1
|
Dhenni R, Hoppé AC, Reynaldi A, Kyaw W, Handoko NT, Grootveld AK, Keith YH, Bhattacharyya ND, Ahel HI, Telfser AJ, McCorkindale AN, Yazar S, Bui CHT, Smith JT, Khoo WH, Boyd M, Obeid S, Milner B, Starr M, Brilot F, Milogiannakis V, Akerman A, Aggarwal A, Davenport MP, Deenick EK, Chaffer CL, Croucher PI, Brink R, Goldstein LD, Cromer D, Turville SG, Kelleher AD, Venturi V, Munier CML, Phan TG. Macrophages direct location-dependent recall of B cell memory to vaccination. Cell 2025:S0092-8674(25)00407-6. [PMID: 40300604 DOI: 10.1016/j.cell.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/31/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Vaccines generate long-lived plasma cells and memory B cells (Bmems) that may re-enter secondary germinal centers (GCs) to further mutate their B cell receptor upon boosting and re-exposure to antigen. We show in mouse models that lymph nodes draining the site of primary vaccination harbor a subset of Bmems that reside in the subcapsular niche, generate larger recall responses, and are more likely to re-enter GCs compared with circulating Bmems in non-draining lymph nodes. This location-dependent recall of Bmems into the GC in the draining lymph node was dependent on CD169+ subcapsular sinus macrophages (SSMs) in the subcapsular niche. In human participants, boosting of the BNT162b2 vaccine in the same arm generated more rapid secretion of broadly neutralizing antibodies, GC participation, and clonal expansion of SARS-CoV-2-specific B cells than boosting of the opposite arm. These data reveal an unappreciated role for primed draining lymph node SSMs in Bmem cell fate determination.
Collapse
Affiliation(s)
- Rama Dhenni
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Alexandra Carey Hoppé
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Wunna Kyaw
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nathalie Tricia Handoko
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Abigail K Grootveld
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Yuki Honda Keith
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nayan Deger Bhattacharyya
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Holly I Ahel
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Aiden Josiah Telfser
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Andrew N McCorkindale
- Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seyhan Yazar
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Christina H T Bui
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - James T Smith
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Weng Hua Khoo
- Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Mollie Boyd
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Solange Obeid
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Brad Milner
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Mitchell Starr
- St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Milogiannakis
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anouschka Akerman
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Elissa K Deenick
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Christine L Chaffer
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Peter I Croucher
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Robert Brink
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immune Biotherapies Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Leonard D Goldstein
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Stuart G Turville
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; St. Vincent's Hospital Sydney, Sydney, NSW, Australia.
| | - Vanessa Venturi
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Saade C, Bruel T, Vrignaud LL, Killian M, Drouillard A, Barateau V, Espi M, Mariano N, Mignon C, Bruyère L, Khoryati L, Bolland WH, Schwartz O, Lina B, Valette M, Thaunat O, Fassier JB, Pozzetto B, Paul S, Walzer T, Trouillet-Assant S. BA.1 breakthrough infection elicits distinct antibody and memory B cell responses in vaccinated-only versus hybrid immunity individuals. iScience 2025; 28:111962. [PMID: 40224022 PMCID: PMC11987676 DOI: 10.1016/j.isci.2025.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025] Open
Abstract
Immune memory is influenced by the frequency and type of antigenic challenges. Here, we performed a cross-sectional comparison of immune parameters following a BA.1 breakthrough infection in individuals with prior hybrid immunity (conferred by infection and vaccination) versus those solely vaccinated in a cohort of health care workers in Lyon, France. The results showed higher levels of serum anti-receptor binding domain (RBD) antibodies and neutralizing antibodies against BA.1 post-infection in the vaccine-only group. Individuals in this group also showed a decrease in memory B cells against the ancestral strain but an increase in those specific and cross-reactive to BA.1, suggesting a more limited immune imprinting. Conversely, hybrid immunity prevents the decrease in antibody dependent cellular cytotoxicity (ADCC) response, possibly by limiting IgG4 class-switching and enhanced anti-N responses post-infection. This highlights that BA.1 breakthrough infection induces different immune responses depending on prior history of vaccination and infection, which should be considered for further vaccination guidelines.
Collapse
Affiliation(s)
- Carla Saade
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, 69310 Pierre-Bénite, France
| | - Timothée Bruel
- Antiviral Activities of Antibodies group, Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Lou-Léna Vrignaud
- Antiviral Activities of Antibodies group, Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Annabelle Drouillard
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Véronique Barateau
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Maxime Espi
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Department of nephrology and hemodialysis, Hôpital Lyon Sud, Hospices civils de Lyon, Lyon, France
| | | | | | - Lily Bruyère
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Liliane Khoryati
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - William Henry Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Bruno Lina
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Centre National de Référence des virus des infections respiratoires dont la grippe, Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Martine Valette
- Centre National de Référence des virus des infections respiratoires dont la grippe, Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Olivier Thaunat
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Department of Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Jean-Baptiste Fassier
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon University, Avenue Rockefeller, Lyon, France
| | - Bruno Pozzetto
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Department of Microbiology, CHU Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Immunology laboratory, CIC1408, CHU Saint-Etienne, Saint-Etienne, France
| | - Thierry Walzer
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Sophie Trouillet-Assant
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, 69310 Pierre-Bénite, France
| |
Collapse
|
3
|
Saha A, Ghosh Roy S, Dwivedi R, Tripathi P, Kumar K, Nambiar SM, Pathak R. Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern. Vaccines (Basel) 2025; 13:424. [PMID: 40333293 DOI: 10.3390/vaccines13040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccination has been instrumental in curbing the transmission of SARS-CoV-2 and mitigating the severity of clinical manifestations associated with COVID-19. Numerous COVID-19 vaccines have been developed to this effect, including BioNTech-Pfizer and Moderna's mRNA vaccines, as well as adenovirus vector-based vaccines such as Oxford-AstraZeneca. However, the emergence of new variants and subvariants of SARS-CoV-2, characterized by enhanced transmissibility and immune evasion, poses significant challenges to the efficacy of current vaccination strategies. In this review, we aim to comprehensively outline the landscape of emerging SARS-CoV-2 variants of concern (VOCs) and sub-lineages that have recently surfaced in the post-pandemic years. We assess the effectiveness of existing vaccines, including their booster doses, against these emerging variants and subvariants, such as BA.2-derived sub-lineages, XBB sub-lineages, and BA.2.86 (Pirola). Furthermore, we discuss the latest advancements in vaccine technology, including multivalent and pan-coronavirus approaches, along with the development of several next-generation coronavirus vaccines, such as exosome-based, virus-like particle (VLP), mucosal, and nanomaterial-based vaccines. Finally, we highlight the key challenges and critical areas for future research to address the evolving threat of SARS-CoV-2 subvariants and to develop strategies for combating the emergence of new viral threats, thereby improving preparedness for future pandemics.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Sounak Ghosh Roy
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Richa Dwivedi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shashank Manohar Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
4
|
Chen PY, Young TC, Lin CY, Kang KT, Chu CH, Tsai HT, Lin HC. Hearing Outcome in Idiopathic Sudden Sensorineural Hearing Loss After COVID-19 Vaccine in Asian Population: A Preliminary Study. Otol Neurotol 2025:00129492-990000000-00791. [PMID: 40307974 DOI: 10.1097/mao.0000000000004509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
OBJECTIVE To determine the hearing outcomes in patients with sudden sensorineural hearing loss (SSNHL) after exposure to different brands of vaccines against COVID-19. STUDY DESIGN Cohort study. SETTING Tertiary referral center. PATIENTS Patients who met the International Classification of Disease, Tenth Revision code, medications, and procedure criteria for SSNHL in 2021. Patients were classified according to their vaccination status. A total of 128 patients (71 males and 57 females; mean age, 53.9 ± 16.5 yr; range, 7.6-82.1 yr) who met the criteria of idiopathic SSNHL were included. INTERVENTION Exposure to COVID-19 vaccines in 2021. MAIN OUTCOME MEASUREMENTS Hearing outcomes were classified according to the pure-tone audiometry hearing level, including complete recovery (CR), partial recovery (PR), and no recovery (NR). Time to recovery was defined as the point at which the patient achieved CR or PR. RESULTS Among them, 35, 54, and 39 patients achieved CR, PR, and NR, respectively. The median time to recovery was 22 (interquartile range, 11-37) days. No significant differences were observed in hearing recovery in vaccinated or unvaccinated patients. CONCLUSION Our preliminary study failed to show significant differences in hearing recovery among patients with SSNHL regardless of the vaccine exposure status. The administration of COVID-19 vaccines should not be influenced by their potential association with SSNHL, as our findings indicate no significant effect on hearing outcomes. However, as a preliminary study with limited statistical power, future large-scale studies are necessary to validate these results.
Collapse
Affiliation(s)
| | - Ting-Chia Young
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
Shi J, Gabriel MG, Epperson M, Chan PA, Jones JM, Petersen LR, Briggs Hagen M, Thornburg NJ, Saydah S, Midgley CM. Association of infection-induced antibody levels with risk of subsequent SARS-COV-2 reinfection among healthcare professionals, Rhode Island, 1 March 2020-17 February 2021. Microbiol Spectr 2025; 13:e0208624. [PMID: 39998388 PMCID: PMC11960437 DOI: 10.1128/spectrum.02086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Numerous studies have investigated vaccine-induced correlates of protection (CoP) against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, but data on infection-induced CoP are limited. Given differences between vaccine- and infection-induced immune responses, in conjunction with low vaccination in many US populations, a better understanding of infection-induced CoP is needed. We used residual sera from a mid-2020 Rhode Island serosurvey of healthcare professionals (HCP) and corresponding state-collected SARS-CoV-2 testing data through February 2021 to generate an analytic cohort of HCP with a first SARS-CoV-2 infection prior to serosurvey blood collection and multiple viral tests after blood collection to assess for reinfection (defined as a positive viral test ≥90 days after their first positive). We tested sera for levels of IgG and IgA targeting ancestral spike (S), receptor-binding domain (RBD), or nucleocapsid (N). We used adjusted Cox proportional hazard ratios to assess the association between categorical antibody level and the risk of subsequent reinfection. Among 170 HCP included in this analysis (median age = 47 years; interquartile range: 35-55 years), 30 were reinfected during the analytic period. Adjusted Cox proportional hazard ratios indicated that higher levels of anti-S or anti-RBD IgG were significantly associated with a lower risk of reinfection. These findings support the use of anti-S or anti-RBD IgG levels as markers of immunologic protection, such as in population serosurveys, or immune-bridging studies in settings of high prevalence of prior infection. IMPORTANCEThe measurement of antibodies in blood is a relatively simple process and commonly used to estimate overall levels of past infection in populations. But, if someone has antibodies, does this mean that they are protected from being infected again? And are people with higher levels of antibody better protected? There are good data in the literature exploring how antibodies from the coronavirus disease 2019 (COVID-19) vaccination are associated with protection. But, there is still a lot to learn about protection conferred by antibodies that develop after a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. In our study, we measure the levels of six different antibody types developed after infection and compare levels to the risk of subsequent infection to better understand which antibody types are best associated with protection. Our data are important for improving studies that use antibodies as proxies for protection, such as population immunity estimates, or those assessing new prevention products.
Collapse
Affiliation(s)
- Jianrong Shi
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. Gayle Gabriel
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Monica Epperson
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Phil A. Chan
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Jefferson M. Jones
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lyle R. Petersen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Melissa Briggs Hagen
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie J. Thornburg
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Saydah
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claire M. Midgley
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Fant P, Laurent S, Desert P, Combadière B, Palazzi X, Choudhary S, Gervais F, Broudic K, Rossi R, Gauthier BE. Proceedings of the 2023 Annual Scientific Meeting of the French Society of Toxicologic Pathology (SFPT) on Preclinical Development and Therapeutic Applications of mRNA-Based Technologies. Toxicol Pathol 2025:1926233251326089. [PMID: 40110665 DOI: 10.1177/01926233251326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The 2023 annual scientific meeting of the French Society of Toxicologic Pathology (Société Française de Pathologie Toxicologique, SFPT), entitled "mRNA-based technologies: preclinical development and therapeutic applications," was held in Lyon (France) on May 25 to 26, 2023. The aim of the meeting was to discuss the biology, immunology, and preclinical development of messenger RNA (mRNA)-based vaccines and therapeutics, including immuno-oncology and rare diseases, as well as the regulatory aspect of the COVID-19 vaccines and an overview of the principles and applications of in situ hybridization techniques. This article presents the summary of five lectures along with selected figures, tables, and key literature references on this topic.
Collapse
Affiliation(s)
- Pierluigi Fant
- Charles River Laboratories Safety Assessment, Saint Germain-Nuelles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Demmer RT, Wu C, Kim JS, Sun Y, Balte P, Cushman M, Boyle R, Tracy RP, Styer LM, Bell TD, Anderson MR, Allen NB, Schreiner PJ, Bowler R, Schwartz DA, Lee JS, Xanthakis V, Rock JM, Bievenue R, Pirzada A, Doyle M, Regan EA, Make BJ, Kanaya AM, Kandula NR, Wenzel SE, Coresh J, Isasi CR, Raffield LM, Elkind MSV, Howard VJ, Ortega VE, Woodruff P, Cole SA, Henderson JM, Mantis NJ, Oelsner EC. Demographic and Clinical Factors Associated With SARS-CoV-2 Anti-Nucleocapsid Antibody Response Among Previously Infected US Adults: The C4R Study. Open Forum Infect Dis 2025; 12:ofaf123. [PMID: 40124199 PMCID: PMC11927777 DOI: 10.1093/ofid/ofaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Despite the availability of effective vaccines and a recent decrease in annual deaths, COVID-19 remains a leading cause of death. Serological studies provide insights into host immunobiology of adaptive immune response to infection, which holds promise for identifying high-risk individuals for adverse COVID-19 outcomes. We investigated correlates of anti-nucleocapsid antibody responses following SARS-CoV-2 infection in a US population-based meta-cohort of adults participating in longstanding National Institutes of Health-funded cohort studies. Anti-nucleocapsid antibodies were measured from dried blood spots collected between February 2021 and February 2023. Among 1419 Collaborative Cohort of Cohorts for COVID-19 Research participants with prior SARS-CoV-2 infection, the mean age (standard deviation) was 65.8 (12.1), 61% were women, and 42.8% self-reported membership in a race/ethnicity minority group. The proportion of participants reactive to nucleocapsid peaked at 69% by 4 months after infection and waned to only 44% ≥12 months after infection. Higher anti-nucleocapsid antibody response was associated with older age, Hispanic or American Indian Alaskan Native (vs White) race/ethnicity, lower income, lower education, former smoking, and higher anti-spike antibody levels. Asian race (vs White) and vaccination (even after infection) were associated with lower nucleocapsid reactivity. Neither vaccine manufacturer nor common cardiometabolic comorbidities were not associated with anti-nucleocapsid response. These findings inform the underlying immunobiology of adaptive immune response to infection, as well as the potential utility of anti-nucleocapsid antibody response for clinical practice and COVID-19 serosurveillance.
Collapse
Affiliation(s)
- Ryan T Demmer
- Division of Epidemiology, Department of Quantitative Health Sciences, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chaoqi Wu
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - John S Kim
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yifei Sun
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Pallavi Balte
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Rebekah Boyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Linda M Styer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Taison D Bell
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michaela R Anderson
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Vanessa Xanthakis
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, College of Medicine and Deparmtne of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Jean M Rock
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Rachel Bievenue
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Amber Pirzada
- Institute for Minority Health Research, University of Illinois, College of Medicine, Chicago, Illinois, USA
| | - Margaret Doyle
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Elizabeth A Regan
- Division of Rheumatology, National Jewish Health, Denver, Colorado, USA
| | - Barry J Make
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Alka M Kanaya
- Division of General Internal Medicine, University of California San Francisco, San Francisco, California, USA
| | - Namratha R Kandula
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sally E Wenzel
- Department of Medicine, Department of Immunology, and Department of Environmental Medicine and Occupational Health, University of Pittsburgh School of Medicine, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Josef Coresh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mitchell S V Elkind
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor E Ortega
- Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
8
|
Ana-Sosa-Batiz F, Verma SK, Shafee N, Miller R, Conner C, Hastie KM, Timis J, Maule E, Nguyen MN, Tran L, Varghese K, Madany H, Street AE, Zandonatti M, Moi ML, Jarnagin K, Webb DR, Saphire EO, Kim K, Shresta S. A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity. EBioMedicine 2025; 113:105619. [PMID: 40020261 PMCID: PMC11910679 DOI: 10.1016/j.ebiom.2025.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT. METHODS We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity. FINDINGS A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.2, validating the utility of these mice for evaluating therapeutic Abs. Pooled plasma from individuals with hybrid immunity to Delta, but not from vaccinated-only individuals, cleared infectious Delta from the lungs of TKI mice (P < 0.01), even though the two plasma pools had similar Delta-binding and -neutralising Ab titres in vitro. Similarly, plasma from individuals with hybrid Omicron BA.1/2 immunity, but not hybrid Delta immunity, decreased lung infection (P < 0.05) with BA.5 in TKI mice, despite the plasma pools having comparable BA.5-binding and -neutralising titres in vitro. Depletion of receptor-binding domain-targeting Abs from hybrid immune plasma abrogated their protection against infection. INTERPRETATION These results demonstrate the utility of TKI mice as a tool for the development of anti-SARS-CoV-2 mAb therapeutics, show that in vitro neutralisation assays do not accurately predict in vivo protection, and highlight the importance of hybrid immunity for eliciting protective anti-receptor-binding domain Abs. FUNDING This work was funded by grants from the e-Asia Joint Research Program (N10A650706 and N10A660577 to MLM, in collaboration with SS); the NIH (U19 AI142790-02S1 to EOS and SS and R44 AI157900 to KJ); the GHR Foundation (to SS and EOS); the Overton family (to SS and EOS); the Arvin Gottlieb Foundation (to SS and EOS), the Prebys Foundation (to SS); and the American Association of Immunologists Fellowship Program for Career Reentry (to FASB).
Collapse
Affiliation(s)
| | - Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael N Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Henry Madany
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Michelle Zandonatti
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Morgan G, Fung CYJ, Gingras AC, Colwill K, Briollais L, Frangione E, Wolday D, Qi F, Pasculescu A, Delgado-Brand M, Mailhot G, Tursun T, Arnoldo S, Bearss E, Binnie A, Borgundvaag B, Casalino S, Chowdhary S, Dagher M, Devine L, Elliott LT, Friedman SM, Khan Z, Lapadula E, MacDonald G, Mazzulli T, McLeod SL, Mighton C, Nirmalanathan K, Richardson D, Stern S, Taher A, Young J, Lerner-Ellis J, Taher J. Characterizing the SARS-CoV-2 antibody response and associations with patient factors: Serological profiling of participants enrolled in the GENCOV study. Clin Biochem 2025; 135:110859. [PMID: 39645018 DOI: 10.1016/j.clinbiochem.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION The GENCOV study sought to evaluate serological differences between individuals with differing COVID-19 severity and outcomes. We assessed the SARS-CoV-2 antibody response of GENCOV participants cross-sectionally 1-, 6-, and 12-months following COVID-19 diagnosis to identify patient factors associated with more robust and durable humoral immune responses. MATERIALS AND METHODS COVID-19 patients and a control cohort of vaccinated infection-naïve participants were recruited at hospital sites across the Greater Toronto Area in Ontario, Canada. Commercially available and laboratory-developed serological assays were used to characterize features of participants' antibody responses, including both binding and neutralizing antibodies. Regression analyses were performed to identify associations between participant characteristics and features of the SARS-CoV-2 antibody response. RESULTS Samples were obtained from participants 1- (n = 938), 6- (n = 842), and 12-months (n = 662) post-infection or vaccination. At all time points, vaccinees, and to a greater extent those who were both infected and vaccinated, had significantly elevated anti-spike antibody levels compared to unvaccinated participants. Increasing age and/or illness severity were associated with significantly higher antibody levels among unvaccinated participants. Among vaccines, those who were vaccinated after infection (i.e., hybrid immunity) had consistently higher antibody levels compared to participants who were infection-naïve or vaccinated before their infection (i.e., breakthrough infections). Additionally, receiving more vaccine doses and having a more recent vaccination were strongly associated with higher antibody levels across all time points. CONCLUSIONS Our findings highlight various patient factors, including vaccination, which contribute to robust, durable SARS-CoV-2 antibody responses. Overall, the findings presented here may inform future vaccine development and rollout plans.
Collapse
Affiliation(s)
- Gregory Morgan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chun Yiu Jordan Fung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Erika Frangione
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Dawit Wolday
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Melanie Delgado-Brand
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Genevieve Mailhot
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Saranya Arnoldo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; William Osler Health System, Brampton, ON L6R 3J, Canada
| | - Erin Bearss
- Mount Sinai Academic Family Health Team, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Alexandra Binnie
- Department of Critical Care, William Osler Health System, Etobicoke, ON M9V 1R8, Canada
| | - Bjug Borgundvaag
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Selina Casalino
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sunakshi Chowdhary
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Marc Dagher
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Luke Devine
- Division of General Internal Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven M Friedman
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Emergency Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Zeeshan Khan
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Elisa Lapadula
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Georgia MacDonald
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Microbiology, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Shelley L McLeod
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Chloe Mighton
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1A6, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | | | | | - Seth Stern
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Ahmed Taher
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada; Division of Emergency Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Juliet Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Villanueva P, McDonald E, Croda J, Croda MG, Dalcolmo M, dos Santos G, Jardim B, Lacerda M, Lynn DJ, Marshall H, Oliveira RD, Rocha J, Sawka A, Val F, Pittet LF, Messina NL, Curtis N. Factors influencing adverse events following COVID-19 vaccination. Hum Vaccin Immunother 2024; 20:2323853. [PMID: 38445666 PMCID: PMC10936640 DOI: 10.1080/21645515.2024.2323853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Various novel platform technologies have been used for the development of COVID-19 vaccines. In this nested cohort study among healthcare workers in Australia and Brazil who received three different COVID-19-specific vaccines, we (a) evaluated the incidence of adverse events following immunization (AEFI); (b) compared AEFI by vaccine type, dose and country; (c) identified factors influencing the incidence of AEFI; and (d) assessed the association between reactogenicity and vaccine anti-spike IgG antibody responses. Of 1302 participants who received homologous 2-dose regimens of ChAdOx1-S (Oxford-AstraZeneca), BNT162b2 (Pfizer-BioNTech) or CoronaVac (Sinovac), 1219 (94%) completed vaccine reaction questionnaires. Following the first vaccine dose, the incidence of any systemic reaction was higher in ChAdOx1-S recipients (374/806, 46%) compared with BNT162b2 (55/151, 36%; p = 0.02) or CoronaVac (26/262, 10%; p < 0.001) recipients. After the second vaccine dose, the incidence of any systemic reaction was higher in BNT162b2 recipients (66/151, 44%) compared with ChAdOx1-S (164/806, 20%; p < 0.001) or CoronaVac (23/262, 9%; p < 0.001) recipients. AEFI risk was higher in younger participants, females, participants in Australia, and varied by vaccine type and dose. Prior COVID-19 did not impact the risk of AEFI. Participants in Australia compared with Brazil reported a higher incidence of any local reaction (170/231, 74% vs 222/726, 31%, p < 0.001) and any systemic reaction (171/231, 74% vs 328/726, 45%, p < 0.001), regardless of vaccine type. Following a primary course of ChAdOx1-S or CoronaVac vaccination, participants who did not report AEFI seroconverted at a similar rate to those who reported local or systemic reactions. In conclusion, we found that the incidence of AEFI was influenced by participant age and COVID-19 vaccine type, and differed between participants in Australia and Brazil.
Collapse
Affiliation(s)
- Paola Villanueva
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infection, Immunity & Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases, Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of General Medicine, Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Ellie McDonald
- Infection, Immunity & Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Mato Grosso do Sul, Brazil
- Yale School of Public Health, New Haven, CT, USA
| | - Mariana Garcia Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margareth Dalcolmo
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Rio de Janeiro, Brazil
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauce dos Santos
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Rio de Janeiro, Brazil
| | - Bruno Jardim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Carlos Borborema Clinical Research Unit, Manaus, Brazil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Helen Marshall
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide and Department of Paediatrics, Adelaide, SA, Australia
| | - Roberto D. Oliveira
- Nursing Course, State University of Mato Grosso do Sul, Dourados, MS, Brazil
- Graduate Program in Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Jorge Rocha
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Rio de Janeiro, Brazil
| | - Alice Sawka
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- University of Adelaide Medical School, Adelaide, SA, Australia
| | - Fernando Val
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Carlos Borborema Clinical Research Unit, Manaus, Brazil
| | - Laure F. Pittet
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infection, Immunity & Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases, Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Infectious Diseases Unit, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva and University Hospitals of Geneva, Geneva, Switzerland
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infection, Immunity & Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infection, Immunity & Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases, Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Hollister J, Porter C, Sprissler R, Beitel SC, Romine JK, Uhrlaub JL, Grant L, Yoo YM, Fowlkes A, Britton A, Olsho LEW, Newes-Adeyi G, Fuller S, Zheng PQ, Gaglani M, Rose S, Dunnigan K, Naleway AL, Gwynn L, Caban-Martinez A, Schaefer Solle N, Tyner HL, Philips AL, Hegmann KT, Yoon S, Lutrick K, Burgess JL, Ellingson KD. Risk reduction in SARS-CoV-2 infection and reinfection conferred by humoral antibody levels among essential workers during Omicron predominance. PLoS One 2024; 19:e0306953. [PMID: 39739951 DOI: 10.1371/journal.pone.0306953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
The extent to which semi-quantitative antibody levels confer protection against SARS-CoV-2 infection in populations with heterogenous immune histories is unclear. Two nested case-control studies were designed within the multisite HEROES/RECOVER prospective cohort of frontline workers to study the relationship between antibody levels and protection against first-time post-vaccination infection and reinfection with SARS-CoV-2 from December 2021 to January 2023. All participants submitted weekly nasal swabs for rRT-PCR testing and blood samples quarterly and following infection or vaccination. Cases of first-time post-vaccination infection following a third dose of monovalent (origin strain WA-1) mRNA vaccine (n = 613) and reinfection (n = 350) were 1:1 matched to controls based on timing of blood draw and other potential confounders. Conditional logistic regression models were fit to estimate infection risk reductions associated with 3-fold increases in end titers for receptor binding domain (RBD). In first-time post-vaccination and reinfection study samples, most were female (67%, 57%), non-Hispanic (82%, 68%), and without chronic conditions (65%, 65%). The odds of first-time post-vaccination infection were reduced by 21% (aOR = 0.79, 95% CI = [0.66-0.96]) for each 3-fold increase in RBD end titers. The odds of reinfection associated with a 3-fold increase in RBD end titers were reduced by 23% (aOR = 0.77, 95% CI = [0.65-0.92] for unvaccinated individuals and 58% (aOR = 0.42, 95% CI = [0.22-0.84]) for individuals with three mRNA vaccine doses following their first infection. Frontline workers with higher antibody levels following a third dose of mRNA COVID-19 vaccine were at reduced risk of SARS-CoV-2 during Omicron predominance. Among those with previous infections, the point estimates of risk reduction associated with antibody levels was greater for those with three vaccine doses compared to those who were unvaccinated.
Collapse
Affiliation(s)
- James Hollister
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - Cynthia Porter
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - Ryan Sprissler
- University of Arizona Genetics Core-Center for Applied Genetics and Genomic Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Shawn C Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - James K Romine
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer L Uhrlaub
- Immunobiology, College of Medicine-Tucson, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Lauren Grant
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Young M Yoo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ashley Fowlkes
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amadea Britton
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | | | | | - Pearl Q Zheng
- Abt Associates, Rockville, Maryland, United States of America
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, Texas, United States of America
- Texas A&M University College of Medicine, Temple, Texas, United States of America
| | - Spencer Rose
- Baylor Scott & White Health, Temple, Texas, United States of America
| | - Kayan Dunnigan
- Baylor Scott & White Health, Temple, Texas, United States of America
| | - Allison L Naleway
- Kaiser Permanente Center for Health Research, Portland, Oregon, United States of America
| | - Lisa Gwynn
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alberto Caban-Martinez
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Natasha Schaefer Solle
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Harmony L Tyner
- St. Luke's Regional Health Care System, Duluth, Minnesota, United States of America
| | - Andrew L Philips
- Rocky Mountain Center for Occupational and Environmental Health, Department of Family and Preventive Medicine, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Kurt T Hegmann
- Rocky Mountain Center for Occupational and Environmental Health, Department of Family and Preventive Medicine, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Sarang Yoon
- Rocky Mountain Center for Occupational and Environmental Health, Department of Family and Preventive Medicine, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Karen Lutrick
- Family and Community Medicine, College of Medicine-Tucson, University of Arizona Health Sciences, Tucson, Arizona, United States of America
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| | - Katherine D Ellingson
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
12
|
Padilla-Bórquez DL, Matuz-Flores MG, Hernández-Bello J, Rosas-Rodríguez JA, Turrubiates-Hernández FJ, García-Arellano S, González-Estevez G, Ceja-Galvez HR, Oregon-Romero E, López-Reyes A, Muñoz-Valle JF. Influence of previous COVID-19 exposure and vaccine type (CoronaVac, ChAdOx1 nCov-19 or BNT162b2) on antibody and cytokine (Th1 or Th2) responses. Hum Vaccin Immunother 2024; 20:2394265. [PMID: 39246041 PMCID: PMC11385164 DOI: 10.1080/21645515.2024.2394265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
To achieve global herd immunity, widespread vaccination is the most effective strategy. Vaccines stimulate the immune system, generating cytokines and chemokines, isotype antibodies, and neutralizing antibodies; all these molecules collectively provide a more comprehensive characterization of the immune response post-vaccination. We conducted a longitudinal study in northwestern Mexico, involving 120 individuals before vaccination and after the first dose of the SARS-CoV-2 vaccine, and 46 individuals after their second dose. Our findings reveal that antibody levels stabilize over time; cytokine levels generally increase following the first dose but decrease after the second dose and higher than normal levels in IgG1 and IgG3 concentrations are present. Most of the innate cytokines determined in this study were higher after the first dose of the vaccine. Regardless of previous infection history, this finding suggests that the first dose of the vaccine is crucial and may stimulate immunity by enhancing the innate immune response. Conversely, increased levels of IL-4, indicative of a Th2 response, were found in individuals without prior exposure to the virus and in those vaccinated with CoronaVac. These results suggest that the immune response to COVID-19 vaccines is multi-faceted, with preexisting immunity potentiating a more robust innate response. Vaccine type plays a critical role, with genetic vaccines favoring a Th1 response and inactivated vaccines like CoronaVac skewing toward a Th2 profile.
Collapse
Affiliation(s)
- Diana Lourdes Padilla-Bórquez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, México
| | - Francisco Javier Turrubiates-Hernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Guillermo González-Estevez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Hazael Ramiro Ceja-Galvez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Ciudad de México, México
| | - Jose Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| |
Collapse
|
13
|
Lau CS, Oh HML, Aw TC. Reflections on COVID-19: A Literature Review of SARS-CoV-2 Testing. Vaccines (Basel) 2024; 13:9. [PMID: 39852788 PMCID: PMC11768752 DOI: 10.3390/vaccines13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Although the Coronavirus disease 2019 (COVID-19) pandemic has ended, there are still many important lessons we can learn, as the pandemic profoundly affected every area of laboratory practice. During the pandemic, extensive changes to laboratory staffing had to be implemented, as many healthcare institutions required regular screening of all healthcare staff. Several studies examined the effectiveness of different screening regimens and concluded that repeated testing, even with lower sensitivity tests, could rival the performance of gold-standard RT-PCR testing in the detection of new cases. Many assay evaluations were performed both in the earlier and later periods of the pandemic. They included both nucleocapsid/spike antibodies and automated antigen assays. Early in the pandemic, it was generally agreed that the initial nucleocapsid antibody assays had poor sensitivity when used before 14 days of disease onset, with total or IgG antibodies being preferred over the use of IgM. Spike antibody assays gradually replaced nucleocapsid antibody assays, as most people were vaccinated. Spike antibodies tracked the rise in antibodies after vaccination with mRNA vaccines and became invaluable in the assessment of vaccine response. Studies demonstrated robust antibody secretion with each vaccine dose and could last for several months post-vaccination. When antigen testing was introduced, they became effective tools to identify affected patients when used serially or in an orthogonal fashion with RT-PCR testing. Despite the numerous findings during the pandemic period, research in COVID-19 has slowed. To this day it is difficult to identify a true neutralizing antibody test for the virus. An appropriate antibody level that would confer protective immunity against the plethora of new variants remains elusive. We hope that a summary of events during the pandemic could provide important insights to consider in planning for the next viral pandemic.
Collapse
Affiliation(s)
- Chin Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Helen M. L. Oh
- Department of Infectious Diseases, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Tar Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
- Academic Pathology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
14
|
Hirano H, Asada H. Exponential decline, ceiling effect, downregulation, and T-cell response in immunoglobulin G antibody levels after messenger RNA vaccine boosters: a case report. J Med Case Rep 2024; 18:631. [PMID: 39707550 DOI: 10.1186/s13256-024-04889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Vaccine protection against severe acute respiratory syndrome coronavirus 2 infection reduces gradually over time, requiring administration of updated boosters. However, long-term immune response following up to the sixth dose of the messenger RNA vaccine has not been well studied. CASE PRESENTATION We longitudinally determined anti-spike protein immunoglobulin G antibody levels in a 69-year-old Japanese man 76 times (first to sixth dose) to investigate their dynamics. Regarding the messenger RNA BNT162b2 vaccine, first to fourth doses were identical monovalent vaccines, and fifth and sixth doses were identical bivalent vaccines. T-cell responses after fourth and fifth doses were studied using T-SPOT. Immunoglobulin G levels peaked at 1-2 weeks after second to sixth dose, declining exponentially after each dose. The decline was approximated using the formula f (t) = Ae-t/τ + C. Time constant τ increased with each booster vaccination, indicating a decreasing rate of antibody titer decay with increasing number of doses. Baseline and peak immunoglobulin G levels were similar in the second and third dose. Conversely, baseline immunoglobulin G levels after the fourth dose increased over fivefold over the second and third dose; however, peak immunoglobulin G levels after fourth dose decreased to 60% of those after the third dose. Baseline immunoglobulin G levels after the sixth dose increased 1.4-fold over the fifth dose; however, peak immunoglobulin G levels after the sixth dose decreased to 56% of those after the fifth dose. Dynamics of T-cell responses differed from those of immunoglobulin G antibodies. T cell responses increased gradually; however, their peak level was difficult to determine. CONCLUSIONS Ceiling effect or downregulation of peak immunoglobulin G levels was clearly observed after messenger RNA booster vaccination. After peaking, the IgG level declined exponentially, and the rate of decay decreased with each subsequent booster. Although this was a single-case study, this data may provide a generalized mathematical decay model for humoral immunity in healthy older adults. Moreover, our study provides insights into the immunogenicity after booster vaccination with messenger RNA vaccines.
Collapse
Affiliation(s)
- Harukazu Hirano
- Koyo Seikyo Clinic, Fukui Health Cooperative Association, 3-9-23 Koyo, Fukui, 910-0026, Japan.
| | - Hiroshi Asada
- Department of Applied Physics, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
15
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Vilela L, Silva A, Cruz A, Sousa M, Costa M, Fonseca F, Campino S, Clark TG, Miranda A. Longitudinal Immunological Analysis of Portuguese Healthcare Workers Across the COVID-19 Pandemic Reveals Differences in the Humoral Immune Response to Vaccines. Vaccines (Basel) 2024; 12:1358. [PMID: 39772020 PMCID: PMC11680130 DOI: 10.3390/vaccines12121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background: A vaccination programme against severe acute respiratory syndrome coronavirus 2 was initiated in Portugal in December 2020. In this study, we report the findings of a prospective cohort study implemented with the objective of monitoring antibody production in response to COVID-19 vaccination. Methods: The humoral immune response to vaccination was followed up using blood samples collected from 191 healthcare workers. Participants were split into three groups: the Oxford-AstraZeneca (Vaxzevria) vaccine group (n = 68), the Pfizer-BioNTech COVID-19 (Comirnaty) vaccine group (n = 51), and the Post-COVID group (n = 72). The kinetics of anti-spike antibody production were evaluated until 56 days on average after the third dose (booster). Results: We observed that antibody titres peaked approximately one month after full vaccination and declined steadily thereafter. We also found that mRNA vaccination induces higher titres of antibodies than viral vector vaccination, and both generate greater antibody responses than mild or moderate COVID-19. Additionally, whilst the booster for the Oxford-AstraZeneca and Pfizer-BioNTech groups led to antibody levels higher than those at any previous sample collection point, the booster for the Post-COVID group (persons with a history of COVID-19 prior to vaccination) led to antibody levels lower than those attained one month after the second dose. Interpretation: Our results indicate that there are different kinetics of antibody production between individuals who received the Pfizer-BioNtech mRNA vaccine and those who received the Oxford-AstraZeneca vector vaccine, or individuals who had COVID-19 before being vaccinated. Additionally, we observed that exposure to either natural infection or vaccination modulates the response to subsequent vaccination. This is particularly evident after administration of the third dose to the Post-COVID group, where our findings point to a hindrance in vaccine boosting, probably due to unwanted feedback by high titres of pre-existing antibodies.
Collapse
Affiliation(s)
- Luísa Vilela
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Anabela Silva
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Alberta Cruz
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Madalena Sousa
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Margarida Costa
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Fernando Fonseca
- Local Health Unit Póvoa de Varzim/Vila do Conde, Largo da Misericórdia, 4490-421 Póvoa de Varzim, Portugal
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.C.); (T.G.C.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.C.); (T.G.C.)
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Anabela Miranda
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge, Public Health Centre Doutor Gonçalves Ferreira, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| |
Collapse
|
17
|
Berber E, Ross TM. Factors Predicting COVID-19 Vaccine Effectiveness and Longevity of Humoral Immune Responses. Vaccines (Basel) 2024; 12:1284. [PMID: 39591186 PMCID: PMC11598945 DOI: 10.3390/vaccines12111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, prompted global efforts to develop vaccines to control the disease. Various vaccines, including mRNA (BNT162b2, mRNA-1273), adenoviral vector (ChAdOx1, Ad26.COV2.S), and inactivated virus platforms (BBIBP-CorV, CoronaVac), elicit high-titer, protective antibodies against the virus, but long-term antibody durability and effectiveness vary. The objective of this study is to elucidate the factors that influence vaccine effectiveness (VE) and the longevity of humoral immune responses to COVID-19 vaccines through a review of the relevant literature, including clinical and real-world studies. Here, we discuss the humoral immune response to different COVID-19 vaccines and identify factors influencing VE and antibody longevity. Despite initial robust immune responses, vaccine-induced immunity wanes over time, particularly with the emergence of variants, such as Delta and Omicron, that exhibit immune escape mechanisms. Additionally, the durability of the humoral immune responses elicited by different vaccine platforms, along with the identification of essential determinants of long-term protection-like pre-existing immunity, booster doses, hybrid immunity, and demographic factors-are critical for protecting against severe COVID-19. Booster vaccinations substantially restore neutralizing antibody levels, especially against immune-evasive variants, while individuals with hybrid immunity have a more durable and potent immune response. Importantly, comorbidities such as diabetes, cardiovascular disease, chronic kidney disease, and cancer significantly reduce the magnitude and longevity of vaccine-induced protection. Immunocompromised individuals, particularly those undergoing chemotherapy and those with hematologic malignancies, have diminished humoral responses and benefit disproportionately from booster vaccinations. Age and sex also influence immune responses, with older adults experiencing accelerated antibody decline and females generally exhibiting stronger humoral responses compared to males. Understanding the variables affecting immune protection is crucial to improving vaccine strategies and predicting VE and protection against COVID-19.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Ted M. Ross
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Florida Research and Innovation Center, Cleveland Clinic, Florida, FL 34986, USA
| |
Collapse
|
18
|
Hoeve CE, Huiberts AJ, de Gier B, Andeweg SP, den Hartog G, de Melker HE, Hahne SJM, van de Wijgert JHHM, van den Hof S, Knol MJ. COVID-19 vaccination-induced antibody responses and waning by age and comorbidity status in a large population-based prospective cohort study. Vaccine 2024; 42:126121. [PMID: 38997851 DOI: 10.1016/j.vaccine.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Information on the magnitude and duration of antibody levels after COVID-19 vaccination in different groups may be useful for prioritizing of additional vaccinations. METHODS Serum samples were collected every six months in a prospective cohort study among adults in the Netherlands. Geometric mean concentrations (GMCs) of antibodies against the receptor binding domain of the SARS-CoV-2 spike protein were calculated after the primary series, first, and second booster vaccinations. Effects of age (18-59 vs 60-85 years) and medical risk conditions on GMC 2-6 weeks and 21-25 weeks after each vaccination, and on waning during 3-25 weeks after each vaccination, were estimated by linear regression. RESULTS We included 20,640, 15,229 and 8,392 samples collected after primary, first and second booster vaccination, respectively. GMCs at 2-6 and 21-25 weeks after primary series were lower in participants with older age or medical risk conditions. After the first booster, older age was associated with lower GMC at 2-6 weeks and at 21-25 weeks. Waning after the first and second boosters (only 60-85) was not associated with age or medical risk conditions. CONCLUSIONS Since antibody differences by age and medical risk groups have become small with increasing number of doses, other factors such as COVID-19 disease severity rather than antibody levels are useful for prioritization of additional vaccinations.
Collapse
Affiliation(s)
- C E Hoeve
- National Institute for Public Health and the Environment, the Netherlands.
| | - A J Huiberts
- National Institute for Public Health and the Environment, the Netherlands
| | - B de Gier
- National Institute for Public Health and the Environment, the Netherlands
| | - S P Andeweg
- National Institute for Public Health and the Environment, the Netherlands
| | - G den Hartog
- National Institute for Public Health and the Environment, the Netherlands
| | - H E de Melker
- National Institute for Public Health and the Environment, the Netherlands
| | - S J M Hahne
- National Institute for Public Health and the Environment, the Netherlands
| | | | - S van den Hof
- National Institute for Public Health and the Environment, the Netherlands
| | - M J Knol
- National Institute for Public Health and the Environment, the Netherlands
| |
Collapse
|
19
|
Maher S, Assaly NME, Aly DM, Atta S, Fteah AM, Badawi H, Zahran MY, Kamel M. Comparative study of neutralizing antibodies titers in response to different types of COVID-19 vaccines among a group of egyptian healthcare workers. Virol J 2024; 21:277. [PMID: 39501293 PMCID: PMC11539826 DOI: 10.1186/s12985-024-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Defining the protective thresholds against the severe-acute-respiratory-syndrome-related corona virus-2 pandemic is a crucial challenge. To reduce the risks of severe disease, hospitalization, and death, various COVID-19 vaccines have been rapidly developed. AIM OF THE WORK This study aimed to assess the impact of three common COVID-19 vaccine types; two mRNA COVID-19 vaccines: (Pfizer/BioNTech's BNT162b2 and Moderna's mRNA-1273), one adenoviral vector vaccine: Oxford/AstraZeneca's ChAdOx1, and one inactivated vaccine (Sinovac Biotech/China's Sinovac) on the level of neutralizing antibodies, considering factors such as vaccine type, demographic characteristics, and hybrid immunity. We conducted a direct comparative analysis involving 300 healthcare workers, both with and without prior SARS-CoV-2 infection (B.1, C.36.3, and AY.32 (Delta) variants). Neutralizing antibodies levels were measured at baseline (before vaccination), before the second dose, and six months after the second dose. RESULTS The results showed a significant increase in neutralizing antibodies levels after complete vaccination with all vaccine types. Among healthcare workers, those vaccinated with mRNA vaccines (Moderna or Pfizer) exhibited the highest neutralizing antibodies titers, followed by AstraZeneca, and finally Sinovac with the lowest titer. On studying the effect of previous COVID-19 infection after vaccination, no significant difference in neutralizing antibodies levels was observed between healthcare workers vaccinated with mRNA or AstraZeneca vaccines, both with prior COVID-19 infection, following the first and six months after the second dose. CONCLUSION These findings suggest that individuals with prior COVID-19 may only require a single dose of mRNA or AstraZeneca vaccines to achieve a similar level of immunization as those without prior COVID-19 who completed the vaccination program. HIGHLIGHTS There is a significant increase in neutralizing antibodies levels after complete vaccination against COVID-19 Vaccination with mRNA vaccines exhibits the highest neutralizing antibodies titers. Vaccination with Sinovac exhibits the lowest neutralizing antibodies titers.
Collapse
Affiliation(s)
- Sara Maher
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Nihal M El Assaly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Doaa Mamdouh Aly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Asmaa Mohamed Fteah
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hala Badawi
- Microbiology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Manal Kamel
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
20
|
Bratcher A, Kao SY, Chun K, Petropoulos CJ, Gundlapalli AV, Jones J, Clarke KEN. Quantitative SARS-CoV-2 Spike Receptor-Binding Domain and Neutralizing Antibody Titers in Previously Infected Persons, United States, January 2021-February 2022. Emerg Infect Dis 2024; 30:2352-2361. [PMID: 39447163 PMCID: PMC11521179 DOI: 10.3201/eid3011.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
We studied SARS-CoV-2 binding and neutralizing antibody titers among previously infected persons in the United States over time. We assayed SARS-CoV-2 spike protein receptor-binding domain and neutralizing antibody titers for a convenience sample of residual clinical serum specimens that had evidence of prior SARS-CoV-2 infection gathered during January 2021-February 2022. We correlated titers and examined them by age group (<18, 18-49, 50-64, and >65 years) across 4 different SARS-CoV-2 variant epochs. Among selected specimens, 30,967 had binding antibody titers and 744 had neutralizing titers available. Titers in specimens from children and adults correlated. In addition, mean binding antibody titers increased over time for all age groups, and mean neutralization titers increased over time for persons 16-49 and >65 years of age. Incorporating binding and neutralization antibody titers into infectious disease surveillance could provide a clearer picture of overall immunity and help target vaccination campaigns.
Collapse
|
21
|
Paula NM, Joucoski E, Baura VA, Souza EM, Pedrosa FO, Gonçalves AG, Huergo LF. Symptomatology and IgG Levels before and after SARS-CoV-2 Omicron Breakthrough Infections in Vaccinated Individuals. Vaccines (Basel) 2024; 12:1149. [PMID: 39460316 PMCID: PMC11512233 DOI: 10.3390/vaccines12101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: After the COVID-19 pandemic, there is concern regarding the immunity of the population to SARS-CoV-2 variants, particularly the Omicron variant and its sub-lineages. (2) Methods: The study involved analyzing the immune response and symptomatology of 27 vaccinated individuals who were subsequently infected by Omicron sub-lineages. Blood samples were collected for serological analysis, including the detection of IgG antibodies reactive to the Nucleocapsid (N) and Spike (S) antigens of SARS-CoV-2. Additionally, participants were interviewed to assess the intensity of symptoms during the infection. (3) Results: Despite the high levels of anti-Spike IgG observed after vaccination, all participants were infected by Omicron sub-lineages. The most common symptoms reported by participants were fever or chills, sore throat, and cough. The levels of anti-Spike IgG found prior to infection did not correlate with symptom intensity post-infection. However, it was observed that high post-infection anti-Nucleocapsid IgG levels correlated with mild symptoms during the course of the disease, suggesting a potential role for anti-N antibodies in symptom intensity. (4) Conclusions: In line with previous studies, the high levels of IgG anti-Spike resulting from vaccination did not provide complete protection against infection by the Omicron variant. Additionally, our data suggest that anti-Nucleocapsid IgG titers are negatively correlated with the intensity of the symptoms during mild infections.
Collapse
Affiliation(s)
- Nigella M. Paula
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Emerson Joucoski
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
| | - Valter A. Baura
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Emanuel M. Souza
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Fabio O. Pedrosa
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| | - Alan G. Gonçalves
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Farmacy-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná—UFPR, Matinhos 83260-00, PR, Brazil; (N.M.P.); (E.J.); (A.G.G.)
- Graduated Program in Sciences-Biochemistry, Federal University of Paraná—UFPR, Curitiba 81530-00, PR, Brazil; (V.A.B.); (E.M.S.); (F.O.P.)
| |
Collapse
|
22
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Møller M, Friis-Hansen L, Kirkby N, Dilling-Hansen C, Andersson M, Vedsted P, Mølbak K, Koch A. Robust immune response to COVID-19 vaccination in the island population of Greenland. COMMUNICATIONS MEDICINE 2024; 4:173. [PMID: 39242878 PMCID: PMC11379896 DOI: 10.1038/s43856-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND In Greenland, the COVID-19 pandemic was characterised by a late onset of community transmission and a low impact on the healthcare system, hypothesised as being partly due to a high uptake of vaccinations. To underpin this description, we aimed to assess the SARS-CoV-2 immune response post-vaccination in a Greenlandic population. METHODS In this observational cohort study, we included 430 adults in Greenland who had received a complete two-dose SARS-CoV-2 vaccination at enrolment. The total plasma SARS-CoV-2 spike glycoprotein Ig antibodies (S-Ab) induced by either the BNT162b2 or mRNA-1273 vaccine, was measured up to 11 months after the second vaccine dose. In addition, total salivary S-Abs were examined in 107 participants, and the T-cell response to the spike glycoprotein was assessed in 78 participants out of the entire study cohort. RESULTS Here we demonstrate that two months after the second vaccine dose, 96% of participants have protective plasma S-Ab levels. By 11 months, 98% have protective levels, with prior SARS-CoV-2 infection particularly enhancing S-Ab levels by 37% (95% CI 25-51%). Among individuals aged 60 years and older, we observe a 21% (95% CI 7-33%) reduction in antibody response. Total salivary S-Ab levels are detectable in all participants and significantly correlate with plasma levels. Moreover, all participants exhibit a robust SARS-CoV-2-specific T-cell response 11 months post-primary vaccination. CONCLUSIONS Our findings show that Greenlanders exhibit a robust and lasting immune response, both humoral and cellular, comparable to other population groups up to at least 11 months after the second vaccine dose. These results corroborate the hypothesis that vaccines contributed to the mild impact of the COVID-19 pandemic in the Greenlandic population.
Collapse
Affiliation(s)
- Mie Møller
- Institue of Health and Nature, University of Greenland, Nuuk, Greenland.
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland.
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark.
| | - Lennart Friis-Hansen
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Clinical Microbiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Vedsted
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Ilulissat Regional Hospital, Ilulissat, Greenland
| | - Kåre Mølbak
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Institue of Health and Nature, University of Greenland, Nuuk, Greenland
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Inizan C, Courtot A, Sturmach C, Griffon AF, Biron A, Bruel T, Enouf V, Demaneuf T, Munier S, Schwartz O, Gourinat AC, Médevielle G, Jouan M, van der Werf S, Madec Y, Albert-Dunais V, Dupont-Rouzeyrol M. Levels and functionality of Pacific Islanders' hybrid humoral immune response to BNT162b2 vaccination and delta/omicron infection: A cohort study in New Caledonia. PLoS Med 2024; 21:e1004397. [PMID: 39325828 PMCID: PMC11466435 DOI: 10.1371/journal.pmed.1004397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Pacific Islanders are underrepresented in vaccine efficacy trials. Few studies describe their immune response to COVID-19 vaccination. Yet, this characterization is crucial to re-enforce vaccination strategies adapted to Pacific Islanders singularities. METHODS AND FINDINGS We evaluated the humoral immune response of 585 adults, self-declaring as Melanesians, Europeans, Polynesians, or belonging to other communities, to the Pfizer BNT162b2 vaccine. Anti-spike and anti-nucleoprotein IgG levels, and their capacity to neutralize SARS-CoV-2 variants and to mediate antibody-dependent cellular cytotoxicity (ADCC) were assessed across communities at 1 and 3 months post-second dose or 1 and 6 months post-third dose. All sera tested contained anti-spike antibodies and 61.3% contained anti-nucleoprotein antibodies, evidencing mostly a hybrid immunity resulting from vaccination and SARS-CoV-2 infection. At 1-month post-immunization, the 4 ethnic communities exhibited no significant differences in their anti-spike IgG levels (p value = 0.17, in an univariate linear regression model), in their capacity to mediate omicron neutralization (p value = 0.59 and 0.60, in an univariate logistic regression model at 1-month after the second and third dose, respectively) and in their capacity to mediate ADCC (p value = 0.069 in a multivariate linear regression model), regardless of the infection status. Anti-spike IgG levels and functionalities of the hybrid humoral immune response remained equivalent across the 4 ethnic communities during follow-up and at 6 months post-third dose. CONCLUSIONS Our study evidenced Pacific Islander's robust humoral immune response to Pfizer BNT162b2 vaccine, which is pivotal to re-enforce vaccination deployment in a population at risk for severe COVID-19. TRIAL REGISTRATION This trial has been register in ClinicalTrials.gov (ID: NCT05135585).
Collapse
Affiliation(s)
- Catherine Inizan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Adrien Courtot
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Chloé Sturmach
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Anne-Fleur Griffon
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Antoine Biron
- New Caledonia Territorial Hospital, Dumbéa-sur-Mer, New Caledonia
| | - Timothée Bruel
- Antiviral Activities of Antibodies Group, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Vincent Enouf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibaut Demaneuf
- Social and Sanitary Agency of New Caledonia (Agence Sanitaire et Sociale de Nouvelle-Calédonie), Nouméa, New Caledonia
| | - Sandie Munier
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Georges Médevielle
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Marc Jouan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Sylvie van der Werf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, Paris, France
| | | | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| |
Collapse
|
25
|
Pinto ACMD, Silva MFS, Oliveira FDCED, Garcia MML, Melo VB, Damasceno GA, Matsui TC, Fonseca MHG. Comparison of Adverse Events and Antibody Responses Among Different COVID-19 Vaccination Schedules. Viral Immunol 2024; 37:337-345. [PMID: 39149804 DOI: 10.1089/vim.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Global investment in developing COVID-19 vaccines has been substantial, but vaccine hesitancy has emerged due to misinformation. Concerns about adverse events, vaccine shortages, dosing confusion, mixing vaccines, and access issues contribute to hesitancy. Initially, the WHO recommended homologous vaccination (same vaccine for both doses), but evolving factors led to consideration of heterologous vaccination (different vaccines). The study compared reactogenicity and antibody response for both viral protein spike (S) and nucleocapsid (N) in 205 participants who received three vaccination regimens: same vaccine for all doses (Pfizer), two initial doses of the same vaccine (CoronaVac or AstraZeneca), and a Pfizer booster. ChAdOx1 and BNT162b2 vaccines were the most reactogenic vaccines, while CoronaVac vaccine was the least. ChAdOx1 and BNT162b2 achieved 100% of S-IgG seropositivity with one dose, while CoronaVac required two doses, emphasizing the importance of the second dose in achieving complete immunization across the population with different vaccine regimes. Pfizer recipients showed the highest S-IgG antibody titers, followed by AstraZeneca recipients, both after the first and second doses. A third vaccine dose was essential to boost the S-IgG antibodies and equalize the antibody levels among the different vaccine schedules. CoronaVac induced N-IgG antibodies, while in the Pfizer and AstraZeneca groups, they were induced by a natural infection, reinforcing the role of N protein as a biomarker of infection.
Collapse
|
26
|
van der Heiden M, Shetty S, Bijvank E, Beckers L, Cevirgel A, van Sleen Y, Tcherniaeva I, Ollinger T, Burny W, van Binnendijk RS, van Houten MA, Buisman AM, Rots NY, van Beek J, van Baarle D. Multiple vaccine comparison in the same adults reveals vaccine-specific and age-related humoral response patterns: an open phase IV trial. Nat Commun 2024; 15:6603. [PMID: 39097574 PMCID: PMC11297912 DOI: 10.1038/s41467-024-50760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Vaccine responsiveness is often reduced in older adults. Yet, our lack of understanding of low vaccine responsiveness hampers the development of effective vaccination strategies to reduce the impact of infectious diseases in the ageing population. Young-adult (25-49 y), middle-aged (50-64 y) and older-adult ( ≥ 65 y) participants of the VITAL clinical trials (n = 315, age-range: 28-98 y), were vaccinated with an annual (2019-2020) quadrivalent influenza (QIV) booster vaccine, followed by a primary 13-valent pneumococcal-conjugate (PCV13) vaccine (summer/autumn 2020) and a primary series of two SARS-CoV-2 mRNA-1273 vaccines (spring 2021). This unique setup allowed investigation of humoral responsiveness towards multiple vaccines within the same individuals over the adult age-range. Booster QIV vaccination induced comparable H3N2 hemagglutination inhibition (HI) titers in all age groups, whereas primary PCV13 and mRNA-1273 vaccination induced lower antibody concentrations in older as compared to younger adults (primary endpoint). The persistence of humoral responses, towards the 6 months timepoint, was shorter in older adults for all vaccines (secondary endpoint). Interestingly, highly variable vaccine responder profiles overarching multiple vaccines were observed. Yet, approximately 10% of participants, mainly comprising of older male adults, were classified as low responders to multiple vaccines. This study aids the identification of risk groups for low vaccine responsiveness and hence supports targeted vaccination strategies. Trial number: NL69701.041.19, EudraCT: 2019-000836-24.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Sudarshan Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Elske Bijvank
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alper Cevirgel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Tcherniaeva
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Rob S van Binnendijk
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marianne A van Houten
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp, The Netherlands
- Department of Pediatrics, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Anne-Marie Buisman
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
27
|
Dallan B, Proietto D, De Laurentis M, Gallerani E, Martino M, Ghisellini S, Zurlo A, Volpato S, Govoni B, Borghesi M, Albanese V, Appay V, Bonnini S, Llewellyn-Lacey S, Pacifico S, Grumiro L, Brandolini M, Semprini S, Sambri V, Ladell K, Parry HM, Moss PAH, Price DA, Caputo A, Gavioli R, Nicoli F. Age differentially impacts adaptive immune responses induced by adenoviral versus mRNA vaccines against COVID-19. NATURE AGING 2024; 4:1121-1136. [PMID: 38918602 DOI: 10.1038/s43587-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Adenoviral and mRNA vaccines encoding the viral spike (S) protein have been deployed globally to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Older individuals are particularly vulnerable to severe infection, probably reflecting age-related changes in the immune system, which can also compromise vaccine efficacy. It is nonetheless unclear to what extent different vaccine platforms are impacted by immunosenescence. Here, we evaluated S protein-specific immune responses elicited by vaccination with two doses of BNT162b2 or ChAdOx1-S and subsequently boosted with a single dose of BNT162b2 or mRNA-1273, comparing age-stratified participants with no evidence of previous infection with SARS-CoV-2. We found that aging profoundly compromised S protein-specific IgG titers and further limited S protein-specific CD4+ and CD8+ T cell immunity as a probable function of progressive erosion of the naive lymphocyte pool in individuals vaccinated initially with BNT162b2. Our results demonstrate that primary vaccination with ChAdOx1-S and subsequent boosting with BNT162b2 or mRNA-1273 promotes sustained immunological memory in older adults and potentially confers optimal protection against coronavirus disease 2019.
Collapse
Affiliation(s)
- Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Proietto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Martina De Laurentis
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mara Martino
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Sara Ghisellini
- Laboratory of Clinical Pathology, University Hospital St. Anna, Ferrara, Italy
| | - Amedeo Zurlo
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Benedetta Govoni
- Department of Medical Sciences, University of Ferrara, Geriatrics Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Michela Borghesi
- Department of Economics and Management, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Stefano Bonnini
- Department of Economics and Management, University of Ferrara, Ferrara, Italy
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Grumiro
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Martina Brandolini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Simona Semprini
- Unit of Microbiology, Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Area Hub Laboratory, Cesena, Italy
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul A H Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
28
|
Seekircher L, Astl M, Tschiderer L, Wachter GA, Penz J, Pfeifer B, Huber A, Afonso PM, Gaber M, Schennach H, Siller A, Willeit P. Anti-Spike IgG antibodies as correlates of protection against SARS-CoV-2 infection in the pre-Omicron and Omicron era. J Med Virol 2024; 96:e29839. [PMID: 39105391 DOI: 10.1002/jmv.29839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Anti-Spike IgG antibodies against SARS-CoV-2, which are elicited by vaccination and infection, are correlates of protection against infection with pre-Omicron variants. Whether this association can be generalized to infections with Omicron variants is unclear. We conducted a retrospective cohort study with 8457 blood donors in Tyrol, Austria, analyzing 15,340 anti-Spike IgG antibody measurements from March 2021 to December 2022 assessed by Abbott SARS-CoV-2 IgG II chemiluminescent microparticle immunoassay. Using a Bayesian joint model, we estimated antibody trajectories and adjusted hazard ratios for incident SARS-CoV-2 infection ascertained by self-report or seroconversion of anti-Nucleocapsid antibodies. At the time of their earliest available anti-Spike IgG antibody measurement (median November 23, 2021), participants had a median age of 46.0 years (IQR 32.8-55.2), with 45.3% being female, 41.3% having a prior SARS-CoV-2 infection, and 75.5% having received at least one dose of a COVID-19 vaccine. Among 6159 participants with endpoint data, 3700 incident SARS-CoV-2 infections with predominantly Omicron sublineages were recorded over a median of 8.8 months (IQR 5.7-12.4). The age- and sex-adjusted hazard ratio for SARS-CoV-2 associated with having twice the anti-Spike IgG antibody titer was 0.875 (95% credible interval 0.868-0.881) overall, 0.842 (0.827-0.856) during 2021, and 0.884 (0.877-0.891) during 2022 (all p < 0.001). The associations were similar in females and males (Pinteraction = 0.673) and across age (Pinteraction = 0.590). Higher anti-Spike IgG antibody titers were associated with reduced risk of incident SARS-CoV-2 infection across the entire observation period. While the magnitude of association was slightly weakened in the Omicron era, anti-Spike IgG antibody continues to be a suitable correlate of protection against newer SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lisa Seekircher
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Astl
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Lena Tschiderer
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor A Wachter
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Julia Penz
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Bernhard Pfeifer
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, Innsbruck, Austria
- Division for Healthcare Network and Telehealth, UMIT-Private University for Health Sciences, Medical Informatics and Technology GmbH, Hall, Austria
| | - Andreas Huber
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Pedro M Afonso
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Manfred Gaber
- Blood donor service Tyrol of the Austrian Red Cross, Rum, Austria
| | - Harald Schennach
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Anita Siller
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Peter Willeit
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Hendricks GG, Grigoryan L, Navarro MJ, Catanzaro NJ, Hubbard ML, Powers JM, Mattocks M, Treichel C, Walls AC, Lee J, Ellis D, Wang JY(J, Cheng S, Miranda MC, Valdez A, Chao CW, Chan S, Men C, Johnson MR, Hui H, Wu SY, Lujan V, Muramatsu H, Lin PJ, Sung MM, Tam YK, Leaf EM, Pardi N, Baric RS, Pulendran B, Veesler D, Schäfer A, King NP. Computationally designed mRNA-launched protein nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604655. [PMID: 39091730 PMCID: PMC11291046 DOI: 10.1101/2024.07.22.604655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic1-6. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses7-10, while mRNA vaccines can be rapidly manufactured11 and elicit antigen-specific CD4 and CD8 T cells12,13. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells14 to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD)15, formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.
Collapse
Affiliation(s)
- Grace G. Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L. Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jing Yang (John) Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cara W. Chao
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Christine Men
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Max R. Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Elizabeth M. Leaf
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
30
|
Romine JK, Li H, Coughlin MM, Jones JM, Britton A, Tyner HL, Fuller SB, Bloodworth R, Edwards LJ, Etolue JN, Morrill TC, Newes-Adeyi G, Olsho LEW, Gaglani M, Fowlkes A, Hollister J, Bedrick EJ, Uhrlaub JL, Beitel S, Sprissler RS, Lyski Z, Porter CJ, Rivers P, Lutrick K, Caban-Martinez AJ, Yoon SK, Phillips AL, Naleway AL, Burgess JL, Ellingson KD. Hybrid Immunity and SARS-CoV-2 Antibodies: Results of the HEROES-RECOVER Prospective Cohort Study. Clin Infect Dis 2024; 79:96-107. [PMID: 38466720 DOI: 10.1093/cid/ciae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND There are limited data on whether hybrid immunity differs by count and order of immunity-conferring events (infection with severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] or vaccination against coronavirus disease 2019 [COVID-19]). From a multi-site cohort of frontline workers, we examined the heterogeneity of the effect of hybrid immunity on SARS-CoV-2 antibody levels. METHODS Exposures included event count and event order, categorized into 7 permutations. Outcome was level of serum antibodies against receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein (total RBD-binding immunoglobulin). Means were examined up to 365 days after each of the first to seventh events. RESULTS Analysis included 5793 participants measured from 7 August 2020 to 15 April 2023. Hybrid immunity from infection before 1 or 2 vaccine doses elicited modestly superior antibody responses after the second and third events (compared with infections or vaccine doses alone). This superiority was not repeated after additional events. Among adults infected before vaccination, adjusted geometric mean ratios (95% confidence interval [CI]) of anti-RBD early response (versus vaccinated only) were 1.23 (1.14-1.33), 1.09 (1.03-1.14), 0.87 (.81-.94), and 0.99 (.85-1.15) after the second to fifth events, respectively. Post-vaccination infections elicited superior responses; adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated only) were 0.93 (.75-1.17), 1.11 (1.06-1.16), 1.17 (1.11-1.24), and 1.20 (1.07-1.34) after the second to fifth events, respectively. CONCLUSIONS Evidence of heterogeneity in antibody levels by permutations of infection and vaccination history could inform COVID-19 vaccination policy.
Collapse
Affiliation(s)
- James K Romine
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Huashi Li
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Melissa M Coughlin
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jefferson M Jones
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amadea Britton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Harmony L Tyner
- St. Luke's Regional Health Care System, Duluth, Minnesota, USA
| | | | | | | | | | | | | | | | | | - Ashley Fowlkes
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Hollister
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Edward J Bedrick
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Jennifer L Uhrlaub
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Shawn Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Ryan S Sprissler
- University of Arizona Genetics Core, Office for Research, Innovation and Impact, University of Arizona, Tucson, Arizona, USA
| | - Zoe Lyski
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Cynthia J Porter
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Patrick Rivers
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Karen Lutrick
- College of Medicine-Tucson, University of Arizona, Tucson, Arizona, USA
| | | | - Sarang K Yoon
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah Health, Salt Lake City, Utah, USA
| | - Andrew L Phillips
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah Health, Salt Lake City, Utah, USA
| | - Allison L Naleway
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Katherine D Ellingson
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Nemani K, De Picker L, Dickerson F, Leboyer M, Santacatterina M, Ando F, Capichioni G, Smith TE, Kammer J, El Abdellati K, Morrens M, Coppens V, Katsafanas E, Origoni A, Khan S, Rowe K, Ziemann R, Tamouza R, Yolken RH, Goff DC. Anti-spike antibody responses to SARS-CoV-2 mRNA vaccines in people with schizophrenia and schizoaffective disorder. Brain Behav Immun Health 2024; 38:100802. [PMID: 39021438 PMCID: PMC11252076 DOI: 10.1016/j.bbih.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
Importance Individuals with schizophrenia are at higher risk for severe COVID-19 illness and severe breakthrough infection following vaccination. It is unclear whether immune response to vaccination differs in this population. Objective To assess whether anti-SARS-CoV-2 spike antibody titers after vaccination differ in people with a diagnosis of schizophrenia or schizoaffective disorder (SZ) compared to controls without a psychiatric disorder. Design This cohort study assessed antibody response following the first and second dose of mRNA vaccines at longitudinal timepoints, up to 7 weeks following the first dose of vaccine. Setting A multi-center study including psychiatric healthcare settings in the United States and Europe. Participants 205 adults with no history of COVID-19 infection, including 106 individuals with SZ and 99 controls without a psychiatric disorder, who received their first dose of SARS-CoV-2 mRNA vaccine between December 20, 2020 and May 27, 2021. Main outcomes and measures Mean SARS-CoV-2 anti-Spike IgG antibody levels within 7 weeks after the first dose of vaccination. Results A total of 205 individuals (mean [SD] age, 44.7 [12.0] years; 90 [43.9%] male) were included, of which 106 (51.7%) were diagnosed with SZ. SZ was associated with lower mean log antibody levels (-0.15; 95% CI, -0.27 to -0.03, P = 0.016) after adjusting for age, sex, body mass index, smoking, days since vaccination, and vaccine manufacturer. In secondary analyses of dose-specific responses, SZ was associated with a lower mean log antibody level after the second dose of vaccine (-0.23; 95% CI -0.39 to -0.06, P = 0.006), but not the first dose of vaccine (0.00; 95% CI -0.18- 0.19, P = 0.96). Conclusions and Relevance In this cohort study of individuals with SZ and a control group without psychiatric disorders, SZ was associated with lower SARS-CoV-2 anti-spike antibody levels following 2 doses of SARS-CoV-2 mRNA vaccination. This highlights the need for further studies assessing vaccine immunogenicity in individuals with schizophrenia.
Collapse
Affiliation(s)
- Katlyn Nemani
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre Duffel, VZW Emmaus, Duffel, Belgium
| | - Faith Dickerson
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Marion Leboyer
- Inserm U955, Translational Psychiatry Laboratory, Université Paris-Est-Créteil, Department of Psychiatry and Addictology of Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier-Henri Mondor, Fondation FondaMental, Créteil, France
| | | | - Fumika Ando
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Gillian Capichioni
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | | | - Jamie Kammer
- New York State Office of Mental Health, New York, NY, USA
| | - Kawtar El Abdellati
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre Duffel, VZW Emmaus, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre Duffel, VZW Emmaus, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre Duffel, VZW Emmaus, Duffel, Belgium
| | | | - Andrea Origoni
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Sabahat Khan
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Kelly Rowe
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - R.Sarah Ziemann
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Ryad Tamouza
- Inserm U955, Translational Psychiatry Laboratory, Université Paris-Est-Créteil, Department of Psychiatry and Addictology of Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier-Henri Mondor, Fondation FondaMental, Créteil, France
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Donald C. Goff
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
32
|
Nelson CE, Foreman TW, Fukutani ER, Kauffman KD, Sakai S, Fleegle JD, Gomez F, Gould ST, Le Nouën C, Liu X, Burdette TL, Garza NL, Lafont BAP, Brooks K, Lindestam Arlehamn CS, Weiskopf D, Sette A, Hickman HD, Buchholz UJ, Johnson RF, Brenchley JM, Oberman JP, Quieroz ATL, Andrade BB, Via LE, Barber DL. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog 2024; 20:e1012339. [PMID: 38950078 PMCID: PMC11244803 DOI: 10.1371/journal.ppat.1012339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo R. Fukutani
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel D. Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - NIAID/DIR Tuberculosis Imaging Program
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydnee T. Gould
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracey L. Burdette
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James P. Oberman
- Holy Cross Germantown Hospital, Affiliate of National Breathe Free Sinus and ENT Center, Frederick Breathe Free Sinus and ENT Center, Frederick, Maryland, United States of America
| | - Artur T. L. Quieroz
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bruno B. Andrade
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
33
|
Pouwels KB, Eyre DW, House T, Aspey B, Matthews PC, Stoesser N, Newton JN, Diamond I, Studley R, Taylor NGH, Bell JI, Farrar J, Kolenchery J, Marsden BD, Hoosdally S, Jones EY, Stuart DI, Crook DW, Peto TEA, Walker AS. Improving the representativeness of UK's national COVID-19 Infection Survey through spatio-temporal regression and post-stratification. Nat Commun 2024; 15:5340. [PMID: 38914564 PMCID: PMC11196632 DOI: 10.1038/s41467-024-49201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Population-representative estimates of SARS-CoV-2 infection prevalence and antibody levels in specific geographic areas at different time points are needed to optimise policy responses. However, even population-wide surveys are potentially impacted by biases arising from differences in participation rates across key groups. Here, we used spatio-temporal regression and post-stratification models to UK's national COVID-19 Infection Survey (CIS) to obtain representative estimates of PCR positivity (6,496,052 tests) and antibody prevalence (1,941,333 tests) for different regions, ages and ethnicities (7-December-2020 to 4-May-2022). Not accounting for vaccination status through post-stratification led to small underestimation of PCR positivity, but more substantial overestimations of antibody levels in the population (up to 21 percentage points), particularly in groups with low vaccine uptake in the general population. There was marked variation in the relative contribution of different areas and age-groups to each wave. Future analyses of infectious disease surveys should take into account major drivers of outcomes of interest that may also influence participation, with vaccination being an important factor to consider.
Collapse
Affiliation(s)
- Koen B Pouwels
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK.
| | - David W Eyre
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Thomas House
- Department of Mathematics, University of Manchester, Manchester, UK
- IBM Research, Hartree Centre, Sci-Tech, Daresbury, UK
| | - Ben Aspey
- Office for National Statistics, Newport, UK
| | - Philippa C Matthews
- The Francis Crick Institute, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of infection and immunity, University College London, London, UK
| | - Nicole Stoesser
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John N Newton
- European Centre for Environment and Human Health, University of Exeter, Truro, UK
| | | | | | | | - John I Bell
- Office of the Regius Professor of Medicine, University of Oxford, Oxford, UK
| | | | - Jaison Kolenchery
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Brian D Marsden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick W Crook
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tim E A Peto
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A Sarah Walker
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Clinical Trials Unit at UCL, UCL, London, UK
| |
Collapse
|
34
|
Martín-Martín C, del Riego ES, Castiñeira JRV, Zapico-Gonzalez MS, Rodríguez-Pérez M, Corte-Iglesias V, Saiz ML, Diaz-Bulnes P, Escudero D, Suárez-Alvarez B, López-Larrea C. Assessing Predictive Value of SARS-CoV-2 Epitope-Specific CD8 + T-Cell Response in Patients with Severe Symptoms. Vaccines (Basel) 2024; 12:679. [PMID: 38932408 PMCID: PMC11209605 DOI: 10.3390/vaccines12060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cristina Martín-Martín
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Estefanía Salgado del Riego
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain
| | - Jose R. Vidal Castiñeira
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Rodríguez-Pérez
- Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (M.S.Z.-G.); (M.R.-P.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Dolores Escudero
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Carlos López-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| |
Collapse
|
35
|
Macdonald C, Palmateer N, McAuley A, Lindsay L, Hasan T, Hameed SS, Hall E, Jeffrey K, Grange Z, Gousias P, Mavin S, Jarvis L, Cameron JC, Daines L, Tibble H, Simpson CR, McCowan C, Katikireddi SV, Rudan I, Fagbamigbe AF, Ritchie L, Swallow B, Moss P, Robertson C, Sheikh A, Murray J. Association between antibody responses post-vaccination and severe COVID-19 outcomes in Scotland. NPJ Vaccines 2024; 9:107. [PMID: 38877008 PMCID: PMC11178861 DOI: 10.1038/s41541-024-00898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Several population-level studies have described individual clinical risk factors associated with suboptimal antibody responses following COVID-19 vaccination, but none have examined multimorbidity. Others have shown that suboptimal post-vaccination responses offer reduced protection to subsequent SARS-CoV-2 infection; however, the level of protection from COVID-19 hospitalisation/death remains unconfirmed. We use national Scottish datasets to investigate the association between multimorbidity and testing antibody-negative, examining the correlation between antibody levels and subsequent COVID-19 hospitalisation/death among double-vaccinated individuals. We found that individuals with multimorbidity ( ≥ five conditions) were more likely to test antibody-negative post-vaccination and 13.37 [6.05-29.53] times more likely to be hospitalised/die from COVID-19 than individuals without conditions. We also show a dose-dependent association between post-vaccination antibody levels and COVID-19 hospitalisation or death, with those with undetectable antibody levels at a significantly higher risk (HR 9.21 [95% CI 4.63-18.29]) of these serious outcomes compared to those with high antibody levels.
Collapse
Affiliation(s)
- Calum Macdonald
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK.
- Health Data Research UK, Gibbs Building, 215 Euston Road, NW1 2BE, London, UK.
| | - Norah Palmateer
- School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens, Road, Glasgow, G4 0BA, UK.
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK.
| | - Andrew McAuley
- School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens, Road, Glasgow, G4 0BA, UK
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Laura Lindsay
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Taimoor Hasan
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | | | - Elliot Hall
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Karen Jeffrey
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK
| | - Zoë Grange
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Petros Gousias
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Sally Mavin
- Scottish Microbiology Reference Laboratory, Raigmore Hospital, Old Perth Road, Inverness, IV2 3UJ, UK
| | - Lisa Jarvis
- Scottish National Blood Transfusion Service, Jack Copland Centre, 52 Research Avenue North, EH14 4BE, Edinburgh, UK
| | - J Claire Cameron
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
| | - Luke Daines
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK
| | - Holly Tibble
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK
| | - Colin R Simpson
- School of Health, Wellington Faculty of Health, Victoria University of Wellington, PO Box 600, Wellington, 6140, Wellington, New Zealand
| | - Colin McCowan
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Srinivasa Vittal Katikireddi
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
- MRC/CSO Social & Public Health Sciences Unit, University of Glasgow Berkeley Square, 99 Berkeley St., G3 7HR, Glasgow, UK
| | - Igor Rudan
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK
| | - Adeniyi Francis Fagbamigbe
- Institute of Applied Health Sciences, University of Aberdeen, Polwarth Building, Foresterhill Rd, AB25 2ZD, Aberdeen, UK
| | - Lewis Ritchie
- Centre of Academic Primary Care, University of Aberdeen, Polwarth Building, Foresterhill Rd, AB25 2ZD, Aberdeen, UK
| | - Ben Swallow
- School of Mathematics and Statistics, University of St Andrews, KY16 9SS, St Andrews, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Cancer Sciences Building, Edgbaston, B15 2TT, Birmingham, UK
| | - Chris Robertson
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
- Department of Mathematics and Statistics, University of Strathclyde, Richmond Street Glasgow, G1 1XH, Glasgow, UK
| | - Aziz Sheikh
- Usher Institute, University of Edinburgh, Teviot Pl, EH8 9AG, Edinburgh, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, Oxford, UK
| | - Josie Murray
- Public Health Scotland, Meridian Court, 5 Cadogan Street, G2 6QE, Glasgow, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| |
Collapse
|
36
|
Hopkins G, Gomez N, Tucis D, Bartlett L, Steers G, Burns E, Brown M, Harvey-Cowlishaw T, Santos R, Lauder SN, Scurr M, Capitani L, Burnell S, Rees T, Smart K, Somerville M, Gallimore A, Perera M, Potts M, Metaxaki M, Krishna B, Jackson H, Tighe P, Onion D, Godkin A, Wills M, Fairclough L. Lower Humoral and Cellular Immunity Following Asymptomatic SARS-CoV-2 Infection Compared to Symptomatic Infection in Education (The ACE Cohort). J Clin Immunol 2024; 44:147. [PMID: 38856804 PMCID: PMC11164737 DOI: 10.1007/s10875-024-01739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Asymptomatic SARS-CoV-2 infections were widely reported during the COVID-19 pandemic, acting as a hidden source of infection. Many existing studies investigating asymptomatic immunity failed to recruit true asymptomatic individuals. Thus, we conducted a longitudinal cohort study to evaluate humoral- and cell-mediated responses to infection and vaccination in well-defined asymptomatic young adults (the Asymptomatic COVID-19 in Education [ACE] cohort). METHODS Asymptomatic testing services located at three UK universities identified asymptomatic young adults who were subsequently recruited with age- and sex-matched symptomatic and uninfected controls. Blood and saliva samples were collected after SARS-CoV-2 Wuhan infection, and again after vaccination. 51 participant's anti-spike antibody titres, neutralizing antibodies, and spike-specific T-cell responses were measured, against both Wuhan and Omicron B.1.1.529.1. RESULTS Asymptomatic participants exhibited reduced Wuhan-specific neutralization antibodies pre- and post-vaccination, as well as fewer Omicron-specific neutralization antibodies post-vaccination, compared to symptomatic participants. Lower Wuhan and Omicron-specific IgG titres in asymptomatic individuals were also observed pre- and post-vaccination, compared to symptomatic participants. There were no differences in salivary IgA levels. Conventional flow cytometry analysis and multi-dimensional clustering analysis indicated unvaccinated asymptomatic participants had significantly fewer Wuhan-specific IL-2 secreting CD4+ CD45RA+ T cells and activated CD8+ T cells than symptomatic participants, though these differences dissipated after vaccination. CONCLUSIONS Asymptomatic infection results in decreased antibody and T cell responses to further exposure to SARS-CoV-2 variants, compared to symptomatic infection. Post-vaccination, antibody responses are still inferior, but T cell immunity increases to match symptomatic subjects, emphasising the importance of vaccination to help protect asymptomatic individuals against future variants.
Collapse
Affiliation(s)
- Georgina Hopkins
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nancy Gomez
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Davis Tucis
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Laura Bartlett
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Graham Steers
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ellie Burns
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michaela Brown
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Rute Santos
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Martin Scurr
- School of Medicine, Cardiff University, Cardiff, UK
- ImmunoServ Ltd, Cardiff, UK
| | | | | | - Tara Rees
- School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - Marianne Perera
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin Potts
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marina Metaxaki
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Hannah Jackson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David Onion
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Godkin
- School of Medicine, Cardiff University, Cardiff, UK
- ImmunoServ Ltd, Cardiff, UK
| | - Mark Wills
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lucy Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
37
|
Satwik R, Majumdar A, Mittal S, Tiwari N, Majumdar G. Fertility outcomes in women undergoing Assisted Reproductive Treatments after COVID-19 vaccination: A prospective cohort study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:207-214. [PMID: 38973272 PMCID: PMC11245583 DOI: 10.22074/ijfs.2023.1990869.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 10/16/2023] [Indexed: 07/09/2024]
Abstract
BACKGROUND Vaccination against Coronavirus-19 disease (COVID-19) was widely administered from 2021 onwards. There is little information on how this vaccine affected fertility after assisted-reproductive-technology (ART). The aim of this study therefore was to determine if COVID-19 vaccination or time-since-vaccination influenced ART outcomes. MATERIALS AND METHODS In this prospective cohort study, 502 oocyte-retrieval-cycles and 582 subsequent embryo- transfer-cycles were grouped based on COVID-19 vaccine status of the female partner into those with no-exposure, 1-dose and ≥2-dose exposure. Within the exposed cohort, time-since-last-vaccination to embryotransfer- cycle (Ttr) was calculated in days. Main outcomes were mean-total-utilizable-embryos, mean-oocyteutilization- rates and cumulative-ongoing-pregnancy-rates per oocyte-retrieval-cycle, and ongoing-pregnancy and pregnancy-loss-rates per embryo-transfer cycle. The Beta-coefficient (ß) was calculated using linear regression for mean-total-utilizable-embryos and mean-oocyte-utilization-rates and adjusted-odds-ratio (OR) was calculated for cumulative-ongoing-pregnancy-rates, ongoing-pregnancy and pregnancy-loss-rates using binomial logistic regression. Influence of T(tr) on embryo-transfer outcomes was estimated using receiver-operator-curve (ROC) analysis and cut-offs determined that influenced embryo-transfer outcomes. RESULTS Mean-total-utilizable-embryos and mean-oocyte-utilization-rate per oocyte-retrieval-cycle in no-exposure, 1-dose and ≥2 dose were 2.7 ± 1.8 vs. 2.5 ± 1.9 vs. 2.7 ± 2.0, P=0.78, (ß=0.42, 95% confidence-interval (CI)=0.15 to 0.69) and 21.2 ± 13.2 vs. 25.1 ± 19.0 vs. 26.7 ± 18.8, P=0.08, (ß=3.94, 95% CI=1.26 to 6.23) respectively. Ongoing-pregnancy-rates and pregnancy-loss-rates per embryo-transfer-cycle were 27.3% vs. 24.4% vs. 32.5% (aOR=1.38, 95% CI=0.3-5.6, P=0.52), and 13.6% vs. 13.4% vs. 15.2%, (aOR=0.97, 95% CI=0.18-5.2, P=0.97) respectively. Cumulative-ongoing-pregnancy-rates per oocyte-retrieval-cycle were 36.5% vs. 34.5% vs. 35.5% (aOR=1.53, 95% CI=0.57 to 4.07, P=0.35). Median T(tr) was 146 days (IQR: 80-220). T(tr) negatively affected ongoing pregnancy rates for intervals <60 days (AUC=0.59, 95% CI=0.54-0.66, P<0.01). For T(tr) >60 vs. <60 days, the aOR for ongoing-pregnancy-per-embryo-transfer-cycle was 2.85 (95% CI=1.50-5.46, P<0.01). CONCLUSION Covid-19 vaccination does not negatively influence embryological-outcomes or cumulative-ongoing-pregnancies after ART-treatments. Duration since vaccination may have a weak negative effect on embryo-transfer-outcomes performed within 60 days.
Collapse
Affiliation(s)
- Ruma Satwik
- Centre of IVF and Human Reproduction, Institute of Obstetrics and Gynecology, Sir Ganga Ram Hospital, New Delhi, India. Emails: ,
| | - Abha Majumdar
- Centre of IVF and Human Reproduction, Institute of Obstetritics and Gynaecology, Sir Ganga Ram Hospital, New Delhi, India
| | - Shweta Mittal
- Centre of IVF and Human Reproduction, Institute of Obstetritics and Gynaecology, Sir Ganga Ram Hospital, New Delhi, India
| | - Neeti Tiwari
- Centre of IVF and Human Reproduction, Institute of Obstetritics and Gynaecology, Sir Ganga Ram Hospital, New Delhi, India
| | - Gaurav Majumdar
- Center of IVF and Human Reproduction, Institute of Obstetrics and Gynaecology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
38
|
Holwerda MR, Hoeve CE, Huiberts AJ, den Hartog G, de Melker HE, van den Hof S, Knol MJ. Association between adverse events after COVID-19 vaccination and anti-SARS-CoV-2 antibody concentrations, the Netherlands, May 2021 to November 2022: a population-based prospective cohort study. Euro Surveill 2024; 29:2300585. [PMID: 38904110 PMCID: PMC11191418 DOI: 10.2807/1560-7917.es.2024.29.25.2300585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/11/2024] [Indexed: 06/22/2024] Open
Abstract
BackgroundNon-severe adverse events (AE) including pain at injection site or fever are common after COVID-19 vaccination.AimTo describe determinants of AE after COVID-19 vaccination and investigate the association between AE and pre- and post-vaccination antibody concentrations.MethodsParticipants of an ongoing prospective cohort study (VASCO) completed a questionnaire on AE within 2 months after vaccination and provided 6 monthly serum samples during May 2021-November 2022. Logistic regression analyses were performed to investigate AE determinants after mRNA vaccination, including pre-vaccination Ig antibody concentrations against the SARS-CoV-2 spike protein receptor binding domain. Multivariable linear regression was performed in SARS-CoV-2-naive participants to assess the association between AE and log-transformed antibody concentrations 3-8 weeks after mRNA vaccination.ResultsWe received 47,947 completed AE questionnaires by 28,032 participants. In 42% and 34% of questionnaires, injection site and systemic AE were reported, respectively. In 2.2% of questionnaires, participants sought medical attention. AE were reported more frequently by women, younger participants (< 60 years), participants with medical risk conditions and Spikevax recipients (vs Comirnaty). Higher pre-vaccination antibody concentrations were associated with higher incidence of systemic AE after the second and third dose, but not with injection site AE or AE for which medical attention was sought. Any AE after the third dose was associated with higher post-vaccination antibody concentrations (geometric mean concentration ratio: 1.38; 95% CI: 1.23-1.54).ConclusionsOur study suggests that high pre-vaccination antibody levels are associated with AE, and experiencing AE may be a marker for higher antibody response to vaccination.
Collapse
Affiliation(s)
- Minke R Holwerda
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Christina E Hoeve
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Anne J Huiberts
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Hester E de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Susan van den Hof
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
39
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
40
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
41
|
Bettini E, Chudnovskiy A, Protti G, Nakadakari-Higa S, Ceglia S, Castaño D, Chiu J, Muramatsu H, Mdluli T, Abraham E, Lipinszki Z, Maillard I, Tam YK, Reboldi A, Pardi N, Spreafico R, Victora GD, Locci M. Distinct components of nucleoside-modified messenger RNA vaccines cooperate to instruct efficient germinal center responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594726. [PMID: 38798523 PMCID: PMC11118742 DOI: 10.1101/2024.05.17.594726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.
Collapse
|
42
|
Rahmani A, Montecucco A, Priano L, Mandolini L, Dini G, Durando P. Serological Correlates of Protection Induced by COVID-19 Vaccination in the Working Age Population: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2024; 12:494. [PMID: 38793745 PMCID: PMC11125960 DOI: 10.3390/vaccines12050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 vaccines represent effective public health measures in contrasting the pandemic worldwide. However, protection at the individual-level, which is of crucial importance from an occupational health perspective, is commonly assessed by a serological correlate of protection (CoP) for SARS-CoV-2, which has not yet been determined. The emergence of variants of concern (VOCs) that have shown high rates of breakthrough infections has further complicated the understanding of immune protection against infection. To define a potential serological correlate of protection induced by the COVID-19 vaccination, a systematic review and meta-analysis was performed to summarize the evidence concerning the binding antibody concentration corresponding to a protective effect. Eighteen and four studies were included in the qualitative and quantitative analyses, respectively. The protection against infection was shown for anti-receptor-binding domain (RBD) titers ranging from 154 to 168.2 binding antibody units (BAU)/mL during the pre-Omicron period, while ranging from 1235 to 3035 BAU/mL in the Omicron period. Pooling the results from the studies concerning anti-RBD and anti-Spike antibody titer, we found a mean of 1341.5 BAU/mL and 1400.1 BAU/mL, respectively. These findings suggest that although a fixed serological threshold corresponding to protection against different SARS-CoV-2 variants is not yet definable, higher binding antibody concentrations are associated with increased protective effects.
Collapse
Affiliation(s)
- Alborz Rahmani
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
| | - Alfredo Montecucco
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Priano
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lucia Mandolini
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Guglielmo Dini
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Durando
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (A.M.); (L.P.); (L.M.); (G.D.); (P.D.)
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
43
|
Nakamura N, Kobashi Y, Kim KS, Park H, Tani Y, Shimazu Y, Zhao T, Nishikawa Y, Omata F, Kawashima M, Yoshida M, Abe T, Saito Y, Senoo Y, Nonaka S, Takita M, Yamamoto C, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Jeong YD, Tatematsu D, Akao M, Sato Y, Iwanami S, Fujita Y, Wakui M, Aihara K, Kodama T, Shibuya K, Iwami S, Tsubokura M. Modeling and predicting individual variation in COVID-19 vaccine-elicited antibody response in the general population. PLOS DIGITAL HEALTH 2024; 3:e0000497. [PMID: 38701055 PMCID: PMC11068210 DOI: 10.1371/journal.pdig.0000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/14/2024] [Indexed: 05/05/2024]
Abstract
As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.
Collapse
Affiliation(s)
- Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Science System Simulation, Pukyong National University, Busan, South Korea
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Tokyo, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Toshiki Abe
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Yuki Senoo
- Medical Governance Research Institute, Tokyo, Japan
| | - Saori Nonaka
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yong Dam Jeong
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Daiki Tatematsu
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Marwa Akao
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Shibuya
- Soma Medical Center of Vaccination for COVID-19, Fukushima, Japan
- Tokyo Foundation for Policy Research, Tokyo, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
- Medical Governance Research Institute, Tokyo, Japan
- Minamisoma Municipal General Hospital, Fukushima, Japan
| |
Collapse
|
44
|
Gaultier GN, McMillan B, Poloni C, Lo M, Cai B, Zheng JJ, Baer HM, Shulha HP, Simmons K, Márquez AC, Bartlett SR, Cook L, Levings MK, Steiner T, Sekirov I, Zlosnik JEA, Morshed M, Skowronski DM, Krajden M, Jassem AN, Sadarangani M. Adaptive immune responses to two-dose COVID-19 vaccine series in healthy Canadian adults ≥ 50 years: a prospective, observational cohort study. Sci Rep 2024; 14:8926. [PMID: 38637558 PMCID: PMC11026432 DOI: 10.1038/s41598-024-59535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.
Collapse
Affiliation(s)
- Gabrielle N Gaultier
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Brynn McMillan
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Chad Poloni
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jean J Zheng
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah M Baer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hennady P Shulha
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Sofia R Bartlett
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Steiner
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
45
|
He S, Liu SQ, Teng XY, He JY, Liu Y, Gao JH, Wu Y, Hu W, Dong ZJ, Bei JX, Xu JH. Comparative single-cell RNA sequencing analysis of immune response to inactivated vaccine and natural SARS-CoV-2 infection. J Med Virol 2024; 96:e29577. [PMID: 38572977 DOI: 10.1002/jmv.29577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.
Collapse
Affiliation(s)
- Shuai He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang-Yun Teng
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Jin-Yong He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Hui Gao
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wei Hu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Hua Xu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
46
|
Inoue W, Kimura Y, Okamoto S, Nogimori T, Sakaguchi-Mikami A, Yamamoto T, Tsunetsugu-Yokota Y. SARS-CoV-2-Specific Immune Responses in Vaccination and Infection during the Pandemic in 2020-2022. Viruses 2024; 16:446. [PMID: 38543812 PMCID: PMC10974545 DOI: 10.3390/v16030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
To gain insight into how immunity develops against SARS-CoV-2 from 2020 to 2022, we analyzed the immune response of a small group of university staff and students who were either infected or vaccinated. We investigated the levels of receptor-binding domain (RBD)-specific and nucleocapsid (N)-specific IgG and IgA antibodies in serum and saliva samples taken early (around 10 days after infection or vaccination) and later (around 1 month later), as well as N-specific T-cell responses. One patient who had been infected in 2020 developed serum RBD and N-specific IgG antibodies, but declined eight months later, then mRNA vaccination in 2021 produced a higher level of anti-RBD IgG than natural infection. In the vaccination of naïve individuals, vaccines induced anti-RBD IgG, but it declined after six months. A third vaccination boosted the IgG level again, albeit to a lower level than after the second. In 2022, when the Omicron variant became dominant, familial transmission occurred among vaccinated people. In infected individuals, the levels of serum anti-RBD IgG antibodies increased later, while anti-N IgG peaked earlier. The N-specific activated T cells expressing IFN γ or CD107a were detected only early. Although SARS-CoV-2-specific salivary IgA was undetectable, two individuals showed a temporary peak in RBD- and N-specific IgA antibodies in their saliva on the second day after infection. Our study, despite having a small sample size, revealed that SARS-CoV-2 infection triggers the expected immune responses against acute viral infections. Moreover, our findings suggest that the temporary mucosal immune responses induced early during infection may provide better protection than the currently available intramuscular vaccines.
Collapse
Affiliation(s)
- Wakana Inoue
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Yuta Kimura
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Shion Okamoto
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Research Institute, The World New Prosperity (WNP), Tokyo 169-0075, Japan
| |
Collapse
|
47
|
Kim JS, Sun Y, Balte P, Cushman M, Boyle R, Tracy RP, Styer LM, Bell TD, Anderson MR, Allen NB, Schreiner PJ, Bowler RP, Schwartz DA, Lee JS, Xanthakis V, Doyle MF, Regan EA, Make BJ, Kanaya AM, Wenzel SE, Coresh J, Isasi CR, Raffield LM, Elkind MSV, Howard VJ, Ortega VE, Woodruff P, Cole SA, Henderson JM, Mantis NJ, Parker MM, Demmer RT, Oelsner EC. Demographic and Clinical Factors Associated With SARS-CoV-2 Spike 1 Antibody Response Among Vaccinated US Adults: the C4R Study. Nat Commun 2024; 15:1492. [PMID: 38374032 PMCID: PMC10876680 DOI: 10.1038/s41467-024-45468-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
This study investigates correlates of anti-S1 antibody response following COVID-19 vaccination in a U.S. population-based meta-cohort of adults participating in longstanding NIH-funded cohort studies. Anti-S1 antibodies were measured from dried blood spots collected between February 2021-August 2022 using Luminex-based microsphere immunoassays. Of 6245 participants, mean age was 73 years (range, 21-100), 58% were female, and 76% were non-Hispanic White. Nearly 52% of participants received the BNT162b2 vaccine and 48% received the mRNA-1273 vaccine. Lower anti-S1 antibody levels are associated with age of 65 years or older, male sex, higher body mass index, smoking, diabetes, COPD and receipt of BNT16b2 vaccine (vs mRNA-1273). Participants with a prior infection, particularly those with a history of hospitalized illness, have higher anti-S1 antibody levels. These results suggest that adults with certain socio-demographic and clinical characteristics may have less robust antibody responses to COVID-19 vaccination and could be prioritized for more frequent re-vaccination.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yifei Sun
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Pallavi Balte
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Rebekah Boyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Linda M Styer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Taison D Bell
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Vanessa Xanthakis
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | | | - Barry J Make
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Alka M Kanaya
- Division of General Internal Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sally E Wenzel
- Department of Medicine, Department of Immunology, and Department of Environmental Medicine and Occupational Health, University of Pittsburgh School of Medicine, School of Public Health, Pittsburgh, PA, USA
| | - Josef Coresh
- Department of Population Health, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Mitchell S V Elkind
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor E Ortega
- Division of Respiratory Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Monica M Parker
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
- Division of Epidemiology, Department of Quantitative Health Sciences, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
48
|
Cherry N, Adisesh A, Burstyn I, Charlton C, Chen Y, Durand-Moreau Q, Labrèche F, Ruzycki S, Turnbull L, Zadunayski T, Yasui Y. Determinants of SARS-CoV-2 IgG response and decay in Canadian healthcare workers: A prospective cohort study. Vaccine 2024; 42:1168-1178. [PMID: 38278628 DOI: 10.1016/j.vaccine.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Healthcare workers (HCWs) from an interprovincial Canadian cohort gave serial blood samples to identify factors associated with anti-receptor binding domain (anti-RBD) IgG response to the SARS-CoV-2 virus. METHODS Members of the HCW cohort donated blood samples four months after their first SARS-CoV-2 immunization and again at 7, 10 and 13 months. Date and type of immunizations and dates of SARS-CoV-2 infection were collected at each of four contacts, together with information on immunologically-compromising conditions and current therapies. Blood samples were analyzed centrally for anti-RBD IgG and anti-nucleocapsid IgG (Abbott Architect, Abbott Diagnostics). Records of immunization and SARS-CoV-2 testing from public health agencies were used to assess the impact of reporting errors on estimates from the random-effects multivariable model fitted to the data. RESULTS 2752 of 4567 vaccinated cohort participants agreed to donate at least one blood sample. Modelling of anti-RBD IgG titer from 8903 samples showed an increase in IgG with each vaccine dose and with first infection. A decrease in IgG titer was found with the number of months since vaccination or infection, with the sharpest decline after the third dose. An immunization regime that included mRNA1273 (Moderna) resulted in higher anti-RBD IgG. Participants reporting multiple sclerosis, rheumatoid arthritis or taking selective immunosuppressants, tumor necrosis factor inhibitors, calcineurin inhibitors and antineoplastic agents had lower anti-RBD IgG. Supplementary analyses showed higher anti-RBD IgG in those reporting side-effects of vaccination, no relation of anti-RBD IgG to obesity and lower titers in women immunized in early or mid-pregnancy. Sensitivity analysis results suggested no important bias in the self-report data. CONCLUSION Creation of a prospective cohort was central to the credibility of results presented here. Serial serology assessments, with longitudinal analysis, provided effect estimates with enhanced accuracy and a clearer understanding of medical and other factors affecting response to vaccination.
Collapse
Affiliation(s)
- Nicola Cherry
- Division of Preventive Medicine, University of Alberta, 5-22 University Terrace, Edmonton, AB T6G 2T4, Canada.
| | - Anil Adisesh
- Division2 Division of Occupational Medicine, Department of Medicine, University of Toronto, C. David Naylor Building, 6 Queen's Park Crescent West, Toronto, ON M5S 3H2, Canada
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Drexel University, Philadelphia, PA 19104, USA
| | - Carmen Charlton
- Alberta Precision Laboratories, 84440 112 St, Edmonton, AB T6G 2I2, Canada
| | - Yan Chen
- Department of Epidemiology & Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 735, Memphis, TN 38105, USA
| | - Quentin Durand-Moreau
- Division of Preventive Medicine, University of Alberta, 5-22 University Terrace, Edmonton, AB T6G 2T4, Canada
| | - France Labrèche
- Research Department, Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505 de Maisonneuve Blvd, West Montreal, QC H3A 3C2, Canada
| | - Shannon Ruzycki
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| | - LeeAnn Turnbull
- Alberta Precision Laboratories, 84440 112 St, Edmonton, AB T6G 2I2, Canada
| | - Tanis Zadunayski
- Division of Preventive Medicine, University of Alberta, 5-22 University Terrace, Edmonton, AB T6G 2T4, Canada
| | - Yutaka Yasui
- Department of Epidemiology & Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 735, Memphis, TN 38105, USA
| |
Collapse
|
49
|
Bardosh K, Krug A, Jamrozik E, Lemmens T, Keshavjee S, Prasad V, Makary MA, Baral S, Høeg TB. COVID-19 vaccine boosters for young adults: a risk benefit assessment and ethical analysis of mandate policies at universities. JOURNAL OF MEDICAL ETHICS 2024; 50:126-138. [PMID: 36600579 PMCID: PMC10850707 DOI: 10.1136/jme-2022-108449] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
In 2022, students at North American universities with third-dose COVID-19 vaccine mandates risk disenrolment if unvaccinated. To assess the appropriateness of booster mandates in this age group, we combine empirical risk-benefit assessment and ethical analysis. To prevent one COVID-19 hospitalisation over a 6-month period, we estimate that 31 207-42 836 young adults aged 18-29 years must receive a third mRNA vaccine. Booster mandates in young adults are expected to cause a net harm: per COVID-19 hospitalisation prevented, we anticipate at least 18.5 serious adverse events from mRNA vaccines, including 1.5-4.6 booster-associated myopericarditis cases in males (typically requiring hospitalisation). We also anticipate 1430-4626 cases of grade ≥3 reactogenicity interfering with daily activities (although typically not requiring hospitalisation). University booster mandates are unethical because they: (1) are not based on an updated (Omicron era) stratified risk-benefit assessment for this age group; (2) may result in a net harm to healthy young adults; (3) are not proportionate: expected harms are not outweighed by public health benefits given modest and transient effectiveness of vaccines against transmission; (4) violate the reciprocity principle because serious vaccine-related harms are not reliably compensated due to gaps in vaccine injury schemes; and (5) may result in wider social harms. We consider counterarguments including efforts to increase safety on campus but find these are fraught with limitations and little scientific support. Finally, we discuss the policy relevance of our analysis for primary series COVID-19 vaccine mandates.
Collapse
Affiliation(s)
- Kevin Bardosh
- School of Public Health, University of Washington, Seattle, Washington, USA
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Allison Krug
- Epidemiology, Artemis Biomedical Communications, Virginia Beach, Virginia, USA
| | - Euzebiusz Jamrozik
- University of Oxford Wellcome Centre for Ethics and Humanities, Oxford, UK
| | - Trudo Lemmens
- Faculty of Law and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Salmaan Keshavjee
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Vinay Prasad
- Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Marty A Makary
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefan Baral
- Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tracy Beth Høeg
- Clinical Research, Acumen, LLC, Burlingame, California, USA
- Sierra Nevada Memorial Hospital, Grass Valley, California, USA
| |
Collapse
|
50
|
Soylu M, Sağıroğlu P, Özarslan MA, Acet O, Yüce ZT, İzci Çetinkaya F, Durmaz S, Parkan ÖM, Akyol D, Zeytinoğlu A, Kalın Ünüvar G, Taşbakan M, Gökahmetoğlu S, Atalay MA, Durusoy İR, Çiçek C, Pullukçu H, Yıldız O, Sertöz ŞR, Erensoy MS. COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey. Vaccines (Basel) 2024; 12:59. [PMID: 38250872 PMCID: PMC10819475 DOI: 10.3390/vaccines12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Various clinical outcomes, reinfections, vaccination programs, and antibody responses resulted from the COVID-19 pandemic. This study investigated the time-dependent changes in SARS-CoV-2 antibody responses in infected and/or vaccinated and unvaccinated individuals and to provide insights into spike and nucleocapsid antibodies, which fluctuate during infectious and non-infectious states. This cohort study was carried out at the Ege University Faculty of Medicine hospital in İzmir (western Turkey) and the Erciyes University Faculty of Medicine hospital in Kayseri (central Turkey) between December 2021 and January 2023, which coincided with the second half of COVID-19 pandemic. The study included 100 COVID-19 PCR-positive patients and 190 healthcare workers (HCWs). Antibody levels were followed up via quantitative anti-SARS-CoV-2 spike and qualitative anti-nucleocapsid immunoassays (Elecsys™). Antibody levels declined after infection but persisted for at least 6-8 months. Individuals who had received only CoronaVac had higher anti-nucleocapsid antibody levels in the early months than those who received mixed vaccination. However, anti-spike antibodies persisted longer and at higher levels in individuals who had received mixed vaccinations. This suggests that combining two different vaccine platforms may provide a synergistic effect, resulting in more durable and broad-spectrum immunity against SARS-CoV-2. The study provides information about the vaccination and antibody status of healthcare workers in the second half of the pandemic and provides valuable insights into the dynamics of antibody responses to COVID-19 infection and vaccination.
Collapse
Affiliation(s)
- Mehmet Soylu
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (M.A.Ö.); (C.Ç.); (Ş.R.S.); (M.S.E.)
| | - Pınar Sağıroğlu
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (P.S.); (Ö.M.P.); (S.G.); (M.A.A.)
| | - Muhammed Alper Özarslan
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (M.A.Ö.); (C.Ç.); (Ş.R.S.); (M.S.E.)
| | - Oğuzhan Acet
- Department of Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (O.A.); (D.A.); (G.K.Ü.); (M.T.); (H.P.)
| | - Zeynep Türe Yüce
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (Z.T.Y.); (F.İ.Ç.); (O.Y.)
| | - Feyza İzci Çetinkaya
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (Z.T.Y.); (F.İ.Ç.); (O.Y.)
| | - Seyfi Durmaz
- Department of Public Health, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (S.D.); (İ.R.D.)
| | - Ömür Mustafa Parkan
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (P.S.); (Ö.M.P.); (S.G.); (M.A.A.)
| | - Deniz Akyol
- Department of Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (O.A.); (D.A.); (G.K.Ü.); (M.T.); (H.P.)
| | - Ayşin Zeytinoğlu
- Department of Medical Microbiology, Faculty of Medicine, İzmir Economy University, Izmir 35330, Turkey;
| | - Gamze Kalın Ünüvar
- Department of Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (O.A.); (D.A.); (G.K.Ü.); (M.T.); (H.P.)
| | - Meltem Taşbakan
- Department of Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (O.A.); (D.A.); (G.K.Ü.); (M.T.); (H.P.)
| | - Selma Gökahmetoğlu
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (P.S.); (Ö.M.P.); (S.G.); (M.A.A.)
| | - Mustafa Altay Atalay
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (P.S.); (Ö.M.P.); (S.G.); (M.A.A.)
| | - İsabel Raika Durusoy
- Department of Public Health, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (S.D.); (İ.R.D.)
| | - Candan Çiçek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (M.A.Ö.); (C.Ç.); (Ş.R.S.); (M.S.E.)
| | - Hüsnü Pullukçu
- Department of Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (O.A.); (D.A.); (G.K.Ü.); (M.T.); (H.P.)
| | - Orhan Yıldız
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey; (Z.T.Y.); (F.İ.Ç.); (O.Y.)
| | - Şaziye Rüçhan Sertöz
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (M.A.Ö.); (C.Ç.); (Ş.R.S.); (M.S.E.)
| | - Memnune Selda Erensoy
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey; (M.A.Ö.); (C.Ç.); (Ş.R.S.); (M.S.E.)
| |
Collapse
|