1
|
Ruan W, Gao P, Qu X, Jiang J, Zhao Z, Qiao S, Zhang H, Yang T, Li D, Du P, Lu X, Wang Q, Zhao X, Gao GF. SARS-CoV-2 serotyping based on spike antigenicity and its implications for host immune evasion. EBioMedicine 2025; 114:105634. [PMID: 40080947 PMCID: PMC11951033 DOI: 10.1016/j.ebiom.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND As SARS-CoV-2 continues to spread and evolve, new variants/sub-variants emerge, raising concerns about vaccine-induced immune escape. Here, we conducted a systematic analysis of the serology and immunogenicity of major circulating variants/sub-variants of SARS-CoV-2 since the outbreak. METHODS We expressed and purified trimeric S proteins from 21 SARS-CoV-2 variants, with SARS-CoV included as an outgroup. Mice were immunized, and the resulting antisera were tested for binding antibodies after the third dose injection, and for neutralizing antibodies (NAbs) after both the second and third doses. Using pseudovirus neutralization assays, we evaluated cross-neutralization among major circulating variants. By integrating serological classification, antigenic mapping, and 3D landscape analysis, we explored the antigenic relationships among different SARS-CoV-2 variants and their impact on serological responses. FINDINGS Based on the cross-neutralization activities of the sera from different S protein vaccinations and antigenicity analyses, we grouped the 21 lineages into six serotypes. Particularly, BA.2.86 and JN.1 had very weak cross-neutralization with all other SARS-CoV-2 sub-variants tested and were grouped into a separate serotype, Serotype VI. INTERPRETATION This systematic study contributes to a better understanding of the evolution of SARS-CoV-2 and its antigenic characteristics and provides valuable insights for vaccine development. FUNDING This study was supported by the National Key R&D Program of China (2023YFC2307801, 2020YFA0509202 and 2021YFA1300803), the National Natural Science Foundation of China (82222040 and 82072289), CAS Project for Young Scientists in Basic Research (YSBR-083) and Beijing Nova Program of Science and Technology (20220484181).
Collapse
Affiliation(s)
- Wenjing Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyue Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junlan Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Life Science Academy, Beijing 102209, China
| | - He Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ting Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Cao J, Gan M, Zhang Z, Lin X, Ouyang Q, Fu H, Xu X, Wang Z, Li X, Wang Y, Cai H, Lei Q, Liu L, Wang H, Fan X. A Hidden Guardian: The Stability and Spectrum of Antibody-Dependent Cell-Mediated Cytotoxicity in COVID-19 Response in Chinese Adults. Vaccines (Basel) 2025; 13:262. [PMID: 40266151 PMCID: PMC11945335 DOI: 10.3390/vaccines13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Identifying immune-protective biomarkers is crucial for the effective management and mitigation of current and future COVID-19 outbreaks, particularly in preventing or counteracting the immune evasion exhibited by the Omicron variants. The emergence of SARS-CoV-2 variants, especially those within the Omicron lineage, has highlighted their capacity to evade neutralizing antibodies, emphasizing the need to understand the role of antibody-dependent cell-mediated cytotoxicity (ADCC) in combating these infections. METHODS This study, conducted in Qichun City, Hubei province, from December 2021 to March 2023, involved 50 healthy Chinese adults who had received two doses of inactivated vaccines and had subsequently experienced mild infections with the Omicron BA.5 variant. Blood samples from these 50 healthy Chinese adults were collected at six distinct time points: at baseline and at the 1st, 3rd, 6th, and 9th months following the third dose of the inactivated vaccine, as well as 3 months post-breakthrough infection. Their sera were analyzed to assess ADCC and neutralization effects. RESULTS The results indicated that the antibodies elicited by the inactivated SARS-CoV-2 vaccine targeted the spike protein, exhibiting both pre-existing neutralizing and ADCC activities against Omicron variants BA.5 and XBB.1.5. Notably, the ADCC activity demonstrated greater stability compared to that of the neutralizing effects, persisting for at least 15 months post-vaccination, and could be augmented by additional vaccine doses and breakthrough infections. The ADCC effect associated with hybrid immunity effectively targets a spectrum of prospective Omicron variants, including BA.2.86, CH.1.1, EG.5.1, and JN.1. CONCLUSIONS In light of its stability and broad-spectrum efficacy, we recommend the use of the ADCC effect as a biomarker for assessing protective immunity and guiding the development of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhihao Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xinlian Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Yaxin Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| |
Collapse
|
3
|
Venturi G, Gallinaro A, Fortuna C, Pirillo MF, Scoglio A, Di Carlo B, Marsili G, Michelini Z, Amendola A, Carocci A, Dispinseri S, Borghi M, Canitano A, Falce C, Zappitelli A, Scarlatti G, Lixi ML, Aste A, Masala L, Baroncelli S, Cara A, Negri D. Viral and immune profiles during the first wave of SARS-CoV-2 infection in hospitalized patients in Sardinia, Italy. Sci Rep 2025; 15:6660. [PMID: 39994243 PMCID: PMC11850715 DOI: 10.1038/s41598-025-90324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
We performed a retrospective immunological analysis of the antibody response in serum and in nasopharyngeal swabs (NPS) obtained from 46 individuals infected with ancestral SARS-CoV-2 Wuhan-Hu-1 strain during the first COVID-19 wave in Cagliari (Sardinia, Italy), with a 4-month follow-up after the hospital admission. We implemented a comprehensive antibody response in serum and in mucosal samples using assays established in our laboratories. In NPS we evaluated the viral load by real time PCR, presence and kinetics of anti-Spike IgG and IgA by ELISA as well as their anti-Wuhan neutralization activity, showing induction and persistence of anti-viral immunity at the mucosal level. Neutralizing antibodies were measured in serum and NPS using a safe pseudovirus-based assay validated after comparison with a standard neutralization test using live SARS-CoV-2. We evaluated cross-neutralizing antibodies against all the major early variants of concerns (VoC) in sera. Of note, we detected a remarkable reduction of neutralizing activity against BA.1 compared to BA.2 and BA.5 Omicron subvariants, which was confirmed in sera from an analogous cohort of patients at the San Raffaele hospital in Milan, a geographically distant region of Italy, infected with the ancestral virus during the same period of time.
Collapse
Affiliation(s)
- Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Claudia Fortuna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Arianna Scoglio
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Di Carlo
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Marsili
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Antonello Amendola
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Carocci
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Falce
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Zappitelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Luisa Lixi
- Laboratory Medicine, Santissima Trinità Hospital, Cagliari, Italy
| | - Alessandra Aste
- Laboratory Medicine, Santissima Trinità Hospital, Cagliari, Italy
| | - Laura Masala
- Laboratory Medicine, Santissima Trinità Hospital, Cagliari, Italy
| | - Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Rössler A, Netzl A, Lasrado N, Chaudhari J, Mühlemann B, Wilks SH, Kimpel J, Smith DJ, Barouch DH. Nonhuman primate antigenic cartography of SARS-CoV-2. Cell Rep 2025; 44:115140. [PMID: 39754717 PMCID: PMC11781863 DOI: 10.1016/j.celrep.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus. We evaluated neutralization profiles against 23 SARS-CoV-2 variants in nonhuman primates (NHPs) after single variant exposure and generated an NHP-derived antigenic map. We identified a distant antigenic region occupied by BA.2.86, JN.1, and the descendants KP.2, KP.3, and KZ.1.1.1. We also found that the monovalent XBB.1.5 mRNA vaccine induced broad immunity against the mapped antigenic space. In addition, substantial concordance was observed between our NHP-derived and two human antigenic maps, demonstrating the utility of NHPs as a surrogate for antigenic cartography in humans.
Collapse
Affiliation(s)
- Annika Rössler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jayeshbhai Chaudhari
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, 10117 Berlin, Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Brangel P, Tureli S, Mühlemann B, Liechti N, Zysset D, Engler O, Hunger-Glaser I, Ghiga I, Mattiuzzo G, Eckerle I, Bekliz M, Rössler A, Schmitt MM, Knabl L, Kimpel J, Tort LFL, de Araujo MF, de Oliveira ACA, Caetano BC, Siqueira MM, Budt M, Gensch JM, Wolff T, Hassan T, Selvaraj FA, Hermanus T, Kgagudi P, Crowther C, Richardson SI, Bhiman JN, Moore PL, Cheng SMS, Li JKC, Poon LLM, Peiris M, Corman VM, Drosten C, Lai L, Hunsawong T, Rungrojcharoenkit K, Lohachanakul J, Sigal A, Khan K, Thiel V, Barut GT, Ebert N, Mykytyn AZ, Owusu Donkor I, Aboagye JO, Nartey PA, Van Kerkhove MD, Cunningham J, Haagmans BL, Suthar MS, Smith D, Subissi L. A Global Collaborative Comparison of SARS-CoV-2 Antigenicity Across 15 Laboratories. Viruses 2024; 16:1936. [PMID: 39772242 PMCID: PMC11680265 DOI: 10.3390/v16121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels. When comparing fold drops, excellent data consistency was observed across the labs using common reagents, including between pseudovirus and live virus neutralisation assays (RMSD of data from mean fold drop was 0.59). Utilising a Bayesian model, geometric mean titres and assay titre magnitudes (offsets) can describe the data efficiently. Titre magnitudes were seen to vary largely even for labs within the same assay group. We have observed that overall, live Microneutralisation assays tend to have the lowest titres, whereas Pseudovirus Neutralisation have the highest (with a mean difference of 3.2 log2 units between the two). These findings are relevant for laboratory networks, such as the WHO Coronavirus Laboratory Network (CoViNet), that seek to support a global surveillance system for evolution and antigenic characterisation of variants to support monitoring of population immunity and vaccine composition policy.
Collapse
Affiliation(s)
| | - Sina Tureli
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | - Barbara Mühlemann
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicole Liechti
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Daniel Zysset
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Olivier Engler
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | | | - Ioana Ghiga
- World Health Organization, 1202 Geneva, Switzerland
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, London SW1W 9SZ, UK
| | - Isabella Eckerle
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Meriem Bekliz
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Melanie M. Schmitt
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Luis Fernando Lopez Tort
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay
| | - Mia Ferreira de Araujo
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Any Caroline Alves de Oliveira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Braulia Costa Caetano
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Matthias Budt
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Jean-Marc Gensch
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Tarteel Hassan
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Francis Amirtharaj Selvaraj
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Tandile Hermanus
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Prudence Kgagudi
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Carol Crowther
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Samuel M. S. Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John K. C. Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor M. Corman
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Lilin Lai
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taweewun Hunsawong
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Kamonthip Rungrojcharoenkit
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Jindarat Lohachanakul
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Africa Health Research Institute, Durban 4013, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban 4013, South Africa
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - G. Tuba Barut
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - Nadine Ebert
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | | | - Irene Owusu Donkor
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
| | - James Odame Aboagye
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | - Prince Adom Nartey
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | | | | | | | - Mehul S. Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Derek Smith
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | | |
Collapse
|
6
|
Ali S, Giovanetti M, Johnston C, Urdaneta-Páez V, Azarian T, Cella E. From Emergence to Evolution: Dynamics of the SARS-CoV-2 Omicron Variant in Florida. Pathogens 2024; 13:1095. [PMID: 39770354 PMCID: PMC11679505 DOI: 10.3390/pathogens13121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The continual evolution of SARS-CoV-2 has significantly influenced the global response to the COVID-19 pandemic, with the emergence of highly transmissible and immune-evasive variants posing persistent challenges. The Omicron variant, first identified in November 2021, rapidly replaced the Delta variant, becoming the predominant strain worldwide. In Florida, Omicron was first detected in December 2021, leading to an unprecedented surge in cases that surpassed all prior waves, despite extensive vaccination efforts. This study investigates the molecular evolution and transmission dynamics of the Omicron lineages during Florida's Omicron waves, supported by a robust dataset of over 1000 sequenced genomes. Through phylogenetic and phylodynamic analyses, we capture the rapid diversification of the Omicron lineages, identifying significant importation events, predominantly from California, Texas, and New York, and exportation to North America, Europe, and South America. Variants such as BA.1, BA.2, BA.4, and BA.5 exhibited distinct transmission patterns, with BA.2 showing the ability to reinfect individuals previously infected with BA.1. Despite the high transmissibility and immune evasion of the Omicron sub-lineages, the plateauing of cases by late 2022 suggests increasing population immunity from prior infection and vaccination. Our findings underscore the importance of continuous genomic surveillance in identifying variant introductions, mapping transmission pathways, and guiding public health interventions to mitigate current and future pandemic risks.
Collapse
Affiliation(s)
- Sobur Ali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (S.A.); (C.J.); (V.U.-P.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy;
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Minas Gerais 30190-009, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (S.A.); (C.J.); (V.U.-P.)
| | - Verónica Urdaneta-Páez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (S.A.); (C.J.); (V.U.-P.)
| | - Taj Azarian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (S.A.); (C.J.); (V.U.-P.)
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (S.A.); (C.J.); (V.U.-P.)
| |
Collapse
|
7
|
Kuroda Y, Ozaki M, Sakai Y, Uchida-Fujii E, Hanada I, Yamamoto T, Tatemoto K, Hirata Y, Sato Y, Katano H, Nagata N, Kato H, Shimada T, Suzuki T, Nakao T, Maeda K. An outbreak of SARS-CoV-2 omicron variant and deaths of three lions in a zoo. One Health 2024; 19:100870. [PMID: 39206254 PMCID: PMC11350503 DOI: 10.1016/j.onehlt.2024.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
There have been reports of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to various mammalian species. Some infected animals show clinical signs and may even die in rare cases. Outbreaks of SARS-CoV-2 have been reported in zoos where susceptible animals are bred in high population densities. However, there have been few reports of omicron variant outbreaks in zoo animals. From late 2022 to 2023, an outbreak of the SARS-CoV-2 omicron variant occurred in one Japanese zoo. A total of 24 lions were housed in the zoo; 13 of them showed respiratory symptoms, and the three oldest lions died. Molecular and histopathological analyses revealed that the deceased lions were infected with SARS-CoV-2 omicron BF.7.15. Virus-neutralization tests showed that all 21 lions were positive for antibodies against the omicron variant, but not against the delta variant. In addition, three tigers and one bear in the same or neighboring building as the lions possessed antibodies against the omicron variant. This is a very rare report on the outbreak of a SARS-CoV-2 omicron variant infection that resulted in the death of animals. This finding demonstrates the importance of continuous countermeasures to protect non-vaccinated animals from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Ozaki
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eri Uchida-Fujii
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ikumi Hanada
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirofumi Kato
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoe Shimada
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tatsuko Nakao
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
8
|
Einhauser S, Asam C, Weps M, Senninger A, Peterhoff D, Bauernfeind S, Asbach B, Carnell GW, Heeney JL, Wytopil M, Fuchs A, Messmann H, Prelog M, Liese J, Jeske SD, Protzer U, Hoelscher M, Geldmacher C, Überla K, Steininger P, Wagner R. Longitudinal effects of SARS-CoV-2 breakthrough infection on imprinting of neutralizing antibody responses. EBioMedicine 2024; 110:105438. [PMID: 39522353 PMCID: PMC11585733 DOI: 10.1016/j.ebiom.2024.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study. METHODS 173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.2, BA.5, BQ.1.1, XBB.1.5 and JN.1. FINDINGS Magnitude-breadth-analysis showed enhanced neutralization capacity in vaccinated individuals against multiple VOCs. Longitudinal analysis revealed sustained neutralization magnitude-breadth after antigenically distant Delta or Omicron breakthrough infection (BTI), with triple-vaccinated individuals showing significantly elevated titres and improved breadth. Antigenic mapping and antibody landscaping revealed initial boosting of vaccine-induced WT-specific responses after BTI, a shift in neutralization towards infecting VOCs at peak responses and an immune imprinted bias towards dominating WT immunity in the long-term. Despite that bias, machine-learning models confirmed a sustained shift of the immune-profiles following BTI. INTERPRETATION In summary, our longitudinal analysis revealed delayed and short lived nAb shifts towards the infecting VOC, but an immune imprinted bias towards long-term vaccine induced immunity after BTI. FUNDING This work was funded by the Bavarian State Ministry of Science and the Arts for the CoVaKo study and the ForCovid project. The funders had no influence on the study design, data analysis or data interpretation.
Collapse
Affiliation(s)
- Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Claudia Asam
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Manuela Weps
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Senninger
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stilla Bauernfeind
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom; DIOSynVax, Ltd., Cambridge, United Kingdom
| | - Monika Wytopil
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Fuchs
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Martina Prelog
- Pediatric Rheumatology / Special Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Liese
- Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Samuel D Jeske
- Institute of Virology, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research, Munich Partner Site, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
10
|
Renner TM, Stuible M, Cass B, Perret S, Guimond J, Lord-Dufour S, McCluskie MJ, Durocher Y, Akache B. Reduced cross-protective potential of Omicron compared to ancestral SARS-CoV-2 spike vaccines against potentially zoonotic coronaviruses. NPJ VIRUSES 2024; 2:58. [PMID: 40295830 PMCID: PMC11721134 DOI: 10.1038/s44298-024-00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/19/2024] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic has emphasised the importance of vaccines and preparedness against viral threats crossing species barriers. In response, a worldwide vaccination campaign targeting SARS-CoV-2 was implemented, which provides some cross-protective immunological memory to other coronavirus species with zoonotic potential. Following a vaccination regimen against SARS-CoV-2 spike in a preclinical mouse model, we were able to demonstrate the induction of neutralizing antibodies towards multiple human ACE2 (hACE2)-binding Sarbecovirus spikes. Importantly, compared to vaccines based on the SARS-CoV-2 Reference strain, vaccines based on Omicron spike sequences induced drastically less broadly cross-protective neutralizing antibodies against other hACE2-binding sarbecoviruses. This observation remained true whether the vaccination regimens were based on protein subunit or mRNA / LNP vaccines. Overall, while it may be necessary to update vaccine antigens to combat the evolving SARS-CoV-2 virus for enhanced protection from COVID-19, Reference-based vaccines may be a more valuable tool to protect against novel coronavirus zoonoses.
Collapse
Affiliation(s)
- Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Brian Cass
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Sylvie Perret
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Julie Guimond
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Simon Lord-Dufour
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada.
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024; 98:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Li X, Zhou T, Feng X, Yau ST, Yau SST. Exploring geometry of genome space via Grassmann manifolds. Innovation (N Y) 2024; 5:100677. [PMID: 39206218 PMCID: PMC11350263 DOI: 10.1016/j.xinn.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
It is important to understand the geometry of genome space in biology. After transforming genome sequences into frequency matrices of the chaos game representation (FCGR), we regard a genome sequence as a point in a suitable Grassmann manifold by analyzing the column space of the corresponding FCGR. To assess the sequence similarity, we employ the generalized Grassmannian distance, an intrinsic geometric distance that differs from the traditional Euclidean distance used in the classical k-mer frequency-based methods. With this method, we constructed phylogenetic trees for various genome datasets, including influenza A virus hemagglutinin gene, Orthocoronavirinae genome, and SARS-CoV-2 complete genome sequences. Our comparative analysis with multiple sequence alignment and alignment-free methods for large-scale sequences revealed that our method, which employs the subspace distance between the column spaces of different FCGRs (FCGR-SD), outperformed its competitors in terms of both speed and accuracy. In addition, we used low-dimensional visualization of the SARS-CoV-2 genome sequences and spike protein nucleotide sequences with our methods, resulting in some intriguing findings. We not only propose a novel and efficient algorithm for comparing genome sequences but also demonstrate that genome data have some intrinsic manifold structures, providing a new geometric perspective for molecular biology studies.
Collapse
Affiliation(s)
- Xiaoguang Li
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Tao Zhou
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Xingdong Feng
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Shing-Tung Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| |
Collapse
|
13
|
Mühlemann B, Trimpert J, Walper F, Schmidt ML, Jansen J, Schroeder S, Jeworowski LM, Beheim-Schwarzbach J, Bleicker T, Niemeyer D, Richter A, Adler JM, Vidal RM, Langner C, Vladimirova D, Wilks SH, Smith DJ, Voß M, Paltzow L, Martínez Christophersen C, Rose R, Krumbholz A, Jones TC, Corman VM, Drosten C. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc Natl Acad Sci U S A 2024; 121:e2310917121. [PMID: 39078681 PMCID: PMC11317614 DOI: 10.1073/pnas.2310917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Felix Walper
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Marie L. Schmidt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jenny Jansen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Simon Schroeder
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | | | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Lea Paltzow
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | - Terry C. Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Victor M. Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| |
Collapse
|
14
|
Bellusci L, Grubbs G, Sait S, Herbst KW, Salazar JC, Khurana S. Evolution of the Antigenic Landscape in Children and Young Adults with COVID-19 and MIS-C. Vaccines (Basel) 2024; 12:638. [PMID: 38932367 PMCID: PMC11209438 DOI: 10.3390/vaccines12060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
There is minimal knowledge regarding the durability of neutralization capacity and level of binding antibody generated against the highly transmissible circulating Omicron subvariants following SARS-CoV-2 infection in children with acute COVID-19 and those diagnosed with multisystem inflammatory syndrome in children (MIS-C) in the absence of vaccination. In this study, SARS-CoV-2 neutralization titers against the ancestral strain (WA1) and Omicron sublineages were evaluated in unvaccinated children admitted for COVID-19 (n = 32) and MIS-C (n = 32) at the time of hospitalization (baseline) and at six to eight weeks post-discharge (follow-up) between 1 April 2020, and 1 September 2022. In addition, antibody binding to the spike receptor binding domain (RBD) from WA1, BA.1, BA.2.75, and BA.4/BA.5 was determined using surface plasmon resonance (SPR). At baseline, the children with MIS-C demonstrated two-fold to three-fold higher binding and neutralizing antibodies against ancestral WA1 compared to those with COVID-19. Importantly, in children with COVID-19, the virus neutralization titers against the Omicron subvariants at six to eight weeks post-discharge reached the same level as those with MIS-C had at baseline but were higher than titers at 6-8 weeks post-discharge for MIS-C cases. Cross-neutralization capacity against recently emerged Omicron BQ.1, BQ.1.1, and XBB.1 variants was very low in children with either COVID-19 or MIS-C at all time points. These findings about post-infection immunity in children with either COVID-19 or MIS-C suggest the need for vaccinations in children with prior COVID-19 or MIS-C to provide effective protection from emerging and circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Shaimaa Sait
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Katherine W. Herbst
- Division of Pediatric Infectious Diseases, Connecticut Children’s, Hartford, CT 06106, USA; (K.W.H.); (J.C.S.)
| | - Juan C. Salazar
- Division of Pediatric Infectious Diseases, Connecticut Children’s, Hartford, CT 06106, USA; (K.W.H.); (J.C.S.)
- Departments of Pediatrics and Immunology, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | | |
Collapse
|
15
|
Schulte B, Richter E, Büning A, Baum M, Breuer A, Zorn J, König J, Geiger M, Eschbach-Bludau M, Heuser J, Zölzer D, Korencak M, Hollstein R, Beins E, Emmert D, Aldabbagh S, Eis-Hübinger AM, Streeck H. A longitudinal study on SARS-CoV-2 seroconversion, reinfection and neutralisation spanning several variant waves and vaccination campaigns, Heinsberg, Germany, April 2020 to November 2022. Euro Surveill 2024; 29:2300659. [PMID: 38940003 PMCID: PMC11212458 DOI: 10.2807/1560-7917.es.2024.29.26.2300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 06/29/2024] Open
Abstract
BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.
Collapse
Affiliation(s)
- Bianca Schulte
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Enrico Richter
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Antonia Büning
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Maximilian Baum
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Annika Breuer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Jasmin Zorn
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Julia König
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Melanie Geiger
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | | | - Johanna Heuser
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dominik Zölzer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marek Korencak
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ronja Hollstein
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Eva Beins
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dorian Emmert
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Souhaib Aldabbagh
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | | | - Hendrik Streeck
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
16
|
Rössler A, Netzl A, Knabl L, Wilks SH, Mühlemann B, Türeli S, Mykytyn A, von Laer D, Haagmans BL, Smith DJ, Kimpel J. Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera. NPJ Vaccines 2024; 9:85. [PMID: 38762525 PMCID: PMC11102554 DOI: 10.1038/s41541-024-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Ins+titute of Health, 10117, Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117, Berlin, Germany
| | - Sina Türeli
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar MS, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays. Sci Transl Med 2024; 16:eadl1722. [PMID: 38748773 DOI: 10.1126/scitranslmed.adl1722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
18
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
19
|
Luo S, Xiong D, Tang B, Liu B, Zhao X, Duan L. Evaluating mAbs binding abilities to Omicron subvariant RBDs: implications for selecting effective mAb therapies. Phys Chem Chem Phys 2024; 26:11414-11428. [PMID: 38591159 DOI: 10.1039/d3cp05893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bangyu Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
20
|
Springer DN, Daller S, Knappik M, Prüger K, Hartl S, Breyer-Kohansal R, Puchhammer-Stöckl E, Aberle JH, Weseslindtner L, Breyer MK. A Multivariant Surrogate Virus Neutralization Test Demonstrates Distinct SARS-CoV-2-Specific Antibody Responses in People Living with HIV after a Fourth Monovalent mRNA Vaccination or an Omicron Breakthrough Infection. Diagnostics (Basel) 2024; 14:822. [PMID: 38667468 PMCID: PMC11049121 DOI: 10.3390/diagnostics14080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
While neutralizing antibodies (nAbs) induced by monovalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations are primarily directed against the wildtype (WT), subsequent exposure to the Omicron variants may increase the breadth of the antibodies' cross-neutralizing activity. Here, we analyzed the impact of an Omicron breakthrough infection (BTI) or a fourth monovalent mRNA vaccination on nAb profiles in people living with human immunodeficiency virus (PLWH). Using a multivariant surrogate virus neutralization test (sVNT), we quantified nAbs in 36 three-times vaccinated PLWH, of whom 9 acquired a serologically confirmed Omicron BTI, 8 received a fourth vaccine dose, and 19 were neither infected nor additionally vaccinated. While nAbs against WT and Delta increased after the BTI and a fourth vaccination, a significant increase against BA.1, BA.2, and BA.5 was only observed after the BTI. However, there was no significant difference in nAb concentrations between the samples obtained after the BTI and fourth vaccination. In contrast, nAb levels were significantly lower in PLWH, who were neither infected nor additionally vaccinated after three vaccinations. Thus, our study demonstrates the suitability of a multivariant sVNT to assess hybrid humoral immunity after Omicron BTIs in PLWH vaccinated against SARS-CoV-2.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Simon Daller
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
| | - Michael Knappik
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Sylvia Hartl
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Robab Breyer-Kohansal
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
| | - Elisabeth Puchhammer-Stöckl
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (D.N.S.); (K.P.); (E.P.-S.); (J.H.A.)
| | - Marie Kathrin Breyer
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, 1140 Vienna, Austria; (S.D.); (M.K.); (S.H.); (R.B.-K.); (M.K.B.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
| |
Collapse
|
21
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Jung SM, Loo SL, Howerton E, Contamin L, Smith CP, Carcelén EC, Yan K, Bents SJ, Levander J, Espino J, Lemaitre JC, Sato K, McKee CD, Hill AL, Chinazzi M, Davis JT, Mu K, Vespignani A, Rosenstrom ET, Rodriguez-Cartes SA, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore SM, Perkins TA, Chen S, Paul R, Janies D, Thill JC, Srivastava A, Aawar MA, Bi K, Bandekar SR, Bouchnita A, Fox SJ, Meyers LA, Porebski P, Venkatramanan S, Adiga A, Hurt B, Klahn B, Outten J, Chen J, Mortveit H, Wilson A, Hoops S, Bhattacharya P, Machi D, Vullikanti A, Lewis B, Marathe M, Hochheiser H, Runge MC, Shea K, Truelove S, Viboud C, Lessler J. Potential impact of annual vaccination with reformulated COVID-19 vaccines: Lessons from the US COVID-19 scenario modeling hub. PLoS Med 2024; 21:e1004387. [PMID: 38630802 PMCID: PMC11062554 DOI: 10.1371/journal.pmed.1004387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/01/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.
Collapse
Affiliation(s)
- Sung-mok Jung
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara L. Loo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emily Howerton
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucie Contamin
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Claire P. Smith
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erica C. Carcelén
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katie Yan
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Samantha J. Bents
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Levander
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jessi Espino
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph C. Lemaitre
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Koji Sato
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Clifton D. McKee
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alison L. Hill
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Matteo Chinazzi
- Northeastern University, Boston, Massachusetts, United States of America
| | - Jessica T. Davis
- Northeastern University, Boston, Massachusetts, United States of America
| | - Kunpeng Mu
- Northeastern University, Boston, Massachusetts, United States of America
| | | | - Erik T. Rosenstrom
- North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Julie S. Ivy
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maria E. Mayorga
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julie L. Swann
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Guido España
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean Cavany
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean M. Moore
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shi Chen
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Rajib Paul
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Jean-Claude Thill
- University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Ajitesh Srivastava
- University of Southern California, Los Angeles, California, United States of America
| | - Majd Al Aawar
- University of Southern California, Los Angeles, California, United States of America
| | - Kaiming Bi
- University of Texas at Austin, Austin, Texas, United States of America
| | | | - Anass Bouchnita
- University of Texas at El Paso, El Paso, Texas, United States of America
| | - Spencer J. Fox
- University of Georgia, Athens, Georgia, United States of America
| | | | | | | | - Aniruddha Adiga
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin Hurt
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Brian Klahn
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Outten
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Jiangzhuo Chen
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Henning Mortveit
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Amanda Wilson
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Stefan Hoops
- University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Dustin Machi
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Anil Vullikanti
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Bryan Lewis
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Madhav Marathe
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Harry Hochheiser
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael C. Runge
- U.S. Geological Survey, Laurel, Maryland, United States of America
| | - Katriona Shea
- The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shaun Truelove
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin Lessler
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Karim F, Riou C, Bernstein M, Jule Z, Lustig G, van Graan S, Keeton RS, Upton JL, Ganga Y, Khan K, Reedoy K, Mazibuko M, Govender K, Thambu K, Ngcobo N, Venter E, Makhado Z, Hanekom W, von Gottberg A, Hoque M, Karim QA, Abdool Karim SS, Manickchund N, Magula N, Gosnell BI, Lessells RJ, Moore PL, Burgers WA, de Oliveira T, Moosa MYS, Sigal A. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat Commun 2024; 15:2360. [PMID: 38491050 PMCID: PMC10943233 DOI: 10.1038/s41467-024-46673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
SARS-CoV-2 clearance requires adaptive immunity but the contribution of neutralizing antibodies and T cells in different immune states is unclear. Here we ask which adaptive immune responses associate with clearance of long-term SARS-CoV-2 infection in HIV-mediated immunosuppression after suppressive antiretroviral therapy (ART) initiation. We assembled a cohort of SARS-CoV-2 infected people in South Africa (n = 994) including participants with advanced HIV disease characterized by immunosuppression due to T cell depletion. Fifty-four percent of participants with advanced HIV disease had prolonged SARS-CoV-2 infection (>1 month). In the five vaccinated participants with advanced HIV disease tested, SARS-CoV-2 clearance associates with emergence of neutralizing antibodies but not SARS-CoV-2 specific CD8 T cells, while CD4 T cell responses were not determined due to low cell numbers. Further, complete HIV suppression is not required for clearance, although it is necessary for an effective vaccine response. Persistent SARS-CoV-2 infection led to SARS-CoV-2 evolution, including virus with extensive neutralization escape in a Delta variant infected participant. The results provide evidence that neutralizing antibodies are required for SARS-CoV-2 clearance in HIV-mediated immunosuppression recovery, and that suppressive ART is necessary to curtail evolution of co-infecting pathogens to reduce individual health consequences as well as public health risk linked with generation of escape mutants.
Collapse
Affiliation(s)
- Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | | | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Strauss van Graan
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | | | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | | | | | | | | | - Elizabeth Venter
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Monjurul Hoque
- KwaDabeka Community Health Centre, KwaDabeka, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nithendra Manickchund
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nombulelo Magula
- Department of Internal Medicine, Nelson R. Mandela School of Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - Bernadett I Gosnell
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Richard J Lessells
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Tulio de Oliveira
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
24
|
Choi MJ, Hyun H, Heo JY, Seo YB, Noh JY, Cheong HJ, Kim WJ, Kim HJ, Choi JY, Lee YJ, Chung EJ, Kim SH, Jeong H, Kim B, Song JY. Longitudinal immune kinetics of COVID-19 booster versus primary series vaccination: Insight into the annual vaccination strategy. Heliyon 2024; 10:e27211. [PMID: 38468934 PMCID: PMC10926122 DOI: 10.1016/j.heliyon.2024.e27211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Background Data on the durability of booster dose immunity of COVID-19 vaccines are relatively limited. Methods Immunogenicity was evaluated for up to 9-12 months after the third dose of vaccination in 94 healthy adults. Results Following the third dose, the anti-spike immunoglobulin G (IgG) antibody response against the wild-type was boosted markedly, which decreased gradually over time. However, even 9-12 months after the booster dose, both the median and geometric mean of anti-spike IgG antibody levels were higher than those measured 4 weeks after the second dose. Breakthrough infection during the Omicron-dominant period boosted neutralizing antibody titers against Omicron sublineages (BA.1 and BA.5) and the ancestral strain. T-cell immune response was efficiently induced and maintained during the study period. Conclusions mRNA vaccine booster dose elicited durable humoral immunity for up to 1 year after the third dose and T-cell immunity was sustained during the study period, supporting an annual COVID-19 vaccination strategy.
Collapse
Affiliation(s)
- Min Joo Choi
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Hakjun Hyun
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yu Bin Seo
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center - Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center - Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center - Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, ASAN Medical Center, Ulsan University College of Medicine, Seoul, Republic of Korea
| | - Ju-yeon Choi
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Young Jae Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Eun Joo Chung
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Su-Hwan Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Hyeonji Jeong
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center - Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Rössler A, Knabl L, Netzl A, Bante D, Borena W, von Laer D, Smith DJ, Kimpel J. Durability of Cross-Neutralizing Antibodies 5.5 Months After Bivalent Coronavirus Disease 2019 Vaccine Booster. J Infect Dis 2024; 229:644-647. [PMID: 38016020 PMCID: PMC10938204 DOI: 10.1093/infdis/jiad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
We analyzed neutralizing antibodies in samples from ancestral + BA.1 and ancestral + BA.4/5 boosted individuals, collected around 5.5 months after booster. Titers of neutralizing antibodies generally decreased compared to a time point early after the bivalent booster immunization. This was more pronounced for individuals without infection history and for recently emerged Omicron variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Antonia Netzl
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Derek J Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| |
Collapse
|
26
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Yang JE, Wright ER, Kawaoka Y, Kane RS. Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine. Nat Commun 2024; 15:1284. [PMID: 38346966 PMCID: PMC10861510 DOI: 10.1038/s41467-024-45495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Makoto Kuroda
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan.
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
27
|
Belongia EA, Petrie JG, Feldstein LR, Guan L, Halfmann PJ, King JP, Neumann G, Pattinson D, Rolfes MA, McLean HQ, Kawaoka Y. Neutralizing Immunity Against Antigenically Advanced Omicron BA.5 in Children After SARS-CoV-2 Infection. J Pediatric Infect Dis Soc 2024; 13:100-104. [PMID: 38142128 DOI: 10.1093/jpids/piad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
We assessed serum neutralization of Omicron BA.5 in children following SARS-CoV-2 infection during the Delta or Omicron BA.1/BA.2 variant period. Convalescent BA.5 titers were higher following infections during the Omicron BA.1/BA.2 vs Delta variant period, and in vaccinated vs unvaccinated children. Titers against BA.5 did not differ by age group.
Collapse
Affiliation(s)
- Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Joshua G Petrie
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Leora R Feldstein
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lizheng Guan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jennifer P King
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - David Pattinson
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Melissa A Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Springer DN, Höltl E, Prüger K, Puchhammer-Stöckl E, Aberle JH, Stiasny K, Weseslindtner L. Measuring Variant-Specific Neutralizing Antibody Profiles after Bivalent SARS-CoV-2 Vaccinations Using a Multivariant Surrogate Virus Neutralization Microarray. Vaccines (Basel) 2024; 12:94. [PMID: 38250907 PMCID: PMC10818493 DOI: 10.3390/vaccines12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | | | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| |
Collapse
|
29
|
Li L, Xie Z, Li Y, Luo M, Zhang L, Feng C, Tang G, Huang H, Hou R, Xu Y, Jia S, Shi J, Fan Q, Gan Q, Yu N, Hu F, Li Y, Lan Y, Tang X, Li F, Deng X. Immune response and severity of Omicron BA.5 reinfection among individuals previously infected with different SARS-CoV-2 variants. Front Cell Infect Microbiol 2023; 13:1277880. [PMID: 38188634 PMCID: PMC10766752 DOI: 10.3389/fcimb.2023.1277880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction COVID-19 continues to spread worldwide, with an increasing number of individuals experiencing reinfection after recovering from their primary infection. However, the nature and progression of this infection remain poorly understood. We aimed to investigate the immune response, severity and outcomes of Omicron BA.5 reinfection among individuals previously infected with different SARS-CoV-2 variants. Methods We enrolled 432 COVID-19 cases who had experienced prior infection with the ancestral SARS-CoV-2 virus, Delta variant or Omicron BA.2 variant between January 2020 and May 2022 in Guangzhou, China. All cases underwent follow-up from March to April, 2023 through telephone questionnaires and clinical visits. Nasal lavage fluid and peripheral blood were collected to assess anti-RBD IgA, anti-RBD IgG and virus-specific IFN-γ secreting T cells. Results Our study shows that 73.1%, 56.7% and 12.5% of individuals with a prior infection of the ancestral virus, Delta or Omicron BA.2 variant experienced reinfection with the BA.5 variant, respectively. Fever, cough and sore throat were the most common symptoms of BA.5 reinfection, with most improving within one week and none progressing to a critical condition. Compared with individuals without reinfection, reinfected patients with a prior Delta infection exhibited elevated levels of nasal anti-RBD IgA, serum anti-RBD IgG and IFN-γ secreting T cells, whereas there was no noticeable change in reinfected individuals with a prior BA.2 infection. Conclusion These results suggest that BA.5 reinfection is common but severe outcomes are relatively rare. Reinfection with a novel SARS-CoV-2 variant different from the prior infection may induce a more robust immune protection, which should be taken into account during vaccine development.
Collapse
Affiliation(s)
- Lu Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Xie
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Youxia Li
- Department of Critical Care Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Minhan Luo
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lieguang Zhang
- Department of Radiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chengqian Feng
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guofang Tang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huang Huang
- Department of Critical Care Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruitian Hou
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujuan Xu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shijie Jia
- Department of Traditional Chinese Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingrong Shi
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingxin Gan
- Department of Radiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na Yu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Yueping Li
- Department of Infectious Critical Care Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Xilong Deng
- Department of Critical Care Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Bianco A, Bortolami A, Miccolupo A, Sottili R, Ghergo P, Castellana S, Del Sambro L, Capozzi L, Pagliari M, Bonfante F, Ridolfi D, Bulzacchelli C, Giannico A, Parisi A. SARS-CoV-2 in Animal Companions: A Serosurvey in Three Regions of Southern Italy. Life (Basel) 2023; 13:2354. [PMID: 38137955 PMCID: PMC10745004 DOI: 10.3390/life13122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Several animal species have been found to be susceptible to SARS-CoV-2 infection. The occurrence of infection in dogs and cats living in close contact with owners deserves particular attention from public health authorities in a One Health approach. In this study, we conducted serological screening to identify SARS-CoV-2 exposure in the sera from dogs and cats in three regions of southern Italy sampled during the years 2021 and 2022. We collected 100 serum samples in 2021 (89 from dogs and 11 from cats) and 640 in 2022 (577 from dogs and 63 from cats). Overall, the ELISA positivity rate was found to be 2.7% (20/740), with higher seroprevalence in dogs. Serum neutralization tests confirmed positivity only in two samples collected from dogs, and the assays, performed with serologically distinct SARS-CoV-2 variants, showed variant-specific positivity. This paper shows that monitoring SARS-CoV-2 exposure in animals might be affected by the viral antigenic evolution, which requires continuous updates to the serological tests used. Serological surveys are useful in understanding the true extent of exposure occurring in specific animal populations, not suffering the same limitations as molecular tests, and could help in identifying the infecting virus if tests able to characterize the immune response are used. The use of variant-specific validated serological methods should always be considered in serosurvey studies in order to determine the real impact of emerging variants on animal populations and its implications for veterinary and human health, as well as to identify potential reservoirs of the virus and its evolutionary changes.
Collapse
Affiliation(s)
- Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Roldano Sottili
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Paola Ghergo
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Matteo Pagliari
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Donato Ridolfi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Carmela Bulzacchelli
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Anna Giannico
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| |
Collapse
|
31
|
Bellusci L, Grubbs G, Sait S, Yonker LM, Randolph AG, Novak T, Kobayashi T, Khurana S. Neutralization of SARS-CoV-2 Omicron BQ.1, BQ.1.1 and XBB.1 variants following SARS-CoV-2 infection or vaccination in children. Nat Commun 2023; 14:7952. [PMID: 38040697 PMCID: PMC10692185 DOI: 10.1038/s41467-023-43152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023] Open
Abstract
Emergence of highly transmissible Omicron subvariants led to increased SARS-CoV-2 infection and disease in children. However, minimal knowledge exists regarding the neutralization capacity against circulating Omicron BA.4/BA.5, BA.2.75, BQ.1, BQ.1.1 and XBB.1 subvariants following SARS-CoV-2 vaccination in children versus during acute or convalescent COVID-19, or versus multisystem inflammatory syndrome (MIS-C). Here, we evaluate virus-neutralizing capacity against SARS-CoV-2 variants in 151 age-stratified children ( <5, 5-11, 12-21 years old) hospitalized with acute severe COVID-19 or MIS-C or convalescent mild (outpatient) infection compared with 62 age-stratified vaccinated children. An age-associated effect on neutralizing antibodies is observed against SARS-CoV-2 following acute COVID-19 or vaccination. The primary series BNT162b2 mRNA vaccinated adolescents show higher vaccine-homologous WA-1 neutralizing titers compared with <12 years vaccinated children. Post-infection antibodies did not neutralize BQ.1, BQ.1.1 and XBB.1 subvariants. In contrast, monovalent mRNA vaccination induces more cross-neutralizing antibodies in young children <5 years against BQ.1, BQ.1.1 and XBB.1 variants compared with ≥5 years old children. Our study demonstrates that in children, infection and monovalent vaccination-induced neutralization activity is low against BQ.1, BQ.1.1 and XBB.1 variants. These findings suggest a need for improved SARS-CoV-2 vaccines to induce durable, more cross-reactive neutralizing antibodies to provide effective protection against emerging variants in children.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Shaimaa Sait
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA
| | - Adrienne G Randolph
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Tanya Novak
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Takuma Kobayashi
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
32
|
Baerends EAM, Reekie J, Andreasen SR, Stærke NB, Raben D, Nielsen H, Petersen KT, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Iversen MB, Benfield T, Iversen KK, Larsen FD, Andersen SD, Juhl AK, Dietz LL, Hvidt AK, Ostrowski SR, Krause TG, Østergaard L, Søgaard OS, Lundgren J, Tolstrup M. Omicron Variant-Specific Serological Imprinting Following BA.1 or BA.4/5 Bivalent Vaccination and Previous SARS-CoV-2 Infection: A Cohort Study. Clin Infect Dis 2023; 77:1511-1520. [PMID: 37392436 PMCID: PMC10686961 DOI: 10.1093/cid/ciad402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outpaces monovalent vaccine cross-protection to new viral variants. Consequently, bivalent coronavirus disease 2019 (COVID-19) vaccines including Omicron antigens were developed. The contrasting immunogenicity of the bivalent vaccines and the impact of prior antigenic exposure on new immune imprinting remains to be clarified. METHODS In the large prospective ENFORCE cohort, we quantified spike-specific antibodies to 5 Omicron variants (BA.1 to BA.5) before and after BA.1 or BA.4/5 bivalent booster vaccination to compare Omicron variant-specific antibody inductions. We evaluated the impact of previous infection and characterized the dominant antibody responses. RESULTS Prior to the bivalent fourth vaccine, all participants (N = 1697) had high levels of Omicron-specific antibodies. Antibody levels were significantly higher in individuals with a previous polymerase chain reaction positive (PCR+) infection, particularly for BA.2-specific antibodies (geometric mean ratio [GMR] 6.79, 95% confidence interval [CI] 6.05-7.62). Antibody levels were further significantly boosted in all individuals by receiving either of the bivalent vaccines, but greater fold inductions to all Omicron variants were observed in individuals with no prior infection. The BA.1 bivalent vaccine generated a dominant response toward BA.1 (adjusted GMR 1.31, 95% CI 1.09-1.57) and BA.3 (1.32, 1.09-1.59) antigens in individuals with no prior infection, whereas the BA.4/5 bivalent vaccine generated a dominant response toward BA.2 (0.87, 0.76-0.98), BA.4 (0.85, 0.75-0.97), and BA.5 (0.87, 0.76-0.99) antigens in individuals with a prior infection. CONCLUSIONS Vaccination and previous infection leave a clear serological imprint that is focused on the variant-specific antigen. Importantly, both bivalent vaccines induce high levels of Omicron variant-specific antibodies, suggesting broad cross-protection of Omicron variants.
Collapse
Affiliation(s)
- Eva A M Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Signe R Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K Iversen
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Fredrikke D Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tyra G Krause
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Jung SM, Loo SL, Howerton E, Contamin L, Smith CP, Carcelén EC, Yan K, Bents SJ, Levander J, Espino J, Lemaitre JC, Sato K, McKee CD, Hill AL, Chinazzi M, Davis JT, Mu K, Vespignani A, Rosenstrom ET, Rodriguez-Cartes SA, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore SM, Perkins A, Chen S, Paul R, Janies D, Thill JC, Srivastava A, Al Aawar M, Bi K, Bandekar SR, Bouchnita A, Fox SJ, Meyers LA, Porebski P, Venkatramanan S, Adiga A, Hurt B, Klahn B, Outten J, Chen J, Mortveit H, Wilson A, Hoops S, Bhattacharya P, Machi D, Vullikanti A, Lewis B, Marathe M, Hochheiser H, Runge MC, Shea K, Truelove S, Viboud C, Lessler J. Potential impact of annual vaccination with reformulated COVID-19 vaccines: lessons from the U.S. COVID-19 Scenario Modeling Hub. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.26.23297581. [PMID: 37961207 PMCID: PMC10635209 DOI: 10.1101/2023.10.26.23297581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Importance COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting The entire United States. Participants None. Exposure Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.
Collapse
Affiliation(s)
- Sung-mok Jung
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sara L. Loo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Emily Howerton
- The Pennsylvania State University, State College, Pennsylvania
| | | | - Claire P. Smith
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Erica C. Carcelén
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Katie Yan
- The Pennsylvania State University, State College, Pennsylvania
| | - Samantha J. Bents
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | | | - Jessi Espino
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph C. Lemaitre
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Koji Sato
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Clif D. McKee
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alison L. Hill
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | - Kunpeng Mu
- University of Massachusetts Amherst, Amherst, Massachusetts
| | | | | | | | - Julie S. Ivy
- North Carolina State University, Raleigh, North Carolina
| | | | - Julie L. Swann
- North Carolina State University, Raleigh, North Carolina
| | | | - Sean Cavany
- University of Notre Dame, Notre Dame, Indiana
| | | | | | - Shi Chen
- University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rajib Paul
- University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jean-Claude Thill
- University of North Carolina at Charlotte, Charlotte, North Carolina
| | | | - Majd Al Aawar
- University of Southern California, Los Angeles, California
| | - Kaiming Bi
- University of Texas at Austin, Austin, Texas
| | | | | | | | | | | | | | | | | | - Brian Klahn
- University of Virginia, Charlottesville, Virginia
| | | | | | | | | | - Stefan Hoops
- University of Virginia, Charlottesville, Virginia
| | | | - Dustin Machi
- University of Virginia, Charlottesville, Virginia
| | | | - Bryan Lewis
- University of Virginia, Charlottesville, Virginia
| | | | | | | | - Katriona Shea
- The Pennsylvania State University, State College, Pennsylvania
| | - Shaun Truelove
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Justin Lessler
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
34
|
Zhou J, Sukhova K, Peacock TP, McKay PF, Brown JC, Frise R, Baillon L, Moshe M, Kugathasan R, Shattock RJ, Barclay WS. Omicron breakthrough infections in vaccinated or previously infected hamsters. Proc Natl Acad Sci U S A 2023; 120:e2308655120. [PMID: 37903249 PMCID: PMC10636328 DOI: 10.1073/pnas.2308655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
The ongoing SARS-CoV-2 epidemic was marked by the repeated emergence and replacement of "variants" with genetic and phenotypic distance from the ancestral strains, the most recent examples being viruses of the Omicron lineage. Here, we describe a hamster direct contact exposure challenge model to assess protection against reinfection conferred by either vaccination or prior infection. We found that two doses of self-amplifying RNA vaccine based on the ancestral Spike ameliorated weight loss following Delta infection and decreased viral loads but had minimal effect on Omicron BA.1 infection. Prior vaccination followed by Delta or BA.1 breakthrough infections led to a high degree of cross-reactivity to all tested variants, suggesting that repeated exposure to antigenically distinct Spikes, via infection and/or vaccination drives a cross-reactive immune response. Prior infection with ancestral or Alpha variant was partially protective against BA.1 infection, whereas all animals previously infected with Delta and exposed to BA.1 became reinfected, although they shed less virus than BA.1-infected naive hamsters. Hamsters reinfected with BA.1 after prior Delta infection emitted infectious virus into the air, indicating that they could be responsible for onwards airborne transmission. We further tested whether prior infection with BA.1 protected from reinfection with Delta or later Omicron sublineages BA.2, BA.4, or BA.5. BA.1 was protective against BA.2 but not against Delta, BA.4, or BA.5 reinfection. These findings suggest that cohorts whose only immune experience of COVID-19 is Omicron BA.1 infection may be vulnerable to future circulation of reemerged Delta-like derivatives, as well as emerging Omicron sublineages.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Thomas P. Peacock
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Maya Moshe
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Ruthiran Kugathasan
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| |
Collapse
|
35
|
Santos da Silva E, Servais JY, Kohnen M, Arendt V, Staub T, Krüger R, Fagherazzi G, Wilmes P, Hübschen JM, Ollert M, Perez-Bercoff D, Seguin-Devaux C. Validation of a SARS-CoV-2 Surrogate Neutralization Test Detecting Neutralizing Antibodies against the Major Variants of Concern. Int J Mol Sci 2023; 24:14965. [PMID: 37834413 PMCID: PMC10573711 DOI: 10.3390/ijms241914965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman's r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the "Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit" and the "Genscript cPass, kit" revealed an overall good correlation ranging from 0.8673 to -0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Jean-Yves Servais
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Michel Kohnen
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | - Vic Arendt
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | - Therese Staub
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | | | | | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health; Centre Hospitalier de Luxembourg, 4 rue Ernest Barblé, L-1210 Luxembourg, Luxembourg;
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Guy Fagherazzi
- Department of Precision Health, Luxembourg Institute of Health, 1AB Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Judith M. Hübschen
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Danielle Perez-Bercoff
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| |
Collapse
|
36
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
37
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar M, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative Analysis of SARS-CoV-2 Antigenicity across Assays and in Human and Animal Model Sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559689. [PMID: 37808679 PMCID: PMC10557678 DOI: 10.1101/2023.09.27.559689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mehul Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
40
|
Andre M, Lau LS, Pokharel MD, Ramelow J, Owens F, Souchak J, Akkaoui J, Ales E, Brown H, Shil R, Nazaire V, Manevski M, Paul NP, Esteban-Lopez M, Ceyhan Y, El-Hage N. From Alpha to Omicron: How Different Variants of Concern of the SARS-Coronavirus-2 Impacted the World. BIOLOGY 2023; 12:1267. [PMID: 37759666 PMCID: PMC10525159 DOI: 10.3390/biology12091267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient transmission, severity, and immune evasion properties. The World Health Organization has given these variants names according to the letters of the Greek Alphabet, starting with the Alpha (B.1.1.7) variant, which emerged in 2020, followed by the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. This review explores the genetic variation among different VOCs of SARS-CoV-2 and how the emergence of variants made a global impact on the pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nazira El-Hage
- Herbert Wertheim College of Medicine, Biomedical Sciences Program Florida International University, Miami, FL 33199, USA; (M.A.); (L.-S.L.); (M.D.P.); (J.R.); (F.O.); (J.S.); (J.A.); (E.A.); (H.B.); (R.S.); (V.N.); (M.M.); (N.P.P.); (M.E.-L.); (Y.C.)
| |
Collapse
|
41
|
Suntronwong N, Kanokudom S, Assawakosri S, Vichaiwattana P, Klinfueng S, Phowatthanasathian H, Chansaenroj J, Srimuan D, Thatsanathorn T, Duangchinda T, Chantima W, Pakchotanon P, Sudhinaraset N, Wanlapakorn N, Poovorawan Y. Neutralizing antibodies against Omicron BA.5 among children with infection alone, vaccination alone, and hybrid immunity. Int J Infect Dis 2023; 134:18-22. [PMID: 37207716 DOI: 10.1016/j.ijid.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
OBJECTIVES To assess the binding antibody response and strength of neutralization against Omicron BA.5 in serum samples from children with different antigen exposures (infection/vaccination) and hybrid immunity. METHODS This study recruited children aged 5-7 years. All samples were tested for anti-nucleocapsid immunoglobulin (Ig)G, anti-receptor binding domain (RBD) IgG, and total anti-RBD Ig. Neutralizing antibodies (nAbs) against Omicron BA.5 were determined using a focus reduction neutralization test. RESULTS A total of 196 serum samples from unvaccinated children with infection (n = 57), vaccination alone (n = 71), and hybrid immunity (n = 68). Our results showed that 90% of the samples from children with hybrid immunity, 62.2% from two-dose vaccination, and 48% from Omicron infection alone had detectable nAbs against Omicron BA.5. The highest neutralizing titer was observed in infection plus two-dose vaccination, which reached 6.3-fold increase, whereas nAb titers in two-dose vaccination was comparable to Omicron-infected sera. However, sera from pre-Omicron infection and single-dose vaccination failed to neutralize Omicron BA.5; although, the total anti-RBD Ig were comparable with Omicron-infected sera. CONCLUSION This result highlights that hybrid immunity provided cross-reactive antibodies to neutralize Omicron BA.5 compared with either vaccination or infection alone. The finding emphasizes the importance of vaccination in unvaccinated children who are infected with pre-Omicron or Omicron variants.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Harit Phowatthanasathian
- Chulalongkorn University International Medical Program (CU-MEDi), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand.
| |
Collapse
|
42
|
Branche AR, Rouphael NG, Diemert DJ, Falsey AR, Losada C, Baden LR, Frey SE, Whitaker JA, Little SJ, Anderson EJ, Walter EB, Novak RM, Rupp R, Jackson LA, Babu TM, Kottkamp AC, Luetkemeyer AF, Immergluck LC, Presti RM, Bäcker M, Winokur PL, Mahgoub SM, Goepfert PA, Fusco DN, Malkin E, Bethony JM, Walsh EE, Graciaa DS, Samaha H, Sherman AC, Walsh SR, Abate G, Oikonomopoulou Z, El Sahly HM, Martin TCS, Kamidani S, Smith MJ, Ladner BG, Porterfield L, Dunstan M, Wald A, Davis T, Atmar RL, Mulligan MJ, Lyke KE, Posavad CM, Meagher MA, Stephens DS, Neuzil KM, Abebe K, Hill H, Albert J, Telu K, Mu J, Lewis TC, Giebeig LA, Eaton A, Netzl A, Wilks SH, Türeli S, Makhene M, Crandon S, Montefiori DC, Makowski M, Smith DJ, Nayak SU, Roberts PC, Beigel JH. Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial. Nat Med 2023; 29:2334-2346. [PMID: 37640860 PMCID: PMC10504073 DOI: 10.1038/s41591-023-02503-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .
Collapse
Affiliation(s)
- Angela R Branche
- Department of Medicine, Division of Infectious Diseases, University of Rochester, Rochester, NY, USA.
| | | | - David J Diemert
- George Washington Vaccine Research Unit, George Washington University, Washington D.C., WA, USA
| | - Ann R Falsey
- Department of Medicine, Division of Infectious Diseases, University of Rochester, Rochester, NY, USA
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharon E Frey
- Center for Vaccine Development, Saint Louis University, St. Louis, MO, USA
| | - Jennifer A Whitaker
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan J Little
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Evan J Anderson
- Center for Childhood Infections and Vaccines (CCIV) of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Richard M Novak
- Project WISH, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard Rupp
- University of Texas Medical Branch, Galveston, TX, USA
| | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Tara M Babu
- Departments of Medicine, Epidemiology and Laboratory Medicine and Pathology, University of Washington, Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Angelica C Kottkamp
- NYU VTEU Manhattan Research Clinic, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne F Luetkemeyer
- Zuckerberg San Francisco General, University of California San Francisco, San Francisco, CA, USA
| | - Lilly C Immergluck
- Department of Microbiology, Biochemistry and Immunology, and Clinical Research Center, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rachel M Presti
- Washington University School of Medicine, St. Louis, MO, USA
| | - Martín Bäcker
- NYU VTEU Long Island Research Clinic, NYU Long Island School of Medicine, Mineola, NY, USA
| | | | - Siham M Mahgoub
- Howard University College of Medicine, Howard University Hospital, Washington D.C., WA, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Elissa Malkin
- George Washington Vaccine Research Unit, George Washington University, Washington D.C., WA, USA
| | - Jeffrey M Bethony
- George Washington Vaccine Research Unit, George Washington University, Washington D.C., WA, USA
| | - Edward E Walsh
- Department of Medicine, Division of Infectious Diseases, University of Rochester, Rochester, NY, USA
| | | | - Hady Samaha
- Hope Clinic, Emory University, Decatur, GA, USA
| | - Amy C Sherman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen R Walsh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Getahun Abate
- Center for Vaccine Development, Saint Louis University, St. Louis, MO, USA
| | | | - Hana M El Sahly
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Thomas C S Martin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Satoshi Kamidani
- Center for Childhood Infections and Vaccines (CCIV) of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Michael J Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Maya Dunstan
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Anna Wald
- Departments of Medicine, Epidemiology and Laboratory Medicine and Pathology, University of Washington, Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tamia Davis
- NYU VTEU Manhattan Research Clinic, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert L Atmar
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Mulligan
- NYU VTEU Manhattan Research Clinic, NYU Grossman School of Medicine, New York, NY, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Baltimore, MD, USA
| | - Christine M Posavad
- IDCRC Laboratory Operations Unit, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Megan A Meagher
- IDCRC Laboratory Operations Unit, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David S Stephens
- Department of Medicine and Woodruff Health Sciences Center, Emory University, Atlanta, GA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Baltimore, MD, USA
| | | | - Heather Hill
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jim Albert
- The Emmes Company, LLC, Rockville, MD, USA
| | | | - Jinjian Mu
- The Emmes Company, LLC, Rockville, MD, USA
| | - Teri C Lewis
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa A Giebeig
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mamodikoe Makhene
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sonja Crandon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Seema U Nayak
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Rössler A, Netzl A, Knabl L, Bante D, Wilks SH, Borena W, von Laer D, Smith DJ, Kimpel J. Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography. Nat Commun 2023; 14:5224. [PMID: 37633965 PMCID: PMC10460376 DOI: 10.1038/s41467-023-41049-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
44
|
Lin YCJ, Evans DH, Robbins NF, Orjuela G, Abe KT, Rathod B, Colwill K, Gingras AC, Tuite A, Yi QL, O’Brien SF, Drews SJ. Diminished Neutralization Capacity of SARS-CoV-2 Omicron BA.1 in Donor Plasma Collected from January to March 2021. Microbiol Spectr 2023; 11:e0525622. [PMID: 37289096 PMCID: PMC10434250 DOI: 10.1128/spectrum.05256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
The 50% plaque reduction neutralization assay (PRNT50) has been previously used to assess the neutralization capacity of donor plasma against wild-type and variant of concern (VOC) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging data suggest that plasma with an anti-SARS-CoV-2 level of ≥2 × 104 binding antibody units/mL (BAU/mL) protects against SARS-CoV-2 Omicron BA.1 infection. Specimens were collected using a cross-sectional random sampling approach. For PRNT50 studies, 63 previously analyzed specimens by PRNT50 versus SARS-CoV-2 wild-type, Alpha, Beta, Gamma, and Delta were analyzed by PRNT50 versus Omicron BA.1. The 63 specimens plus 4,390 specimens (randomly sampled regardless of serological evidence of infection) were also tested using the Abbott SARS-CoV-2 IgG II Quant assay (anti-spike [S]; Abbott, Chicago, IL, USA; Abbott Quant assay). In the vaccinated group, the percentages of specimens with any measurable PRNT50 versus wild-type or VOC were wild type (21/25 [84%]), Alpha (19/25 [76%]), Beta (18/25 [72%]), Gamma (13/25 [52%]), Delta (19/25 [76%]), and Omicron BA.1 (9/25 [36%]). In the unvaccinated group, the percentages of specimens with any measurable PRNT50 versus wild type or VOC were wild-type SARS-CoV-2 (16/39 [41%]), Alpha (16/39 [41%]), Beta (10/39 [26%]), Gamma (9/39 [23%]), Delta (16/39 [41%]), and Omicron BA.1 (0/39) (Fisher's exact tests, vaccinated versus unvaccinated for each variant, P < 0.05). None of the 4,453 specimens tested by the Abbott Quant assay had a binding capacity of ≥2 × 104 BAU/mL. Vaccinated donors were more likely than unvaccinated donors to neutralize Omicron when assessed by a PRNT50 assay. IMPORTANCE SARS-CoV-2 Omicron emergence occurred in Canada during the period from November 2021 to January 2022. This study assessed the ability of donor plasma collected earlier (January to March 2021) to generate any neutralizing capacity against Omicron BA.1 SARS-CoV-2. Vaccinated individuals, regardless of infection status, were more likely to neutralize Omicron BA.1 than unvaccinated individuals. This study then used a semiquantitative binding antibody assay to screen a larger number of specimens (4,453) for individual specimens that might have high-titer neutralizing capacity against Omicron BA.1. None of the 4,453 specimens tested by the semiquantitative SARS-CoV-2 assay had a binding capacity suggestive of a high-titer neutralizing capacity against Omicron BA.1. These data do not imply that Canadians lacked immunity to Omicron BA.1 during the study period. Immunity to SARS-CoV-2 is complex, and there is still no wide consensus on correlation of protection to SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Chan J. Lin
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - David H. Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | | | | | - Kento T. Abe
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh Tuite
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Qi-Long Yi
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Sheila F. O’Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven J. Drews
- Canadian Blood Services, Microbiology, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing conformational landscapes of binding and allostery in the SARS-CoV-2 omicron variant complexes using microsecond atomistic simulations and perturbation-based profiling approaches: hidden role of omicron mutations as modulators of allosteric signaling and epistatic relationships. Phys Chem Chem Phys 2023; 25:21245-21266. [PMID: 37548589 PMCID: PMC10536792 DOI: 10.1039/d3cp02042h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| |
Collapse
|
46
|
Hu YF, Yuen TTT, Gong HR, Hu B, Hu JC, Lin XS, Rong L, Zhou CL, Chen LL, Wang X, Lei C, Yau T, Hung IFN, To KKW, Yuen KY, Zhang BZ, Chu H, Huang JD. Rational design of a booster vaccine against COVID-19 based on antigenic distance. Cell Host Microbe 2023; 31:1301-1316.e8. [PMID: 37527659 DOI: 10.1016/j.chom.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/03/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.
Collapse
Affiliation(s)
- Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China; BayVax Biotech Limited, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Hua-Rui Gong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Bingjie Hu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Jing-Chu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Xuan-Sheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Coco Luyao Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Lin-Lei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Chaobi Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Thomas Yau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Bao-Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China.
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China.
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
47
|
Springer DN, Traugott M, Reuberger E, Kothbauer KB, Borsodi C, Nägeli M, Oelschlägel T, Kelani H, Lammel O, Deutsch J, Puchhammer-Stöckl E, Höltl E, Aberle JH, Stiasny K, Weseslindtner L. A Multivariant Surrogate Neutralization Assay Identifies Variant-Specific Neutralizing Antibody Profiles in Primary SARS-CoV-2 Omicron Infection. Diagnostics (Basel) 2023; 13:2278. [PMID: 37443672 DOI: 10.3390/diagnostics13132278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Primary infection with the Omicron variant of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) can be serologically identified with distinct profiles of neutralizing antibodies (nAbs), as indicated by high titers against the Omicron variant and low titers against the ancestral wild-type (WT). Here, we evaluated whether a novel surrogate virus neutralization assay (sVNT) that simultaneously quantifies the binding inhibition of angiotensin-converting enzyme 2 (ACE2) to the proteins of the WT- and Omicron-specific receptor-binding domains (RBDs) can identify nAb profiles after primary Omicron infection with accuracy similar to that of variant-specific live-virus neutralization tests (NTs). Therefore, we comparatively tested 205 samples from individuals after primary infection with the Omicron variant and the WT, and vaccinated subjects with or without Omicron breakthrough infections. Indeed, variant-specific RBD-ACE2 binding inhibition levels significantly correlated with respective NT titers (p < 0.0001, Spearman's r = 0.92 and r = 0.80 for WT and Omicron, respectively). In addition, samples from individuals after primary Omicron infection were securely identified with the sVNT according to their distinctive nAb profiles (area under the curve = 0.99; sensitivity: 97.2%; specificity: 97.84%). Thus, when laborious live-virus NTs are not feasible, the novel sVNT we evaluated in this study may serve as an acceptable substitute for the serological identification of individuals with primary Omicron infection.
Collapse
Affiliation(s)
| | - Marianna Traugott
- 4th Medical Department, Clinic Favoriten, Kaiser-Franz-Josef Hospital, 1100 Vienna, Austria
| | | | | | - Christian Borsodi
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Nägeli
- 4th Medical Department, Clinic Favoriten, Kaiser-Franz-Josef Hospital, 1100 Vienna, Austria
| | - Theresa Oelschlägel
- 4th Medical Department, Clinic Favoriten, Kaiser-Franz-Josef Hospital, 1100 Vienna, Austria
| | - Hasan Kelani
- 4th Medical Department, Clinic Favoriten, Kaiser-Franz-Josef Hospital, 1100 Vienna, Austria
| | - Oliver Lammel
- Independent Researcher, 8972 Ramsau am Dachstein, Austria
| | | | | | - Eva Höltl
- Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
48
|
Chenchula S, Amerneni KC, Ghanta MK, Padmavathi R, Chandra MB, Adusumilli MB, Chavan M, Mudda S, Gupta R, Lakhawat B. Clinical virology and effect of Covid-19 vaccination and monoclonal antibodies against highly infectious SARS- CoV-2 omicron sub variant BF.7 (BA.5.2.1.7): A systematic review. Virology 2023; 584:38-43. [PMID: 37229914 PMCID: PMC10197433 DOI: 10.1016/j.virol.2023.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Over time, the SARS-CoV-2 virus has acquired several genetic mutations, particularly on the receptor-binding domain (RBD) spike glycoprotein. The Omicron variant is highly infectious, with enhanced immune escape activity, and has given rise to various sub-lineages due to mutations. However, there has been a sudden increase in COVID-19 reports of the Omicron subvariant BF.7 (BA.2.75.2), which has the highest number of reported cases, accounting for 76.2% of all cases worldwide. Hence, the present systematic review aimed to understand the viral mutations and factors associated with the increase in the reports of COVID-19 cases and to assess the effectiveness of vaccines and mAbs against the novel Omicron variant BF.7. The R346T mutation on the spike glycoprotein RBD might be associated with increased infection rates, severity, and resistance to vaccines and mAbs. Booster doses of COVID-19 vaccination with bivalent mRNA booster vaccine shots are effective in curtailing infections and decreasing the severity and mortality by enhancing the neutralizing antibodies (Abs) against the emerging Omicron subvariants of SARS-CoV-2, including BF.7 and future VOCs.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India.
| | | | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, Karnataka, India.
| | - R Padmavathi
- SVS Medical College and Hospital, Telangana, India.
| | | | | | - Madhavrao Chavan
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India.
| | - Sofia Mudda
- All India Institute of Medical Sciences, Bhopal, India.
| | - Rupesh Gupta
- Department of Internal Medicine, Government Medical College, Shahdol, Madhya Pradesh, India.
| | - Bhawna Lakhawat
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, India.
| |
Collapse
|
49
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Kawaoka Y, Kane RS. Broad Protection Against Clade 1 Sarbecoviruses After a Single Immunization with Cocktail Spike-Protein-Nanoparticle Vaccine. RESEARCH SQUARE 2023:rs.3.rs-3088907. [PMID: 37461652 PMCID: PMC10350183 DOI: 10.21203/rs.3.rs-3088907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
50
|
Astakhova EA, Morozov AA, Byazrova MG, Sukhova MM, Mikhailov AA, Minnegalieva AR, Gorchakov AA, Filatov AV. Antigenic Cartography Indicates That the Omicron BA.1 and BA.4/BA.5 Variants Remain Antigenically Distant to Ancestral SARS-CoV-2 after Sputnik V Vaccination Followed by Homologous (Sputnik V) or Heterologous (Comirnaty) Revaccination. Int J Mol Sci 2023; 24:10493. [PMID: 37445671 PMCID: PMC10341525 DOI: 10.3390/ijms241310493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid emergence of evasive SARS-CoV-2 variants is an ongoing challenge for COVID-19 vaccinology. Traditional virus neutralization tests provide detailed datasets of neutralization titers against the viral variants. Such datasets are difficult to interpret and do not immediately inform of the sufficiency of the breadth of the antibody response. Some of these issues could be tackled using the antigenic cartography approach. In this study, we created antigenic maps using neutralization titers of sera from donors who received the Sputnik V booster vaccine after primary Sputnik V vaccination and compared them with the antigenic maps based on serum neutralization titers of Comirnaty-boosted donors. A traditional analysis of neutralization titers against the WT (wild-type), Alpha, Beta, Delta, Omicron BA.1, and BA.4/BA.5 variants showed a significant booster humoral response after both homologous (Sputnik V) and heterologous (Comirnaty) revaccinations against all of the studied viral variants. However, despite this, a more in-depth analysis using antigenic cartography revealed that Omicron variants remain antigenically distant from the WT, which is indicative of the formation of insufficient levels of cross-neutralizing antibodies. The implications of these findings may be significant when developing a new vaccine regimen.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Morozov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Ministry of Science and Higher Education of Russia, RUDN University, 117198 Moscow, Russia
| | - Maria M. Sukhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem A. Mikhailov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aygul R. Minnegalieva
- Laboratory of Synthetic and Evolutionary Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|