1
|
de Campos Martin Berber G, de Sarges KML, da Cruz TCD, Roma EH, Miyajima F, Almeida JR, de Souza CF, da Silva AA, Vallinoto IMVC, Vallinoto ACR, Queiroz MAF, Baccin TG, de Castro AC, Vieira AT, de Azevedo FKS, da Costa Pereira A, Falcão LFM, Quaresma JAS, Kehdy F, Santos ET, Siqueira MM, Garcia CC, Dos Santos EJM, Slhessarenko RD. Polymorphisms in HLA genes among Brazilian patients hospitalized with COVID-19: Insights from a multicentric study. Microb Pathog 2025; 204:107542. [PMID: 40188974 DOI: 10.1016/j.micpath.2025.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Immunogenetic factors such as human leukocyte antigen (HLA) alleles, have yielded contrasting associations with protection or increased chances of hospitalization due to COVID-19 worldwide. This case-control study included 834 patients with confirmed COVID-19 diagnosis from five Brazilian states: Ceará (n = 110), Mato Grosso (n = 192), Pará (n = 209), Rio de Janeiro (n = 211) and Rio Grande do Sul (n = 112). Genotyping was performed using the Axiom™ Human Genotyping SARS-CoV-2 array, targeting single nucleotide polymorphisms in HLA class I and II genes; HLA alleles were imputed for eight loci. Among the 15 preselected candidate alleles, only DQA1∗05:01 (p = 0.015) in the state of Ceará remained significantly associated with hospitalization. The meta-analysis of the most frequent alleles in all states revealed that HLA-DPA1∗01:03 (p = 0.0229, OR = 0.76, 95 % CI = 0.60-0.96) and HLA-DPB1∗04:01 (p = 0.0474, OR = 0.78, 95 % CI = 0.611.00) were associated with protection against hospitalization, whereas HLA-DPA1∗02:01 (p = 0.0259, OR = 1.37, 95 % CI = 1.04-1.80), HLA-DQA1∗05:01 (p = 0.0133, OR = 1.40, 95 % CI = 1.07-1.82), and HLA-DRB1∗03:01 (p = 0.0276, OR: 1.59, 95 % CI: 1.05-2.40) associated with increased risk of hospitalization. HLA evolutionary divergence (HED) scores were significantly higher among the non-hospitalized group for the HLA-A locus, which has been shown to be a protective factor for the most severe forms and consequently hospitalization due to COVID-19.
Collapse
Affiliation(s)
| | - Kevin Matheus Lima de Sarges
- Post-graduation Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, PA, Brazil
| | - Thais Campos Dias da Cruz
- Post-graduation Program in Health Sciences, Federal University of Mato Grosso School of Medicine, Cuiabá, MT, Brazil
| | - Eric Henrique Roma
- Laboratory of Immunology and Imunogenetics in Infectious Diseases, Evandro Chagas National Infectology Institute, Rio de Janeiro, RJ, Brazil
| | - Fábio Miyajima
- Analytical Competence Molecular Epidemiology Laboratory, Fiocruz Genomic Surveillance Network, Fiocruz Ceará, Eusebio, CE, Brazil
| | - Jorge Reis Almeida
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Cíntia Fernandes de Souza
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil; Laboratory of Respiratory, Exanthematic, Enteric Viruses and Viral Emergencies, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Alice da Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Izaura Maria Vieira Cayres Vallinoto
- Post-graduation Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, PA, Brazil; Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Antônio Carlos Rosário Vallinoto
- Post-graduation Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, PA, Brazil; Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Alice Freitas Queiroz
- Post-graduation Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, PA, Brazil; Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alexandre da Costa Pereira
- Laboratory of Molecular Genetics and Cardiology, InCor - Hospital das Clínicas - FMUSP, University of São Paulo, SP, Brazil
| | | | | | - Fernanda Kehdy
- Laboratory of Leprosy, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tarazona Santos
- Laboratory of Human Genetic Diversity, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory, Exanthematic, Enteric Viruses and Viral Emergencies, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory, Exanthematic, Enteric Viruses and Viral Emergencies, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Integrated Research Group on Biomarkers, René Rachou Institute, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Eduardo José Melo Dos Santos
- Post-graduation Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, PA, Brazil.
| | | |
Collapse
|
2
|
Omae Y, Khor SS, Shimada M, Kawai Y, Yamaguchi T, Yagi M, Ebisawa M, Takeuchi JS, Mizoue T, Sugiura W, Tokunaga K. Genome-wide association study of common side effects following COVID-19 booster vaccination in a cohort of corporate employees in Japan. Sci Rep 2025; 15:12728. [PMID: 40222985 PMCID: PMC11994816 DOI: 10.1038/s41598-025-90787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 04/15/2025] Open
Abstract
Individual differences have been observed in side effects after vaccination for COVID-19, and host genetic factors have been suggested as a contributing factor. Here, we conducted a genome-wide association study (GWAS) involving 2,554 Japanese corporate employees who received a third booster dose of BNT162b2/Pfizer or mRNA-1273/Moderna vaccine. Although no genome-wide significant association was found for the presence of adverse symptoms, the GWAS for severity revealed six associated loci. The most significant association was observed between the severity of swelling of lymph nodes and chromosome 2q12 locus, including the IL1RL1, IL18R1, and IL18RAP genes (lead variant: rs76152249; P = 1.46 × 10-9). Pathway analysis suggested associations between immune pathways related to the MHC locus, including HLA genes, and the occurrence and severity of fever, and the NF-κB binding pathway and those of itching at the injection site. In addition, a meta-analysis of previous GWAS studies for the primary first or second dose of COVID-19 vaccine revealed 818 variants from 72 loci that demonstrated genome-wide significant associations with any of 12 symptoms, and pathway analysis identified immune pathways related to the MHC locus, suggesting shared genetic risks among primary and booster vaccinations. These results may help control side effects following COVID-19 vaccination.
Collapse
Affiliation(s)
- Yosuke Omae
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mihoko Shimada
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taihei Yamaguchi
- Life Science Business Office, Corporate Technology Planning Division, Toshiba Corporation, Tokyo, Japan
| | - Maiko Yagi
- Life Science Business Office, Corporate Technology Planning Division, Toshiba Corporation, Tokyo, Japan
| | - Masashi Ebisawa
- Life Science Business Office, Corporate Technology Planning Division, Toshiba Corporation, Tokyo, Japan
| | - Junko S Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Marchal A, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Response to Karp-Tatham et al. HGG ADVANCES 2025; 6:100407. [PMID: 39827368 PMCID: PMC11836477 DOI: 10.1016/j.xhgg.2025.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | - Vanessa Sancho-Shimizu
- Department of Infectious Diseases, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
4
|
Deepthi V, Sasikumar A, Mohanakumar KP, Rajamma U. Computationally designed multi-epitope vaccine construct targeting the SARS-CoV-2 spike protein elicits robust immune responses in silico. Sci Rep 2025; 15:9562. [PMID: 40108271 PMCID: PMC11923050 DOI: 10.1038/s41598-025-92956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Our research is driven by the need to design an advanced multi-epitope vaccine construct (MEVC) using the S-protein of SARS-CoV-2 to combat the emergence of new variants. Through rigorous computational screening, we have identified linear and discontinuous B-cell epitopes, CD8 + and CD4 + T-cell epitopes, ensuring extensive MEVC coverage across 90.03% of the global population. The MEVC, featuring four CD4 + and four CD8 + T-cell epitopes connected linearly with two adjuvant proteins on both ends, has been carefully designed to elicit robust immune response. Our in-silico analysis has confirmed the construct's antigenicity, non-allergenicity, and non-toxicity with optimized codon sequences for enhanced expression in E. coli K12. Furthermore, molecular docking and dynamics analyses have demonstrated its strong binding affinity with TLR-3 and TLR 4, and in-silico immune simulation yielded promising results on heightened B-cell and T-cell-mediated immunity. However, wet lab experiments are essential to validate computational findings to revolutionize the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Varughese Deepthi
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Aswathy Sasikumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Kochupurackal P Mohanakumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Usha Rajamma
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India.
| |
Collapse
|
5
|
Sonehara K, Uwamino Y, Saiki R, Takeshita M, Namba S, Uno S, Nakanishi T, Nishimura T, Naito T, Sato G, Kanai M, Liu A, Uchida S, Kurafuji T, Tanabe A, Arai T, Ohno A, Shibata A, Tanaka S, Wakui M, Kashimura S, Tomi C, Hara A, Yoshikawa S, Gotanda K, Misawa K, Tanaka H, Azekawa S, Wang QS, Edahiro R, Shirai Y, Yamamoto K, Nagao G, Suzuki T, Kiyoshi M, Ishii-Watabe A, Higashiue S, Kobayashi S, Yamaguchi H, Okazaki Y, Matsumoto N, Masumoto A, Koga H, Kanai A, Oda Y, Suzuki Y, Matsuda K, Kitagawa Y, Koike R, Kimura A, Kumanogoh A, Yoshimura A, Imoto S, Miyano S, Kanai T, Fukunaga K, Hasegawa N, Murata M, Matsushita H, Ogawa S, Okada Y, Namkoong H. Germline variants and mosaic chromosomal alterations affect COVID-19 vaccine immunogenicity. CELL GENOMICS 2025; 5:100783. [PMID: 40043710 PMCID: PMC11960526 DOI: 10.1016/j.xgen.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Vaccine immunogenicity is influenced by the vaccinee's genetic background. Here, we perform a genome-wide association study of vaccine-induced SARS-CoV-2-specific immunoglobulin G (IgG) antibody titers and T cell immune responses in 1,559 mRNA-1273 and 537 BNT162b2 vaccinees of Japanese ancestry. SARS-CoV-2-specific antibody titers are associated with the immunoglobulin heavy chain (IGH) and major histocompatibility complex (MHC) locus, and T cell responses are associated with MHC. The lead variants at IGH contain a population-specific missense variant (rs1043109-C; p.Leu192Val) in the immunoglobulin heavy constant gamma 1 gene (IGHG1), with a strong decreasing effect (β = -0.54). Antibody-titer-associated variants modulate circulating immune regulatory proteins (e.g., LILRB4 and FCRL6). Age-related hematopoietic expanded mosaic chromosomal alterations (mCAs) affecting MHC and IGH also impair antibody production. MHC-/IGH-affecting mCAs confer infectious and immune disease risk, including sepsis and Graves' disease. Impacts of expanded mosaic loss of chromosomes X/Y on these phenotypes were examined. Altogether, both germline and somatic mutations contribute to adaptive immunity functions.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Namba
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Nakanishi
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; Keio University Health Center, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Go Sato
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aoxing Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sho Uchida
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | | | - Akiko Tanabe
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Tomoko Arai
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Akemi Ohno
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Ayako Shibata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Tanaka
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Chiharu Tomi
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Akemi Hara
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Yoshikawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Gotanda
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kana Misawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Qingbo S Wang
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Division of Health Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Genta Nagao
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Masato Kiyoshi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoyuki Matsumoto
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryuji Koike
- Health Science Research and Development Center (HeRD), Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan; Research Center of Clinical Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Ha NY, Kim AR, Jeong H, Cheon S, Park CR, Choe JH, Kim HJ, Yoon JW, Kim M, An MY, Jung S, Do HN, Lee J, Kim YS. Neutralizing Activity and T-Cell Responses Against Wild Type SARS-CoV-2 Virus and Omicron BA.5 Variant After Ancestral SARS-CoV-2 Vaccine Booster Dose in PLWH Receiving ART Based on CD4 T-Cell Count. J Korean Med Sci 2025; 40:e28. [PMID: 40065712 PMCID: PMC11893351 DOI: 10.3346/jkms.2025.40.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/09/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND We evaluated severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-specific humoral and cellular responses for up to 6 months after the 3rd dose of ancestral coronavirus disease 2019 (COVID-19) vaccination in people living with HIV (PLWH) and healthy controls (HCs) who were not infected with COVID-19. METHODS Anti-spike receptor-binding domain IgG (anti-RBD IgG) concentrations using chemiluminescence immunoassay and neutralizing antibodies using focus reduction neutralization test (FRNT) were assessed at 1 week after each dose of vaccination, and 3 and 6 months after the 3rd dose in 62 PLWH and 25 HCs. T-cell responses using intracellular cytokine stain were evaluated at 1 week before, and 1 week and 6 months after the 3rd dose. RESULTS At 1 week after the 3rd dose, adequate anti-RBD IgG (> 300 binding antibody unit /mL) was elicited in all PLWH except for one patient with 36 CD4 T-cell count/mm³. The geometric mean titers of 50% FRNT against wild type (WT) and omicron BA.5 strains of SARS-CoV-2 in PLWH with CD4 T-cell count ≥ 500 cells/mm³ (high CD4 recovery, HCDR) were comparable to HC, but they were significantly decreased in PLWH with CD4 T-cell count < 500/mm³ (low CD4 recovery, LCDR). After adjusting for age, gender, viral suppression, and number of preexisting comorbidities, CD4 T-cell counts < 500/mm³ significantly predicted a poor magnitude of neutralizing antibodies against WT, omicron BA.5, and XBB 1.5 strains among PLWH. Multivariable linear regression adjusting for age and gender revealed that LCDR was associated with reduced neutralizing activity (P = 0.017) and interferon-γ-producing T-cell responses (P = 0.049 for CD T-cell; P = 0.014 for CD8 T-cell) against WT, and strongly associated with more decreased cross-neutralization against omicron BA.5 strains (P < 0.001). CONCLUSION HCDR demonstrated robust humoral and cell-mediated immune responses after a booster dose of ancestral SARS-CoV-2 vaccine, whereas LCDR showed diminished immune responses against WT virus and more impaired cross-neutralization against omicron BA.5 strain.
Collapse
Affiliation(s)
- Na Young Ha
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Korea
| | - Ah-Ra Kim
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Hyeongseok Jeong
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinhye Cheon
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Cho Rong Park
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Jin Ho Choe
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Hyo Jung Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Jae Won Yoon
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Miryoung Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Mi Yeong An
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Sukyoung Jung
- Department of Health Care Policy Research, Korea Institute for Health and Social Affairs, Sejong, Korea
| | - Hyeon Nam Do
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Junewoo Lee
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Yeon-Sook Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
7
|
Xue Y, Hou X, Zhong Y, Zhang Y, Du S, Kang DD, Wang L, Wang C, Li H, Wang S, Liu Z, Tian M, Guo K, Cao D, Deng B, McComb DW, Purisic E, Dai J, Hamon P, Brown BD, Tsankova NM, Merad M, Irvine DJ, Weiss R, Dong Y. LNP-RNA-mediated antigen presentation leverages SARS-CoV-2-specific immunity for cancer treatment. Nat Commun 2025; 16:2198. [PMID: 40038251 PMCID: PMC11880362 DOI: 10.1038/s41467-025-57149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
Lipid nanoparticle (LNP)-mRNA vaccines have demonstrated protective capability in combating SARS-CoV-2. Their extensive deployment across the global population leads to the broad presence of T-cell immunity against the SARS-CoV-2 spike protein, presenting an opportunity to harness this immunological response as a universal antigen target for cancer treatment. Herein, we design and synthesize a series of amino alcohol- or amino acid-derived ionizable lipids (AA lipids) and develop an LNP-RNA-based antigen presentation platform to redirect spike-specific T-cell immunity against cancer in mouse models. First, in a prime-boost regimen, AA2 LNP encapsulating spike mRNA elicit stronger T-cell immunity against the spike epitopes compared to FDA-approved LNPs (ALC-0315 and SM-102), highlighting the superior delivery efficiency of AA2 LNP. Next, AA15V LNP efficiently delivers self-amplifying RNAs (saRNAs) encoding spike epitope-loaded single-chain trimer (sSE-SCT) MHC I molecules into tumor tissues, thereby inducing the presentation of spike epitopes. Our results show that a single intratumoral (i.t.) treatment of AA15V LNP-sSE-SCTs suppresses tumor growth and extends the survival of B16F10 melanoma and A20 lymphoma tumor-bearing mice vaccinated with AA2 LNP-spike mRNA. Additionally, AA15V LNP-sSE-SCTs enable SE-SCT expression in ex vivo human glioblastoma and lung cancer samples, suggesting its potential in clinical translation.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yichen Zhong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leiming Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengwei Liu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Tian
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaiyuan Guo
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dinglingge Cao
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Eric Purisic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jinye Dai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadejda M Tsankova
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Liu A, Huoshen W, Wang Y, Yi S, Qin Z. Exploration of Circadian Clock-Related Genes in the Pathogenesis of Psoriatic Arthritis to Identify Potential Therapeutic Targets From Multi-Omics Insight: A Mendelian Randomization Study. Int J Rheum Dis 2025; 28:e70158. [PMID: 40062439 PMCID: PMC11891976 DOI: 10.1111/1756-185x.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Circadian rhythms have been shown to play a significant role in the etiology and progression of immune-related morbidities, including cancer and autoimmune diseases. As an autoimmune disorder, psoriatic arthritis (PsA) has been underexplored in the context of circadian rhythms. This study aimed to explore the relationship between circadian rhythm and PsA. METHODS We conducted a Summary-data-based Mendelian randomization (SMR) analysis, obtaining summary data on gene methylation, expression, and protein abundance levels of circadian clock-related genes (CRGs) from European ancestry individuals, with a total of 1749 genes selected from the GeneCards database using "biological clock" as the search term. The discovery cohort was obtained from the GWAS catalog database, and the replication cohort was obtained from the FinnGen database. Candidate genes related to circadian rhythm and PsA were identified through research, and their pharmacological potential and molecular docking were further validated as drug targets. RESULTS After integrating multi-omics data, we identified 11 methylation sites in three genes (HLA-DQB1, ITPR3, and GABBR1) of CRGs that were causally related to PsA, and the effects produced were not consistent. The three gene expressions of CRGs (IL4, HLA-DQB1, and OPI-AIS5) were related to PsA. At the protein level, we identified three proteins (GCKR, STAT3, and CSNK2B) of CRGs related to PsA. The top 20 drug candidates underwent drug prediction screening, resulting in the identification of 12 compounds that demonstrated effective outcomes with three (HLA-DQB1, STAT3, and IL-4) specific therapeutic targets through molecular docking. CONCLUSION This study suggests altered expression of circadian clock genes and proteins, including HLA-DQB1, ITPR3, GABBR1, IL4, OIP5-AS1, GCKR, CSNK2B, and STAT3, as factors contributing to the increased risk of PsA.
Collapse
Affiliation(s)
- Aimei Liu
- Department of DermatologyThe Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 HospitalChengduSichuanChina
| | - Wuda Huoshen
- School of StomatologySouthwest Medical UniversityLuzhouSichuanChina
| | - Yifei Wang
- School of StomatologySouthwest Medical UniversityLuzhouSichuanChina
| | - Sha Yi
- Department of DermatologyThe Affiliated Hospital, Southwest Medical UniversityLuzhouSichuanChina
| | - Zhen Qin
- Department of Rheumatology and ImmunologyThe Affiliated Hospital, Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
9
|
Santos-Peral A, Zaucha M, Nikolova E, Yaman E, Puzek B, Winheim E, Goresch S, Scheck MK, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Jia S, Luppa F, Pritsch M, Butt J, Metz-Zumaran C, Barba-Spaeth G, Endres S, Kim-Hellmuth S, Waterboer T, Krug AB, Rothenfusser S. Basal T cell activation predicts yellow fever vaccine response independently of cytomegalovirus infection and sex-related immune variations. Cell Rep Med 2025; 6:101946. [PMID: 39938525 PMCID: PMC11866508 DOI: 10.1016/j.xcrm.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is a model of acute viral infection that induces long-lasting protective immunity. Among immunocompetent adults, responses to YF17D vary significantly. To understand the sources of this variability, we investigate the influence of sex, age, human leukocyte antigen (HLA) type, and 20 prior infections on basal immune parameters and the cellular and antibody response to YF17D in 250 healthy young individuals. Multivariate regression found that sex and cytomegalovirus (CMV) infection significantly contribute to baseline immune variation but do not affect vaccine responses except for reduced YF17D-specific CD8+ frequencies in CMV-infected males. However, the abundance at baseline of non-specific cytokine-expressing T helper cells in circulation is associated with stronger vaccine responses, a state that smoking favors. Additionally, an elevated baseline level of interferon-stimulated CXCL10 is linked to poorer vaccination outcomes. Altogether, YF17D reactivity is conditioned by the baseline immune status independent of sex and CMV-related variations.
Collapse
Affiliation(s)
- Antonio Santos-Peral
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Nikolova
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ekin Yaman
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Barbara Puzek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena K Scheck
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Dahlstroem
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Shenzhi Jia
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fabian Luppa
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Camila Metz-Zumaran
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Stefan Endres
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
10
|
Erskine F, Spensley K, Prendecki M, Santos E, Anand A, Altmann D, Willicombe M. The Effect of HLA Polymorphism on Immune Response to SARS-CoV-2 Vaccination Within an Infection-Naïve, Vulnerable Population With End-Stage Renal Disease. HLA 2025; 105:e70076. [PMID: 39991976 PMCID: PMC11848999 DOI: 10.1111/tan.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
HLA genes exhibit a high degree of polymorphism, contributing to genetic variability known to influence immune responses to infection. Here we investigate associations between HLA polymorphism and serological and T-lymphocyte responses to the BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines within a population receiving maintenance haemodialysis (HD) for End-Stage Renal Disease (ESRD). Our primary objective was to identify HLA alleles associated with diminished serological and T-cellular responsiveness to vaccination. As a secondary objective, the associations between HLA type and COVID-19 disease outcomes were investigated using an independent ESRD cohort (n = 327). This aimed to determine if the alleles associated with poor vaccine response were also linked to unfavourable infection outcomes. In the main study, serum from 225 SARS-CoV-2 infection-naïve patients was HLA-typed using high-resolution Next Generation Sequencing, and serological titres were analysed for the presence of SARS-CoV-2 spike glycoprotein-specific antibodies after two doses of vaccination. A subset of patients (n = 33) was also tested for a T-lymphocyte response. Overall, 89% (n = 200) of patients seroconverted, but only 18% (n = 6) of the cellular response subgroup had a positive T-lymphocyte response. The HLA class II alleles DPB1*104:01, DRB1*04:03 and DRB1*14:04 and HLA class I alleles B*08:01 and B*18:01 were found to significantly correlate with seronegativity, and DQB1*06:01 correlated with serological responsiveness. We were unable to analyse the effect of HLA on disease outcome and T-lymphocyte response due to sample size limitations. Our results suggest pathways for further research and begin to elucidate the relationship between HLA polymorphism and immune responses in the vulnerable ESRD population.
Collapse
Affiliation(s)
- Fiona Erskine
- Imperial College London Department of Surgery and CancerLondonUK
| | - Katrina Spensley
- Imperial College London Department of Surgery and CancerLondonUK
| | - Maria Prendecki
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | | | | | - Danny Altmann
- Imperial College London Department of Surgery and CancerLondonUK
| | - Michelle Willicombe
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
11
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
12
|
Hajijafary AH, Malekmohammad S, Feizi A, Bemani P. Evaluation of anti-SARS-CoV-2 RBD antibody response after booster dose of SpikoGen® in individuals with two previous doses of Sinopharm and its association with HLA-DR and -DQ alleles. Hum Immunol 2025; 86:111227. [PMID: 39764935 DOI: 10.1016/j.humimm.2024.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND It has been demonstrated that COVID-19 vaccines confer significant protection, but temporal decay in the vaccine-induced antibodies has been reported; therefore, a third booster dose was considered. Human leukocyte antigen (HLA) class II molecules act as antigen presenting structures, play critical roles in the formation of an efficient antibody response. The current study aimed to evaluate the anti-receptor binding domain (RBD) antibody response after the booster dose of SpikoGen® vaccine in individuals with a history of Sinopharm primary vaccination series and its association with HLA-DQB1 and -DRB alleles. METHODS Whole blood samples were drawn from 95 eligible individuals before and three weeks after the booster dose of SpikoGen®. Quantitative measurement of anti-RBD IgG and qualitative assessment of anti-RBD IgA was performed using the ELISA method and HLA-DQB1 and -DRB loci were genotyped by low-resolution SSP-PCR method. RESULTS A significant increase was observed in the anti-RBD IgG antibodies after the booster dose of SpikoGen® (baseline: 1.82 ± 0.55 GMT, after: 2.28 ± 0.36 GMT)(P < 0.0001). The median fold change of anti-RBD IgG antibodies for DRB1*14 positive individuals (3.96 (1.47-31.75)) was significantly higher than DRB1*14 negative people (1.18 (1.08-1.34))(P = 0.008). In addition, the median fold change of anti-RBD IgG antibodies for DQB1*04 positive individuals (1.39 (1.21-3.43)) was higher than those which were DQB1*04 negative (1.18 (1.08-1.34)), however it was marginally significant (P = 0.060). The seroconversion incidence for anti-RBD IgA antibodies was 68.42 %. CONCLUSION In conclusion, our study showed that the booster dose of SpikoGen® can elicit a robust anti-RBD antibody response which was positively associated with DRB1*14 allele.
Collapse
Affiliation(s)
- Amir Hossein Hajijafary
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Malekmohammad
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, and Isfahan Clinical Toxicology Research Centre, Khorshid Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Zhao Y, Kakodkar P, Pan H, Zhu R, Musa K, Hassan A, Shoker A, Webster D, Pearce T, Dokouhaki P, Wu F, Mostafa A. The Interplay Between Human Leukocyte Antigen Antibody Profile and COVID-19 Vaccination in Waitlisted Renal Transplant Patients. Arch Pathol Lab Med 2025; 149:20-29. [PMID: 38599589 DOI: 10.5858/arpa.2023-0370-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 04/12/2024]
Abstract
CONTEXT.— Mass COVID-19 vaccination is mandated in vulnerable populations in our renal transplant waitlist cohort. However, the anti-human leukocyte antigen (anti-HLA) profile after COVID-19 vaccination is controversial, and the side effects are yet to be discerned. OBJECTIVE.— To evaluate the status of HLA antibodies in waitlisted renal transplant patients before and 3 weeks after each vaccination and if comorbidities are associated with the HLA antibody profile. DESIGN.— A total of 59 waitlisted kidney transplant patients were included in this study. The anti-HLA antibodies were analyzed before and 6 months after their last COVID-19 vaccination. The mean fluorescence intensity change in the anti-HLA antibody levels was used to classify patients into 3 groups: high inducers, low inducers, and noninducers. RESULTS.— There were significant HLA antibody profile changes after COVID-19 vaccination, showing 21 antibodies generated against HLA class I antigens and 7 against HLA class II antigens to their baseline. Compared with the noninducers, the high and low inducers showed a higher prevalence of COVID-19 infection, COVID-19 vaccine type, and background hypertension history. CONCLUSIONS.— Our data suggest that COVID-19 vaccination propagates anti-HLA class I and II antibodies for waitlisted renal transplant patients. The clinical significance of these antibodies needs further study. Furthermore, comorbidities, such as history of COVID-19 infection and hypertension, supplemented this effect. Anti-HLA antibody monitoring may be warranted in COVID-19 vaccinated, waitlisted renal transplant patients with a history of COVID-19 infection and/or hypertension.
Collapse
Affiliation(s)
- Yayuan Zhao
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Pramath Kakodkar
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Henry Pan
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Richard Zhu
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Khalid Musa
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Abubaker Hassan
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Ahmed Shoker
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Destinie Webster
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| | - Twyla Pearce
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| | - Pouneh Dokouhaki
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Fang Wu
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Ahmed Mostafa
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| |
Collapse
|
14
|
Liu N, Guan M, Ma B, Chu H, Tian G, Zhang Y, Li C, Zheng W, Wang X. Unraveling genetic mysteries: A comprehensive review of GWAS and DNA insights in animal and plant pathosystems. Int J Biol Macromol 2025; 285:138216. [PMID: 39631605 DOI: 10.1016/j.ijbiomac.2024.138216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
DNA serves as the carrier of genetic information, with sequence variations playing a pivotal role in defining hereditary traits. Genome-Wide Association Studies (GWAS) facilitate the investigation of the links between genetic variations and phenotypes, significantly influencing biological research, particularly in animal and plant pathology. By identifying genetic markers associated with specific traits or diseases, GWAS enhances our understanding of host-pathogen interactions and improves disease-resistant breeding strategies. It has been vital in revealing the genetic basis of disease resistance, pinpointing key genes and DNA loci, which enrich genetic resources for breeding programs and deepen our knowledge of disease resistance mechanisms at the DNA level. Additionally, GWAS contributes to pathogen population genetics, facilitating a thorough exploration of pathogen virulence. Integrating GWAS with marker-assisted selection enhances breeding efficiency and precision in selecting for disease-resistant traits. While previous research has largely focused on host genetics, the genetic variation of pathogens is equally significant. Notably, reports integrating animal and plant pathosystems are still lacking. Given the importance of these systems, this review summarizes key advancements in this field, addresses current challenges, and proposes future directions, thereby offering a vital reference for ongoing research.
Collapse
Affiliation(s)
- Na Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Mengxin Guan
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Baozhan Ma
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Hao Chu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Guangxiang Tian
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yanyan Zhang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Chuang Li
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China; Center of Crop Genome Engineering, College of Agronomy, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Xu Wang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| |
Collapse
|
15
|
Otten T, Jiang X, Gupta MK, Vadaq N, Cleophas-Jacobs M, dos Santos JC, Groenendijk A, Vos W, van Eekeren LE, Blaauw MJT, Meeder EM, Richel O, Matzaraki V, van Lunzen J, Joosten LAB, Li Y, Xu CJ, van der Ven A, Netea MG. Impact of COVID-19, lockdowns and vaccination on immune responses in a HIV cohort in the Netherlands. Front Immunol 2024; 15:1459593. [PMID: 39744634 PMCID: PMC11688194 DOI: 10.3389/fimmu.2024.1459593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION During the COVID-19 pandemic, major events with immune-modulating effects at population-level included COVID-19 infection, lockdowns, and mass vaccinations campaigns. As immune responses influence many immune-mediated diseases, population scale immunological changes may have broad consequences. METHODS We investigated the impact of lockdowns, COVID-19 infection and vaccinations on immune responses in the 2000HIV study including 1895 asymptomatic virally-suppressed people living with HIV recruited between October 2019 and October 2021. Their inflammatory profile was assessed by targeted plasma proteomics, immune responsiveness by cytokine production capacity of circulating immune cells, and epigenetic profile by genome-wide DNA methylation of immune cells. RESULTS Past mild COVID-19 infection had limited long-term immune effects. In contrast, COVID-19 vaccines and especially lockdowns significantly altered both the epigenetic profile in immune cells at DNA methylation level and immune responses. Lockdowns resulted in a strong overall exaggerated immune responsiveness, while COVID-19 vaccines moderately dampened immune responses. Lockdown-associated immune responsiveness alterations were confirmed in 30 healthy volunteers from the 200FG cohort that, like the 2000HIV study, is part of the Human Functional Genomics Project. DISCUSSION Our data suggest that lockdowns have unforeseen immunological effects. Furthermore, COVID-19 vaccines have immunological effects beyond anti-SARS-CoV-2 activity, and studies of their impact on non-COVID-19 immune-mediated pathology are warranted.
Collapse
Affiliation(s)
- Twan Otten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Xun Jiang
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Nadira Vadaq
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maartje Cleophas-Jacobs
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jéssica C. dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Albert Groenendijk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Wilhelm Vos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Elise M.G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Olivier Richel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan van Lunzen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Mir R, Altemani FH, Algehainy NA, Alanazi MA, Elfaki I, Alsayed BA, Mir MM, Mustafa SK, Moawadh MS, Tayeb FJ, Alfaifi J, Alatawi SM, Alhiwety MS, Ullah MF. Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics. Biochem Genet 2024:10.1007/s10528-024-10970-8. [PMID: 39557769 DOI: 10.1007/s10528-024-10970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense, including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. Through genome-wide, association studies, numerous genetic variants in the human host have been identified that have a significant impact on the immune response to SARS-CoV-2. To identify potentially significant genetic variants in Covid-19 patients that could affect the risk, severity, and clinical outcome of the infection, this study has used whole-exome sequencing (WES) on the 16 COVID-19 patients with varying comorbidities and severity of the disease including fatal outcomes. Among them, 8 patients made a full recovery and were discharged, while 8 patients unfortunately did not survive due to the severity of the illness and majority of them were males. The study identified 10,204 variants in the patients. From 1120 variants, which were chosen for novel variant analysis using mutation, function prediction tools to identify deleterious variants that could affect normal gene function, 116 variants of 57 genes were found to be deleterious. These variants were further classified as likely pathogenic and variants of uncertain significance. The data showed that among the likely pathogenic variants five genes were identified in connection to immune response whereas two were related to respiratory system. The common variants associated with the covid-19 phenotype showed the top 10 significant genes identified in this study such as ERCC2, FBXO5, HTR3D, FAIM, DNAH17, MTOR, IGHMBP2, ZNF530, QSER1, and FOXRED2 with variant rs1057079 of the MTOR gene representing the highest odds ratio (1.7, p = 8.7e-04). The mammalian target of rapamycin (mTOR) pathway variant rs1057079 was reported with high odds ratio, may orchestrate innate immune cell defense, including cytokine production, and is dysregulated. This study concluded that the mTOR signaling gene variant (rs1057079) is associated with different degrees of covid-19 severity and is essential for orchestrating innate immune cell defense including cytokine production. Inhibiting mTOR and its corresponding deleterious immune responses with medicinal approaches may provide a novel avenue for treating severe COVID-19 illness. Besides the PPI network exhibited a significantly high local clustering coefficient of 0.424 (p = 0.000536), suggesting the presence of tightly knit functional modules. These findings enhance our comprehension of the intricate interactions between genetic factors and COVID-19 disease.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Badr A Alsayed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Faris J Tayeb
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Sael M Alatawi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, King Faisel Road, 7149, Tabuk, Saudi Arabia.
| |
Collapse
|
17
|
Ong YC, Tejo BA, Yap WB. An Immunoinformatic Approach for Identifying and Designing Conserved Multi-Epitope Vaccines for Coronaviruses. Biomedicines 2024; 12:2530. [PMID: 39595095 PMCID: PMC11592158 DOI: 10.3390/biomedicines12112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coronaviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted. METHODS This study utilized an immunoinformatic approach to identify evolutionarily conserved CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein. RESULTS A total of 132 epitopes were identified, with the majority of them found to be conserved across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on their promising immune-stimulating properties. CONCLUSIONS In this light, they can serve as lead candidates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.
Collapse
Affiliation(s)
- Yu Chuan Ong
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
18
|
Altmann DM, Boyton RJ. Protective immunity to repeated COVID-19 breakthrough infections. Clin Immunol 2024; 268:110374. [PMID: 39357633 DOI: 10.1016/j.clim.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Daniel M Altmann
- Departments of Immunology and Inflammation, Faculty of Medicine, Imperial College London, UK.
| | - Rosemary J Boyton
- Departments of Infectious Disease, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
19
|
Alcalde-Herraiz M, Català M, Prats-Uribe A, Paredes R, Xie J, Prieto-Alhambra D. Genome-wide association studies of COVID-19 vaccine seroconversion and breakthrough outcomes in UK Biobank. Nat Commun 2024; 15:8739. [PMID: 39384777 PMCID: PMC11464770 DOI: 10.1038/s41467-024-52890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the genetic basis of COVID-19 vaccine seroconversion is crucial to study the role of genetics on vaccine effectiveness. In our study, we used UK Biobank data to find the genetic determinants of COVID-19 vaccine-induced seropositivity and breakthrough infections. We conducted four genome-wide association studies among vaccinated participants for COVID-19 vaccine seroconversion and breakthrough susceptibility and severity. Our findings confirmed a link between the HLA region and seroconversion after the first and second doses. Additionally, we identified 10 genomic regions associated with breakthrough infection (SLC6A20, ST6GAL1, MUC16, FUT6, MXI1, MUC4, HMGN2P18-KRTCAP2, NFKBIZ and APOC1), and one with breakthrough severity (APOE). No significant evidence of genetic colocalisation was found between those traits. Our study highlights the roles of individual genetic make-up in the varied antibody responses to COVID-19 vaccines and provides insights into the potential mechanisms behind breakthrough infections occurred even after the vaccination.
Collapse
Affiliation(s)
- Marta Alcalde-Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Martí Català
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Albert Prats-Uribe
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Roger Paredes
- Department of Infectious Diseases and Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - JunQing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Zheng K, Chong AY, Mentzer AJ. How could our genetics impact COVID-19 vaccine response? Expert Rev Clin Immunol 2024; 20:1027-1039. [PMID: 38676712 DOI: 10.1080/1744666x.2024.2346584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed unprecedented global health challenges since its emergence in December 2019. The rapid availability of vaccines has been estimated to save millions of lives, but there is variation in how individuals respond to vaccines, influencing their effectiveness at an individual, and population level. AREAS COVERED This review focuses on human genetic factors influencing the immune response and effectiveness of vaccines, highlighting the importance of associations across the HLA locus. Genome-Wide Association Studies (GWAS) and other genetic association analyses have identified statistically significant associations between specific HLA alleles including HLA-DRB1*13, DBQ1*06, and A*03 impacting antibody responses and the risk of breakthrough infections post-vaccination. Relationships between these associations and potential mechanisms and links with risks of natural infection or disease are explored, and this review concludes by emphasizing how understanding the mechanisms of these genetic determinants may inform the development of tailored vaccination strategies. EXPERT OPINION Although complex, we believe these findings from the SARS-CoV2 pandemic offer a unique opportunity to understand the relationships between HLA and infection and vaccine response, with a goal of optimizing individual protection against COVID-19 in the ongoing pandemic, and possibly influencing wider vaccine development in the future.
Collapse
Affiliation(s)
- Keyi Zheng
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
21
|
Sugrue JA, Duffy D. Systems vaccinology studies - achievements and future potential. Microbes Infect 2024; 26:105318. [PMID: 38460935 DOI: 10.1016/j.micinf.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Human immune responses to vaccination are variable both within and between populations. Systems vaccinology, which is the application of multi-omics technologies to vaccine studies, seeks to understand such variation and predict responses to optimise vaccine strategies. Here, we outline new approaches to systems vaccinology, focusing on the incorporation of additional cohorts, endpoints and technologies.
Collapse
Affiliation(s)
- Jamie A Sugrue
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
22
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection. HGG ADVANCES 2024; 5:100300. [PMID: 38678364 PMCID: PMC11215417 DOI: 10.1016/j.xhgg.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B∗15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B∗15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B∗15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Hôpital Bichat, Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France; Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d'immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unitéde Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France; GRC-14 BIOSFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA; Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
23
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
24
|
SINGH MAIREMBAMSTELIN, YELLABOINA SAILU, ANSARI MAIRAJAHMED. A COMPREHENSIVE REVIEW ON THE MULTIFACETED INTERACTIONS BETWEEN HOST IMMUNITY AND VIRAL PATHOGENESIS IN COVID-19. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:37-45. [DOI: 10.22159/ijap.2024v16i4.50576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The Corona Virus Disease (COVID-19) pandemic has presented unparalleled challenges, marked by a wide array of clinical presentations spanning from asymptomatic carriage to severe respiratory compromise and multi-organ dysfunction. It is crucial to comprehend the intricate interplay between host immunity and viral pathogenesis to elucidate disease mechanisms and guide therapeutic strategies. This review delves into the multifaceted interactions between host immunity and viral pathogenesis in COVID-19, with a particular focus on the impact of host factors such as age, sex, comorbidities, and genetic predisposition on disease severity. Utilizing state-of-the-art methodologies, including multiomics approaches, has yielded an expansive molecular portrayal of COVID-19, furnishing innovative perspectives on host immune reactions, viral pathogenicity, and disease advancement. Establishing standardized methodologies for data analysis and interpretation while concurrently addressing ethical considerations and promoting interdisciplinary collaboration are crucial steps in advancing our comprehension of COVID-19 pathogenesis. Despite obstacles like complexities in data integration, this review highlights the imperative of persistent endeavors in deciphering the complex interactions between hosts and pathogens to alleviate the global health ramifications of COVID-19.
Collapse
|
25
|
Xie J, Mothe B, Alcalde Herraiz M, Li C, Xu Y, Jödicke AM, Gao Y, Wang Y, Feng S, Wei J, Chen Z, Hong S, Wu Y, Su B, Zheng X, Cohet C, Ali R, Wareham N, Alhambra DP. Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes. Nat Commun 2024; 15:4031. [PMID: 38740772 DOI: 10.1038/s41467-024-48339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.
Collapse
Affiliation(s)
- Junqing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Beatriz Mothe
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marta Alcalde Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Annika M Jödicke
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Yaqing Gao
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Yunhe Wang
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Zhuoyao Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yeda Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Catherine Cohet
- Real-World Evidence Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Noord-Holland, The Netherlands
| | - Raghib Ali
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nick Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Daniel Prieto Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Féray C, Allain V, Desterke C, Roche B, Coilly A, Caillat-Zucman S. HLA-DQ Diversity Is Associated With Humoral Response to Vaccines in Patients Awaiting or After Liver Transplantation. Gastroenterology 2024; 166:915-917.e3. [PMID: 38215998 DOI: 10.1053/j.gastro.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Affiliation(s)
- Cyrille Féray
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France.
| | - Vincent Allain
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, Paris, France; INSERM UMR976, Université de Paris, Paris, France
| | - Christophe Desterke
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Bruno Roche
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Sophie Caillat-Zucman
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, Paris, France; INSERM UMR976, Université de Paris, Paris, France
| |
Collapse
|
27
|
Mentzer AJ, Dilthey AT, Pollard M, Gurdasani D, Karakoc E, Carstensen T, Muhwezi A, Cutland C, Diarra A, da Silva Antunes R, Paul S, Smits G, Wareing S, Kim H, Pomilla C, Chong AY, Brandt DYC, Nielsen R, Neaves S, Timpson N, Crinklaw A, Lindestam Arlehamn CS, Rautanen A, Kizito D, Parks T, Auckland K, Elliott KE, Mills T, Ewer K, Edwards N, Fatumo S, Webb E, Peacock S, Jeffery K, van der Klis FRM, Kaleebu P, Vijayanand P, Peters B, Sette A, Cereb N, Sirima S, Madhi SA, Elliott AM, McVean G, Hill AVS, Sandhu MS. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat Med 2024; 30:1384-1394. [PMID: 38740997 PMCID: PMC11108778 DOI: 10.1038/s41591-024-02944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Alexander T Dilthey
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | | | | | | | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Clare Cutland
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | | | - Sinu Paul
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Debora Y C Brandt
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Samuel Neaves
- Avon Longitudinal Study of Parents and Children at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicolas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Austin Crinklaw
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Anna Rautanen
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dennison Kizito
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Tom Parks
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Kate E Elliott
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tara Mills
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Nick Edwards
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Segun Fatumo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Emily Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Sarah Peacock
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Bjorn Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Manjinder S Sandhu
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
28
|
Santos-Rebouças CB, Ferreira CDS, Nogueira JDS, Brustolini OJ, de Almeida LGP, Gerber AL, Guimarães APDC, Piergiorge RM, Struchiner CJ, Porto LC, de Vasconcelos ATR. Immune response stability to the SARS-CoV-2 mRNA vaccine booster is influenced by differential splicing of HLA genes. Sci Rep 2024; 14:8982. [PMID: 38637586 PMCID: PMC11026523 DOI: 10.1038/s41598-024-59259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.
Collapse
Affiliation(s)
- Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristina Dos Santos Ferreira
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil
| | - Jeane de Souza Nogueira
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Otávio José Brustolini
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil
| | - Luiz Gonzaga Paula de Almeida
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil
| | - Ana Paula de Campos Guimarães
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cláudio José Struchiner
- School of Applied Mathematics, Getúlio Vargas Foundation, Rio de Janeiro, Brazil
- Social Medicine Institute Hesio Cordeiro, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Petrópolis, Rio de Janeiro, 25651‑075, Brazil.
| |
Collapse
|
29
|
Esposito M, Minnai F, Copetti M, Miscio G, Perna R, Piepoli A, De Vincentis G, Benvenuto M, D'Addetta P, Croci S, Baldassarri M, Bruttini M, Fallerini C, Brugnoni R, Cavalcante P, Baggi F, Corsini EMG, Ciusani E, Andreetta F, Dragani TA, Fratelli M, Carella M, Mantegazza RE, Renieri A, Colombo F. Human leukocyte antigen variants associate with BNT162b2 mRNA vaccine response. COMMUNICATIONS MEDICINE 2024; 4:63. [PMID: 38575714 PMCID: PMC10995155 DOI: 10.1038/s43856-024-00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.
Collapse
Affiliation(s)
- Martina Esposito
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy
| | - Francesca Minnai
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Giuseppe Miscio
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Rita Perna
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Ada Piepoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | - Mario Benvenuto
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Paola D'Addetta
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Susanna Croci
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Mirella Bruttini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | | | | | - Fulvio Baggi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Colombo
- National Research Council, Institute for Biomedical Technologies, Segrate, MI, Italy.
| |
Collapse
|
30
|
Aharon A, Benedek G, Barhoum B, Parnasa E, Magadle N, Perzon O, Mevorach D. HLA binding-groove motifs are associated with myocarditis induction after Pfizer-BioNTech BNT162b2 vaccination. Eur J Clin Invest 2024; 54:e14142. [PMID: 38071404 DOI: 10.1111/eci.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS We found a higher incidence of myocarditis in young males who had received at least two Pfizer-BioNTech BNT162b2 vaccinations. The human leukocyte antigens (HLA) are known to play an important role in infectious and autoinflammatory diseases. We hypothesized that certain HLA alleles might be associated with vaccination-induced myocarditis. METHODS HLA typing was performed using next-generation sequencing technology with the Illumina Iseq100 platform. HLA class I and II loci were genotyped in 29 patients with post-vaccination myocarditis and compared with HLA data from 300 healthy controls. RESULTS We demonstrate that the DRB1*14:01, DRB1*15:03 alleles and the motifs in HLA-A - Leu62 and Gln63, which are part of binding pocket B and HLA-DR Tyr47, His60, Arg70 and Glu74, which are part of binding pockets P4, P7 and P9, were significantly associated with disease susceptibility. CONCLUSIONS Our findings suggest that immunogenetic fingerprints in HLA peptide-binding grooves may affect the presentation of peptides derived from the Pfizer-BioNTech BNT162b2 vaccination to T cells and induce an inflammatory process that results in myocarditis.
Collapse
Affiliation(s)
- Aviran Aharon
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Gil Benedek
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Barhoum Barhoum
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elchanan Parnasa
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nur Magadle
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Perzon
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
- Institute of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
31
|
Monteiro MES, Lechuga GC, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Morel CM, Provance DW, De-Simone SG. Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes. Vaccines (Basel) 2024; 12:342. [PMID: 38675725 PMCID: PMC11055068 DOI: 10.3390/vaccines12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
Collapse
Affiliation(s)
- Maria E. S. Monteiro
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|
32
|
Kurtz SL, Baker RE, Boehm FJ, Lehman CC, Mittereder LR, Khan H, Rossi AP, Gatti DM, Beamer G, Sassetti CM, Elkins KL. Multiple genetic loci influence vaccine-induced protection against Mycobacterium tuberculosis in genetically diverse mice. PLoS Pathog 2024; 20:e1012069. [PMID: 38452145 PMCID: PMC10950258 DOI: 10.1371/journal.ppat.1012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frederick J. Boehm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chelsea C. Lehman
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Lara R. Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hamda Khan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Amy P. Rossi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- College of Medicine, University of Cincinatti, Cincinatti, Ohio, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
33
|
Alamad B, Elliott K, Knight JC. Cross-population applications of genomics to understand the risk of multifactorial traits involving inflammation and immunity. CAMBRIDGE PRISMS. PRECISION MEDICINE 2024; 2:e3. [PMID: 38549844 PMCID: PMC10953767 DOI: 10.1017/pcm.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 04/26/2024]
Abstract
The interplay between genetic and environmental factors plays a significant role in interindividual variation in immune and inflammatory responses. The availability of high-throughput low-cost genotyping and next-generation sequencing has revolutionized our ability to identify human genetic variation and understand how this varies within and between populations, and the relationship with disease. In this review, we explore the potential of genomics for patient benefit, specifically in the diagnosis, prognosis and treatment of inflammatory and immune-related diseases. We summarize the knowledge arising from genetic and functional genomic approaches, and the opportunity for personalized medicine. The review covers applications in infectious diseases, rare immunodeficiencies and autoimmune diseases, illustrating advances in diagnosis and understanding risk including use of polygenic risk scores. We further explore the application for patient stratification and drug target prioritization. The review highlights a key challenge to the field arising from the lack of sufficient representation of genetically diverse populations in genomic studies. This currently limits the clinical utility of genetic-based diagnostic and risk-based applications in non-Caucasian populations. We highlight current genome projects, initiatives and biobanks from diverse populations and how this is being used to improve healthcare globally by improving our understanding of genetic susceptibility to diseases and regional pathogens such as malaria and tuberculosis. Future directions and opportunities for personalized medicine and wider application of genomics in health care are described, for the benefit of individual patients and populations worldwide.
Collapse
Affiliation(s)
- Bana Alamad
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kate Elliott
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
35
|
Bian S, Guo X, Yang X, Wei Y, Yang Z, Cheng S, Yan J, Chen Y, Chen GB, Du X, Francis SS, Shu Y, Liu S. Genetic determinants of IgG antibody response to COVID-19 vaccination. Am J Hum Genet 2024; 111:181-199. [PMID: 38181733 PMCID: PMC10806743 DOI: 10.1016/j.ajhg.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRβ1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.
Collapse
Affiliation(s)
- Shengzhe Bian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xilai Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zijing Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shiyao Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jiaqi Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Guo-Bo Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310059, Zhejiang, P.R. China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310063, Zhejiang, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China.
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
36
|
Odak I, Riemann L, Sandrock I, Cossmann A, Ramos GM, Hammerschmidt SI, Ritter C, Friedrichsen M, Hassan A, Dopfer-Jablonka A, Stankov MV, Weskamm LM, Addo MM, Ravens I, Willenzon S, Schimrock A, Ristenpart J, Janssen A, Barros-Martins J, Hansen G, Falk C, Behrens GMN, Förster R. Systems biology analysis reveals distinct molecular signatures associated with immune responsiveness to the BNT162b COVID-19 vaccine. EBioMedicine 2024; 99:104947. [PMID: 38160529 PMCID: PMC10792461 DOI: 10.1016/j.ebiom.2023.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | | | | | | | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany
| | - Metodi V Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany; Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany.
| |
Collapse
|
37
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
38
|
Ferri C, Raimondo V, Giuggioli D, Gragnani L, Lorini S, Dagna L, Bosello SL, Foti R, Riccieri V, Guiducci S, Cuomo G, Tavoni A, De Angelis R, Cacciapaglia F, Zanatta E, Cozzi F, Murdaca G, Cavazzana I, Romeo N, Codullo V, Pellegrini R, Varcasia G, De Santis M, Selmi C, Abignano G, Caminiti M, L'Andolina M, Olivo D, Lubrano E, Spinella A, Lumetti F, De Luca G, Ruscitti P, Urraro T, Visentini M, Bellando-Randone S, Visalli E, Testa D, Sciascia G, Masini F, Pellegrino G, Saccon F, Balestri E, Elia G, Ferrari SM, Tonutti A, Dall’Ara F, Pagano Mariano G, Pettiti G, Zanframundo G, Brittelli R, Aiello V, Dal Bosco Y, Foti R, Di Cola I, Scorpiniti D, Fusaro E, Ferrari T, Gigliotti P, Campochiaro C, Francioso F, Iandoli C, Caira V, Zignego AL, D'Angelo S, Franceschini F, Matucci-Cerinic M, Giacomelli R, Doria A, Santini SA, Fallahi P, Iannone F, Antonelli A, for the COVID-19 & ASD Italian Study Group. Impact of COVID-19 and vaccination campaign on 1,755 systemic sclerosis patients during first three years of pandemic. Possible risks for individuals with impaired immunoreactivity to vaccine, ongoing immunomodulating treatments, and disease-related lung involvement during the next pandemic phase. J Transl Autoimmun 2023; 7:100212. [PMID: 37854035 PMCID: PMC10580042 DOI: 10.1016/j.jtauto.2023.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION The impact of COVID-19 pandemic represents a serious challenge for 'frail' patients' populations with inflammatory autoimmune systemic diseases such as systemic sclerosis (SSc). We investigated the prevalence and severity of COVID-19, as well the effects of COVID-19 vaccination campaign in a large series of SSc patients followed for the entire period (first 38 months) of pandemic. PATIENTS AND METHOD This prospective survey study included 1755 unselected SSc patients (186 M, 1,569F; mean age 58.7 ± 13.4SD years, mean disease duration 8.8 ± 7.3SD years) recruited in part by telephone survey at 37 referral centers from February 2020 to April 2023. The following parameters were carefully evaluated: i. demographic, clinical, serological, and therapeutical features; ii. prevalence and severity of COVID-19; and iii. safety, immunogenicity, and efficacy of COVID-19 vaccines. RESULTS The prevalence of COVID-19 recorded during the whole pandemic was significantly higher compared to Italian general population (47.3 % vs 43.3 %, p < 0.000), as well the COVID-19-related mortality (1.91 % vs 0.72 %, p < 0.001). As regards the putative prognostic factors of worse outcome, COVID-19 positive patients with SSc-related interstitial lung involvement showed significantly higher percentage of COVID-19-related hospitalization compared to those without (5.85 % vs 1.73 %; p < 0.0001), as well as of mortality rate (2.01 % vs 0.4 %; p = 0.002). Over half of patients (56.3 %) received the first two plus one booster dose of vaccine; while a fourth dose was administered to 35.6 %, and only few of them (1.99 %) had five or more doses of vaccine. Of note, an impaired seroconversion was recorded in 25.6 % of individuals after the first 2 doses of vaccine, and in 8.4 % of patients also after the booster dose. Furthermore, the absence of T-cell immunoreactivity was observed in 3/7 patients tested by QuantiFERON® SARSCoV-2 Starter Set (Qiagen). The efficacy of vaccines, evaluated by comparing the COVID-19-related death rate recorded during pre- and post-vaccination pandemic periods, revealed a quite stable outcome in SSc patients (death rate from 2.54 % to 1.76 %; p = ns), despite the significant drop of mortality observed in the Italian general population (from 2.95 % to 0.29 %; p < 0.0001). CONCLUSIONS An increased COVID-19 prevalence and mortality rate was recorded in SSc patients; moreover, the efficacy of vaccines in term of improved outcomes was less evident in SSc compared to Italian general population. This discrepancy might be explained by concomitant adverse prognostic factors: increased rate of non-responders to vaccine in SSc series, low percentage of individuals with four or more doses of vaccine, ongoing immunomodulating treatments, disease-related interstitial lung disease, and/or reduced preventive measures in the second half of pandemic. A careful monitoring of response to COVID-19 vaccines together with adequate preventive/therapeutical strategies are highly recommendable in the near course of pandemic in this frail patients' population.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, University of Modena & RE., School of Medicine, Modena, Italy
- Rheumatology Clinic ‘Madonna Dello Scoglio’ Cotronei, Crotone, Italy
| | - Vincenzo Raimondo
- Rheumatology Clinic ‘Madonna Dello Scoglio’ Cotronei, Crotone, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, University of Modena & RE., School of Medicine, Modena, Italy
| | - Laura Gragnani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Serena Lorini
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, Florence, Italy
| | | | - Silvia Laura Bosello
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Rosario Foti
- AOU Policlinico Vittorio Emanuele, Catania, Italy
| | | | | | | | | | - Rossella De Angelis
- Rheumatology Clinic, Department of Clinical & Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | | | - Giuseppe Murdaca
- Ospedale Policlinico S. Martino-University of Genova, Genova, Italy
| | | | | | | | | | | | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Maurizio Caminiti
- UOD Reumatologia- Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Massimo L'Andolina
- Rheumatology Outpatient Clinic, ASP- Vibo Valentia-Tropea Hospital, Italy
| | - Domenico Olivo
- Rheumatology Outpatient Clinic, San Giovanni di Dio Hospital, Crotone, Italy
| | - Ennio Lubrano
- Rheumatology, Università Del Molise, Campobasso, Italy
| | - Amelia Spinella
- Rheumatology Unit, University of Modena & RE., School of Medicine, Modena, Italy
| | - Federica Lumetti
- Rheumatology Unit, University of Modena & RE., School of Medicine, Modena, Italy
| | | | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological & Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Teresa Urraro
- Rheumatology Unit, "M. Scarlato" Hospital, Scafati, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | | | - Davide Testa
- Clinical Immunology, University of Pisa, Pisa, Italy
| | | | | | | | | | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Pisa, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesca Dall’Ara
- Child and Adolescent Neuropsychiatric Service (UONPIA) Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | - Vincenzo Aiello
- Rheumatology Clinic ‘Madonna Dello Scoglio’ Cotronei, Crotone, Italy
| | | | - Roberta Foti
- AOU Policlinico Vittorio Emanuele, Catania, Italy
| | - Ilenia Di Cola
- Rheumatology Unit, Department of Biotechnological & Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Enrico Fusaro
- Rheumatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza, Torino, Italy
| | | | | | | | - Francesca Francioso
- Rheumatology Clinic, Department of Clinical & Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlo Iandoli
- University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Virginia Caira
- U.O.S. Reumatologia, Ospedale Castrovillari, Cosenza, Italy
| | - Anna Linda Zignego
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, Florence, Italy
| | | | | | | | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Andrea Doria
- Rheumatology, University of Padova, Padova, Italy
| | - Stefano Angelo Santini
- Department of Basic, Clinical, Intensive and Perioperative Biotechnological Sciences, Catholic University School of Medicine, Rome, Italy
- Synlab Lazio, Roma, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - for the COVID-19 & ASD Italian Study Group
- Rheumatology Unit, University of Modena & RE., School of Medicine, Modena, Italy
- Rheumatology Clinic ‘Madonna Dello Scoglio’ Cotronei, Crotone, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, Florence, Italy
- Department of Ospedale S. Raffaele, Milano, Italy
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- AOU Policlinico Vittorio Emanuele, Catania, Italy
- Rheumatology, Sapienza-University of Rome, Roma, Italy
- Rheumatology, University of Florence, Italy
- University of Campania, Luigi Vanvitelli, Napoli, Italy
- Clinical Immunology, University of Pisa, Pisa, Italy
- Rheumatology Clinic, Department of Clinical & Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- UO Reumatologia - DETO, Università di Bari, Bari, Italy
- Rheumatology, University of Padova, Padova, Italy
- Ospedale "Villa Salus", Mestre, Italy
- Ospedale Policlinico S. Martino-University of Genova, Genova, Italy
- Rheumatology, Spedali Civili di Brescia, Brescia, Italy
- ASO S. Croce e Carle, Cuneo, Italy
- Rheumatology, Policlinico San Matteo, Pavia, Italy
- U.O.C. Medicina Interna 'M.Valentini" P.O, Annunziata, Cosenza, Italy
- U.O.S. Reumatologia, Ospedale Castrovillari, Cosenza, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- AOR San Carlo di Potenza, Potenza, Italy
- UOD Reumatologia- Grande Ospedale Metropolitano, Reggio Calabria, Italy
- Rheumatology Outpatient Clinic, ASP- Vibo Valentia-Tropea Hospital, Italy
- Rheumatology Outpatient Clinic, San Giovanni di Dio Hospital, Crotone, Italy
- Rheumatology, Università Del Molise, Campobasso, Italy
- Rheumatology Unit, Department of Biotechnological & Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Rheumatology Unit, "M. Scarlato" Hospital, Scafati, Italy
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Pisa, Italy
- Child and Adolescent Neuropsychiatric Service (UONPIA) Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Rheumatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza, Torino, Italy
- U.O.T. Specialistica Ambulatoriale ASP 201, Cosenza, Italy
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Basic, Clinical, Intensive and Perioperative Biotechnological Sciences, Catholic University School of Medicine, Rome, Italy
- Synlab Lazio, Roma, Italy
| |
Collapse
|
39
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Crick COVID Immunity Pipeline, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S, On behalf of the PITCH Consortium. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Ovsyannikova IG, Haralambieva IH, Schaid DJ, Warner ND, Poland GA, Kennedy RB. Genome-wide determinants of cellular immune responses to mumps vaccine. Vaccine 2023; 41:6579-6588. [PMID: 37778899 DOI: 10.1016/j.vaccine.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND We have previously described genetic polymorphisms in candidate genes that are associated with inter-individual variations in antibody responses to mumps vaccination. To expand upon our previous work, we performed a genome-wide association study (GWAS) to discover host genetic variants associated with mumps vaccine-induced cellular immune responses. METHODS We performed a GWAS of mumps-specific immune response outcomes (11 secreted cytokines/chemokines) in a cohort of 1,406 subjects. RESULTS Among the 11 cytokine/chemokines we studied, four (IFN-γ, IL-2, IL-1β, and TNFα) demonstrated GWAS signals reaching genome-wide significance (p < 5 × 10-8). A genomic region (encoding Sialic acid-binding immunoglobulin-type lectins/SIGLEC) located on chromosome 19q13 (p < 5 × 10-8) was associated with both IL-1β and TNFα responses. The SIGLEC5/SIGLEC14 region contained 11 statistically significant single nucleotide polymorphisms (SNPs), including the intronic SIGLEC5 rs872629 (p = 1.3E-11) and rs1106476 (p = 1.32E-11) whose alternate alleles were significantly associated with decreased levels of mumps-specific IL-1β (rs872629, p = 1.77E-09; rs1106476, p = 1.78E-09) and TNFα (rs872629, p = 1.3E-11; rs1106476, p = 1.32E-11) production. CONCLUSIONS Our results suggest that SNPs in the SIGLEC5/SIGLEC14 genes play a role in cellular and inflammatory immune responses to mumps vaccination. These findings motivate further research into the functional roles of SIGLEC genes in the regulation of mumps vaccine-induced immunity.
Collapse
Affiliation(s)
| | | | - Daniel J Schaid
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Nathaniel D Warner
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
41
|
Li Y, Han L, Li P, Ge J, Xue Y, Chen L. Potential network markers and signaling pathways for B cells of COVID-19 based on single-cell condition-specific networks. BMC Genomics 2023; 24:619. [PMID: 37853311 PMCID: PMC10583333 DOI: 10.1186/s12864-023-09719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further analysis. Besides, based on the CNDM of B cells, the hub genes and 'dark' genes (a gene has a significant difference between case and control samples not in a gene expression level but in a conditional network degree level) closely related to COVID-19 were revealed. Interestingly, some of the 'dark' genes and differential degree genes (DDGs) encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the 'dark' gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins encoded by 'dark' genes complement some missing links in COVID-19 and these signaling pathways played an important role in the growth and activation of B cells.
Collapse
Affiliation(s)
- Ying Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Liqin Han
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China.
- Longmen Laboratory, Luoyang, 471003, Henan, China.
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 201100, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201100, China.
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Castro-Santos P, Carracedo Á, Díaz-Peña R. HLA alleles: important pieces to the COVID-19 puzzle. Trends Immunol 2023; 44:754-756. [PMID: 37690961 DOI: 10.1016/j.it.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Research on human leukocyte antigen (HLA) molecules in coronavirus disease 2019 (COVID-19) raised high expectations but has yielded limited results. Augusto et al.'s recent study in Nature unveils a strong association of HLA-B*15:01 with asymptomatic COVID-19, representing an important contribution to genetics in COVID-19.
Collapse
Affiliation(s)
- Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS). Centro Nacional de Genotipado. Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS). Centro Nacional de Genotipado. Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica- CIMUS- Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS). Centro Nacional de Genotipado. Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
43
|
Peng Y, Zhang L, Mok CKP, Ching JYL, Zhao S, Wong MKL, Zhu J, Chen C, Wang S, Yan S, Qin B, Liu Y, Zhang X, Cheung CP, Cheong PK, Ip KL, Fung ACH, Wong KKY, Hui DSC, Chan FKL, Ng SC, Tun HM. Baseline gut microbiota and metabolome predict durable immunogenicity to SARS-CoV-2 vaccines. Signal Transduct Target Ther 2023; 8:373. [PMID: 37743379 PMCID: PMC10518331 DOI: 10.1038/s41392-023-01629-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The role of gut microbiota in modulating the durability of COVID-19 vaccine immunity is yet to be characterised. In this cohort study, we collected blood and stool samples of 121 BNT162b2 and 40 CoronaVac vaccinees at baseline, 1 month, and 6 months post vaccination (p.v.). Neutralisation antibody, plasma cytokine and chemokines were measured and associated with the gut microbiota and metabolome composition. A significantly higher level of neutralising antibody (at 6 months p.v.) was found in BNT162b2 vaccinees who had higher relative abundances of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Roseburia faecis as well as higher concentrations of nicotinic acid (Vitamin B) and γ-Aminobutyric acid (P < 0.05) at baseline. CoronaVac vaccinees with high neutralising antibodies at 6 months p.v. had an increased relative abundance of Phocaeicola dorei, a lower relative abundance of Faecalibacterium prausnitzii, and a higher concentration of L-tryptophan (P < 0.05) at baseline. A higher antibody level at 6 months p.v. was also associated with a higher relative abundance of Dorea formicigenerans at 1 month p.v. among CoronaVac vaccinees (Rho = 0.62, p = 0.001, FDR = 0.123). Of the species altered following vaccination, 79.4% and 42.0% in the CoronaVac and BNT162b2 groups, respectively, recovered at 6 months. Specific to CoronaVac vaccinees, both bacteriome and virome diversity depleted following vaccination and did not recover to baseline at 6 months p.v. (FDR < 0.1). In conclusion, this study identified potential microbiota-based adjuvants that may extend the durability of immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong, China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris K P Mok
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew K L Wong
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunke Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuai Yan
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Biyan Qin
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pun Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Long Ip
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian C H Fung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong, China.
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Li D, Pavlovitch-Bedzyk AJ, Ebinger JE, Khan A, Hamideh M, Merchant A, Figueiredo JC, Cheng S, Davis MM, McGovern DPB, Melmed GY, Xu AM, Braun J. A Paratope-Enhanced Method to Determine Breadth and Depth TCR Clonal Metrics of the Private Human T-Cell Vaccine Response after SARS-CoV-2 Vaccination. Int J Mol Sci 2023; 24:14223. [PMID: 37762524 PMCID: PMC10531868 DOI: 10.3390/ijms241814223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Quantitative metrics for vaccine-induced T-cell responses are an important need for developing correlates of protection and their use in vaccine-based medical management and population health. Molecular TCR analysis is an appealing strategy but currently requires a targeted methodology involving complex integration of ex vivo data (antigen-specific functional T-cell cytokine responses and TCR molecular responses) that uncover only public antigen-specific metrics. Here, we describe an untargeted private TCR method that measures breadth and depth metrics of the T-cell response to vaccine challenge using a simple pre- and post-vaccine subject sampling, TCR immunoseq analysis, and a bioinformatic approach using self-organizing maps and GLIPH2. Among 515 subjects undergoing SARS-CoV-2 mRNA vaccination, we found that breadth and depth metrics were moderately correlated between the targeted public TCR response and untargeted private TCR response methods. The untargeted private TCR method was sufficiently sensitive to distinguish subgroups of potential clinical significance also observed using public TCR methods (the reduced T-cell vaccine response with age and the paradoxically elevated T-cell vaccine response of patients on anti-TNF immunotherapy). These observations suggest the promise of this untargeted private TCR method to produce T-cell vaccine-response metrics in an antigen-agnostic and individual-autonomous context.
Collapse
Affiliation(s)
- Dalin Li
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| | - Ana Jimena Pavlovitch-Bedzyk
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.J.P.-B.); (M.M.D.)
| | - Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.E.E.); (S.C.)
| | - Abdul Khan
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| | - Mohamed Hamideh
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| | - Akil Merchant
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.); (J.C.F.); (A.M.X.)
| | - Jane C. Figueiredo
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.); (J.C.F.); (A.M.X.)
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.E.E.); (S.C.)
| | - Mark M. Davis
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.J.P.-B.); (M.M.D.)
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dermot P. B. McGovern
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| | - Gil Y. Melmed
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| | - Alexander M. Xu
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.); (J.C.F.); (A.M.X.)
| | - Jonathan Braun
- Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.L.); (A.K.); (M.H.); (D.P.B.M.); (G.Y.M.)
| |
Collapse
|
45
|
Tripathy AS, Wagh P, Vishwakarma S, Akolkar K, Tripathy S, Jali P, Kakrani AL, Barthwal M, Gurav Y, Kadgi N, Nakate L, Abraham P. Association of human leukocyte antigen class I and class II alleles and haplotypes in COVID-19 infection in a western Indian population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105468. [PMID: 37331496 PMCID: PMC10273771 DOI: 10.1016/j.meegid.2023.105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Affiliation(s)
| | - Priyanka Wagh
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | | | - Srikanth Tripathy
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Priyanka Jali
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Arjun Lal Kakrani
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | | | - Yogesh Gurav
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Nalini Kadgi
- BJMC and Sassoon General Hospital, Pune, Maharashtra, India
| | - Leena Nakate
- BJMC and Sassoon General Hospital, Pune, Maharashtra, India
| | - Priya Abraham
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
46
|
Butler-Laporte G, Auckland K, Noor Z, Kabir M, Alam M, Carstensen T, Wojcik GL, Chong AY, Pomilla C, Noble JA, McDevitt SL, Smits G, Wareing S, van der Klis FRM, Jeffery K, Kirkpatrick BD, Sirima S, Madhi S, Elliott A, Richards JB, Hill AVS, Duggal P, PROVIDE authors, Cryptosporidiosis Birth Cohort authors, Sandhu MS, Haque R, Petri WA, Mentzer AJ. Targeting hepatitis B vaccine escape using immunogenetics in Bangladeshi infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291885. [PMID: 37425840 PMCID: PMC10327284 DOI: 10.1101/2023.06.26.23291885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hepatitis B virus (HBV) vaccine escape mutants (VEM) are increasingly described, threatening progress in control of this virus worldwide. Here we studied the relationship between host genetic variation, vaccine immunogenicity and viral sequences implicating VEM emergence. In a cohort of 1,096 Bangladeshi children, we identified human leukocyte antigen (HLA) variants associated with response vaccine antigens. Using an HLA imputation panel with 9,448 south Asian individuals DPB1*04:01 was associated with higher HBV antibody responses (p=4.5×10-30). The underlying mechanism is a result of higher affinity binding of HBV surface antigen epitopes to DPB1*04:01 dimers. This is likely a result of evolutionary pressure at the HBV surface antigen 'a-determinant' segment incurring VEM specific to HBV. Prioritizing pre-S isoform HBV vaccines may tackle the rise of HBV vaccine evasion.
Collapse
Affiliation(s)
- Guillaume Butler-Laporte
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Zannatun Noor
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tommy Carstensen
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
- Queen Mary University of London, London, United Kingdom
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Y Chong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cristina Pomilla
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
| | - Janelle A Noble
- Children’s Hospital Oakland Research Institute, Oakland, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | | | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Fiona RM van der Klis
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, University of Vermont College of Medicine, Vermont, USA
| | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248 Ouagadougou, Burkina Faso
| | - Shabir Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Elliott
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, United Kingdom
| | - Adrian VS Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Manjinder S Sandhu
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Khamjan NA, Lohani M, Khan MF, Khan S, Algaissi A. Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine. Vaccines (Basel) 2023; 11:1090. [PMID: 37376479 DOI: 10.3390/vaccines11061090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available COVID vaccines are effective in reducing mortality and severity but do not prevent transmission of the virus or reinfection by the emerging SARS-CoV-2 variants. There is an obvious need for better and longer-lasting effective vaccines for various prevailing strains and the evolving SARS-CoV-2 virus, necessitating the development of a broad-spectrum vaccine that can be used to prevent infection by reducing both the transmission rate and re-infection. During the initial phases of SARS-CoV-2 infection, the nucleocapsid (N) protein is one of the most abundantly expressed proteins. Additionally, it has been identified as the most immunogenic protein of SARS-CoV-2. In this study, state-of-the-art bioinformatics techniques have been exploited to design novel multiple epitope vaccines using conserved regions of N proteins from prevalent strains of SARS-CoV-2 for the prediction of B- and T-cell epitopes. These epitopes were sorted based on their immunogenicity, antigenicity score, and toxicity. The most effective multi-epitope construct with possible immunogenic properties was created using epitope combinations. EAAAK, AAY, and GPGPG were used as linkers to connect epitopes. The developed vaccines have shown positive results in terms of overall population coverage and stimulation of the immune response. Potential expression of the chimeric protein construct was detected after it was cloned into the Pet28a/Cas9-cys vector for expression screening in Escherichia coli. The developed vaccine performed well in computer-based immune response simulation and covered a diverse allelic population worldwide. These computational findings are very encouraging for the further testing of our candidate vaccine, which could eventually aid in the control and prevention of SARS-CoV-2 infections globally.
Collapse
Affiliation(s)
- Nizar A Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Faheem Khan
- Department of Biotechnology, K.C.M.T., M. J. P. Rohilkhand University, Bareilly 243006, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
49
|
Villemonteix J, Allain V, Verstraete E, Jorge-Cordeiro D, Socié G, Xhaard A, Feray C, Caillat-Zucman S. HLA-DP diversity is associated with improved response to SARS-Cov-2 vaccine in hematopoietic stem cell transplant recipients. iScience 2023; 26:106763. [PMID: 37168557 PMCID: PMC10132830 DOI: 10.1016/j.isci.2023.106763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients show lower humoral vaccine responsiveness than immunocompetent individuals. HLA diversity, measured by the HLA evolutionary divergence (HED) metrics, reflects the diversity of the antigenic repertoire presented to T cells, and has been shown to predict response to cancer immunotherapy. We retrospectively investigated the association of HED with humoral response to SARS-CoV-2 vaccine in allo-HSCT recipients. HED was calculated as pairwise genetic distance between alleles at HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 loci in recipients and their donors. Low anti-spike IgG levels (<30 BAU/mL) were associated with short time from allo-SCT and low donor DPB1-HED, mostly related to donor DPB1 homozygosity. The diversity of donor HLA-DP molecules, assessed by heterozygosity or sequence divergence, may thus impact the efficacy of donor-derived CD4 T cells to sustain vaccine-mediated antibody response in allo-HSCT recipients.
Collapse
Affiliation(s)
- Juliette Villemonteix
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| | - Vincent Allain
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
| | - Emma Verstraete
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Debora Jorge-Cordeiro
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| | - Gérard Socié
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Alienor Xhaard
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Cyrille Feray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, AP-HP, Université Paris-Saclay, FHU Hepatinov, 94800 Villejuif, France
- Institut National de la santé et de la recherche médicale (INSERM) UMR-S 1193, 94800 Villejuif, France
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
| |
Collapse
|
50
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|