Science & Health University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA.
| |
Collapse
|
9
|
Félix P, Melo AA, Costa JP, Colaço M, Pereira D, Núñez J, de Almeida LP, Borges O. Exploring TLR agonists as adjuvants for COVID-19 oral vaccines. Vaccine 2025; 53:127078. [PMID: 40184639 DOI: 10.1016/j.vaccine.2025.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic underscored the importance of advancing technologies that enable the rapid development and distribution of more effective vaccines when required. Since SARS-CoV-2 enters the body through the nasal mucosa, optimising the induction of secretory IgA (sIgA) production, a key component of the mucosal immune response, is essential. It has long been known that the induction of sIgA occurs when a vaccine is administered through mucosal surfaces and the immune responses initiated at one mucosal site can influence immune activity at other mucosal surfaces. Consequently, we propose an oral vaccine formulation (Vacform) comprising the immunomodulator CL097, a TLR7/8 agonist, and the SARS-CoV-2 spike protein, both encapsulated within glucan particles (GPs). The studies demonstrated that Vacform induced ROS production in RAW 264.7 cells but not in human neutrophils. The concentrations of Vacform tested did not induce NO production in RAW 264.7 cells. While Vacform stimulated the production of TNF-α and IL-6 in mouse spleen cells, this effect was not observed in RAW 264.7 cells. Finally, Vacform stimulated the proliferation of human PBMCs. Thus, its immunomodulatory properties were evident in specific cells under certain in vitro conditions. The Vacform was subsequently tested in vaccination studies. C57BL/6 mice were initially immunized subcutaneously, followed by two oral boosts with Vacform every two weeks. The Vacform elicited both, humoral (serum IgG and mucosal sIgA) and cellular immune responses. A balanced Th1/Th2/Th17 immune profile was observed. In conclusion, the GPs:CL097 adjuvant system shows promise for eliciting robust immune responses against SARS-CoV-2 and provides a foundation for future studies on dose-response optimization and challenge models.
Collapse
Affiliation(s)
- Paulo Félix
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Alexandra A Melo
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - João Panão Costa
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Mariana Colaço
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Dina Pereira
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Jisette Núñez
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Luís Pereira de Almeida
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Olga Borges
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal.
| |
Collapse
|
10
|
Elsayim R, Alkhulaifi MM, Aloufi AS, Felemban RA, Eltayeb LB, Mohamed AEE, Alshammari HO, Abudouleh E. Decoding Immune Dynamics in Pregnant Women: Key Gene Expression Changes Following Influenza Vaccination. Int J Mol Sci 2025; 26:3765. [PMID: 40332395 PMCID: PMC12027590 DOI: 10.3390/ijms26083765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Pregnant women are at an increased risk of severe influenza complications, necessitating vaccination as a preventive measure. Despite World Health Organization (WHO) recommendations for influenza vaccination during pregnancy, vaccination rates remain suboptimal in many regions. This study aims to identify key differentially expressed genes (DEGs) and biological pathways modulated by influenza vaccination in pregnant women pre- and post-vaccination, contributing to improved vaccine strategies. Microarray data from gene expression omnibus GEO dataset GSE166545 was analyzed to identify DEGs in blood samples from pregnant women at three time points: pre-vaccination (Day 0) and post-vaccination (Days 0 and 1) (Days 1 and 7). DEGs were filtered using an adjusted p-value < 0.05 and |log2 fold change| ≥ 1. Protein/protein interaction (PPI) networks, hub gene identification, and pathway enrichment analyses were conducted using STRING, Cytoscape, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. Hub gene validation was performed using the Human Protein Atlas (HPA) and GTEx Portal. The GSE166545 dataset analysis revealed 60 up-regulated and 12,854 down-regulated genes (Day 1 vs. 7), 55 up-regulated and 12,933 down-regulated genes (Day 0 vs. 1), and two up-regulated with no down-regulated genes (Day 0 vs. 7). Key pathways included interferon alpha/beta (IFN-γ\ β) signaling and toll-like receptor signaling (TLR). Hub genes such as GBP1, CXCL10, RSAD2, and IFI44 demonstrated robust up-regulation, correlating with enhanced immune responses. The initial observation of JCHAIN's notable up-regulation occurred on the seventh day following vaccination. Validation confirmed these genes' roles in antiviral defense mechanisms and vaccine responses. The findings reveal distinct immune response dynamics in pregnant women following influenza vaccination, highlighting potential biomarkers for vaccine efficacy. This study underscores the importance of tailored vaccine strategies to improve maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Rasha Elsayim
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.E.); (M.M.A.)
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.E.); (M.M.A.)
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Razaz Abdulaziz Felemban
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia;
- King Abdullah International Medical Research Centre, Jeddah 22384, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | | | - Hanan O. Alshammari
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 76321, Saudi Arabia
| | - Esra’a Abudouleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.E.); (M.M.A.)
| |
Collapse
|
11
|
Vitari N, Roy S. Intestinal immunoglobulins under microbial dysbiosis: implications in opioid-induced microbial dysbiosis. Front Microbiol 2025; 16:1580661. [PMID: 40297286 PMCID: PMC12034684 DOI: 10.3389/fmicb.2025.1580661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal immunoglobulins (Igs) maintain homeostasis between the microbiome and host. IgA facilitates microbial balance through a variety of increasingly well-described mechanisms. However, IgM and IgG have less defined intestinal functions but have the potential to activate clearance mechanisms such as the complement system and receptor-mediated bacterial killing. Very little is known regarding the role of Igs under microbial dysbiosis. In this review, we explore how Igs sculpt the intestinal microbiome and respond to microbial dysbiosis. We discuss how IgM, IgA, IgG, and complement individually maintain harmony with the microbiome and consider how these mechanisms could work in synergy. Finally, we explore using an opioid-induced microbial dysbiosis as a model to elucidate immediate changes in Ig-bacterial interactions.
Collapse
Affiliation(s)
- Nicolas Vitari
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Joja M, Grant ET, Desai MS. Living on the edge: Mucus-associated microbes in the colon. Mucosal Immunol 2025:S1933-0219(25)00041-8. [PMID: 40233878 DOI: 10.1016/j.mucimm.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The colonic mucus layer acts as a physicochemical barrier to pathogen invasion and as a habitat for mucus-associated microbes. This mucosal microbiome plays a crucial role in moderating mucus production, maintaining barrier integrity, and shaping the host immune response. However, unchecked mucin foraging may render the host vulnerable to disease. To better understand these dynamics in the mucus layer, it is essential to advance fundamental knowledge on how commensals bind to and utilize mucin as well as their interactions with both the host and their microbial neighbors. We present an overview of approaches for surveying mucus-associated bacteria and assessing their mucin-utilizing capacity, alongside a discussion of the limitations of existing methods. Additionally, we highlight how diet and host secretory immunoglobulin A interact with the mucosal bacterial community in the colon. Insights into this subset of the microbial community can guide therapeutic strategies to optimally support and modulate mucosal barrier integrity.
Collapse
Affiliation(s)
- Mihovil Joja
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Ameline C, Seixas E, Barreto HC, Frazão N, Rodrigues MV, Ventura MR, Lourenço M, Gordo I. Evolution of Escherichia coli strains under competent or compromised adaptive immunity. PLoS Pathog 2025; 21:e1012442. [PMID: 40273038 PMCID: PMC12021133 DOI: 10.1371/journal.ppat.1012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 04/26/2025] Open
Abstract
Escherichia coli is a commensal of the intestine of most mammals, but also an important human pathogen. Within a healthy human its population structure is highly dynamic, where typically a dominant E. coli strain is accompanied by several low abundance satellite strains. However, the factors underlying E. coli strain dynamics and evolution within hosts are still poorly understood. Here, we colonised germ-free immune-competent (wild-type) or immune-compromised (Rag2KO) mice, with two phylogenetically distinct strains of E. coli, to determine if strain co-existence and within-strain evolution are shaped by the adaptive immune system. Irrespectively of the immune status of the mice one strain reaches a 100-fold larger abundance than the other. However, the abundance of the dominant strain is significantly higher in Rag2KO mice. Strains co-exist for thousands of generations and accumulate beneficial mutations in genes coding for different resource preferences. A higher rate of mutation accumulation in immune-compromised vs. immune-competent mice is observed and adaptative mutations specific to immune-competent mice are identified. Importantly, the presence of the adaptive immune system selects for mutations that increase stress resistance and the dynamics of such evolutionary events associates with the onset of an antibody response.
Collapse
Affiliation(s)
- Camille Ameline
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Elsa Seixas
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Hugo C. Barreto
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Université Paris Cité, CNRS, Inserm U1016, Institut Cochin, Paris, France
| | - Nelson Frazão
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Universidade Católica Portuguesa, Faculdade de Medicina, Centro de Investigação Interdisciplinar em Saúde, Lisboa, Portugal
| | - Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Lourenço
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Isabel Gordo
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| |
Collapse
|
14
|
Kreimeyer H, Llorente C, Schnabl B. Influence of Alcohol on the Intestinal Immune System. Alcohol Res 2025; 45:03. [PMID: 40151622 PMCID: PMC11913448 DOI: 10.35946/arcr.v45.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Alcohol misuse is associated with disruption of the microbial homeostasis (dysbiosis) and microbial overgrowth in the gut, gut barrier disruption, and translocation of microbes into the systemic circulation. It also induces changes in regulatory mechanisms of the gut, which is the largest peripheral immune organ. The gut-liver axis is important for health and disease, and alterations in the intestinal immune system contribute to alcohol-associated liver disease (ALD). Understanding these changes might help discover new targets for drugs and therapeutic approaches. SEARCH METHODS A systematic literature search was conducted in PubMed, Medline, and Embase of manuscripts published between January 2000 and November 2023 using the terms ("alcohol" or "ethanol") AND ("immune" or "immunol") AND ("intestine," "colon," or "gut"). Eligible manuscripts included studies and reviews that discussed the effects of ethanol on immune cells in the intestine. SEARCH RESULTS A total of 506 publications were found in the databases on November 20, 2023. After excluding duplicates and research not covering ALD (415 articles), 91 studies were reviewed. Also included were manuscripts covering specific immune cells in the context of ALD. DISCUSSION AND CONCLUSIONS Balancing immune tolerance vs. initiating an immune response challenges the intestinal immune system. Alcohol induces disruption of the intestinal barrier, which is accompanied by a thicker mucus layer and reduced anti-microbial peptides. This leads to longer attachment of bacteria to epithelial cells and consequently greater translocation into the circulation. Bacterial translocation activates the immune system, reducing the activity of regulatory T cells and inducing T helper 17 response via a variety of pathways. The role of innate immune cells, especially Type 3 innate lymphoid cells, and of specific B- and T-cell subsets in ALD remains elusive. Gut dysbiosis, translocation of viable bacteria and bacterial products into the circulation, and changes in the intestinal barrier have been linked to immune deficiency and infections in patients with cirrhosis. Modifying the intestinal immune system could reduce intestinal inflammation and alcohol-induced liver injury. Understanding the underlying pathophysiology can help to detect new targets for drugs and design therapeutic strategies.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, U.S. Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
15
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
16
|
Pietrasanta C, Ronchi A, Carlosama C, Lizier M, Silvestri A, Fornasa G, Melacarne A, D'Ambrosi F, Lutterotti M, Carbone E, Cetin I, Fumagalli M, Ferrazzi E, Penna G, Mosca F, Pugni L, Rescigno M. Effect of prenatal antibiotics on breast milk and neonatal IgA and microbiome: a case-control translational study protocol. Pediatr Res 2025:10.1038/s41390-025-03922-4. [PMID: 39966546 DOI: 10.1038/s41390-025-03922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Up to 25-35% of women receive antibiotics (ABX) during pregnancy, but little is known about the consequences on a key mucosal interface such as the mammary gland, and on the development of the neonatal gut's microbiota and IgA. We hypothesize that prenatal ABX negatively affect the immune functionality of mammary gland, the composition of breast milk microbiota, the development of neonatal fecal microbiota and the abundance of neonatal fecal IgA. METHODS Case-control translational cohort study on women and neonates in the presence or absence (N = 41 + 41 pairs) of exposure to prenatal ABX for at least 7 consecutive days after 32 weeks of gestation. RESULTS We will evaluate IgA concentration in breast milk and in neonatal feces up to one year after delivery. We will also evaluate clinical parameters, neurodevelopment and the composition of the IgA-coated and uncoated fractions of breast milk and fecal microbiota by means of magnetic-activated cell sorting (MACS) coupled with shotgun metagenomics. Finally, we will measure the concentration of the chemokine CCL28 on maternal serum and breast milk, as a marker of activity of the entero-mammary pathway. CONCLUSIONS Our results might support a data-driven evaluation of breast milk immune function in women exposed to prenatal ABX. IMPACT Breast milk IgA and microbiota are critical to determine the positive effects of breastfeeding in infants. This research protocol will investigate breast milk IgA, microbiota, and the IgA+ / IgA- fractions of neonatal fecal microbiota upon exposure to prenatal antibiotics. Fecal IgA and microbiota in infants exposed or not exposed to prenatal antibiotics will be analyzed up to 1 year after birth. This research will clarify the impact of prenatal antibiotics on the immune function of breast milk. This, in turn, might support the selective evaluation of breast milk IgA/microbiota in mothers exposed to prenatal antibiotics, or in donor human milk.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy.
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Andrea Ronchi
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | - Francesco D'Ambrosi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisa Carbone
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Cetin
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Ferrazzi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
17
|
Zhou Y, Hubscher CH. Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Immunohorizons 2025; 9:vlaf002. [PMID: 40048710 PMCID: PMC11884801 DOI: 10.1093/immhor/vlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common after spinal cord injury (SCI). Gut-associated lymphoid tissue (GALT), an organized structure within the mucosal immune system, is important for the maintenance of gut homeostasis and body health and serves as the first line barrier/defense against diet antigens, commensal microbiota, pathogens, and toxins in mucosal areas. The current study examined gene expression levels along six segments of anorectal tissue using real-time polymerase chain reaction (RT-PCR) in uninjured rats (28-day sham surgical controls) and at both 28- and 42-days post-T9 contusion injury. Consistent with our previous report of functional regional differences in the ano-rectum, we demonstrate the existence of GALTs located primarily within the segment at 3-4.5 cm from the rectal dentate line (termed rectal GALTs-rGALTs) in shams with upregulated gene expression levels of multiple biomarkers, including B cell and T cell-related genes, major histocompatibility complex (MHC) class II molecules, and germinal center (GC)-related genes, which was further confirmed by histologic examination. In the same rectal tissue segment following T9 SCI, inflammation-related genes were upregulated at 28 days post-injury (DPI) indicating that microbial infection and inflammation of rGALTs modified structure and function of rGALTs, while at 42 DPI rGALTs exhibited resolution of inflammation and impaired structure/function for extrafollicular B cell responses. Taken together, our data suggest that rGALTs exists in rat rectum for homeostasis of gut microbiota/barrier. SCI induces microbial infection and inflammation in rectal tissues containing rGALTs, which could contribute to development of SCI-related gut microbiome dysbiosis, NBD, and systemic diseases.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| |
Collapse
|
18
|
Artola-Borán M, Kirsche L, Fallegger A, Leary P, Tanriover M, Goodwin T, Geiger G, Hapfelmeier S, Yousefi S, Simon HU, Arnold IC, Müller A. IgA facilitates the persistence of the mucosal pathogen Helicobacter pylori. Mucosal Immunol 2025; 18:232-247. [PMID: 39581230 DOI: 10.1016/j.mucimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Mine Tanriover
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tanja Goodwin
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Gavin Geiger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Villablanca EJ. Organismal mucosal immunology: A perspective through the eyes of game theory. Mucosal Immunol 2025; 18:16-25. [PMID: 39672543 DOI: 10.1016/j.mucimm.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In complex organisms, functional units must interact cohesively to maintain homeostasis, especially within mucosal barriers that house diverse, specialized cell exposed to constant environmental challenges. Understanding how homeostasis at mucosal barriers is maintained and how its disruption can lead to autoimmune diseases or cancer, requires a holistic view. Although omics approaches and systems immunology have become powerful tools, they are not without limitations; interpretations may reflect researchers' assumptions, even if other explanations exist. In this perspective, I propose that applying game theory concepts to mucosal immunology could help interpret complex data, offering fresh perspectives and supporting the exploration of alternative scenarios. By framing the mucosal immune system as a network of strategic interactions with multiple possible outcomes, game theory, which analyzes strategic interactions and decision-making processes, could illuminate novel cell types and functions, cell interactions, and responses to pathogens and commensals, leading to a more comprehensive understanding of immune homeostasis and diseases. In addition, game theory might encourage researchers to consider a broader range of possibilities, reduce the risk of myopic thinking, and ultimately enable a more refined and comprehensive understanding of the complexity of the immune system at mucosal barriers. This perspective aims to introduce game theory as a complementary framework for mucosal immunologists, encouraging them to incorporate these concepts into data interpretation and system modeling.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
20
|
Cai F, Huang M, Liu W, Wan X, Qiu K, Xu X. Dietary addition of compound organic acids improves the growth performance, carcass trait, and body health of broilers. Front Nutr 2025; 12:1536606. [PMID: 39935581 PMCID: PMC11810740 DOI: 10.3389/fnut.2025.1536606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The poultry industry constantly seeks strategies to enhance broiler growth performance and overall health. Organic acidifiers, including L-lactic acid, L-malic acid, and acetic acid, have gained attention as potential feed additives to improve animal production by modulating gut health, enhancing nutrient absorption, and supporting immune function. Despite their promising effects in other animal species, the impact of this novel compound organic acidifier on broiler performance, metabolism, and immune response has not been fully elucidated. This study aims to evaluate the effects of this compound acidifier on growth performance, serum lipid profile, antioxidant status, and immune parameters in broilers, providing insights into its potential benefits as a dietary supplement for broiler health and productivity. Methods A total of 240 broilers were randomly divided into four groups: a control group and three treatment groups receiving 0.25%, 0.5%, or 1.0% acidifier, with six replicates of ten birds each. Over a 6-week period, various parameters were measured, including serum triglycerides, high-density lipoproteins, lysozyme, immunoglobulins (IgA, IgM), superoxide dismutase (SOD) activity, IL-2, TNF-α, and gene expressions related to lipid metabolism. Results Over a 6-week period, the acidifier decreased serum triglycerides and high-density lipoproteins while also enhancing growth performance. Additionally, it raised the serum levels of lysozyme, IgA, IgM, and the SOD. Additionally, IL-2 and TNF-α concentrations in the jejunum mucosa decreased. The acidifier upregulated PPARα, AMPK, FABP1 and MTTP expressions, and downregulated APOB100. Overall, the acidifier effectively improved broiler growth performance during the early development phase primarily by enhancing hepatic lipid metabolism, antioxidant capacity, and immune function. Conclusion These results suggest that the acidifier may accelerate liver lipid metabolism in broilers by modulating the gene expression profiles involved in lipid metabolism.
Collapse
Affiliation(s)
- Fang Cai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Meiping Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoling Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kai Qiu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
21
|
Pan L, Xu Z, Li Y, Cai G, Gao H, Lin S. Exploring the association between pro-inflammatory diets and chronic liver diseases: evidence from the UK Biobank. Front Nutr 2025; 12:1537855. [PMID: 39931363 PMCID: PMC11807818 DOI: 10.3389/fnut.2025.1537855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Background Chronic liver diseases (CLD) continue to pose a significant global burden, potentially exacerbated by pro-inflammatory diets. This study explores the relationship between the Dietary Inflammatory Index (DII), a measure of dietary inflammatory potential, and CLD risk. Methods Utilizing data from the UK Biobank cohort, we assessed the dietary information and calculated the DII for each participant. Cox proportional hazards models and Fine-Gray competing risk models were employed to evaluate the association between DII and CLD incidence, adjusting for potential confounders. Results Our analysis included 121,329 participants with a median follow-up of 604.43 weeks, during which 4,018 developed CLD. A higher DII, indicating a more inflammatory diet, was associated with a 16% increased risk of CLD [hazard ratio (HR) = 1.162, P = 0.001], with each unit increase in DII elevating the risk by 3.3% (HR: 1.033, P < 0.001). A significant linear association between DII and CLD was observed. Competing risk analyses, which accounted for cirrhosis, liver cancer, and death, supported these findings. Subgroup analyses confirmed the robustness of the DII's association across various demographic and lifestyle factors. Moreover, a higher DII was positively associated with the progression of CLD to cirrhosis. Sensitivity analyses, including energy-adjusted DII and typical dietary DII, reinforced our results. Additionally, adherence to anti-inflammatory dietary patterns, as indicated by higher Healthy Eating Index 2020 and Mediterranean Diet Score values, was inversely associated with CLD risk. Conclusion Our study highlights the potential benefits of adopting anti-inflammatory diets as a strategy for the prevention and management of CLD. Comprehensive dietary interventions may play a pivotal role in mitigating the global burden of CLD.
Collapse
Affiliation(s)
- Lili Pan
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Translational Medicine Center on Hematology, Fujian Medical University, Fuzhou, China
| | - Zhengrong Xu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yining Li
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haibing Gao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglong Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Chiaro TR, Greenewood M, Bauer KM, Ost KS, Stephen-Victor E, Murphy M, Weis AM, Nelson MC, Hill JH, Bell R, Voth W, Jackson T, Klag KA, O'Connell RM, Zac Stephens W, Round JL. Clec12a controls colitis by tempering inflammation and restricting expansion of specific commensals. Cell Host Microbe 2025; 33:89-103.e7. [PMID: 39788099 PMCID: PMC11824846 DOI: 10.1016/j.chom.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a-/- animal is sufficient to worsen colitis in wild-type mice. Clec12a-/- mice have expanded Faecalibaculum rodentium, and treatment with F. rodentium similarly exacerbates disease. However, Clec12a-/- animals are resistant to colitis development when rederived into an 11-member community, underscoring the role of specific species. Colitis in Clec12a-/- mice is dependent on monocytes, and cytokine and sequencing analysis in Clec12a-/- macrophages and serum shows enhanced inflammation with a reduction in phagocytic genes. F. rodentium specifically binds to Clec12a, and Clec12a-/--deficient macrophages are impaired in their ability to phagocytose F. rodentium. Thus, Clec12a contributes to an innate-immune-surveillance mechanism that controls the expansion of potentially harmful commensals while limiting inflammation.
Collapse
Affiliation(s)
- Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan Greenewood
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kyla S Ost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Emmanuel Stephen-Victor
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Michaela Murphy
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan C Nelson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Jennifer H Hill
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Warren Voth
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Taylor Jackson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kendra A Klag
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA.
| |
Collapse
|
23
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Jiang Q, Zhu X, Sun L, Xie C, Wang X, Ma L, Yan X. Akkermansia muciniphila Promotes SIgA Production and Alters the Reactivity Toward Commensal Bacteria in Early-Weaned Piglets. J Nutr 2025; 155:52-65. [PMID: 39528052 DOI: 10.1016/j.tjnut.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Secretory IgA (SIgA) is the first line of defense in protecting the intestinal epithelium against pathogenic bacteria, regulating gut microbiota composition, and maintaining intestinal homeostasis. Early weaning strategies may disrupt SIgA levels in piglet intestines, causing a decline in immune response and early weaning stress. However, the specific microbial mechanisms modulating SIgA in early-weaned piglets are not well understood. OBJECTIVES We hypothesized that Akkermansia muciniphila increases intestinal SIgA production in the early-weaned piglets. METHODS Fecal SIgA levels, SIgA-coated bacteria abundance, and fecal metagenomes were compared between 6 Huanjiang miniature (HM) and 6 Duroc×Landrace×Yorkshire (DLY) early-weaned piglets to identify bacterial species involved in SIgA modulation. Four bacterial species were investigated using 5 groups (Control, A. muciniphila, L. amylovorus, L. crispatus, and L. acidophilus) of male specific pathogen-free C57BL/6J mice, weaned 3 wk postbirth (n = 8/group). Subsequently, 10-d-old Landrace×Yorkshire (LY) piglets were randomly assigned to 3 groups (Control, 109A. muciniphila, and 108A. muciniphila) (n = 10/group) to evaluate the effect of orally administered A. muciniphila on intestinal SIgA production and microbial composition. RESULTS HM early-weaned piglets showed significantly higher SIgA levels [7.59 μg/mg, 95% confidence interval (CI): 3.2, 12, P = 0.002] and SIgA-coated bacteria abundance (8.64%, 95% CI: 3.2, 14, P = 0.014) than DLY piglets. In the mouse model, the administration of A. muciniphila significantly increased SIgA levels (3.50 μg/mg, 95% CI: 0.59, 6.4, P = 0.018), SIgA-coated bacteria abundance (9.06%, 95% CI: 4, 14, P = 0.018), and IgA+ plasma cell counts (6.1%, 95% CI: 4.3, 8, P = 0.005). In the pig experiments, the oral administration of A. muciniphila to LY piglets significantly enhanced intestinal SIgA concentrations (4.22 μg/mg, 95% CI: 0.37, 8.5, P = 0.034) and altered the SIgA-coated bacterial landscape. CONCLUSIONS Early intervention with A. muciniphila in nursing piglets can increases intestinal SIgA production and alter the reactivity toward commensal bacteria upon early weaning.
Collapse
Affiliation(s)
- Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Yazhouwan National Laboratory (YNL), Sanya, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingling Sun
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunlin Xie
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Patnaik S, Durairajan SSK, Singh AK, Krishnamoorthi S, Iyaswamy A, Mandavi SP, Jeewon R, Williams LL. Role of Candida species in pathogenesis, immune regulation, and prognostic tools for managing ulcerative colitis and Crohn's disease. World J Gastroenterol 2024; 30:5212-5220. [PMID: 39735273 PMCID: PMC11612695 DOI: 10.3748/wjg.v30.i48.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation. Among fungi, Candida species, particularly Candida albicans (C. albicans), have been extensively studied due to their dual role as gut commensals and invasive pathogens. Recent findings indicate that various strains of C. albicans exhibit considerable differences in virulence factors, impacting IBD's pathophysiology. Intestinal fungal dysbiosis and antifungal mucosal immunity may be associated to IBD, especially Crohn's disease (CD). This article discusses intestinal fungal dysbiosis and antifungal immunity in healthy individuals and CD patients. It discusses factors influencing the mycobiome's role in IBD pathogenesis and highlights significant contributions from the scientific community aimed at enhancing understanding of the mycobiome and encouraging further research and targeted intervention studies on specific fungal populations. Our article also provided insights into a recent study by Wu et al in the World Journal of Gastroenterology regarding the role of the gut microbiota in the pathogenesis of CD.
Collapse
Affiliation(s)
- Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Shiva Prasad Mandavi
- Department of Chemistry, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Leonard L Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, United States
| |
Collapse
|
26
|
van Beek N, Katavisto I, Lehto M, Kolho KL, de Vos WM, Salonen A, Korpela K. Host-microbiota interactions in the infant gut revealed by daily faecal sample time series. MICROBIOME RESEARCH REPORTS 2024; 4:13. [PMID: 40207273 PMCID: PMC11977378 DOI: 10.20517/mrr.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 04/11/2025]
Abstract
Aim: This study aims to explore the interplay between host immune factors and gut microbiota in human infants in vivo using time-series daily stool samples and identify biomarkers of host-microbe interactions. Methods: 216 faecal samples collected from infants aged 5-6 or 11-12 months were analysed for gut microbiota composition, total bacterial load, and biomarkers of immune function. Results: We identified indications of microbial stimulation of eosinophil cationic protein (ECP), IgA, calprotectin (Cal), intestinal alkaline phosphatase (IAP), and Bactericidal/permeability-increasing protein (BPI) at 6 and 12 months, as well as stimulation of lipocalin 2 (LCN2), lactoferrin (LTF), and alpha-defensin-5 only at 6 months. The associations between biomarker concentrations and bacterial population growth were primarily positive at 6 months and mostly negative at 12 months, suggesting increasing host regulation of the microbiota with age. The exceptions were IAP, which was predictive of declining bacterial populations at both time points, and Cal, whose associations changed from negative at 6 months to positive at 12 months. Conclusion: There is an age-associated development in the correlation pattern between bacterial population growth and the biomarker concentrations, suggesting that host-microbe interactions change during early development. Albumin appeared as a potential marker of gut permeability, while LCN2 seemed to correlate with gut transit time. Mucin degradation appeared to decrease with age. Mucin2 and IAP emerged as potentially important regulators of the bacterial populations in the infant gut. The study demonstrates the utility of biomarker and bacteria profiling from daily stool samples for analysing in vivo associations between the immune system and the gut microbiota and provides evidence of host regulation of the microbiota in infants.
Collapse
Affiliation(s)
- Nienke van Beek
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Iiris Katavisto
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki 00250, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki 00014, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Faculty of Medicine, University of Helsinki and Children’s Hospital, Helsinki University Hospital HUS, Helsinki 00014, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen 6700 EH, the Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| |
Collapse
|
27
|
Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The Gut-Kidney Axis in Chronic Kidney Diseases. Diagnostics (Basel) 2024; 15:21. [PMID: 39795549 PMCID: PMC11719742 DOI: 10.3390/diagnostics15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways. Insights into these mechanisms highlight the impact of gut-derived metabolites, bacterial translocation, and immune response changes on kidney health, suggesting new potential approaches for CKD treatment. Clinical applications, such as dietary interventions, prebiotics, probiotics and fecal microbiota transplantation, are promising in adjusting the gut microbiota to alleviate CKD symptoms and slow disease progression. Current research highlights the clinical relevance of the gut-kidney axis, but further study is essential to clarify these mechanisms' diagnostic biomarkers and optimize therapeutic interventions. This review emphasizes the importance of an integrated approach to CKD management, focusing on the gut microbiota as a therapeutic target to limit kidney injury.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naruhiko Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Soichiro Haraguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nephrology, Aoe Clinic, Okayama 700-8607, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
28
|
Pietrasanta C, Carlosama C, Lizier M, Fornasa G, Jost TR, Carloni S, Giugliano S, Silvestri A, Brescia P, De Ponte Conti B, Braga D, Mihula M, Morosi L, Bernardinello A, Ronchi A, Martano G, Mosca F, Penna G, Grassi F, Pugni L, Rescigno M. Prenatal antibiotics reduce breast milk IgA and induce dysbiosis in mouse offspring, increasing neonatal susceptibility to bacterial sepsis. Cell Host Microbe 2024; 32:2178-2194.e6. [PMID: 39603245 DOI: 10.1016/j.chom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Antibiotics (Abx) are administered to 20%-30% of pregnant women, but their effects on neonatal immune development are poorly understood. We show that newborn mice born to Abx-treated dams are more susceptible to late-onset sepsis. This susceptibility is linked to lower maternal breast milk immunoglobulin A (IgA), neonatal fecal IgA, and IgA coating of intestinal bacteria, thus causing the translocation of intestinal pathobionts. Weaned young adults born to Abx-treated mothers had reduced IgA+ plasma cells in the ileum and colon, fecal secretory IgA (SIgA), colonic CD4+ T regulatory lymphocytes and T helper 17-like lymphocytes, and a less diverse fecal microbiome. However, treatment with apyrase, which restores SIgA secretion, prompted IgA production in breast milk and protected pups from sepsis. Additionally, breast milk from untreated mothers rescued the phenotypes of pups born to Abx-treated mothers. Our data highlight the impact of prenatal Abx on breast milk IgA and their long-term influence on intestinal mucosal immune function mediated by breastfeeding.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy.
| | - Carolina Carlosama
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Silvia Giugliano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | | | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Martin Mihula
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Medical Biotechnology, Università di Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Lavinia Morosi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro Bernardinello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Andrea Ronchi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Martano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, Rozzano, Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenza Pugni
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy.
| |
Collapse
|
29
|
Knecht L, Dalsbøl K, Simonsen AH, Pilchner F, Ross JA, Winge K, Salvesen L, Bech S, Hejl AM, Løkkegaard A, Hasselbalch SG, Dodel R, Aznar S, Waldemar G, Brudek T, Folke J. Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns. J Neuroinflammation 2024; 21:317. [PMID: 39627772 PMCID: PMC11613470 DOI: 10.1186/s12974-024-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative disorders marked by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to maintain homeostasis and were previously found altered in AD and PD patients, among others. MAIN TEXT We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and affinity correlations were identified, highlighting altered immune responses. CONCLUSION This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies against pathological proteins. These insights into the autoreactive immune system's role in neurodegeneration suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding and possibly diagnosing these conditions.
Collapse
Affiliation(s)
- Luisa Knecht
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Katrine Dalsbøl
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
| | - Falk Pilchner
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Jean Alexander Ross
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Kristian Winge
- Odense University Hospital, University of Southern Denmark, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Richard Dodel
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany.
| |
Collapse
|
30
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
31
|
Kaneva E, Harizanov R, Velcheva D, Tsvetkova N, Pavlova M, Alexiev I, Dimitrova R, Videnova M, Borisova R, Ivanova A. Studies on the significance of secretory IgA antibodies in the pathogenesis and clinical course of enterobiasis in infected persons from Bulgaria: preliminary findings. Helminthologia 2024; 61:277-285. [PMID: 40012619 PMCID: PMC11864104 DOI: 10.2478/helm-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/28/2024] [Indexed: 02/28/2025] Open
Abstract
Enterobiasis is one of the most common human parasitic infections worldwide and in Bulgaria. The objective of this study was to ascertain the levels of intestinal secretory IgA antibodies in patients with enterobiasis, to determine the local immune response in this helminthiasis, and to evaluate its influence on clinical manifestations during infection. Faecal samples from 102 enterobiasis patients and 40 clinically healthy controls were examined. In individuals infected with Enterobius vermicularis, the range of values for SIgA was higher (from 27.5 μg/ml to 13916 μg/ml). However, no statistically significant difference was found between them and those in persons without evidence of infection (from 27.5 to 8999 μg/ml). In both groups of individuals (infected and non-infected), we observed differences in the levels of SIgA, which appeared to be dependent on the age and gender of the subjects. Significantly, higher values were observed in children and adolescents, as well as in males. In individuals with enterobiasis, a higher level of SIgA was observed in those with pronounced clinical symptoms (mean value = 2198.74) compared to asymptomatic individuals (mean value = 1588.54). The highest levels were observed in patients presenting with perianal pruritus (mean value = 3559.54). Our study of the local humoral immune response in people with enterobiasis is the first of its kind in the country. The results clearly show a direct correlation between the presence of clinical symptoms in enterobiasis and elevated levels of secretory IgA in faeces.
Collapse
Affiliation(s)
- E. Kaneva
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - R. Harizanov
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - D. Velcheva
- Medical Diagnostic Laboratory “Cibalab”, 83 Gyueshevo Str., 1379Sofia, Bulgaria
| | - N. Tsvetkova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - M. Pavlova
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - I. Alexiev
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A Gen. Stoletov Blvd., 1233Sofia, Bulgaria
| | - R. Dimitrova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A Gen. Stoletov Blvd., 1233Sofia, Bulgaria
| | - M. Videnova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - R. Borisova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| | - A. Ivanova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504Sofia, Bulgaria
| |
Collapse
|
32
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
33
|
Hussain M, Aizpurua O, Pérez de Rozas A, París N, Guivernau M, Jofré A, Tous N, Ng'ang'a ZW, Alberdi A, Rodríguez-Gallego E, Kogut MH, Tarradas J. Positive impact of early-probiotic administration on performance parameters, intestinal health and microbiota populations in broiler chickens. Poult Sci 2024; 103:104401. [PMID: 39489036 PMCID: PMC11566344 DOI: 10.1016/j.psj.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Minimizing the utilization of antibiotics in animal production is crucial to prevent the emergence of antimicrobial resistances. Thus, research on alternatives is needed to maintain productivity, sustainability, and animal health. To gain a comprehensive understanding of probiotics' modes of action on performance, intestinal microbiota, and gut health in poultry, 3 probiotic strains (Enterococcus faecalis CV1028 [EntF], Bacteroides fragilis GP1764 [BacF], and Ligilactobacillus salivarius CTC2197 [LacS]) were tested in 2 in vivo trials. Trial 1 comprised of a negative control group fed basal diet (BD) and 3 treatment groups that received BD with EntF, BacF and LacS. Trial 2 included a negative control group, a positive control group with Zinc-Bacitracin as antibiotic growth promoter (AGP), and 2 groups treated with a blend of probiotics (EntF+BacF+LacS) during 0 to 10 or 0 to 35 d, respectively. Wheat-soybean-rye based diets without exogenous enzymes were used as a challenge model to induce intestinal mild- or moderate-inflammatory process in the gut. In Trial 1, individually administered probiotics improved FCR at 8 d compared to Control, but these positive effects were lost in the following growing periods probably due to the high grade of challenging diet and a too low dose of probiotics. In Trial 2, both Probiotic treatments, administered only 10 or 35 d, significantly improved FCR to the same extent as of the Antibiotic group at the end of the trial. Although the performance between antibiotic and probiotic mixture showed similar values, microbiota analysis revealed different microbial composition at 7 d, but not at 21 d. This suggests that modes of action of the AGP and the tested probiotic blend differ on their effects on microbiome, and that the changes observed during the first days' posthatch are relevant on performance at the end of the study. Therefore, the probiotics administration only during the first 10 d posthatch was proven sufficient to induce similar performance improvements to those observed in birds fed antibiotic growth promoters throughout the whole experimental trial.
Collapse
Affiliation(s)
- M Hussain
- IRTA, Animal Nutrition, Mas Bové, 43120 Constantí, Catalonia, Spain; MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - O Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - A Pérez de Rozas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - N París
- IRTA, Animal Nutrition, Mas Bové, 43120 Constantí, Catalonia, Spain
| | - M Guivernau
- IRTA, Sustainability in Biosystems, Torre Marimón, 08140 Caldes de Montbui, Catalonia, Spain
| | - A Jofré
- IRTA, Food Safety and Functionality, Finca Camps i Armet, 17121 Monells, Catalonia, Spain
| | - N Tous
- IRTA, Animal Nutrition, Mas Bové, 43120 Constantí, Catalonia, Spain
| | - Z W Ng'ang'a
- IRTA, Animal Nutrition, Mas Bové, 43120 Constantí, Catalonia, Spain; MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - A Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - E Rodríguez-Gallego
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - J Tarradas
- IRTA, Animal Nutrition, Mas Bové, 43120 Constantí, Catalonia, Spain.
| |
Collapse
|
34
|
Juillard S, Karakeussian-Rimbaud A, Normand MH, Turgeon J, Veilleux-Trinh C, C Robitaille A, Rauch J, Chruscinski A, Grandvaux N, Boilard É, Hébert MJ, Dieudé M. Vascular injury derived apoptotic exosome-like vesicles trigger autoimmunity. J Transl Autoimmun 2024; 9:100250. [PMID: 39286649 PMCID: PMC11402544 DOI: 10.1016/j.jtauto.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
According to a central tenet of classical immune theory, a healthy immune system must avoid self-reactive lymphocyte clones but we now know that B cells repertoire exhibit some level of autoreactivity. These autoreactive B cells are thought to rely on self-ligands for their clonal selection and survival. Here, we confirm that healthy mice exhibit self-reactive B cell clones that can be stimulated in vitro by agonists of toll-like receptor (TLR) 1/2, TLR4, TLR7 and TLR9 to secrete anti-LG3/perlecan. LG3/perlecan is an antigen packaged in exosome-like structures released by apoptotic endothelial cells (ApoExos) upon vascular injury. We demonstrate that the injection of ApoExos in healthy animals activates the IL-23/IL-17 pro-inflammatory and autoimmune axis, and produces several autoantibodies, including anti-LG3 autoantibodies and hallmark autoantibodies found in systemic lupus erythematosus. We also identify γδT cells as key mediators of the maturation of ApoExos-induced autoantibodies in healthy mice. Altogether we show that ApoExos released by apoptotic endothelial cells display immune-mediating functions that can stimulate the B cells in the normal repertoire to produce autoantibodies. Our work also identifies TLR activation and γδT cells as important modulators of the humoral autoimmune response induced by ApoExos.
Collapse
Affiliation(s)
- Sandrine Juillard
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Marie-Hélène Normand
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Julie Turgeon
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Charlotte Veilleux-Trinh
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Alexa C Robitaille
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Joyce Rauch
- Division of Rheumatology, Research Institute of the McGill University Health Centre (RI MUHC), 1001 Bd Décarie, Montréal, QC, H4A 3J1, Canada
| | | | - Nathalie Grandvaux
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Éric Boilard
- Centre de Recherche Du CHU de Québec, Université Laval, 2705 Bd Laurier, Québec, QC, G1V 4G2, Canada
| | - Marie-Josée Hébert
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mélanie Dieudé
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| |
Collapse
|
35
|
Żak-Bochenek A, Żebrowska-Różańska P, Bajzert J, Siwińska N, Madej JP, Kaleta-Kuratewicz K, Bochen P, Łaczmański Ł, Chełmońska-Soyta A. Comparison and characterization of the bacterial microbiota and SIgA production in different gastrointestinal segments in horses. Vet Res Commun 2024; 48:3605-3620. [PMID: 39180603 PMCID: PMC11538275 DOI: 10.1007/s11259-024-10489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
In the gastrointestinal mucosa, there is a close cooperation between secretory immunoglobulin A (SIgA) and the composition of the microbiota, which aims to maintain homeostasis as well as act as a protective barrier. The purpose of this study was to determine the composition of microbiota and SIgA production in different parts of the digestive tract (small intestine, cecum, colon and rectum) of nine healthy horses and its reflection in the feces. For this purpose, we determined: the composition of the microbiome (by next-generation Sequencing of Hypervariable Regions V3-V4 and V7-V9 of the 16 S rRNA gene analysis), the amount of SIgA in the intestinal content samples (by ELISA), as well as the number of IgA-producing cells (IgA+) in the tissue samples (by immohistochemical analysis). Significant differences were observed between the small intestine and the large colon in the composition and diversity of the microbiome, as well as the number of IgA + cells in the mucosal lamina propria and the abundance of SIgA in the intestinal lumen. The small intestine in relation to the large colon is characterised by fewer IgA + cells, more SIgA in the intestinal contents and a less diverse microbiome. However, the cecum appears to be the third separate ecosystem, with a high number of IgA + cells and a diverse microbiome. The fecal sample reflects the current state of the large colon, both in terms of the microbiome and SIgA content; however, it is not known to what extent it may be influenced by dysbiosis in other parts of the digestive tract.
Collapse
Affiliation(s)
- Agnieszka Żak-Bochenek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland.
| | - P Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - J Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - N Siwińska
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - J P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - K Kaleta-Kuratewicz
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 25, 50-375, Wrocław, Poland
| | - P Bochen
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Ł Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - A Chełmońska-Soyta
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
36
|
Gao P, Morita N, Shinkura R. Role of mucosal IgA antibodies as novel therapies to enhance mucosal barriers. Semin Immunopathol 2024; 47:1. [PMID: 39567378 PMCID: PMC11579142 DOI: 10.1007/s00281-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
To prevent infection, the experience of the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) pandemic has led to recognition of the importance of not only vaccines but also the strengthening of mucosal barriers by secretory immunoglobulin A (IgA). Strong mucosal barrier provided by IgA is also possible to prevent allergies and chronic inflammatory conditions in the intestinal tract, since it can protect foreign enemies or antigens at the first line of defense before their invasion. Therefore, it is important to understand the role of IgA antibodies secreted by the mucosa of the body. In this section, we discuss the role of mucosal IgA antibodies in relation to three disease states: control of intestinal microbiota, protection against infection, and allergy. In addition, we provide the evidence in which the quality as well as the quantity of IgA is critical for disease prevention. Therefore, we discuss about novel strategies to enhance mucosal barriers by induction of high-quality IgA.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Naoki Morita
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
37
|
Zhao L, Zheng J, Gu Y, Xu X, Yu J, Li J, Yang S, Chen B, Du J, Dong R. Quercetin intervention mitigates small intestinal damage and immunologic derangement induced by polystyrene nanoplastics: Insights from multi-omics analysis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124862. [PMID: 39216663 DOI: 10.1016/j.envpol.2024.124862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Nanoplastics (NPs), which belong to emerging environmental pollutants, threaten environmental sustainability and human health. Despite recent studies have reported that NPs damage the gastrointestinal tract and immune homeostasis, the underlying mechanisms remain unclear. Polyphenols have been found to promote NPs excretion by interacting with intestinal flora (IF). However, the potential mechanisms and action targets of this are still poorly understood. To address these knowledge gaps, we investigated the impact of quercetin and three concentrations of polystyrene nanoplastics (PS-NPs) in mice using an integrated phenotypic and multi-omics analysis. Our findings demonstrated that PS-NPs accumulate within the intestine, resulting in impairments to intestinal tissue and barrier function, as well as disturbing the expression of immune-response small intestinal genes and composition of IF. Exposure to PS-NPs significantly elevate the level of intestinal IgG and CD20+ B cells, while inhibiting T cells activation. Furthermore, PS-NPs could induce systemic immune and serum insulin level disorders. Quercetin might mitigate PS-NPs-induced intestinal damage and immune disorders though reversing IF disorders, gene expression changes, and their interaction.
Collapse
Affiliation(s)
- Long Zhao
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | | | - Yiying Gu
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xin Xu
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jianguo Yu
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Jing Li
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China
| | - Bo Chen
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Ruihua Dong
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Cappio Barazzone E, Diard M, Hug I, Larsson L, Slack E. Diagnosing and engineering gut microbiomes. EMBO Mol Med 2024; 16:2660-2677. [PMID: 39468301 PMCID: PMC11554810 DOI: 10.1038/s44321-024-00149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
The microbes, nutrients and toxins that we are exposed to can have a profound effect on the composition and function of the gut microbiome. Thousands of peer-reviewed publications link microbiome composition and function to health from the moment of birth, right through to centenarians, generating a tantalizing glimpse of what might be possible if we could intervene rationally. Nevertheless, there remain relatively few real-world examples where successful microbiome engineering leads to beneficial health effects. Here we aim to provide a framework for the progress needed to turn gut microbiome engineering from a trial-and-error approach to a rational medical intervention. The workflow starts with truly understanding and accurately diagnosing the problems that we are trying to fix, before moving on to developing technologies that can achieve the desired changes.
Collapse
Affiliation(s)
- Elisa Cappio Barazzone
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Médéric Diard
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Isabelle Hug
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Louise Larsson
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Gu W, Zhang H, Zhang Z, Xu M, Li X, Han Z, Fu X, Li X, Wang X, Zhang C. Continuous Oral Administration of the Superantigen Staphylococcal Enterotoxin C2 Activates Intestinal Immunity and Modulates the Gut Microbiota in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405039. [PMID: 39248343 PMCID: PMC11538665 DOI: 10.1002/advs.202405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcal Enterotoxin C2 (SEC2), a classical superantigen, is an antitumor immunotherapy agent. However, the injectable formulation of SEC2 limits its clinical application. Here, it is reported that oral administration of SEC2 activates the intestinal immune system and benefits intestinal health in a mouse model. These results indicate that intact SEC2 is detected in the stomach, intestine, and serum after oral administration. Continuous oral administration of SEC2 activates immune cells in gut-associated lymphoid tissues, promoting extensive differentiation and proliferation of CD4+ and CD8+ T cells and CD19+ B cells, leading to increased production of cytokines and secretory immunoglobulin A. SEC2 also enhances intestinal barrier function, as demonstrated by an increased villus length/crypt depth ratio and elevated expression of mucins and tight junction proteins. Additionally, SEC2 indirectly influenced gut microbiota, reinforcing potential probiotics and short-chain fatty acid synthesis. Enhanced differentiation of T and B cells in the spleen, coupled with elevated serum interleukin-2 levels, suggests systemic immune enhancement following oral administration of SEC2. These findings provide a scientific basis for the development of SEC2 as an oral immunostimulant for immune enhancement and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wu Gu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Huiwen Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Best Health (Guangdong) Bio‐Technology Co., Ltd.Center Building, Minke Park, Xinhui Economic Development ZoneJiangmen529100P. R. China
| | - Zhichun Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Mingkai Xu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiang Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Zhiyang Han
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Xuanhe Fu
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
- Department of ImmunologyShenyang Medical CollegeNo. 146 Huanghe North StreetShenyang110034P. R. China
| | - Xu Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiujuan Wang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Chenggang Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| |
Collapse
|
40
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
42
|
Donald K, Serapio-Palacios A, Gerbec Z, Bozorgmehr T, Holani R, Cruz AR, Schnupf P, Finlay BB. Secretory IgA in breast milk protects against asthma through modulation of the gut microbiota. Cell Rep 2024; 43:114835. [PMID: 39368092 DOI: 10.1016/j.celrep.2024.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Asthma susceptibility is linked to dysbiosis in early-life gut microbiota, and the antibody secretory immunoglobulin (Ig)A (SIgA) is a key determinant of gut microbiota composition. SIgA is obtained through breast milk during the critical early-life window. We use a mouse model of SIgA deficiency and the house dust mite (HDM) model of asthma to elucidate the role of maternal SIgA in modulating the early-life gut microbiota and asthma protection. Mice that do not receive maternal SIgA display a transient bloom of segmented filamentous bacteria (SFB) in the small intestine during the early post-weaning period. Mice that do not receive maternal SIgA also display elevated T helper type 17 (Th17) cell activation in the intestine, which persists into adulthood and is associated with more severe inflammation in response to the HDM model of asthma. This study demonstrates a mechanism by which breast-milk-derived SIgA influences immune development and asthma susceptibility by modulating the early-life gut microbiota.
Collapse
Affiliation(s)
- Katherine Donald
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zachary Gerbec
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ravi Holani
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ana Raquel Cruz
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, 75015 Paris, France
| | - Pamela Schnupf
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, 75015 Paris, France
| | - B Brett Finlay
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
43
|
Gonzalez Agurto M, Olivares N, Canedo-Marroquin G, Espinoza D, Tortora SC. The Intersection of the Oral Microbiome and Salivary Metabolites in Head and Neck Cancer: From Diagnosis to Treatment. Cancers (Basel) 2024; 16:3545. [PMID: 39456639 PMCID: PMC11506592 DOI: 10.3390/cancers16203545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck cancers (HNCs) are the seventh most common cancer worldwide, accounting for 4-5% of all malignancies. Salivary metabolites, which serve as key metabolic intermediates and cell-signalling molecules, are emerging as potential diagnostic biomarkers for HNC. While current research has largely concentrated on these metabolites as biomarkers, a critical gap remains in understanding their fluctuations before and after treatment, as well as their involvement in oral side effects. Recent studies emphasise the role of the oral microbiome and its metabolic activity in cancer progression and treatment efficacy by bacterial metabolites and virulence factors. Oral bacteria, such as P. gingivalis and F. nucleatum, contribute to a pro-inflammatory environment that promotes tumour growth. Additionally, F. nucleatum enhances its virulence through flagellar assembly and iron transport mechanisms, facilitating tumour invasion and survival. Moreover, alterations in the oral microbiome can influence chemotherapy efficacy and toxicity through the microbiota-host irinotecan axis, highlighting the complex interplay between microbial communities and therapeutic outcomes. Salivary metabolite profiles are influenced by factors such as gender, methods, and patient habits like smoking-a major risk factor for HNC. Radiotherapy (RT), a key treatment for HNC, often causes side effects such as xerostomia, oral mucositis, and swallowing difficulties which impact survivors' quality of life. Intensity-modulated radiotherapy (IMRT) aims to improve treatment outcomes and minimise side effects but can still lead to significant salivary gland dysfunction and associated complications. This review underscores the microbial and host interactions affecting salivary metabolites and their implications for cancer treatment and patient outcomes.
Collapse
Affiliation(s)
| | - Nicolas Olivares
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Gisela Canedo-Marroquin
- Faculty of Dentistry, Universidad de los Andes, Santiago 7620086, Chile;
- Faculty of Dentistry, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
- Millennium Institute on Immunology and Immunotherapy (MIII), Santiago 8331150, Chile
| | - Daniela Espinoza
- Faculty of Dentistry, Universidad Mayor, Santiago 8580745, Chile
| | - Sofia C. Tortora
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
44
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
45
|
Zhang L, Wu Z, Zhang Z, Cai R, Pang S, Wang J, Bao X. Ningxiang pigderived Enterococcus hirae regulates the inflammatory function and enhances the protection of piglets against ETEC challenge. Front Cell Infect Microbiol 2024; 14:1476564. [PMID: 39483124 PMCID: PMC11525010 DOI: 10.3389/fcimb.2024.1476564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
This study investigated the effects of Enterococcus hirae (Eh) derived from Ningxiang pigs on growth performance, diarrhea incidence, and immune responses in ETEC-challenged piglets. The results showed that compared to the CON group, ETEC infection significantly reduced the average daily gain (ADG) and average daily feed intake (ADFI), increased rectal temperature, and resulted in a diarrhea rate of up to 24%. Additionally, ETEC infection significantly increased the spleen index and the expression of inflammatory cytokines in the spleen, serum and intestine, with decreasing serum sIgA and colonic SCFAs of piglets. Compared to the ETEC group, orally Eh significantly increased ADFI in ETEC-infected piglets, reduced the diarrhea rate to 11.53%, reduced the spleen index and the expression of inflammatory cytokines in the spleen, serum and intestine, with decreasing serum sIgA and colonic SCFAs of ETEC-infected piglets. Furthermore, correlation analysis revealed that the levels of SCFAs (particularly acetate) were significantly negatively correlated with the expression levels of inflammatory cytokines in colonic and splenic tissues, suggesting that acetate may be a key metabolite in the anti-inflammatory effects of Eh. These results indicate that Eh can enhance the protection of piglets against ETEC K88 via intestine-acetate-spleen axis, thereby alleviating diarrhea and improving growth performance in piglets.
Collapse
Affiliation(s)
- Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zihao Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
| | - Rong Cai
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Shujun Pang
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Xiyuan Bao
- Department of General Surgery, No. 924 Hospital of Joint Logistics Support Force of PLA, Guilin, China
| |
Collapse
|
46
|
Donaldson GP, Reis GL, Saad M, Wichmann C, Mamede I, Chen G, DelGaudio NL, Zhang D, Aydin B, Harrer CE, Castro TBR, Grivennikov S, Reis BS, Stadtmueller BM, Victora GD, Mucida D. Suppression of epithelial proliferation and tumourigenesis by immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561290. [PMID: 37873082 PMCID: PMC10592636 DOI: 10.1101/2023.10.06.561290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis 1 . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function 2,3 with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex aetiology and comorbidities 4-8 . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have increased susceptibility to endogenous colorectal tumours. Cellular and molecular analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to both reduce steady-state proliferation and protect mice from tumours, but this function was due to antibody structure rather than binding specificity. In both organoid and monolayer culture systems, IgA directly suppressed epithelial growth. Co-immunoprecipitation mass spectrometry and a targeted CRISPR screen identified DMBT1 as an IgA-binding epithelial surface protein required for IgA-mediated suppression of proliferation. Together, IgA and DMBT1 regulate Notch signalling and tune the normal cycling of absorptive colonocyte progenitors. In mice, deleting the transmembrane and cytoplasmic signalling portions of DMBT1 or blocking Notch signalling was sufficient to reverse both the increased proliferation and tumour susceptibility of IgA knockouts. These experiments establish a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.
Collapse
|
47
|
Li JK, Veeraperumal S, Aweya JJ, Liu Y, Cheong KL. Fucoidan modulates gut microbiota and immunity in Peyer's patches against inflammatory bowel disease. Carbohydr Polym 2024; 342:122421. [PMID: 39048206 DOI: 10.1016/j.carbpol.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Although fucoidan has potential use as an anti-inflammatory agent, the specific mechanisms by which it influences signaling and immunomodulatory pathways between gut microbiota and Peyer's patches remain unclear. Therefore, the aim of this study was to investigate the therapeutic potential of fucoidan in a dextran sulfate sodium (DSS)-induced mouse model of inflammatory bowel disease (IBD) by examining the effects on gut microbiota and the underlying anti-inflammatory mechanisms. Purified fucoidan, which upon characterization revealed structural fragments comprising →3)-β-D-Galp-(1→, →4)-α-L-Fucp-(1→, and →3)-α-L-Fucp-(1→ residues with a sulfation at position C2 was used. Treatment of the mice with fucoidan significantly alleviated the symptoms of IBD and restored the diversity of gut microbiota by enhancing the abundance of Bacteroidetes and reducing the proportion of Firmicutes. The administration of fucoidan also elevated levels of short-chain fatty acids while reducing the levels of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Most importantly, fucoidan attenuated the expression of integrin α4β7/MAdCAM-1 and CCL25/CCR9, which are involved in homing intestinal lymphocytes within Peyer's patches. These findings indicate that fucoidan is a promising gut microbiota modulator and an anti-inflammatory agent for IBD.
Collapse
Affiliation(s)
- Jia-Kang Li
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yang Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Kit-Leong Cheong
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
48
|
Heidari M, Maleki Vareki S, Yaghobi R, Karimi MH. Microbiota activation and regulation of adaptive immunity. Front Immunol 2024; 15:1429436. [PMID: 39445008 PMCID: PMC11496076 DOI: 10.3389/fimmu.2024.1429436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In the mucosa, T cells and B cells of the immune system are essential for maintaining immune homeostasis by suppressing reactions to harmless antigens and upholding the integrity of intestinal mucosal barrier functions. Host immunity and homeostasis are regulated by metabolites produced by the gut microbiota, which has developed through the long-term coevolution of the host and the gut biome. This is achieved by the immunological system's tolerance for symbiote microbiota, and its ability to generate a proinflammatory response against invasive organisms. The imbalance of the intestinal immune system with commensal organisms is causing a disturbance in the homeostasis of the gut microbiome. The lack of balance results in microbiota dysbiosis, the weakened integrity of the gut barrier, and the development of inflammatory immune reactions toward symbiotic organisms. Researchers may uncover potential therapeutic targets for preventing or regulating inflammatory diseases by understanding the interactions between adaptive immunity and the microbiota. This discussion will explore the connection between adaptive immunity and microbiota.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
49
|
Gaber M, Wilson AS, Millen AE, Hovey KM, LaMonte MJ, Wactawski-Wende J, Ochs-Balcom HM, Cook KL. Visceral adiposity in postmenopausal women is associated with a pro-inflammatory gut microbiome and immunogenic metabolic endotoxemia. MICROBIOME 2024; 12:192. [PMID: 39367431 PMCID: PMC11453046 DOI: 10.1186/s40168-024-01901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/06/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Obesity, and in particular abdominal obesity, is associated with an increased risk of developing a variety of chronic diseases. Obesity, aging, and menopause are each associated with differential shifts in the gut microbiome. Obesity causes chronic low-grade inflammation due to increased lipopolysaccharide (LPS) levels which is termed "metabolic endotoxemia." We examined the association of visceral adiposity tissue (VAT) area, circulating endotoxemia markers, and the gut bacterial microbiome in a cohort of aged postmenopausal women. METHODS Fifty postmenopausal women (mean age 78.8 ± 5.3 years) who had existing adipose measurements via dual x-ray absorptiometry (DXA) were selected from the extremes of VAT: n = 25 with low VAT area (45.6 ± 12.5 cm2) and n = 25 with high VAT area (177.5 ± 31.3 cm2). Dietary intake used to estimate the Healthy Eating Index (HEI) score was assessed with a food frequency questionnaire. Plasma LPS, LPS-binding protein (LBP), anti-LPS antibodies, anti-flagellin antibodies, and anti-lipoteichoic acid (LTA) antibodies were measured by ELISA. Metagenomic sequencing was performed on fecal DNA. Female C57BL/6 mice consuming a high-fat or low-fat diet were treated with 0.4 mg/kg diet-derived fecal isolated LPS modeling metabolic endotoxemia, and metabolic outcomes were measured after 6 weeks. RESULTS Women in the high VAT group showed increased Proteobacteria abundance and a lower Firmicutes/Bacteroidetes ratio. Plasma LBP concentration was positively associated with VAT area. Plasma anti-LPS, anti-LTA, and anti-flagellin IgA antibodies were significantly correlated with adiposity measurements. Women with high VAT showed significantly elevated LPS-expressing bacteria compared to low VAT women. Gut bacterial species that showed significant associations with both adiposity and inflammation (anti-LPS IgA and LBP) were Proteobacteria (Escherichia coli, Shigella spp., and Klebsiella spp.) and Veillonella atypica. Healthy eating index (HEI) scores negatively correlated with % body fat and anti-LPS IgA antibodies levels. Preclinical murine model showed that high-fat diet-fed mice administered a low-fat diet fecal-derived LPS displayed reduced body weight, decreased % body fat, and improved glucose tolerance test parameters when compared with saline-injected or high-fat diet fecal-derived LPS-treated groups consuming a high-fat diet. CONCLUSIONS Increased VAT in postmenopausal women is associated with elevated gut Proteobacteria abundance and immunogenic metabolic endotoxemia markers. Low-fat diet-derived fecal-isolated LPS improved metabolic parameters in high-fat diet-fed mice giving mechanistic insights into potential pro-health signaling mediated by under-acylated LPS isoforms. Video Abstract.
Collapse
Grants
- W81XWH-20-1-0014 Congressionally Directed Medical Research Programs
- W81XWH-20-1-0014 Congressionally Directed Medical Research Programs
- W81XWH-20-1-0014 Congressionally Directed Medical Research Programs
- R01 DE013505, R01 DE024523 NIDCR NIH HHS
- R01 DE013505, R01 DE024523 NIDCR NIH HHS
- R01 DE013505, R01 DE024523 NIDCR NIH HHS
- R01 DE013505, R01 DE024523 NIDCR NIH HHS
- R01 DE013505, R01 DE024523 NIDCR NIH HHS
- HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C NHLBI NIH HHS
- HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C NHLBI NIH HHS
Collapse
Affiliation(s)
- Mohamed Gaber
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
50
|
Koenen MH, de Steenhuijsen Piters WAA, de Jonge MI, Langereis JD, Nierkens S, Chu MLJN, van der Woude R, de Vries RP, Sanders EAM, Bogaert D, van der Vries E, Boes M, Verhagen LM. Salivary polyreactive antibodies and Haemophilus influenzae are associated with respiratory infection severity in young children with recurrent respiratory infections. Eur Respir J 2024; 64:2400317. [PMID: 39117429 PMCID: PMC11447288 DOI: 10.1183/13993003.00317-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mei Ling J N Chu
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Erhard van der Vries
- Department of Research and Development, GD Animal Health, Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|