1
|
Sanabria-Fernández JA, Lazzari N. Fostering marine resilience through the reduction of anthropogenic pressures in temperate rocky reefs. MARINE POLLUTION BULLETIN 2025; 216:117957. [PMID: 40250100 DOI: 10.1016/j.marpolbul.2025.117957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/21/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Resilience is vital for maintaining the health of temperate coastal systems, especially in the Anthropocene era, where anthropogenic pressures such as pollution, physical impacts, and overfishing pose significant threats. However, the scarcity of studies addressing marine resilience hampers its effective management. To address this issue, we evaluated the resilience of 300 temperate rocky reefs situated in Southern Europe, considering biological, environmental, and anthropogenic factors. We identified 43 top resilient areas recommended for conservation and 39 bottom resilient areas that could benefit from reducing anthropogenic pressures. Given that our findings suggest that anthropogenic pressures unequally influence the resilience of bottom resilient areas, we followed their decreasing order of influence to simulate five management scenarios based on the cumulative reduction of these pressures. While different percentages of reduction in anthropogenic pressures were necessary to significantly enhance resilience in each scenario, we found that, regardless of the approach taken, a comparable percentage of bottom resilient areas-ranging from 17 % to 23 %-could be reclassified as moderate resilient areas. By advancing resilience knowledge in temperate rocky reefs, this research underscores the important role that reducing anthropogenic pressures plays in enhancing resilience but also provides valuable insights for their strategic management.
Collapse
Affiliation(s)
- José A Sanabria-Fernández
- CRETUS - Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Natali Lazzari
- EqualSea Lab-CRETUS, University of Santiago de Compostela, Spain
| |
Collapse
|
2
|
Farrell SP, Petras D, Stincone P, Yiu DS, Burns JA, Pakkir Shah AK, Hartmann AC, Brady DC, Rasher DB. Turf algae redefine the chemical landscape of temperate reefs, limiting kelp forest recovery. Science 2025; 388:876-880. [PMID: 40403055 DOI: 10.1126/science.adt6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/27/2025] [Indexed: 05/24/2025]
Abstract
In temperate regions experiencing rapid ocean warming, kelp forests are being replaced by chemically rich turf algae. However, the extent to which these turf algae alter the surrounding chemical environment or affect the rebound potential of kelp forests (through chemically mediated interactions) remains unknown. Here, we used underwater visual surveys, comprehensive chemical profiling, and laboratory experiments to reveal that turf algae release bioactive compounds into the water that fundamentally alter the reef "chemical landscape" and directly suppress kelp recruitment. Therefore, our study reveals that chemical ecology is critical in shaping modern kelp forest ecosystems and their resilience. Further, it demonstrates that reversing climate-driven state shifts will require not only curbing global carbon emissions but also implementing targeted local interventions that break harmful ecological feedback loops and foster recovery.
Collapse
Affiliation(s)
- Shane P Farrell
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- University of Maine, Walpole, ME, USA
| | - Daniel Petras
- University of California Riverside, Riverside, CA, USA
- University of Tubingen, Tubingen, Germany
| | | | - Dara S Yiu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- University of Maine, Walpole, ME, USA
| | - John A Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Aaron C Hartmann
- Perry Institute for Marine Science, Waitsfield, VT, USA
- Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
3
|
Oros A. Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. J Xenobiot 2025; 15:59. [PMID: 40278164 PMCID: PMC12028879 DOI: 10.3390/jox15020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks.
Collapse
Affiliation(s)
- Andra Oros
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development (NIMRD) "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanta, Romania
| |
Collapse
|
4
|
Arafeh-Dalmau N, Villaseñor-Derbez JC, Schoeman DS, Mora-Soto A, Bell TW, Butler CL, Costa M, Dunga LV, Houskeeper HF, Lagger C, Pantano C, Del Pozo DL, Sink KJ, Sletten J, Vincent T, Micheli F, Cavanaugh KC. Global floating kelp forests have limited protection despite intensifying marine heatwave threats. Nat Commun 2025; 16:3173. [PMID: 40180911 PMCID: PMC11968876 DOI: 10.1038/s41467-025-58054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Kelp forests are one of the earth's most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081-2100) compared to contemporary (2001-2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.
Collapse
Affiliation(s)
- Nur Arafeh-Dalmau
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA.
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA.
- Centre for Biodiversity Conservation, School of the Environment, University of Queensland, St. Lucia, QLD, Australia.
- MasKelp Foundation, Monterey, California, USA.
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland.
| | - Juan Carlos Villaseñor-Derbez
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Department of Environmental Science and Policy, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL, USA
- Frost Institute of Data Science & Computing, University of Miami, Miami, FL, USA
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Alejandra Mora-Soto
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Claire L Butler
- Institute of Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Maycira Costa
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Loyiso V Dunga
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- University of Cape Town, Cape Town, South Africa
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Henry F Houskeeper
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Cristian Lagger
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | | | | | - Kerry J Sink
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Jennifer Sletten
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Timothe Vincent
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Wittyngham SS, Johnson DS. Herbivore Fronts Shape Saltmarsh Plant Traits and Performance. Ecol Evol 2025; 15:e71360. [PMID: 40290394 PMCID: PMC12022777 DOI: 10.1002/ece3.71360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Herbivore fronts can alter plant traits (chemical and/or morphological features) and performance via grazing. Yet, herbivore-driven trait alterations are rarely considered when assessing how these fronts shape ecosystems, despite the critical role that plant performance plays in ecosystem functioning. We evaluated herbivore fronts created by the purple marsh crab, Sesarma reticulatum , as it consumes the cordgrass, Spartina alterniflora , in Virginian salt marshes. Sesarma fronts form at the head of tidal creeks and move inland, creating a denuded mudflat between the tall-form Spartina low marsh (trailing edge) and the short-form Spartina high marsh (leading edge). We quantified Sesarma front migration rate, tested if Sesarma herbivory altered geomorphic processes and Spartina traits at the trailing and leading edges, and examined how these trait changes persisted through the final 8 weeks of the growing season. Sesarma front migration in our region is two times slower than fronts in the Southeast United States, and Spartina retreat rate at the leading edge is greater than the revegetation rate at the trailing edge. Sesarma fronts lowered elevation and decreased sediment shear strength at the trailing edge while having no impact on soil organic matter and bulk density at either edge. At the leading edge, Sesarma grazing reduced Spartina growth traits and defensive ability, and trait changes persisted through the remaining growing season. At the trailing edge, however, Sesarma grazing promoted belowground biomass production and had limited to no effect on growth or defensive traits. We show that herbivore fronts negatively impact saltmarsh plant traits at their leading edge, potentially contributing to front propagation. In contrast, plants at the trailing edge were more resistant to herbivore grazing and may enhance resilience through elevated belowground biomass production. Future work should consider herbivore-driven plant trait alterations in the context of herbivore fronts to better predict ecosystem response and recovery.
Collapse
Affiliation(s)
| | - David S. Johnson
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| |
Collapse
|
6
|
Angelini R, Lima MAL, Lira AS, Lucena-Frédou F, Frédou T, Bertrand A, Giarrizzo T, Steenbeek J, Coll M, Keppeler FW. The projected impacts of climate change and fishing pressure on a tropical marine food web. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106909. [PMID: 39700750 DOI: 10.1016/j.marenvres.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Small-scale fisheries, especially those from developing countries, are vital for millions. Understanding the impact of environmental and human factors on fish stocks and yields and how they might change is crucial to ensure the sustainable use of aquatic resources. We developed an ecosystem model using Ecopath and Ecosim (EwE) to investigate changes in target species biomass and ecosystem attributes over 83 years (2017-2100) caused by different scenarios of fishing pressure and ocean warming in the Brazilian Northeastern continental shelf. The simulations considered three IPCC climate change scenarios (RCP2.6 [0.42 °C], RCP4.5 [1.53 °C], and RCP8.5 [4.02 °C]) and four fishing pressure scenarios: two with increased pressure (10% and 30%) and two with decreased pressure (-10% and -30%). The Ecopath model indicated that the Brazilian Northeastern continental shelf ecosystem is a grazing-based system with high biomass in macroalgae and detritus compartments, supporting a diverse community of consumers. Our simulations projected overall reductions in the biomass of target species, mainly under extreme climate change. Increasing temperatures and fishing efforts reduced the biomass of large predatory species and the food web length in several scenarios. Although projected changes in ecological network and information metrics were of lower magnitude, results predicted declines in production/respiration ratio, material cycling, and ascendency (variable related to trophic specialization, internalization, and material cycling) with climate change. These declines were likely linked to increased respiration rates, metabolic costs, and lower trophic efficiency with elevated temperatures. Together, our results show how climate change and fishing pressure can change the structure of coastal ecosystems, potentially leading to undesirable alternative states for fisheries. Our approach demonstrates the effectiveness of ecosystem-based modeling in projecting likely trajectories of change, which can be especially useful for resource management in data-limited conditions.
Collapse
Affiliation(s)
- Ronaldo Angelini
- TRIATLAS PROJECT - Environmental and Civil Engineering Department, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Maria Alice Leite Lima
- TRIATLAS PROJECT - Environmental and Civil Engineering Department, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Alex Souza Lira
- Fisheries and Aquaculture Department, Federal University of Sergipe, Avenida Marechal Rondon s/n, 49100-000, Aracaju, Sergipe, Brazil
| | - Flávia Lucena-Frédou
- Fisheries and Aquaculture Department, Federal Rural University of Pernambuco, Rua D. Manuel de Medeiros s/n, Dois Irmãos, CEP 5171-900, Recife, Pernambuco, Brazil
| | - Thierry Frédou
- Fisheries and Aquaculture Department, Federal Rural University of Pernambuco, Rua D. Manuel de Medeiros s/n, Dois Irmãos, CEP 5171-900, Recife, Pernambuco, Brazil
| | - Arnaud Bertrand
- Fisheries and Aquaculture Department, Federal Rural University of Pernambuco, Rua D. Manuel de Medeiros s/n, Dois Irmãos, CEP 5171-900, Recife, Pernambuco, Brazil; IMARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Tommaso Giarrizzo
- Instituto de Ciências do Mar (LABOMAR), Federal University of Ceará, Fortaleza, Brazil; Aquatic Ecology Group, Federal University of Pará, Belém, Pará, Brazil
| | - Jeroen Steenbeek
- Ecopath International Initiative Research Association, Barcelona, Spain
| | - Marta Coll
- Ecopath International Initiative Research Association, Barcelona, Spain; Institute of Marine Science, Spanish National Research Council (ICM-CSIC), Passeig Maritim de la Barceloneta, nº 37-49, 08003, Barcelona, Spain
| | - Friedrich Wolfgang Keppeler
- TRIATLAS PROJECT - Environmental and Civil Engineering Department, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; Instituto de Ciências do Mar (LABOMAR), Federal University of Ceará, Fortaleza, Brazil; Aquatic Ecology Group, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Siegel K, Dee LE. Foundations and Future Directions for Causal Inference in Ecological Research. Ecol Lett 2025; 28:e70053. [PMID: 39831541 DOI: 10.1111/ele.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel observational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discussing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key challenges; the application of causal inference in experimental and quasi-experimental study designs; appropriate interpretation of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements and trade-offs between internal and external validity posed by different designs. We highlight that these designs generally prioritise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate causal inference with synthesis science and meta-analysis and expand the spatiotemporal scales at which causal inference is possible. We advocate for ecology as a field to collectively define best practices for causal inference.
Collapse
Affiliation(s)
- Katherine Siegel
- Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, Colorado, USA
- Department of Geography, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Laura E Dee
- Department of Ecology & Evolutionary Biology, University of Colorado-Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Kumagai JA, Goodman MC, Villaseñor‐Derbez JC, Schoeman DS, Cavanuagh KC, Bell TW, Micheli F, De Leo G, Arafeh‐Dalmau N. Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17620. [PMID: 39663647 PMCID: PMC11635138 DOI: 10.1111/gcb.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014-2016 marine heatwave regime that occurred in the region. We also leverage a 22-year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three-level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators-lobster and sheephead-are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate-adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region-specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate-change impacts given their local ecological contexts, and what additional measures may be needed.
Collapse
Affiliation(s)
- Joy A. Kumagai
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Maurice C. Goodman
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Juan Carlos Villaseñor‐Derbez
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiCoral GablesFloridaUSA
- Frost Institute for Data Science & ComputingUniversity of MiamiCoral GablesFloridaUSA
| | - David S. Schoeman
- Ocean Futures Research Cluster, School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- Centre for African Conservation Ecology, Department of ZoologyNelson Mandela UniversityGqeberhaSouth Africa
| | - Kyle C. Cavanuagh
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Tom W. Bell
- Department of Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Fiorenza Micheli
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Stanford Center for Ocean SolutionsStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Giulio De Leo
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Nur Arafeh‐Dalmau
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Centre for Biodiversity Conservation, School of the EnvironmentUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
9
|
Bernal-Ibáñez A, Cacabelos E, Triay-Portella R, Ramalhosa P, Gestoso I. Assessing climatic conditions and biotic interactions shaping the success of Cystoseira foeniculacea early-life stages. JOURNAL OF PHYCOLOGY 2024; 60:1485-1497. [PMID: 39444142 DOI: 10.1111/jpy.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Early-life stages of canopy-forming macroalgae are critical for the maintenance of natural populations and the success of restoration actions. Unfortunately, the abiotic conditions and biotic interactions shaping the success of these stages have received less attention than the interactions shaping the success of adults. Here, we combined field and mesocosm experiments to explore the effects of temperature, herbivory, and canopy presence on the development of early-life stages of the brown seaweed Cystoseira foeniculacea. We assessed these effects by examining changes in recruit density and size. After recruiting zygotes under laboratory conditions, we conducted one laboratory and three field experiments. In the first field experiment, the density of recruits decreased over time in all rockpools and was negatively affected by rising temperatures and turf cover. Additionally, a marine heatwave (MHW; 11 days >25°C) was recorded in the donor pools, producing strong decay in the density of transplanted recruits and a significant reduction of the mature canopy. The second field experiment tested the survival of recruits based on their positioning within the canopy. We observed a higher density of recruits when placed at the edge or outside the canopy compared to recruits placed under the canopy. In the third field experiment, an herbivory-exclusion experiment, we show how density of recruits decreased in less than 48 h in noncaged treatments. In the laboratory, we conducted a thermotolerance experiment under controlled conditions, exposing the recruits to 19, 22, 25, 28, and 31°C for 7 weeks to assess thermal impacts on their survival and growth. Temperatures above the 25°C threshold reduced the density and size of the recruits. This study sheds light on the performance of the early-life stages of a Cystoseira spp. in Macaronesia, showing a low survival ratio against the current pressures even in the context of the potential refuge provided by the intertidal rockpools.
Collapse
Affiliation(s)
- Alejandro Bernal-Ibáñez
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Eva Cacabelos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Hydrosphere-Environmental Laboratory for the Study of Aquatic Ecosystems, Vigo, Spain
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Vigo, Spain
| | - Raul Triay-Portella
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Department of Biology, Faculty of Marine and Environmental Sciences & Marine Research Institute (INMAR), Universidad de Cádiz (UCA), Puerto Real, Cádiz, Spain
- Smithsonian Environmental Research Center (SERC), Edgewater, Maryland, USA
| |
Collapse
|
10
|
Temple AJ, Berggren P, Jiddawi N, Wambiji N, Poonian CNS, Salmin YN, Berumen ML, Stead SM. Linking extinction risk to the economic and nutritional value of sharks in small-scale fisheries. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14292. [PMID: 38752470 PMCID: PMC11589013 DOI: 10.1111/cobi.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/27/2024]
Abstract
To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya's and Zanzibar's small-scale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6-89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within small-scale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken.
Collapse
Affiliation(s)
- Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
- Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Narriman Jiddawi
- Institute of Marine SciencesUniversity of Dar es SalaamZanzibarUnited Republic of Tanzania
| | - Nina Wambiji
- Kenya Marine and Fisheries Research InstituteMombasaKenya
| | | | - Yussuf N. Salmin
- Tropical Research Centre for Oceanography, Environment and Natural ResourcesThe State University of ZanzibarZanzibarUnited Republic of Tanzania
| | - Michael L. Berumen
- Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Selina M. Stead
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
- Faculty of EnvironmentUniversity of LeedsLeedsUK
- Australian Institute of Marine SciencesTownsvilleQueenslandAustralia
| |
Collapse
|
11
|
Eger AM, Blain CO, Brown AL, Chan SSW, Miller KI, Vergés A. Kelp forests versus urchin barrens: a comparison of ecosystem functions and services provided by two alternative stable marine habitats. Proc Biol Sci 2024; 291:20241539. [PMID: 39501886 PMCID: PMC11538989 DOI: 10.1098/rspb.2024.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Kelp forests and urchin barrens are two stable states in rocky reef ecosystems, each providing unique ecosystem functions like habitat for marine species and primary production. While studies frequently show that kelp forests support higher levels of some ecosystem functions than urchin barren habitats, no research has yet compared average differences. To address this gap, we first conducted a meta-analysis of studies that directly compared the ecosystem functions, services and general attributes provided by each habitat. We also compiled individual studies on ecosystem properties from both habitats and qualitatively assessed the benefits provided. The meta-analysis included 388 observations from 55 studies across 14 countries. We found that kelp forests consistently delivered higher levels of ecosystem properties such as biodiversity, species richness, abalone abundance and sea urchin roe quality. Urchin barrens supported higher urchin density and crustose coralline algae cover. The qualitative review further supported these findings, showing that kelp forests ranked higher in 11 out of 15 ecosystem properties. These findings can help guide decisions on managing rocky reef habitats and demonstrate the benefits of preserving or expanding kelp forests.
Collapse
Affiliation(s)
- Aaron M. Eger
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
- Kelp Forest Alliance, Sydney2034, Australia
| | - Caitlin O. Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - Amelia L. Brown
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Sharon S. W. Chan
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Kelsey I. Miller
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
| | - Adriana Vergés
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| |
Collapse
|
12
|
Earp HS, Smale DA, Almond PM, Catherall HJN, Gouraguine A, Wilding C, Moore PJ. Temporal variation in the structure, abundance, and composition of Laminaria hyperborea forests and their associated understorey assemblages over an intense storm season. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106652. [PMID: 39088885 DOI: 10.1016/j.marenvres.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Kelp species function as important foundation organisms in coastal marine ecosystems where they provide biogenic habitat and ameliorate environmental conditions, often facilitating the development of diverse understorey assemblages. The structure of kelp forests is influenced by a variety of environmental factors, changes in which can result in profound shifts in ecological structure and functioning. Intense storm-induced wave action in particular, can severely impact kelp forest ecosystems. Given that storms are anticipated to increase in frequency and intensity in response to anthropogenic climate change, it is critical to understand their potential impacts on kelp forest ecosystems. During the 2021/22 northeast Atlantic storm season, the United Kingdom (UK) was subject to several intense storms, of which the first and most severe was Storm Arwen. Due to the unusual northerly wind direction, the greatest impacts of Storm Arwen were felt along the northeast coast of the UK where wind gusts exceeded 90 km/h, and inshore significant wave heights of 7.2 m and wave periods of 9.3 s were recorded. Here, we investigated temporal and spatial variation in the structure of L. hyperborea forests and associated understorey assemblages along the northeast coast of the UK over the 2021/22 storm season. We found significant changes in the cover, density, length, biomass, and age structure of L. hyperborea populations and the composition of understorey assemblages following the storm season, particularly at our most north facing site. We suggest continuous monitoring of these systems to further our understanding of temporal variation and potential recovery trajectories, alongside enhanced management to promote resilience to future perturbations.
Collapse
Affiliation(s)
- Hannah S Earp
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK; The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK; Institute of Marine Research, 4817 His, Norway.
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Peter M Almond
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Harry J N Catherall
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Adam Gouraguine
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Catherine Wilding
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Pippa J Moore
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
13
|
Suskiewicz TS, Byrnes JEK, Steneck RS, Russell R, Wilson CJ, Rasher DB. Ocean warming undermines the recovery resilience of New England kelp forests following a fishery-induced trophic cascade. Ecology 2024; 105:e4334. [PMID: 38887829 DOI: 10.1002/ecy.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 06/20/2024]
Abstract
Ecological theory predicts that kelp forests structured by trophic cascades should experience recovery and persistence of their foundation species when herbivores become rare. Yet, climate change may be altering the outcomes of top-down forcing in kelp forests, especially those located in regions that have rapidly warmed in recent decades, such as the Gulf of Maine. Here, using data collected annually from 30+ sites spanning >350 km of coastline, we explored the dynamics of Maine's kelp forests in the ~20 years after a fishery-induced elimination of sea urchin herbivores. Although forests (Saccharina latissima and Laminaria digitata) had broadly returned to Maine in the late 20th century, we found that forests in northeast Maine have since experienced slow but significant declines in kelp, and forest persistence in the northeast was juxtaposed by a rapid, widespread collapse in the southwest. Forests collapsed in the southwest apparently because ocean warming has-directly and indirectly-made this area inhospitable to kelp. Indeed, when modeling drivers of change using causal techniques from econometrics, we discovered that unusually high summer seawater temperatures the year prior, unusually high spring seawater temperatures, and high sea urchin densities each negatively impacted kelp abundance. Furthermore, the relative power and absolute impact of these drivers varied geographically. Our findings reveal that ocean warming is redefining the outcomes of top-down forcing in this system, whereby herbivore removal no longer predictably leads to a sustained dominance of foundational kelps but instead has led to a waning dominance (northeast) or the rise of a novel phase state defined by "turf" algae (southwest). Such findings indicate that limiting climate change and managing for low herbivore abundances will be essential for preventing further loss of the vast forests that still exist in northeast Maine. They also more broadly highlight that climate change is "rewriting the rules" of nature, and thus that ecological theory and practice must be revised to account for shifting species and processes.
Collapse
Affiliation(s)
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Walpole, Maine, USA
| | - Robert Russell
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Carl J Wilson
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
14
|
Sun Y, Sun Z, Zhang Y, Qiao Q. How can governments and fishermen collaborate to participate in a fishing ban for ecological restoration? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:120958. [PMID: 38744206 DOI: 10.1016/j.jenvman.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
To safeguard aquatic ecosystems and fishery resources while facilitating cooperative engagement between local governments and fishermen, an evolutionary game model featuring both stakeholders has been constructed in this study. The model examines the degree of compliance with ecological restoration policies linked to fishing bans, as well as the adaptive strategies of different types of fishermen with varied incentives while simulating the ecological restoration policy under diverse scenarios. The findings suggest that: (1) Compliance with the fishing ban policy among fishermen is determined by their economic interests, environmental preferences, and government regulations, while its enforcement by local authorities is influenced by regulatory costs, political performance, and reputation. (2) Variations in the ecological restoration policy of fishing bans result from several factors, including punitive measures and compensation. The higher the penalty, the greater the chance of compliance among fishermen, and the higher the restoration degree of the watershed ecosystem. Conversely, the higher the compensation, the more satisfied the fishermen are with the fishing ban policy, and the smoother the transformation of their livelihoods. (3) To enhance the effectiveness and sustainability of fishing bans, it is essential to consider the interests of multiple stakeholders and adopt a coordination mechanism that facilitates the design of a reasonable and effective incentive-compatible system, thereby increasing the fairness and acceptability of the policy. This study provides a new theoretical framework and methodology applicable to ecological restoration policies for fishery closures on a global scale, accompanied by robust data support and theoretical guidance for developing and implementing fishery closure policies.
Collapse
Affiliation(s)
- Yong Sun
- School of Public Administration, Guangzhou University, Guangzhou 510006, China; Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China.
| | - Zhongrui Sun
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy (Jiaxing), Beijing Institute of Technology, Jiaxing 314001, China.
| | - Yanmei Zhang
- School of Public Administration, Guangzhou University, Guangzhou 510006, China.
| | - Qin Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012,China.
| |
Collapse
|
15
|
Hildebrand L, Derville S, Hildebrand I, Torres LG. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales. Sci Rep 2024; 14:9815. [PMID: 38684814 PMCID: PMC11059377 DOI: 10.1038/s41598-024-59964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.
Collapse
Affiliation(s)
- Lisa Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA.
| | - Solène Derville
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), Nouméa, New Caledonia
| | - Ines Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| |
Collapse
|
16
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
17
|
Amstutz A, Firth LB, Foggo A, Spicer JI, Hanley ME. The north-south divide? Macroalgal functional trait diversity and redundancy varies with intertidal aspect. ANNALS OF BOTANY 2024; 133:145-152. [PMID: 37971357 PMCID: PMC10921827 DOI: 10.1093/aob/mcad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Marine macroalgae ('seaweeds') are critical to coastal ecosystem structure and function, but also vulnerable to the many environmental changes associated with anthropogenic climate change (ACC). The local habitat conditions underpinning observed and predicted ACC-driven changes in intertidal macroalgal communities are complex and probably site-specific and operate in addition to more commonly reported regional factors such as sea surface temperatures. METHODS We examined how the composition and functional trait expression of macroalgal communities in SW England varied with aspect (i.e. north-south orientation) at four sites with opposing Equator- (EF) and Pole-facing (PF) surfaces. Previous work at these sites had established that average annual (low tide) temperatures vary by 1.6 °C and that EF-surfaces experience six-fold more frequent extremes (i.e. >30 °C). KEY RESULTS PF macroalgal communities were consistently more taxon rich; 11 taxa were unique to PF habitats, with only one restricted to EF. Likewise, functional richness and dispersion were greater on PF-surfaces (dominated by algae with traits linked to rapid resource capture and utilization, but low desiccation tolerance), although differences in both taxon and functional richness were probably driven by the fact that less diverse EF-surfaces were dominated by desiccation-tolerant fucoids. CONCLUSIONS Although we cannot disentangle the influence of temperature variation on algal ecophysiology from the indirect effects of aspect on species interactions (niche pre-emption, competition, grazing, etc.), our study system provides an excellent model for understanding how environmental variation at local scales affects community composition and functioning. By virtue of enhanced taxonomic diversity, PF-aspects supported higher functional diversity and, consequently, greater effective functional redundancy. These differences may imbue PF-aspects with resilience against environmental perturbation, but if predicted increases in global temperatures are realized, some PF-sites may shift to a depauperate, desiccation-tolerant seaweed community with a concomitant loss of functional diversity and redundancy.
Collapse
Affiliation(s)
- Axelle Amstutz
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - John I Spicer
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
18
|
Johnson CR, Dudgeon S. Understanding change in benthic marine systems. ANNALS OF BOTANY 2024; 133:131-144. [PMID: 38079203 PMCID: PMC10921837 DOI: 10.1093/aob/mcad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/10/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND The unprecedented influence of human activities on natural ecosystems in the 21st century has resulted in increasingly frequent large-scale changes in ecological communities. This has heightened interest in understanding such changes and effective means to manage them. Accurate interpretation of state changes is challenging because of difficulties translating theory to empirical study, and most theory emphasizes systems near equilibrium, which may not be relevant in rapidly changing environments. SCOPE We review concepts of long-transient stages and phase shifts between stable community states, both smooth, continuous and discontinuous shifts, and the relationships among them. Three principal challenges emerge when applying these concepts. The first is how to interpret observed change in communities - distinguishing multiple stable states from long transients, or reversible shifts in the phase portrait of single attractor systems. The second is how to quantify the magnitudes of three sources of variability that cause switches between community states: (1) 'noise' in species' abundances, (2) 'wiggle' in system parameters and (3) trends in parameters that affect the topography of the basin of attraction. The third challenge is how variability of the system shapes evidence used to interpret community changes. We outline a novel approach using critical length scales to potentially address these challenges. These concepts are highlighted by a review of recent examples involving macroalgae as key players in marine benthic ecosystems. CONCLUSIONS Real-world examples show three or more stable configurations of ecological communities may exist for a given set of parameters, and transient stages may persist for long periods necessitating their respective consideration. The characteristic length scale (CLS) is a useful metric that uniquely identifies a community 'basin of attraction', enabling phase shifts to be distinguished from long transients. Variabilities of CLSs and time series data may likewise provide proactive management measures to mitigate phase shifts and loss of ecosystem services. Continued challenges remain in distinguishing continuous from discontinuous phase shifts because their respective dynamics lack unique signatures.
Collapse
Affiliation(s)
- Craig R Johnson
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, Australia 7001, and
| | - Steve Dudgeon
- Department of Biology, California State University, Northridge, CA 91330-8303, USA
| |
Collapse
|
19
|
Castro LC, Vergés A, Straub SC, Campbell AH, Coleman MA, Wernberg T, Steinberg P, Thomas T, Dworjanyn S, Cetina-Heredia P, Roughan M, Marzinelli EM. Effect of marine heatwaves and warming on kelp microbiota influence trophic interactions. Mol Ecol 2024; 33:e17267. [PMID: 38230446 DOI: 10.1111/mec.17267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata's microbiota in sustained warming and MHW treatments was enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium's microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum's consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia's microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species' interactions in warming oceans.
Collapse
Affiliation(s)
- Louise C Castro
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Coastal and Regional Oceanography Lab, School of Mathematics and Statistics, The University of New South Wales, Sydney, New South Wales, Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Sandra C Straub
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Melinda A Coleman
- Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Symon Dworjanyn
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Paulina Cetina-Heredia
- Coastal and Regional Oceanography Lab, School of Mathematics and Statistics, The University of New South Wales, Sydney, New South Wales, Australia
| | - Moninya Roughan
- Coastal and Regional Oceanography Lab, School of Mathematics and Statistics, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ezequiel M Marzinelli
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Smith JG, Malone D, Carr MH. Consequences of kelp forest ecosystem shifts and predictors of persistence through multiple stressors. Proc Biol Sci 2024; 291:20232749. [PMID: 38320605 PMCID: PMC10846955 DOI: 10.1098/rspb.2023.2749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Ecological communities can be stable over multiple generations, or rapidly shift into structurally and functionally different configurations. In kelp forest ecosystems, overgrazing by sea urchins can abruptly shift forests into alternative states that are void of macroalgae and primarily dominated by actively grazing sea urchins. Beginning in 2014, a sea urchin outbreak along the central coast of California resulted in a patchy mosaic of remnant forests interspersed with sea urchin barrens. In this study, we used a 14-year subtidal monitoring dataset of invertebrates, algae, and fishes to explore changes in community structure associated with the loss of forests. We found that the spatial mosaic of barrens and forests resulted in a region-wide shift in community structure. However, the magnitude of kelp forest loss and taxonomic-level consequences were spatially heterogeneous. Taxonomic diversity declined across the region, but there were no declines in richness for any group, suggesting compositional redistribution. Baseline ecological and environmental conditions, and sea urchin behaviour, explained the persistence of forests through multiple stressors. These results indicate that spatial heterogeneity in preexisting ecological and environmental conditions can explain patterns of community change.
Collapse
Affiliation(s)
- Joshua G. Smith
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Daniel Malone
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Mark H. Carr
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
21
|
Baliwe NG, Pfaff MC, Branch GM. Effects of harvesting and an invasive mussel on intertidal rocky shore communities based on historical and spatial comparisons. PLoS One 2024; 19:e0294404. [PMID: 38330047 PMCID: PMC10852263 DOI: 10.1371/journal.pone.0294404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/02/2023] [Indexed: 02/10/2024] Open
Abstract
Intertidal rocky shores are the most accessible marine habitats and therefore heavily impacted by harvesting. In recent years, they have also been increasingly invaded by alien species, which compounds the effects of harvesting on rocky shore community composition and functioning. Recent survey data, combined with historical data from 1970, were used to assess temporal changes over the intervening period in rocky shore communities at two sites (Wireless Point and Wireless Island). Three kinds of changes emerged: (1) the appearance of alien species; (2) the effects of increased harvesting pressure; and (3) the direct and indirect effects of these changes on other species. A striking result was transformation of mid-shore zones on exposed shores by the appearance of the invasive Mediterranean mussel Mytilus galloprovincialis, and the indirect effects of this on the demography and vertical zonation patterns of the granular limpet Scutellastra granularis. Adult limpets have become excluded by the mussel, whereas juveniles find a secondary home on the shells of the mussel and their abundance has increased. To further disentangle the effects of harvesting from those of alien invasions, a spatial comparison was made between two currently unharvested no-take sites (Scarborough South and Scarborough North) and two regularly harvested sites (Kommetjie and Wireless Point). Harvesting has substantially depleted the granite limpet Cymbula granatina and Argenville's limpet Scutellastra argenvillei. This has led to the proliferation of opportunistic seaweeds, such as Ulva spp. The dual effects of alien invasive species and over-harvesting have major ecosystem effects but do not necessarily diminish biodiversity because the alternative habitats that have developed provide opportunities for colonisation by additional species.
Collapse
Affiliation(s)
- Ndiviwe G. Baliwe
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Rondebosch, South Africa
- Cape Research Centre, SANParks Scientific Services, Cape Town, South Africa
- Oceans and Coastal Research, Department of Forestry, Fisheries and Environment, Cape Town, South Africa
| | - Maya C. Pfaff
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Rondebosch, South Africa
| | - George M. Branch
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
22
|
Ling SD, Keane JP. Climate-driven invasion and incipient warnings of kelp ecosystem collapse. Nat Commun 2024; 15:400. [PMID: 38195631 PMCID: PMC10776680 DOI: 10.1038/s41467-023-44543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Climate change is progressively redistributing species towards the Earth's poles, indicating widespread potential for ecosystem collapse. Detecting early-warning-signals and enacting adaptation measures is therefore a key imperative for humanity. However, detecting early-warning signals has remained elusive and has focused on exceptionally high-frequency and/ or long-term time-series, which are generally unattainable for most ecosystems that are under-sampled and already impacted by warming. Here, we show that a catastrophic phase-shift in kelp ecosystems, caused by range-extension of an overgrazing sea urchin, also propagates poleward. Critically, we show that incipient spatial-pattern-formations of kelp overgrazing are detectable well-in-advance of collapse along temperate reefs in the ocean warming hotspot of south-eastern Australia. Demonstrating poleward progression of collapse over 15 years, these early-warning 'incipient barrens' are now widespread along 500 km of coast with projections indicating that half of all kelp beds within this range-extension region will collapse by ~2030. Overgrazing was positively associated with deep boulder-reefs, yet negatively associated with predatory lobsters and subordinate abalone competitors, which have both been intensively fished. Climate-driven collapse of ecosystems is occurring; however, by looking equatorward, space-for-time substitutions can enable practical detection of early-warning spatial-pattern-formations, allowing local climate adaptation measures to be enacted in advance.
Collapse
Affiliation(s)
- Scott D Ling
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia.
| | - John P Keane
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia
| |
Collapse
|
23
|
Peleg O, Blain CO, Shears NT. Long-term marine protection enhances kelp forest ecosystem stability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2895. [PMID: 37282356 DOI: 10.1002/eap.2895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.
Collapse
Affiliation(s)
- Ohad Peleg
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Caitlin O Blain
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Nick T Shears
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. Urchin grazing of kelp gametophytes in warming oceans. JOURNAL OF PHYCOLOGY 2023; 59:838-855. [PMID: 37432133 DOI: 10.1111/jpy.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.
Collapse
Affiliation(s)
- Reina J Veenhof
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Curtis Champion
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
25
|
Wear B, O'Connor NE, Schmid MJ, Jackson MC. What does the future look like for kelp when facing multiple stressors? Ecol Evol 2023; 13:e10203. [PMID: 37384243 PMCID: PMC10293785 DOI: 10.1002/ece3.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
As primary producers and ecosystem engineers, kelp (generally Order Laminariales) are ecologically important, and their decline could have far-reaching consequences. Kelp are valuable in forming habitats for fish and invertebrates and are crucial for adaptation to climate change by creating coastal defenses and in providing key functions, such as carbon sequestration and food provision. Kelp are threatened by multiple stressors, such as climate change, over-harvesting of predators, and pollution. In this opinion paper, we discuss how these stressors may interact to affect kelp, and how this varies under different contexts. We argue that more research that bridges kelp conservation and multiple stressor theory is needed and outline key questions that should be addressed as a priority. For instance, it is important to understand how previous exposure (either to earlier generations or life stages) determines responses to emerging stressors, and how responses in kelp scale up to alter food webs and ecosystem functioning. By increasing the temporal and biological complexity of kelp research in this way, we will improve our understanding allowing better predictions. This research is essential for the effective conservation and potential restoration of kelp in our rapidly changing world.
Collapse
Affiliation(s)
- Brigitte Wear
- Department of BiologyUniversity of OxfordOxfordUK
- Somerville CollegeOxfordUK
| | - Nessa E. O'Connor
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
| | - Matthias J. Schmid
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
- School of Natural ScienceUniversity of GalwayGalwayIreland
| | | |
Collapse
|
26
|
DiFiore BP, Stier AC. Variation in body size drives spatial and temporal variation in lobster-urchin interaction strength. J Anim Ecol 2023; 92:1075-1088. [PMID: 37038648 DOI: 10.1111/1365-2656.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross-taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size-scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster-urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size-scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size-relative to density-accounted for up to 87% of the spatio-temporal variation in interaction strength. However, general size-scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size-frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species-specific estimates for the scaling of interaction strength with body size, rather than general size-scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.
Collapse
Affiliation(s)
- Bartholomew P DiFiore
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, 93116, USA
| |
Collapse
|
27
|
Miller MGR, Reimer JD, Sommer B, Cook KM, Pandolfi JM, Obuchi M, Beger M. Temperate functional niche availability not resident-invader competition shapes tropicalisation in reef fishes. Nat Commun 2023; 14:2181. [PMID: 37069145 PMCID: PMC10110547 DOI: 10.1038/s41467-023-37550-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Temperate reefs are at the forefront of warming-induced community alterations resulting from poleward range shifts. This tropicalisation is exemplified and amplified by tropical species' invasions of temperate herbivory functions. However, whether other temperate ecosystem functions are similarly invaded by tropical species, and by what drivers, remains unclear. We examine tropicalisation footprints in nine reef fish functional groups using trait-based analyses and biomass of 550 fish species across tropical to temperate gradients in Japan and Australia. We discover that functional niches in transitional communities are asynchronously invaded by tropical species, but with congruent invasion schedules for functional groups across the two hemispheres. These differences in functional group tropicalisation point to habitat availability as a key determinant of multi-species range shifts, as in the majority of functional groups tropical and temperate species share functional niche space in suitable habitat. Competition among species from different thermal guilds played little part in limiting tropicalisation, rather available functional space occupied by temperate species indicates that tropical species can invade. Characterising these drivers of reef tropicalisation is pivotal to understanding, predicting, and managing marine community transformation.
Collapse
Affiliation(s)
- Mark G R Miller
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - James D Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Katie M Cook
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Water and Atmosphere Research, Hamilton, New Zealand
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Masami Obuchi
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Endo Shell Museum, 1175 Manatsuru, Ashigarashimo-gun, Manazuru-machi, Kanagawa, 259-0201, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Centre for Biodiversity Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
28
|
Bell TW, Cavanaugh KC, Saccomanno VR, Cavanaugh KC, Houskeeper HF, Eddy N, Schuetzenmeister F, Rindlaub N, Gleason M. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS One 2023; 18:e0271477. [PMID: 36952444 PMCID: PMC10035835 DOI: 10.1371/journal.pone.0271477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts.
Collapse
Affiliation(s)
- Tom W. Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Kyle C. Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Katherine C. Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | - Henry F. Houskeeper
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | - Norah Eddy
- The Nature Conservancy, Sacramento, California, United States of America
| | | | - Nathaniel Rindlaub
- The Nature Conservancy, Sacramento, California, United States of America
| | - Mary Gleason
- The Nature Conservancy, Sacramento, California, United States of America
| |
Collapse
|
29
|
Edgar GJ, Stuart-Smith RD, Heather FJ, Barrett NS, Turak E, Sweatman H, Emslie MJ, Brock DJ, Hicks J, French B, Baker SC, Howe SA, Jordan A, Knott NA, Mooney P, Cooper AT, Oh ES, Soler GA, Mellin C, Ling SD, Dunic JC, Turnbull JW, Day PB, Larkin MF, Seroussi Y, Stuart-Smith J, Clausius E, Davis TR, Shields J, Shields D, Johnson OJ, Fuchs YH, Denis-Roy L, Jones T, Bates AE. Continent-wide declines in shallow reef life over a decade of ocean warming. Nature 2023; 615:858-865. [PMID: 36949201 DOI: 10.1038/s41586-023-05833-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2023] [Indexed: 03/24/2023]
Abstract
Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.
Collapse
Affiliation(s)
- Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia.
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Freddie J Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Hugh Sweatman
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Danny J Brock
- Marine Science Program, Department for Environment and Water, Adelaide, South Australia, Australia
| | - Jamie Hicks
- Marine Science Program, Department for Environment and Water, Adelaide, South Australia, Australia
| | - Ben French
- Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Susan C Baker
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Alan Jordan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia
| | - Nathan A Knott
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia
| | - Peter Mooney
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Antonia T Cooper
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Elizabeth S Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - German A Soler
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jillian C Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John W Turnbull
- University of Sydney, SOLES, Camperdown, New South Wales, Australia
| | - Paul B Day
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Meryl F Larkin
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Yanir Seroussi
- Underwater Research Group of Queensland, Yeerongpilly, Queensland, Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Ella Clausius
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom R Davis
- Fisheries Research, NSW Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Joe Shields
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Derek Shields
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Olivia J Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yann Herrera Fuchs
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Lara Denis-Roy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tyson Jones
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Amanda E Bates
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
30
|
Illa‐López L, Aubach‐Masip À, Alcoverro T, Ceccherelli G, Piazzi L, Kleitou P, Santamaría J, Verdura J, Sanmartí N, Mayol E, Buñuel X, Minguito‐Frutos M, Bulleri F, Boada J. Nutrient conditions determine the strength of herbivore-mediated stabilizing feedbacks in barrens. Ecol Evol 2023; 13:e9929. [PMID: 36969938 PMCID: PMC10030269 DOI: 10.1002/ece3.9929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Abiotic environmental conditions can significantly influence the way species interact. In particular, plant-herbivore interactions can be substantially dependent on temperature and nutrients. The overall product of these relationships is critical for the fate and stability of vegetated ecosystems like marine forests. The last few decades have seen a rapid spread of barrens on temperate rocky reefs mainly as a result of overgrazing. The ecological feedbacks that characterize the barren state involve a different set of interactions than those occurring in vegetated habitats. Reversing these trends requires a proper understanding of the novel feedbacks and the conditions under which they operate. Here, we explored the role of a secondary herbivore in reinforcing the stability of barrens formed by sea urchin overgrazing under different nutrient conditions. Combining comparative and experimental studies in two Mediterranean regions characterized by contrasting nutrient conditions, we assessed: (i) if the creation of barren areas enhances limpet abundance, (ii) the size-specific grazing impact by limpets, and (iii) the ability of limpets alone to maintain barrens. Our results show that urchin overgrazing enhanced limpet abundance. The effects of limpet grazing varied with nutrient conditions, being up to five times more intense under oligotrophic conditions. Limpets were able to maintain barrens in the absence of sea urchins only under low-nutrient conditions, enhancing the stability of the depauperate state. Overall, our study suggests a greater vulnerability of subtidal forests in oligotrophic regions of the Mediterranean and demonstrates the importance of environment conditions in regulating feedbacks mediated by plant-herbivore interactions.
Collapse
Affiliation(s)
- Laia Illa‐López
- Institut de Ciències del Mar (ICM_CSIC)Passeig Marítim de la BarcelonetaBarcelonaSpain
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
| | - Àlex Aubach‐Masip
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Nature Conservation FoundationMysoreKarnatakaIndia
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, FisicheMatematiche e NaturaliUniversità di SassariSassariItaly
| | - Luigi Piazzi
- Dipartimento di Scienze Chimiche, FisicheMatematiche e NaturaliUniversità di SassariSassariItaly
| | | | | | - Jana Verdura
- Université Côte d'Azur, CNRSUMR 7035 ECOSEASNiceFrance
- Federative Research Institute ‐ Marine ResourcesUniversité Côte d'AzurNiceFrance
| | - Neus Sanmartí
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Elvira Mayol
- Institut Mediterrani d'Estudis Avançats (IMEDEA‐CSIC)EsporlesSpain
| | - Xavi Buñuel
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | | | - Fabio Bulleri
- Dipartimento di BiologiaUniversità di PisaCoNISMaPisaItaly
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Laboratorie d'Océanographie de Villefranche‐sur‐MerCNRSSorbonne UniversitéVillefranche sur merFrance
| |
Collapse
|
31
|
Day JK, Knott NA, Swadling D, Ayre D, Huggett M, Gaston T. Non-lethal sampling does not misrepresent trophic level or dietary sources for Sagmariasus verreauxi (eastern rock lobster). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9435. [PMID: 36409295 PMCID: PMC10078346 DOI: 10.1002/rcm.9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Isotope analysis can be used to investigate the diets of predators based on assimilation of nitrogen and carbon isotopes from prey. Recent work has shown that tissues taken from legs, antennae or abdomen of lobsters can give different indications of diet, but this has never been evaluated for Sagmariasus verreauxi (eastern rock lobster). Work is now needed to prevent erroneous conclusions being drawn about lobster food webs, and undertaking this work could lead to developing non-lethal sampling methodologies. Non-lethal sampling for lobsters is valuable both ethically and for areas of conservation significance such as marine reserves. METHOD We evaluated this by dissecting 76 lobsters and comparing δ13 C and δ15 N isotope values in antennae, leg and abdomen tissue from the same individuals ranging from 104 to 137 mm carapace length. Stable isotope values were determined using a Europa EA GSL elemental analyser coupled with Hydra 20-20 Isoprime IRMS. RESULTS We found the abdomen δ13 C values to be lower than other tissues by 0.3 ± 0.2‰ for antennae tissue and 0.1 ± 0.2‰ δ13 C for leg tissues, whereas for δ15 N, no significant difference between tissues was observed. There was no significant effect of lobster size or sex, though we did observe interactions between month and tissue type, indicating that differences may be seasonal. Importantly, the detected range of isotopic variability between tissues is within the range of uncertainty used for discrimination factors in isotopic Bayesian modelling of 0‰-1.0‰ for δ13 C and 3.0‰-4.0‰ for δ15 N. CONCLUSIONS We show that S. verreauxi can be sampled non-lethally with mathematical corrections applied for δ13 C, whereas any tissue is suitable for δ15 N. Our results indicate that a walking leg is most favourable and would also be the least intrusive for the lobster. The application of non-lethal sampling provides avenues for the contribution of citizen science to understanding lobster food webs and to undertake fieldwork in ecologically sensitive areas such as marine reserves.
Collapse
Affiliation(s)
- Jeremy Karl Day
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
- NSW Department of Primary IndustriesFisheries ResearchHuskissonNew South WalesAustralia
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nathan Aaron Knott
- NSW Department of Primary IndustriesFisheries ResearchHuskissonNew South WalesAustralia
| | - Daniel Swadling
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - David Ayre
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Megan Huggett
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| | - Troy Gaston
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| |
Collapse
|
32
|
Ziegler SL, Johnson JM, Brooks RO, Johnston EM, Mohay JL, Ruttenberg BI, Starr RM, Waltz GT, Wendt DE, Hamilton SL. Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities. Sci Rep 2023; 13:1405. [PMID: 36697490 PMCID: PMC9876911 DOI: 10.1038/s41598-023-28507-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.
Collapse
Affiliation(s)
- Shelby L Ziegler
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA. .,Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.
| | - Jasmin M Johnson
- Department of Marine Science, California State University Monterey Bay, Seaside, CA, 93955, USA
| | - Rachel O Brooks
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Erin M Johnston
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Jacklyn L Mohay
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Benjamin I Ruttenberg
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Grant T Waltz
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dean E Wendt
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| |
Collapse
|
33
|
Santana-Garcon J, Bennett S, Marbà N, Vergés A, Arthur R, Alcoverro T. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Proc Biol Sci 2023; 290:20221744. [PMID: 36629100 PMCID: PMC9832549 DOI: 10.1098/rspb.2022.1744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Climate-driven species redistributions are reshuffling the composition of marine ecosystems. How these changes alter ecosystem functions, however, remains poorly understood. Here we examine how impacts of herbivory change across a gradient of tropicalization in the Mediterranean Sea, which includes a steep climatic gradient and marked changes in plant nutritional quality and fish herbivore composition. We quantified individual feeding rates and behaviour of 755 fishes of the native Sarpa salpa, and non-native Siganus rivulatus and Siganus luridus. We measured herbivore and benthic assemblage composition across 20 sites along the gradient, spanning 30° of longitude and 8° of latitude. We coupled patterns in behaviour and composition with temperature measurements and nutrient concentrations to assess changes in herbivory under tropicalization. We found a transition in ecological impacts by fish herbivory across the Mediterranean from a predominance of seagrass herbivory in the west to a dominance of macroalgal herbivory in the east. Underlying this shift were changes in both individual feeding behaviour (i.e. food choice) and fish assemblage composition. The shift in feeding selectivity was consistent among temperate and warm-affiliated herbivores. Our findings suggest herbivory can contribute to the increased vulnerability of seaweed communities and reduced vulnerability of seagrass meadows in tropicalized ecosystems.
Collapse
Affiliation(s)
- Julia Santana-Garcon
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain,Flourishing Oceans Initiative, The Minderoo Foundation, Perth, WA, Australia
| | - Scott Bennett
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Núria Marbà
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain
| | - Adriana Vergés
- Evolution & Ecology Research Centre, Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rohan Arthur
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, Karnataka 570 002, India,Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| | - Teresa Alcoverro
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, Karnataka 570 002, India,Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| |
Collapse
|
34
|
Soler GA, Edgar GJ, Barrett NS, Stuart-Smith RD, Oh E, Cooper A, Ridgway KR, Ling SD. Warming signals in temperate reef communities following more than a decade of ecological stability. Proc Biol Sci 2022; 289:20221649. [PMID: 36515119 PMCID: PMC9748771 DOI: 10.1098/rspb.2022.1649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ecosystem structure and function are increasingly threatened by changing climate, with profound effects observed globally in recent decades. Based on standardized visual censuses of reef biodiversity, we describe 27 years of community-level change for fishes, mobile macroinvertebrates and macroalgae in the Tasmanian ocean-warming hotspot. Significant ecological change was observed across 94 reef sites (5-10 m depth range) spanning four coastal regions between three periods (1992-95, 2006-07, 2017-19), which occurred against a background of pronounced sea temperature rise (+0.80°C on average). Overall, fish biomass increased, macroinvertebrate species richness and abundance decreased and macroalgal cover decreased, particularly during the most recent decade. While reef communities were relatively stable and warming was slight between the 1990s and mid-2000s (+0.12°C mean temperature rise), increased abundances of warm affinity fishes and invertebrates accompanied warming during the most recent decade (+0.68°C rise). However, significant rises in the community temperature index (CTI) were only found for fishes, invertebrates and macroalgae in some regions. Coastal warming was associated with increased fish biomass of non-targeted species in fished zones but had little effect on reef communities within marine reserves. Higher abundances of larger fishes and lobsters inside reserves appeared to negate impacts of 'thermophilization'.
Collapse
Affiliation(s)
- G. A. Soler
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - G. J. Edgar
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - N. S. Barrett
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - R. D. Stuart-Smith
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - E. Oh
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - A. Cooper
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - K. R. Ridgway
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia,CSIRO Hobart, Castray Esplanade, Battery Point Tasmania 7004, Australia
| | - S. D. Ling
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| |
Collapse
|
35
|
Hyndes GA, Berdan EL, Duarte C, Dugan JE, Emery KA, Hambäck PA, Henderson CJ, Hubbard DM, Lastra M, Mateo MA, Olds A, Schlacher TA. The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review. Biol Rev Camb Philos Soc 2022; 97:2127-2161. [PMID: 35950352 PMCID: PMC9804821 DOI: 10.1111/brv.12886] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/09/2023]
Abstract
Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
Collapse
Affiliation(s)
- Glenn A. Hyndes
- Centre for Marine Ecosystems Research, School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Emma L. Berdan
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Jenifer E. Dugan
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Kyle A. Emery
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Christopher J. Henderson
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - David M. Hubbard
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Mariano Lastra
- Centro de Investigación Mariña, Edificio CC ExperimentaisUniversidade de Vigo, Campus de Vigo36310VigoSpain
| | - Miguel A. Mateo
- Centre for Marine Ecosystems Research, School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones CientíficasBlanesSpain
| | - Andrew Olds
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Thomas A. Schlacher
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| |
Collapse
|
36
|
Perkins NR, Monk J, Soler G, Gallagher P, Barrett NS. Bleaching in sponges on temperate mesophotic reefs observed following marine heatwave events. CLIMATE CHANGE ECOLOGY 2022. [DOI: 10.1016/j.ecochg.2021.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Sørdalen TK, Halvorsen KT, Olsen EM. Protection from fishing improves body growth of an exploited species. Proc Biol Sci 2022; 289:20221718. [DOI: 10.1098/rspb.2022.1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hunting and fishing are often size-selective, which favours slow body growth. In addition, fast growth rate has been shown to be positively correlated with behavioural traits that increase encounter rates and catchability in passive fishing gears such as baited traps. This harvest-induced selection should be effectively eliminated in no-take marine-protected areas (MPAs) unless strong density dependence results in reduced growth rates. We compared body growth of European lobster (
Homarus gammarus
) between three MPAs and three fished areas. After 14 years of protection from intensive, size-selective lobster fisheries, the densities in MPAs have increased considerably, and we demonstrate that females moult more frequently and grow more during each moult in the MPAs. A similar, but weaker pattern was evident for males. This study suggests that MPAs can shield a wild population from slow-growth selection, which can explain the rapid recovery of size structure following implementation. If slow-growth selection is a widespread phenomenon in fisheries, the effectiveness of MPAs as a management tool can be higher than currently anticipated.
Collapse
Affiliation(s)
- Tonje Knutsen Sørdalen
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, N-4604 Kristiansand, Norway
- Institute of Marine Research, Flødevigen, Nye Flødevigvei 20, N-4817 His, Norway
| | | | - Esben Moland Olsen
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, N-4604 Kristiansand, Norway
- Institute of Marine Research, Flødevigen, Nye Flødevigvei 20, N-4817 His, Norway
| |
Collapse
|
38
|
Young MA, Critchell K, Miller AD, Treml EA, Sams M, Carvalho R, Ierodiaconou D. Mapping the impacts of multiple stressors on the decline in kelps along the coast of Victoria, Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mary A. Young
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| | - Kay Critchell
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Queenscliff Vic. Australia
| | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| | - Eric A. Treml
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Queenscliff Vic. Australia
| | - Michael Sams
- Parks Victoria, Marine and Coastal Science and Programs Melbourne Vic. Australia
| | - Rafael Carvalho
- School of Earth, Atmosphere and Environment Monash University Melbourne Vic. Australia
| | - Daniel Ierodiaconou
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Warrnambool Vic. Australia
| |
Collapse
|
39
|
Garzon F, Williams CT, Cochran JEM, Tanabe LK, Abdulla A, Berumen ML, Habis T, Marshall PA, Rodrigue M, Hawkes LA. A multi-method characterization of Elasmobranch & Cheloniidae communities of the north-eastern Red Sea and Gulf of Aqaba. PLoS One 2022; 17:e0275511. [PMID: 36178940 PMCID: PMC9524659 DOI: 10.1371/journal.pone.0275511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The Red Sea is particularly biodiverse, hosting high levels of endemism and numerous populations whose extinction risk is heightened by their relative isolation. Elasmobranchs and sea turtles have likely suffered recent declines in this region, although data on their distribution and biology are severely lacking, especially on the eastern side of the basin in Saudi Arabian waters. Here, we present sightings of elasmobranchs and sea turtles across the north-eastern Red Sea and Gulf of Aqaba collected through a combination of survey methods. Over 455 survey hours, we recorded 407 sightings belonging to 26 elasmobranch species and two sea turtle species, more than 75% of which are of conservation concern. We identified 4 species of rays and 9 species of sharks not previously recorded in Saudi Arabia and report a range extension for the pink whipray (Himantura fai) and the round ribbontail ray (Taeniurops meyeni) into the Gulf of Aqaba. High density of sightings of conservation significance, including green and hawksbill sea turtles and halavi guitarfish were recorded in bay systems along the eastern Gulf of Aqaba and the Saudi Arabian coastline bordering the north-eastern Red Sea, and many carcharhinid species were encountered at offshore seamounts in the region. Our findings provide new insights into the distribution patterns of megafaunal assemblages over smaller spatial scales in the region, and facilitate future research and conservation efforts, amidst ongoing, large-scale coastal developments in the north-eastern Red Sea and Gulf of Aqaba.
Collapse
Affiliation(s)
- Francesco Garzon
- MarAlliance, Ancon, Panama City, Panama
- Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Collin T. Williams
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jesse E. M. Cochran
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Lyndsey K. Tanabe
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ameer Abdulla
- Saudi Water Sports Federation, Kingdom of Saudi Arabia
| | - Michael L. Berumen
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Thamer Habis
- Saudi Water Sports Federation, Kingdom of Saudi Arabia
| | | | | | - Lucy A. Hawkes
- Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
40
|
Márquez C, Ferreira CC, Acevedo P. Driver interactions lead changes in the distribution of imperiled terrestrial carnivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156165. [PMID: 35623522 DOI: 10.1016/j.scitotenv.2022.156165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Biodiversity is dramatically declining worldwide due to the complex processes that include interactions among threats. Studies investigating how multiple drivers (inter)act to influence spatio-temporal shifts in species distribution ranges, which are among the most anticipated changes in biodiversity in the future, are still scarce in the scientific literature, particularly at meaningful conservation planning scales. We used species occurrence data for eight terrestrial Mediterranean carnivores at a regional scale of southern Spain to: 1) estimate environmental favourability to each species during two periods (1960s and present); 2) predict current favourability assuming the same environment-species relationships as the ones observed in the 1960s (expected favourability); and 3) analyse single and interactive effects of human persecution, presence of protected areas, and prey richness on favourability changes (present vs. expected) for each carnivore species. We found that, with a few exceptions, environmentally favourable areas for carnivore occurrence were more widely distributed in the past than today and, for most species, favourability tended to increase inside protected areas, with low frequency of poisoning events and high prey richness. Notwithstanding, for rare species such as Iberian grey wolf (Canis lupus signatus) and Iberian lynx (Lynx pardinus), interactions among drivers were the most important predictors of favourability changes, underpinned by a compensatory role of protected areas in the face of continued human persecution. We emphasize the role of protected areas in abating the effects of biodiversity threats and claim that scientific studies based on analyses of single-effect drivers that omit driver interactions may misinform conservation planning and require revision.
Collapse
Affiliation(s)
- Carolina Márquez
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Catarina C Ferreira
- UFZ - Helmholtz Centre for Environmental Research, Department of Conservation Biology, Leipzig, Germany
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM, Ciudad Real, Spain.
| |
Collapse
|
41
|
Wright LS, Pessarrodona A, Foggo A. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. GLOBAL CHANGE BIOLOGY 2022; 28:5514-5531. [PMID: 35694894 PMCID: PMC9545355 DOI: 10.1111/gcb.16299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 05/27/2023]
Abstract
The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digitata and Laminaria hyperborea and warm temperate Laminaria ochroleuca. To understand how this might affect the carbon sequestration potential (CSP) of this ecosystem, we quantified interspecific differences in carbon export and decomposition alongside changes in detrital photosynthesis and biochemistry. We found that while warm temperate kelp exports up to 71% more carbon per plant, it decomposes up to 155% faster than its boreal congeners. Elemental stoichiometry and polyphenolic content cannot fully explain faster carbon turnover, which may be attributable to contrasting tissue toughness or unknown biochemical and structural defenses. Faster decomposition causes the detrital photosynthetic apparatus of L. ochroleuca to be overwhelmed 20 days after export and lose integrity after 36 days, while detritus of cold temperate species maintains carbon assimilation. Depending on the photoenvironment, detrital photosynthesis could further exacerbate interspecific differences in decomposition via a potential positive feedback loop. Through compositional change such as the predicted prevalence of L. ochroleuca, ocean warming may therefore reduce the CSP of such temperate marine forests.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Albert Pessarrodona
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Andy Foggo
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
| |
Collapse
|
42
|
Eger AM, Marzinelli EM, Christie H, Fagerli CW, Fujita D, Gonzalez AP, Hong SW, Kim JH, Lee LC, McHugh TA, Nishihara GN, Tatsumi M, Steinberg PD, Vergés A. Global kelp forest restoration: past lessons, present status, and future directions. Biol Rev Camb Philos Soc 2022; 97:1449-1475. [PMID: 35255531 PMCID: PMC9543053 DOI: 10.1111/brv.12850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.
Collapse
Affiliation(s)
- Aaron M. Eger
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
| | - Ezequiel M. Marzinelli
- The University of Sydney, School of Life and Environmental SciencesSydneyNSW2006Australia
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Hartvig Christie
- Norwegian Institute for Water ResearchØkernveien 94Oslo0579Norway
| | | | - Daisuke Fujita
- University of Tokyo Marine Science and Technology, School of Marine Bioresources, Applied PhycologyKonan, Minato‐kuTokyo108‐8477Japan
| | - Alejandra P. Gonzalez
- Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileLas Palmeras 3425, ÑuñoaSantiagoChile
| | - Seok Woo Hong
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Jeong Ha Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Lynn C. Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site60 Second Beach Road, SkidegateHaida GwaiiBCV0T 1S1Canada
- Canada & School of Environmental Sciences, University of Victoria3800 Finnerty RoadVictoriaBCV8P 5C2Canada
| | - Tristin Anoush McHugh
- Reef Check Foundation, Long Marine Laboratory115 McAllister RoadSanta CruzCA95060U.S.A.
- Present address:
The Nature Conservancy830 S StreetSacramentoCA95811U.S.A.
| | - Gregory N. Nishihara
- Organization for Marine Science and TechnologyInstitute for East China Sea Research, Nagasaki University1551‐7 Taira‐machiNagasaki City851‐2213Japan
| | - Masayuki Tatsumi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTAS7004Australia
| | - Peter D. Steinberg
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| |
Collapse
|
43
|
Reid M, Collins ML, Hall SRJ, Mason E, McGee G, Frid A. Protecting our coast for everyone's future: Indigenous and scientific knowledge support marine spatial protections proposed by Central Coast First Nations in Pacific Canada. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Mike Reid
- Heiltsuk Integrated Resource Management Department Haíłzaqv Nation Wágḷísḷa British Columbia Canada
| | | | | | - Ernest Mason
- Kitasoo Xai'xais Fisheries Kitasoo Xai'xais Nation Klemtu British Columbia Canada
| | - Gord McGee
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| | - Alejandro Frid
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| |
Collapse
|
44
|
Sanmartí N, Ontoria Y, Ricart AM, Arthur R, Alcoverro T, Pérez M, Romero J. Exploring coexistence mechanisms in a three-species assemblage. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105647. [PMID: 35605380 DOI: 10.1016/j.marenvres.2022.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Interactions among species are essential in shaping ecological communities, although it is not always clear under what conditions they can persist when the number of species involved is higher than two. Here we describe a three-species assemblage involving the seagrass Cymodocea nodosa, the pen shell Pinna nobilis and the herbivore sea urchin Paracentrotus lividus, and we explore the mechanisms allowing its persistence through field observations and manipulative experiments. The abundance of pen shells was higher in seagrass beds than in bare sand, suggesting a recruitment facilitation. The presence of sea urchins, almost exclusively attached or around pen shells, indicated habitat facilitation for sea urchins, which overgrazed the meadow around the pen shells forming seagrass-free halos. Our results suggest that this system persists thanks to: (i) the behavioral reluctance of sea urchins to move far from pen shells, making their impact on seagrass strictly local, (ii) the sparse distribution of pen shells and (iii) the plant's resistance mechanisms to herbivory. Unpacking these mechanisms allows a better understanding of how ecological communities are assembled.
Collapse
Affiliation(s)
- Neus Sanmartí
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Yaiza Ontoria
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Aurora M Ricart
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, 17300, Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570 002, Mysore, Karnataka, India
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, 17300, Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570 002, Mysore, Karnataka, India
| | - Marta Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Javier Romero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
45
|
Pinsky ML, Comte L, Sax DF. Unifying climate change biology across realms and taxa. Trends Ecol Evol 2022; 37:672-682. [PMID: 35610063 DOI: 10.1016/j.tree.2022.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023]
Abstract
A major challenge in modern biology is to understand extinction risk from climate change across all realms. Recent research has revealed that physiological tolerance, behavioral thermoregulation, and small elevation shifts are dominant coping strategies on land, whereas large-scale latitudinal shifts are more important in the ocean. Freshwater taxa may face the highest global extinction risks. Nevertheless, some species in each realm face similar risks because of shared adaptive, dispersal, or physiological tolerances and abilities. Taking a cross-realm perspective offers unique research opportunities because confounding physical factors in one realm are often disaggregated in another realm. Cross-realm, across taxa, and other forms of climate change biology synthesis are needed to advance our understanding of emergent patterns of risk across all life.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Dov F Sax
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| |
Collapse
|
46
|
Williams C, Rees S, Sheehan EV, Ashley M, Davies W. Rewilding the Sea? A Rapid, Low Cost Model for Valuing the Ecosystem Service Benefits of Kelp Forest Recovery Based on Existing Valuations and Benefit Transfers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.642775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kelp forests and seagrasses are important carbon sinks that are declining globally. Rewilding the sea, through restoring these crucial habitats, their related biodiversity and ecosystem contributions, is a movement and concept, gathering pace in the United Kingdom and globally. Yet understanding of the economic costs and benefits for setting areas of the sea aside—and removing some human impacts from them—is not well understood. The potential benefits and distributional impacts on marine users and wider society is critical to make evidence based decisions. Ensuring that areas of the sea recover, and that the impacts (both positive and negative) are understood, requires targeted research to help guide decisions to optimize the opportunity of recovery, while minimizing any negative impacts on sea users and coastal communities. We approach the problem from an ecosystem services perspective, looking at the opportunity of restoring a kelp bed in Sussex by removing fishing activity from areas historically covered in kelp. Development of an ecosystem services valuation model showed restoring kelp to its highest mapped past extent (96% greater, recorded in 1987) would deliver a range of benefits valued at over £ 3.5 million GBP. The application of an ecosystem services approach enabled the full range of benefits from habitat restoration to be assessed. The results and the gaps identified in site specific data and values for this area, have broader implications in fisheries management and natural resource management tools for restoring marine habitats and ecosystems in the United Kingdom.
Collapse
|
47
|
Metabolic plasticity improves lobster's resilience to ocean warming but not to climate-driven novel species interactions. Sci Rep 2022; 12:4412. [PMID: 35292683 PMCID: PMC8924167 DOI: 10.1038/s41598-022-08208-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters—inhabiting a global warming and species re-distribution hotspot—align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average—(14.0 °C), current summer—(17.5 °C) and projected future summer—(21.5 °C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.
Collapse
|
48
|
Evans AE, Zimova M, Giery ST, Golden HE, Pastore AL, Nadeau CP, Urban MC. An eco‐evolutionary perspective on the humpty‐dumpty effect and community restoration. OIKOS 2022. [DOI: 10.1111/oik.08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annette E. Evans
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Environmental Conservation, Univ. of Massachusetts Amherst MA USA
| | | | - Sean T. Giery
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Biology, The Pennsylvania State Univ. Univ. Park PA USA
| | - Heidi E. Golden
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Golden Ecology LLC Simsbury CT USA
| | - Amanda L. Pastore
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Christopher P. Nadeau
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Smith Conservation Research Fellow, Marine and Environmental Sciences, Northeastern Univ. Nahant MA USA
| | - Mark C. Urban
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Center of Biological Risks, Univ. of Connecticut Storrs CT USA
| |
Collapse
|
49
|
Randell Z, Kenner M, Tomoleoni J, Yee J, Novak M. Kelp-forest dynamics controlled by substrate complexity. Proc Natl Acad Sci U S A 2022; 119:e2103483119. [PMID: 35181602 PMCID: PMC8872774 DOI: 10.1073/pnas.2103483119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The factors that determine why ecosystems exhibit abrupt shifts in state are of paramount importance for management, conservation, and restoration efforts. Kelp forests are emblematic of such abruptly shifting ecosystems, transitioning from kelp-dominated to urchin-dominated states around the world with increasing frequency, yet the underlying processes and mechanisms that control their dynamics remain unclear. Here, we analyze four decades of data from biannual monitoring around San Nicolas Island, CA, to show that substrate complexity controls both the number of possible (alternative) states and the velocity with which shifts between states occur. The superposition of community dynamics with reconstructions of system stability landscapes reveals that shifts between alternative states at low-complexity sites reflect abrupt, high-velocity events initiated by pulse perturbations that rapidly propel species across dynamically unstable state-space. In contrast, high-complexity sites exhibit a single state of resilient kelp-urchin coexistence. Our analyses suggest that substrate complexity influences both top-down and bottom-up regulatory processes in kelp forests, highlight its influence on kelp-forest stability at both large (island-wide) and small (<10 m) spatial scales, and could be valuable for holistic kelp-forest management.
Collapse
Affiliation(s)
- Zachary Randell
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331;
| | - Michael Kenner
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Joseph Tomoleoni
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Julie Yee
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
50
|
Hensel MJS, Silliman BR, Hensel E, Byrnes JEK. Feral hogs control brackish marsh plant communities over time. Ecology 2022; 103:e03572. [PMID: 34706065 DOI: 10.1002/ecy.3572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Feral hogs modify ecosystems by consuming native species and altering habitat structure. These invasions can generate fundamentally different post-invasion habitats when disturbance changes community structure, ecosystem function, or recovery dynamics. Here, we use multiple three-year exclusion experiments to describe how feral hogs affect hyper-productive brackish marshes over time. We find that infrequent yet consistent hog foraging and trampling suppresses dominant plants by generating a perpetually disturbed habitat that favors competitively inferior species and disallows full vegetative recovery over time. Along borders between plant monocultures, trampling destroys dominant graminoids responsible for most aboveground marsh biomass while competitively inferior plants increase fivefold. Hog activities shift the brackish marsh disturbance regime from pulse to press, which changes the plant community: competitively inferior plants increase coverage, species diversity is doubled, and live cover is lowered by 30% as large plants are unable to take hold in hog-disturbed areas. Release from disturbance does not result in complete recovery (i.e., dominant plant monocultures) because hog consumer control is a combination of both top-down control and broader engineering effects. These results highlight how habitats are susceptible to invasive effects outside of structural destruction alone, especially if large consumers are pervasive over time and change the dynamics that sustain recovery.
Collapse
Affiliation(s)
- Marc J S Hensel
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125, USA
- Nicholas School for the Environment, Duke University, Beaufort, North Carolina, 28516, USA
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, Virginia, 23062, USA
| | - Brian R Silliman
- Nicholas School for the Environment, Duke University, Beaufort, North Carolina, 28516, USA
| | - Enie Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, Virginia, 23062, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125, USA
| |
Collapse
|