1
|
Han Y, Shan TD, Huang HT, Song MQ, Chen L, Li Q. Activation of lncRNA DANCR by H3K27 acetylation regulates proliferation of colorectal cancer cells. Discov Oncol 2024; 15:249. [PMID: 38940959 PMCID: PMC11213841 DOI: 10.1007/s12672-024-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
The long noncoding DANCR functions as a tumor oncogene in many cancers, including colorectal cancer (CRC). However, the molecular mechanism of DANCR in CRC has not been explored. This study probed the function and potential mechanism by which DANCR contributes to the progression of CRC. The obtained data indicated that DANCR is overexpressed in CRC tissues and cell lines. Knockdown of DANCR hindered CRC cell proliferation, which was mediated by cyclin D1 and CDK4. Bioinformatic analysis, luciferase reporter assays and subcellular fractionation verified that DANCR directly binds to miR-508-5p. Moreover, DANCR acts as a miR-508-5p ceRNA to regulate expression of ATF1. In addition, upregulation of DANCR is attributed to H3K27 acetylation at the promoter region. In conclusion, our study confirmed that activation of lncRNA DANCR by H3K27 acetylation has an oncogenic role in CRC progression and provides a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China.
| | - Hai-Tao Huang
- The International Medical Department, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 262000, People's Republic of China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Li Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Qian Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
2
|
Yao D, Zhao X, Zhao S, Shi H, Ma Y, Li J. Characterization of the fatty acid binding protein 3 (FABP3) promoter and its transcriptional regulation by cAMP response element binding protein 1 (CREB1) in goat mammary epithelial cells. Anim Biotechnol 2023; 34:1960-1967. [PMID: 35416753 DOI: 10.1080/10495398.2022.2061504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Fatty acid binding protein 3 (FABP3) is involved in signal transduction pathways, and in the uptake and utilization of long-chain fatty acids. However, the transcriptional regulation of FABP3 in goat is unclear. In this study, the FABP3 5' flanking region was amplified from goat (Capra hircus) genomic DNA. Luciferase reporter vectors containing promoter fragments of five different lengths were constructed and transfected into dairy goat mammary epithelial cells. The region of the promoter located between -1801 and -166 bp upstream of the transcription start site (TSS) exhibited the highest luciferase activity, and contained two cAMP response elements (CREs) located at -1632 bp and -189 bp. Interference with CREB1 significantly downregulated FABP3 promoter activity. In addition, FABP3 promoter activity was significantly reduced after mutation of the CRE1 (-1632 bp) and CRE2 (-189 bp) sites. Further analysis indicated that the CRE2 site was essential for the transcriptional activity induced by CREB1. These results demonstrated that CREB1 is involved in the transcriptional regulation of FABP3 expression in the goat mammary gland via a direct mechanism, thus revealing a novel signaling pathway involved in fatty acid metabolism in goat.
Collapse
Affiliation(s)
- Dawei Yao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Zhao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Science, Nankai University, Tianjin, China
| | - Shuying Zhao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yi Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
3
|
Bielczyk-Maczynska E, Zhao M, Zushin PJH, Schnurr TM, Kim HJ, Li J, Nallagatla P, Sangwung P, Park CY, Cornn C, Stahl A, Svensson KJ, Knowles JW. G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis. Nat Commun 2022; 13:7408. [PMID: 36456565 PMCID: PMC9715671 DOI: 10.1038/s41467-022-35069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Human genetics has been instrumental in identification of genetic variants linked to type 2 diabetes. Recently a rare, putative loss-of-function mutation in the orphan G-protein coupled receptor 151 (GPR151) was found to be associated with lower odds ratio for type 2 diabetes, but the mechanism behind this association has remained elusive. Here we show that Gpr151 is a fasting- and glucagon-responsive hepatic gene which regulates hepatic gluconeogenesis. Gpr151 ablation in mice leads to suppression of hepatic gluconeogenesis genes and reduced hepatic glucose production in response to pyruvate. Importantly, the restoration of hepatic Gpr151 levels in the Gpr151 knockout mice reverses the reduced hepatic glucose production. In this work, we establish a previously unknown role of Gpr151 in the liver that provides an explanation to the lowered type 2 diabetes risk in individuals with nonsynonymous mutations in GPR151.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Meng Zhao
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Theresia M Schnurr
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratima Nallagatla
- Genetics Bioinformatics Service Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Panjamaporn Sangwung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chong Y Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Cornn
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Katrin J Svensson
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. Int J Mol Sci 2021; 23:ijms23010322. [PMID: 35008748 PMCID: PMC8745732 DOI: 10.3390/ijms23010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.
Collapse
|
5
|
Thiel G, Wagner L, Ulrich M, Rössler OG. Immediate-early transcriptional response to insulin receptor stimulation. Biochem Pharmacol 2021; 192:114696. [PMID: 34302794 DOI: 10.1016/j.bcp.2021.114696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023]
Abstract
Insulin binding to the insulin receptor triggers intracellular signaling cascades involving the activation of protein and lipid kinases. As a result, multiple biological functions of the cells are changed. Here, we analyzed the regulation and signaling cascades leading to insulin-induced activation of the stimulus-responsive transcription factors. For the analyses, we used chromatin-embedded reporter genes having a cellular nucleosomal organisation, and fibroblasts expressing human insulin receptors (HIRcB cells). The results show that stimulation of the insulin receptor induced the expression of the transcription factor Egr-1. Attenuation of Egr-1 promoter activation was observed following expression of a dominant-negative mutant of the ternary complex factor Elk-1. These data were corroborated by experiments showing that insulin receptor stimulation increased the transcriptional activation potential of Elk-1. In addition, the transcriptional activity of AP-1 was significantly elevated in insulin-stimulated HIRcB cells. Expression of the dominant-negative mutant of Elk-1 reduced insulin-induced activation of AP-1, indicating that Elk-1 controls both serum response element and AP-1-regulated transcription. Moreover, we show that stimulation of the insulin receptor activates cyclic AMP response element (CRE)-controlled transcription, involving the transcription factor CREB. Insulin-induced transcription of Elk-1 and CREB-controlled reporter genes was attenuated by overexpression of MAP kinase phosphatase-1 or a constitutively active mutant of calcineurin A, indicating that both phosphatases are part of a negative feedback loop for reducing insulin-mediated gene transcription. Finally, we show that expression of the adenoviral protein E1A selectively reduced CRE-mediated transcription following stimulation of the insulin receptor. These data indicate that insulin-regulated transcription of CRE-containing genes is under epigenetic control.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Lara Wagner
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
6
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
7
|
Furuhata R, Kabe Y, Kanai A, Sugiura Y, Tsugawa H, Sugiyama E, Hirai M, Yamamoto T, Koike I, Yoshikawa N, Tanaka H, Koseki M, Nakae J, Matsumoto M, Nakamura M, Suematsu M. Progesterone receptor membrane associated component 1 enhances obesity progression in mice by facilitating lipid accumulation in adipocytes. Commun Biol 2020; 3:479. [PMID: 32887925 PMCID: PMC7473863 DOI: 10.1038/s42003-020-01202-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.
Collapse
Affiliation(s)
- Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakae
- Department of Physiology, International University of Health and Welfare School of Medicine, Narita, 286-8686, Japan
| | - Morio Matsumoto
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
8
|
Defective fasting-induced PKA activation impairs adipose tissue glycogen degradation in obese Zucker rats. Int J Obes (Lond) 2019; 44:500-509. [PMID: 30705392 DOI: 10.1038/s41366-019-0327-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Obesity is associated with development of insulin resistance in adipose tissue (AT). Human obesity has been associated with increased glycogen deposition in adipocytes. Adipocytes synthesise glycogen prior to the formation of lipids. The present study examined adipose glycogen content in obese Zucker rats and the effect of fasting on glycogen-metabolising enzymes. We hypothesised that obesity imposes a blunted response to fasting through impaired activation of glycogen-metabolizing enzymes, which dampens glycogen mobilization in obese Zucker rats. METHODS We investigated the effect of 24h fasting on AT glycogen metabolism in 12-week old obese Zucker rats. Epididymal fat pads were collected from rats fed ad-libitum and fasted for 24h. Glycogen content, glycogen synthase and phosphorylase enzyme activity, and PKA activity were analysed as well as total and phosphorylated protein content for glycogen-metabolizing enzymes glycogen synthase and phosphorylase, glucose transporter GLUT4, and cAMP-dependent response element binding protein levels. RESULTS Twelve-week old obese Zucker rats showed increased AT glycogen content (adipose glycogen content [mean ± SD], lean: 3.95 ± 2.78 to 0.75 + 0.69 µg.mg-1; p < 0.005 fed vs fasted, and obese: 5.23 ± 3.38 to 5.019 ± 1.99 µg.mg-1; p = ns fed and fasted and p < 0.005 lean vs obese), and impaired fasting-induced glycogen mobilization following a 24h fast. These defects were associated with dysfunctional glycogen-metabolizing enzymes, characterized by: (1) blunted phosphorylation-mediated activation and downregulated protein expression of glycogen phosphorylase, and (2) an impaired phosphorylation-mediated inactivation of glycogen synthase. Furthermore, these defects were related to impaired fasting-induced protein kinase A (PKA) activation. CONCLUSION This study provides evidence of a defective glycogen metabolism in the adipose associated with impaired fasting-induced activation of the upstream kinase protein kinase A, which render a converging point to obesity-related primary alterations in carbohydrate and lipid metabolism in the AT.
Collapse
|
9
|
cAMP/Protein Kinase A Signaling Inhibits Dlx5 Expression via Activation of CREB and Subsequent C/EBPβ Induction in 3T3-L1 Preadipocytes. Int J Mol Sci 2018; 19:ijms19103161. [PMID: 30322210 PMCID: PMC6213991 DOI: 10.3390/ijms19103161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
Distal-less homeobox 5 (Dlx5) is a negative regulator of adipogenesis. Dlx5 expression is decreased by adipogenic stimuli, but the mechanisms of Dlx5 downregulation by adipogenic stimuli have not yet been determined. Here, we tested the impact of cAMP/PKA (protein kinase A) signaling induced by 3-isobutyl-1 methyl xanthine (IBMX), forskolin, and 8-CPT-cAMP on the expression of Dlx5 in 3T3-L1 preadipocytes. Significant downregulation of Dlx5 mRNA expression and protein production levels were observed via cAMP/PKA-dependent signaling. Forced expression of cAMP-responsive element-binding protein (CREB) and CCAAT/enhancer-binding protein β (C/EBPβ) was sufficient for downregulation of Dlx5 expression and revealed that CREB functions upstream of C/EBPβ. In addition, C/EBPβ knockdown by siRNA rescued Dlx5 expression in IBMX-treated 3T3-L1 preadipocytes. Luciferase assays using a Dlx5-luc-2935 reporter construct demonstrated the requirement of the Dlx5 promoter region, ranging from −774 to −95 bp that contains two putative C/EBPβ binding elements (site-1: −517 to −510 bp and site-2: −164 to −157 bp), in the suppression of Dlx5 transcription. Consequently, chromatin immunoprecipitation analysis confirmed the importance of site-1, but not site-2, in C/EBPβ binding and transcriptional suppression of Dlx5. In conclusion, we elucidated the underling mechanism of Dlx5 downregulation in IBMX-induced adipogenesis. IBMX activated cAMP/PKA/CREB signaling and subsequently upregulated C/EBPβ, which binds to the Dlx5 promoter to suppress Dlx5 transcription.
Collapse
|
10
|
Wheaton KL, Hansen KF, Aten S, Sullivan KA, Yoon H, Hoyt KR, Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:497-514. [PMID: 30175684 DOI: 10.1177/0748730418791713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.
Collapse
Affiliation(s)
- Kelin L Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | | | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kyle A Sullivan
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Schwind L, Nalbach L, Zimmer AD, Kostelnik KB, Menegatti J, Grässer F, Götz C, Montenarh M. Quinalizarin inhibits adipogenesis through down-regulation of transcription factors and microRNA modulation. Biochim Biophys Acta Gen Subj 2017; 1861:3272-3281. [DOI: 10.1016/j.bbagen.2017.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
|
12
|
Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. Sci Rep 2017; 7:12048. [PMID: 28935957 PMCID: PMC5608697 DOI: 10.1038/s41598-017-12162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nemneineng Haokip
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Tung EWY, Peshdary V, Gagné R, Rowan-Carroll A, Yauk CL, Boudreau A, Atlas E. Adipogenic Effects and Gene Expression Profiling of Firemaster® 550 Components in Human Primary Preadipocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097013. [PMID: 28934090 PMCID: PMC5915190 DOI: 10.1289/ehp1318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to flame retardants has been associated with negative health outcomes including metabolic effects. As polybrominated diphenyl ether flame retardants were pulled from commerce, human exposure to new flame retardants such as Firemaster® 550 (FM550) has increased. Although previous studies in murine systems have shown that FM550 and its main components increase adipogenesis, the effects of FM550 in human models have not been elucidated. OBJECTIVES The objectives of this study were to determine if FM550 and its components are active in human preadipocytes, and to further investigate their mode of action. METHODS Human primary preadipocytes were differentiated in the presence of FM550 and its components. Differentiation was assessed by lipid accumulation and expression of peroxisome proliferator-activated receptor γ (PPARG), fatty acid binding protein (FABP) 4 and lipoprotein lipase (LPL). mRNA was collected for Poly (A) RNA sequencing and was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. RESULTS FM550 triphenyl phosphate (TPP) and isopropylated triphenyl phosphates (IPTP), increased adipogenesis in human primary preadipocytes as assessed by lipid accumulation and mRNA expression of regulators of adipogenesis such as PPARγ, CCAAT enhancer binding protein (C/EBP) α and sterol regulatory element binding protein (SREBP) 1 as well as the adipogenic markers FABP4 LPL and perilipin. Poly (A) RNA sequencing analysis revealed potential modes of action including liver X receptor/retinoid X receptor (LXR/RXR) activation, thyroid receptor (TR)/RXR, protein kinase A, and nuclear receptor subfamily 1 group H members activation. CONCLUSIONS We found that FM550, and two of its components, induced adipogenesis in human primary preadipocytes. Further, using global gene expression analysis we showed that both TPP and IPTP likely exert their effects through PPARG to induce adipogenesis. In addition, IPTP perturbed signaling pathways that were not affected by TPP. https://doi.org/10.1289/EHP1318.
Collapse
Affiliation(s)
- Emily W Y Tung
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Adéle Boudreau
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Karbiener M, Glantschnig C, Pisani DF, Laurencikiene J, Dahlman I, Herzig S, Amri EZ, Scheideler M. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obes (Lond) 2015; 39:1733-41. [PMID: 26119994 PMCID: PMC4625608 DOI: 10.1038/ijo.2015.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND A growing body of evidence suggests that many downstream pathologies of obesity are amplified or even initiated by molecular changes within the white adipose tissue (WAT). Such changes are the result of an excessive expansion of individual white adipocytes and could potentially be ameliorated via an increase in de novo adipocyte recruitment (adipogenesis). Mesoderm-specific transcript (MEST) is a protein with a putative yet unidentified enzymatic function and has previously been shown to correlate with adiposity and adipocyte size in mouse. OBJECTIVES This study analysed WAT samples and employed a cell model of adipogenesis to characterise MEST expression and function in human. METHODS AND RESULTS MEST mRNA and protein levels increased during adipocyte differentiation of human multipotent adipose-derived stem cells. Further, obese individuals displayed significantly higher MEST levels in WAT compared with normal-weight subjects, and MEST was significantly correlated with adipocyte volume. In striking contrast to previous mouse studies, knockdown of MEST enhanced human adipocyte differentiation, most likely via a significant promotion of peroxisome proliferator-activated receptor signalling, glycolysis and fatty acid biosynthesis pathways at early stages. Correspondingly, overexpression of MEST impaired adipogenesis. We further found that silencing of MEST fully substitutes for the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) as an inducer of adipogenesis. Accordingly, phosphorylation of the pro-adipogenic transcription factors cyclic AMP responsive element binding protein (CREB) and activating transcription factor 1 (ATF1) were highly increased on MEST knockdown. CONCLUSIONS Although we found a similar association between MEST and adiposity as previously described for mouse, our functional analyses suggest that MEST acts as an inhibitor of human adipogenesis, contrary to previous murine studies. We have further established a novel link between MEST and CREB/ATF1 that could be of general relevance in regulation of metabolism, in particular obesity-associated diseases.
Collapse
Affiliation(s)
- M Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University Graz, Graz, Austria
| | - C Glantschnig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D F Pisani
- Université Nice Sophia Antipolis, iBV, UMR, Nice, France
- CNRS, iBV, UMR, Nice, France
- Inserm, iBV, Nice, France
| | - J Laurencikiene
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - I Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - S Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - E-Z Amri
- Université Nice Sophia Antipolis, iBV, UMR, Nice, France
- CNRS, iBV, UMR, Nice, France
- Inserm, iBV, Nice, France
| | - M Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
15
|
Li X, Yang M, Wang H, Jia Y, Yan P, Boden G, Yang G, Li L. Overexpression of JAZF1 protected ApoE-deficient mice from atherosclerosis by inhibiting hepatic cholesterol synthesis via CREB-dependent mechanisms. Int J Cardiol 2014; 177:100-10. [PMID: 25499349 DOI: 10.1016/j.ijcard.2014.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/12/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
Abstract
Genome wide association studies have suggested an association of Juxtaposed with another zinc finger gene 1(JAZF1) with type 2 diabetes mellitus (T2DM). As an inhibitor of the TAK1/TR4 signaling pathway, JAZF1 has been shown to be involved in gluconeogenesis, lipid metabolism and insulin sensitivity. However, its role in insulin resistance and atherosclerosis in vivo remains unknown. The present study was designed to investigate in vivo the impact of JAZF1 on insulin resistance-associated dyslipidemia and atherosclerosis. Adenovirus-mediated JAZF1 overexpression was used to characterize the role of JAZF1 in the regulation of lipid metabolism and the development of atherosclerosis in normal chow- or HFD-fed ApoE KO mice. Insulin sensitivity was examined by EHC. Cholesterol de novo synthesis was measured by intraperitoneal [1-(14)C] acetate injection and atherosclerotic plaques were quantified by histological analysis. A dual-luciferase reporter assay was used to assess the ability of JAZF1 to regulate HMGCR transcriptional activity. JAZF1 overexpression improved HFD-induced hepatic insulin resistance in C57BL/6J mice. In HFD-fed ApoE KO mice, JAZF1 overexpression decreased serum cholesterol levels and hepatic cholesterol synthesis by inhibiting CREB-dependent HMGCR promoter transcriptional activity. Analysis of atherosclerotic lesion showed that JAZF1 overexpression had significantly reduced aortic and aortic sinus en face and cross-sectional plaque areas in HFD-fed ApoE KO mice. These data provide the first evidence for an important role of JAZF1 in increasing hepatic insulin sensitivity and preventing atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqiang Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Mengliu Yang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Han Wang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010 Chongqing, China
| | - Pijun Yan
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010 Chongqing, China
| | - Guenther Boden
- The Division of Endocrinology/Diabetes/Metabolism and the Clinical Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gangyi Yang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
16
|
Tagaya Y, Osaki A, Miura A, Okada S, Ohshima K, Hashimoto K, Yamada M, Satoh T, Shimizu H, Mori M. Secreted nucleobindin-2 inhibits 3T3-L1 adipocyte differentiation. Protein Pept Lett 2013; 19:997-1004. [PMID: 22486620 PMCID: PMC3468916 DOI: 10.2174/092986612802084546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 01/31/2023]
Abstract
Nucleobindin-2 is a 420 amino acid EF-hand Ca2+ binding protein that can be further processed to generate an 82 amino terminal peptide termed Nesfatin-1. To examine the function of secreted Nucleobindin-2 in adipocyte differentiation, cultured 3T3-L1 cells were incubated with either 0 or 100 nM of GST, GST-Nucleobindin-2, prior to and during the initiation of adipocyte differentiation. Nucleobindin-2 treatment decreased neutral lipid accumulation (Oil-Red O staining) and expression of several marker genes for adipocyte differentiation (PPARγ, aP2, and adipsin). When Nucleobindin-2 was constitutively secreted into cultured medium, cAMP content and insulin stimulated CREB phosphorylation were significantly reduced. On the other hand, intracellularly overexpressed Nucleobindin-2 failed to affect cAMP content and CREB phosphorylation. Taken together, these data indicate that secreted Nucleobindin-2 is a suppressor of adipocyte differentiation through inhibition of cAMP production and insulin signal.
Collapse
Affiliation(s)
- Yuko Tagaya
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39- 15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arçari DP, Santos JC, Gambero A, Ribeiro ML. The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis. Food Chem 2013; 141:809-15. [DOI: 10.1016/j.foodchem.2013.04.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/12/2013] [Accepted: 04/19/2013] [Indexed: 01/11/2023]
|
18
|
Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor. Mol Cell Biol 2013; 33:3826-34. [PMID: 23897430 DOI: 10.1128/mcb.00385-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.
Collapse
|
19
|
MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One 2013; 8:e66809. [PMID: 23826142 PMCID: PMC3691314 DOI: 10.1371/journal.pone.0066809] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/12/2013] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRNAs) are the class of small endogenous RNAs that play an important regulatory role in cells by negatively affecting gene expression at transcriptional and post-transcriptional levels. There have been extensive studies aiming to discover miRNAs and to analyze their functions in the cells from a variety of species. However, there are no published studies of miRNA profiles in human testis using next generation sequencing (NGS) technology. Results We employed Solexa sequencing technology to profile miRNAs in normal human testis. Total 770 known and 5 novel human miRNAs, and 20121 piRNAs were detected, indicating that the human testis has a complex population of small RNAs. The expression of 15 known and 5 novel detected miRNAs was validated by qRT-PCR. We have also predicted the potential target genes of the abundant known and novel miRNAs, and subjected them to GO and pathway analysis, revealing the involvement of miRNAs in many important biological phenomenon including meiosis and p53-related pathways that are implicated in the regulation of spermatogenesis. Conclusions This study reports the first genome-wide miRNA profiles in human testis using a NGS approach. The presence of large number of miRNAs and the nature of their target genes suggested that miRNAs play important roles in spermatogenesis. Here we provide a useful resource for further elucidation of the regulatory role of miRNAs and piRNAs in the spermatogenesis. It may also facilitate the development of prophylactic strategies for male infertility.
Collapse
|
20
|
Shao W, Wang Z, Ip W, Chiang YT, Xiong X, Chai T, Xu C, Wang Q, Jin T. GLP-1(28-36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro. Am J Physiol Endocrinol Metab 2013; 304:E1263-72. [PMID: 23571712 DOI: 10.1152/ajpendo.00600.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28-36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28-36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation. An in vitro investigation revealed that GLP-1(28-36)amide stimulates β-catenin (β-cat) Ser(675) phosphorylation in both the clonal INS-1 cell line and rat primary pancreatic islet cells. In INS-1 cells, the stimulation was accompanied by increased nuclear β-cat content. GLP-1(28-36)amide was also shown to increase cellular cAMP levels, PKA enzymatic activity, and cAMP response element-binding protein (CREB) and cyclic AMP-dependent transcription factor-1 (ATF-1) phosphorylation. Furthermore, GLP-1(28-36)amide treatment enhanced islet insulin secretion and increased the growth of INS-1 cells, which was associated with increased cyclin D1 expression. Finally, PKA inhibition attenuated the effect of GLP-1(28-36)amide on β-cat Ser(675) phosphorylation and cyclin D1 expression in the INS-1 cell line. We have thus revealed the beneficial effect of GLP-1(28-36)amide in pancreatic β-cells in vitro and in vivo. Our observations suggest that GLP-1(28-36)amide may exert its effect through the PKA/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Research Institutes, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schindler M, Fischer S, Thieme R, Fischer B, Santos AN. cAMP-responsive element binding protein: a vital link in embryonic hormonal adaptation. Endocrinology 2013; 154:2208-21. [PMID: 23568554 DOI: 10.1210/en.2012-2096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.
Collapse
MESH Headings
- Activating Transcription Factor 1/genetics
- Activating Transcription Factor 1/metabolism
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Adiponectin/genetics
- Adiponectin/metabolism
- Alloxan
- Animals
- Blastocyst/drug effects
- Blastocyst/metabolism
- Blotting, Western
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gastrulation/drug effects
- Gastrulation/genetics
- Gene Expression Regulation, Developmental
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor II/pharmacology
- Male
- Phosphorylation/drug effects
- Rabbits
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Trophoblasts/drug effects
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany.
| | | | | | | | | |
Collapse
|
22
|
Gene Network Analysis in Amygdala following Taste Aversion Learning in Rats. NEUROSCIENCE JOURNAL 2013; 2013:739764. [PMID: 26317099 PMCID: PMC4437262 DOI: 10.1155/2013/739764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/28/2013] [Accepted: 04/02/2013] [Indexed: 11/17/2022]
Abstract
Conditioned taste aversion (CTA) is an adaptive behavior that benefits survival of animals including humans and also serves as a powerful model to study the neural mechanisms of learning. Memory formation is a necessary component of CTA learning and involves neural processing and regulation of gene expression in the amygdala. Many studies have been focused on the identification of intracellular signaling cascades involved in CTA, but not late responsive genes underlying the long-lasting behavioral plasticity. In this study, we explored in silico experiments to identify persistent changes in gene expression associated with CTA in rats. We used oligonucleotide microarrays to identify 248 genes in the amygdala regulated by CTA. Pathway Studio and IPA software analyses showed that the differentially expressed genes in the amygdala fall in diverse functional categories such as behavior, psychological disorders, nervous system development and function, and cell-to-cell signaling. Conditioned taste aversion is a complex behavioral trait which involves association of visceral and taste inputs, consolidation of taste and visceral information, memory formation, retrieval of stored information, and extinction phase. In silico analysis of differentially expressed genes is therefore necessary to manipulate specific phase/stage of CTA to understand the molecular insight.
Collapse
|
23
|
Gathercole LL, Morgan SA, Tomlinson JW. Hormonal Regulation of Lipogenesis. VITAMINS & HORMONES 2013; 91:1-27. [DOI: 10.1016/b978-0-12-407766-9.00001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, Cui S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 2012; 7:e33861. [PMID: 22479460 PMCID: PMC3316505 DOI: 10.1371/journal.pone.0033861] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) play vital regulatory roles in many cellular processes. The expression of miRNA (miR)-34c is highly enriched in adult mouse testis, but its roles and underlying mechanisms of action are not well understood. Methodology/Principal Findings In the present study, we show that miR-34c is detected in mouse pachytene spermatocytes and continues to be highly expressed in spermatids. To explore the specific functions of miR-34c, we have established an in vivo model by transfecting miR-34c inhibitors into primary spermatocytes to study the loss-of-function of miR-34c. The results show that silencing of miR-34c significantly increases the Bcl-2/Bax ratio and prevents germ cell from apoptosis induced by deprivation of testosterone. Moreover, ectopic expression of the miR-34c in GC-2 cell trigger the cell apoptosis with a decreased Bcl-2/Bax ratio and miR-34c inhibition lead to a low spontaneous apoptotic ratio and an increased Bcl-2/Bax ratio. Furthermore, ectopic expression of miR-34c reduces ATF1 protein expression without affecting ATF1 mRNA level via directly binding to ATF1's 3′UTR, indicating that ATF1 is one of miR-34c's target genes. Meanwhile, the knockdown of ATF1 significantly decreases the Bcl-2/Bax ratio and triggers GC-2 cell apoptosis. Inhibition of miR-34c does not decrease the GC-2 cell apoptosis ratio in ATF1 knockdown cells. Conclusions/Significance Our study shows for the first time that miR-34c functions, at least partially, by targeting the ATF1 gene in germ cell apoptosis, providing a novel mechanism with involvement of miRNA in the regulation of germ cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Ma X, Ding W, Wang J, Wu G, Zhang H, Yin J, Zhou L, Li D. LOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells. J Nutr 2012; 142:448-55. [PMID: 22279136 DOI: 10.3945/jn.111.152108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Obesity results in part from altered adipocyte metabolism and enhanced adipogenesis. However, the factors that influence insulin-independent differentiation of preadipocytes in response to excess intake of dietary energy remain poorly understood. Based on our recent finding that LOC66273 isoform 2 (LI2), a gene that encodes a novel Mth938 domain-containing protein, is highly expressed in white adipose tissues, we hypothesized that LI2 plays an important role in adipogenesis. Plasmid pcDNA3.1-LI2 was electroporated into 3T3-L1 preadipocytes to overexpress the LI2 protein. Synthetic siRNA was transfected into 3T3-L1 cells to knockdown endogenous LI2. Using constitutively active and potent siRNA against LI2, we determined cell morphology, cell viability, and adipocytic factors in 3T3-L1 preadipocytes. Our results indicated that LI2 was sufficient to drive preadipocyte differentiation via modulating the phosphorylation level and transcriptional activity of CREB, coincident with expression of several adipogenic regulators and mature adipocyte markers, without insulin treatment. In addition, overexpression of the LI2 protein inhibited preadipocyte growth, whereas knockdown of the LI2 protein resulted in preadipocyte apoptosis via caspase-3 activation during adipogenesis. These results indicated that LI2 might function to switch preadipocytes from proliferation to differentiation and to maintain the viability of preadipocytes during adipogenesis by regulating the caspase-3 pathway. Our findings highlight the importance of LI2 in the formation of new adipocytes, thus helping understand the mechanisms responsible for insulin-independent adipogenesis in mammals.
Collapse
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Panguluri SK, Kuwabara N, Kang Y, Cooper N, Lundy RF. Conditioned taste aversion dependent regulation of amygdala gene expression. Physiol Behav 2012; 105:996-1006. [PMID: 22119580 PMCID: PMC3260345 DOI: 10.1016/j.physbeh.2011.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/05/2023]
Abstract
The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning.
Collapse
Affiliation(s)
- Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Nobuyuki Kuwabara
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Yi Kang
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis MO
| | - Nigel Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| |
Collapse
|
27
|
Asakura T, Iwaki S, Okada H, Sobel BE, Fujii S. Posttranscriptional regulation of expression of plasminogen activator inhibitor type-1 by cAMP in HepG2 liver cells. J Biochem 2011; 150:687-94. [PMID: 21878476 DOI: 10.1093/jb/mvr110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Altered expression of plasminogen activator inhibitor type-1 (PAI-1), a physiologic fibrinolysis inhibitor, is implicated in atherosclerosis. Cyclic adenosine monophosphate (cAMP) alters PAI-1 expression in several cells. Nevertheless, posttranscriptional regulation of PAI-1 has not been elucidated. To determine whether cAMP affects PAI-1 expression at posttranscriptional level, we determined promoter activity, mRNA levels, 3'-untranslated region (UTR) activity and protein levels of PAI-1 using HepG2 cells. cAMP decreased PAI-1 promoter activity at 24 h and mRNA expression at 4 h while it increased mRNA expression and accumulation of PAI-1 protein into media at 24 h. Human PAI-1 mRNA exists in two subspecies (3.2 and 2.2 kb), and cAMP increased baseline luciferase activity of 3'-UTR of the 3.2 kb PAI-1 mRNA [3'-UTR (+1358-3176)] and 1 kb fragment of 3'-terminus of 3'-UTR of 3.2 kb mRNA [3'-UTR (+2177-3176)]. cAMP increased PAI-1 protein expression despite decrease in promoter activity, presumably by regulating PAI-1 expression at the posttranscriptional level and thereby affecting mRNA stability. The 53-nt fragment in 3'-UTR (+2591 to +2643 nt) was involved in posttranscriptional regulation by cAMP. Thus, cAMP can stabilize 3.2 kb PAI-1 mRNA mediated by specific effects on 3'-UTR, and these effects are associated with increased expression of PAI-1 protein.
Collapse
Affiliation(s)
- Takefumi Asakura
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
28
|
Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X, Fu R, Zhang L, Zhang X, Lu Y, Zou J, Wang L, Guan Q, Gao L, Zhao J. A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 2010; 52:1401-9. [PMID: 20648556 DOI: 10.1002/hep.23800] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Elevated thyroid-stimulating hormone (TSH) and hypercholesterolemia commonly coexist, as typically seen in hypothyroidism, but there is no known mechanism directly linking the two. Here, we demonstrated that in liver cells, TSH promoted the expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis, by acting on the TSH receptor in hepatocyte membranes and stimulating the cyclic adenosine monophosphate / protein kinase A / cyclic adenosine monophosphate-responsive element binding protein (cAMP/PKA/CREB) signaling system. In thyroidectomized rats, the production of endogenous thyroid hormone was eliminated and endogenous TSH was suppressed through pituitary suppression with constant administration of exogenous thyroid hormone, and hepatic HMGCR expression was increased by administration of exogenous TSH. These results suggested that TSH could up-regulate hepatic HMGCR expression, which indicated a potential mechanism for hypercholesterolemia involving direct action of TSH on the liver.
Collapse
Affiliation(s)
- Limin Tian
- Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li B, Wang XY, Tian Z, Xiao XJ, Xu Q, Wei CX, Y F, Sun HC, Chen GH. Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy 2010; 12:326-31. [PMID: 20078389 DOI: 10.3109/14653240903518155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mammalian spermatogonial stem cells (SSC) are able to differentiate into different cell types in vitro, which are valuable sources for regenerative medicine and gene transfer studies. We investigated the differentiation potential of chicken SSC into osteoblasts, neuron-like cells and adipocytes in vitro. METHODS Chicken SSC from the testes of 18- and 20-day-old chicken embryos were cultured in different induction media for three passages in vitro. For differentiation into osteoblasts, SSC were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 1 x 10(-4) micromol/mL desamethasone, 10 micromol/mL (beta-sodium glycerophosphate and 0.05 mg/mL vitamin C, and examined by microscopy after Von Kossa's, cytochemical and immunohistochemical staining. For differentiation into neuron-like cells, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL retinoic acid (RA), 5.0 micromol/mL 3-isobutyl-1-methylxanthine (IBMX) and examined by microscopy after toluidine blue or immunohistochemical staining. For differentiation into adipocytes, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL dexamethasone, 0.01 mg/mL insulin, 0.5 micromol/mL IBMX and examined by microscopy after Oil red O staining and reverse transcriptase-polymerase chain reaction (RT-PCR) for gene expression of peroxisome proliferation activation receptor-gamma (PPAR-gamma). RESULTS After 15 and 21 days of culture in the induction medium for osteoblast differentiation, 75% and 80% chicken SSC differentiated into osteoblasts, as confirmed by Von Kossa's, calcium-cobalt and collagen I antibody staining. After 3 and 7 days of culture in the induction medium for neuron-like cell differentiation, 78% and 85% SSC became neuron-like cells, as confirmed by staining with toluidine blue and the monoclonal antibody against neuron-specific enolase, nestin and glial fibrillary acidic protein. After 7 days of culture in the induction for adipocyte differentiation, 85% SSC differentiated into adipocytes, as confirmed by Oil red O staining and RT-PCT for PPAR-gamma gene expression. DISCUSSION Our results show that chicken SSC can differentiate into osteoblasts, neuron-like cells and adipocytes under similar conditions as for directional differentiation of mammalian SSC in vitro. The findings show the feasibility of using SSC-derived cells for developmental biology and gene transfer studies in chickens.
Collapse
Affiliation(s)
- Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Madsen L, Kristiansen K. The importance of dietary modulation of cAMP and insulin signaling in adipose tissue and the development of obesity. Ann N Y Acad Sci 2010; 1190:1-14. [PMID: 20388132 DOI: 10.1111/j.1749-6632.2009.05262.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adipose tissue plays a pivotal role in whole body energy homeostasis. In this review, we summarize knowledge of the seemingly paradoxical roles of insulin and cyclic adenosine monophosphate (cAMP) signaling in adipocyte differentiation and function, emphasizing the interplay between the two branches of cAMP signaling, the canonical protein kinase A-dependent pathways and the novel exchange protein activated by cAMP (Epac)-dependent pathways, and insulin signaling. We discuss how macronutrients via changes in the balance between insulin- and cAMP-dependent signaling can affect the development of obesity by changing energy expenditure and/or feed efficiency. We review results demonstrating how the balance between different classes of carbohydrates and proteins modulates the obesigenic action of saturated as well as unsaturated fatty acids pointing to insulin as a key determinant in the regulation of the metabolic/regulatory action of both n-3 and n-6 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | |
Collapse
|
31
|
Yang YM, Kim HE, Ki SH, Kim SG. Metadoxine, an ion-pair of pyridoxine and L-2-pyrrolidone-5-carboxylate, blocks adipocyte differentiation in association with inhibition of the PKA-CREB pathway. Arch Biochem Biophys 2009; 488:91-9. [PMID: 19607801 DOI: 10.1016/j.abb.2009.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/30/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
Abstract
Adipogenesis is orchestrated by the expression of master adipogenic regulators. In particular, phosphorylation of cAMP response element binding protein (CREB) by protein kinase A promotes CREB nuclear translocation, thereby inducing expression of the adipogenic regulators and resulting in adipogenic maturation. Although metadoxine, an ion-pair of pyridoxine and l-2-pyrrolidone-5-carboxylate, has been shown to inhibit lipid accumulation in the liver, its effect on adipocyte differentiation has never been explored. This study investigated the effects of metadoxine on the differentiation of 3T3-L1 preadipocytes and the molecular mechanism. Metadoxine treatment did not inhibit mitotic clonal expansion, but inhibited late-stage cell differentiation, suggesting that metadoxine may block the differentiation step of preadipocytes. Metadoxine inhibited CREB phosphorylation and binding to the cAMP response element, thereby repressing CCAAT/enhancer-binding protein beta during hormone-induced adipogenesis. Overall, metadoxine inhibits adipogenic differentiation in association with the inhibition of CREB/cAMP response element-dependent CCAAT/enhancer-binding protein beta induction in the protein kinase A-CREB pathway.
Collapse
Affiliation(s)
- Yoon Mee Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Sillim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
32
|
Inhibitory effect of novel diallyldisulfide analogs on HMG-CoA reductase expression in hypercholesterolemic rats: CREB as a potential upstream target. Life Sci 2009; 85:211-9. [PMID: 19523964 DOI: 10.1016/j.lfs.2009.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 05/14/2009] [Accepted: 05/22/2009] [Indexed: 11/21/2022]
Abstract
AIMS Diallyldisulfide (DADS), an active principle of garlic (Allium sativum) is known for its antihyperlipidemic properties. The present study was designed to evaluate the effect of novel synthesized DADS analogs, on the lipid profile of hypercholesterolemic rats and to investigate the molecular correlates of their activity at the cellular level. MAIN METHODS Wistar rats, weighing 100-120 g each, were administered with 5% cholesterol for one week, and subsequently administered with lovastatin, allicin and DADS (20 mg/kg wt) analogs in the second week along with 5% cholesterol. All animals were sacrificed after overnight starvation. KEY FINDINGS Our results show that DADS analogs are effective in reducing the total lipid levels which could be correlated with a significant decrease in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity. DADS analogs strongly inhibit HMGR activity in vivo but not in vitro. These results can be attributed to the significant decrease in the mRNA levels and protein expression of HMGR. Further, we show that DADS analogs significantly inhibited the activation of sterol regulatory element-binding protein-2 (SREBP-2) and interfered with DNA binding activity of cAMP response element-binding protein (CREB) but not nuclear factor-Y (NF-Y), with upstream regulatory sequences of HMGR. Moreover, DADS analogs are also effective in reducing the levels of oxidized low-density lipoprotein (ox-LDL), lipid peroxidation as well as NF-kappaB activity, showing good anti-inflammatory and antioxidant properties. SIGNIFICANCE The unique anti-inflammatory effect and hypolipidemic action of DADS analogs may be beneficial in preventing the vascular complications that are induced by hyperlipidemia and provide a new therapeutic approach for the treatment of cardiovascular and related diseases.
Collapse
|
33
|
Cherry J, Jones H, Karschner VA, Pekala PH. Post-transcriptional control of CCAAT/enhancer-binding protein beta (C/EBPbeta) expression: formation of a nuclear HuR-C/EBPbeta mRNA complex determines the amount of message reaching the cytosol. J Biol Chem 2008; 283:30812-20. [PMID: 18678862 PMCID: PMC2576548 DOI: 10.1074/jbc.m805659200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Indexed: 12/27/2022] Open
Abstract
In 3T3-L1 cells, HuR is constitutively expressed and prior to induction of differentiation localized predominantly to the nucleus. Within minutes of induction of differentiation, nuclear HuR binds to its target ligand mRNAs, and the complexes appear to move to the cytosol. One ligand mRNA is the CCAAT/enhancer-binding protein beta (C/EBPbeta) message. To examine the function and importance of the HuR-C/EBPbeta interaction, retroviral expression constructs were created in which the HuR binding site was altered by deletion (betadel) or deletion and substitution (betad/s). Expression of these constructs in murine embryonic fibroblasts resulted in significant adipose conversion relative to those cells expressing wild type C/EBPbeta. C/EBPbeta protein content was increased markedly in both betadel and betad/s, which correlated with the acquisition of the adipocyte phenotype. Analysis of the betad/s cell line demonstrated a robust expression of C/EBPalpha coincident with peroxisome proliferator-activated receptor gamma expression. Total C/EBPbeta mRNA accumulation indicated no difference between cells harboring either the wild type C/EBPbeta cDNA or betad/s construct. However, cytosolic C/EBPbeta mRNA in the cells expressing the betad/s construct was maintained at levels between 2- and 7-fold greater than in the cells expressing the wild type construct. Alteration in mRNA half-life was not responsible for the increased accumulation. Mechanistically, these data suggest that HuR binding results in nuclear retention of the C/EBPbeta mRNA and is consistent with HuR control, at least in part, of mRNA processing.
Collapse
Affiliation(s)
- Joy Cherry
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
34
|
Fox KE, Colton LA, Erickson PF, Friedman JE, Cha HC, Keller P, MacDougald OA, Klemm DJ. Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. J Biol Chem 2008; 283:35096-105. [PMID: 18957421 DOI: 10.1074/jbc.m806423200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin D1 expression is elevated and Wnt10b is repressed by cAMP during the first few hours of adipogenesis. cAMP-responsive element-binding protein (CREB) is a primary target for cAMP signaling, and we have shown that activation of CREB promotes adipogenesis and adipocyte survival. Here we tested the impact of CREB on expression of cyclin D1 and wingless-related mouse mammary tumor virus integration site 10b (Wnt10b) in 3T3-L1 cells. Forced depletion of CREB blocked Bt(2)cAMP-stimulated cyclin D1 expression and basal Wnt10b gene expression. Two CREB-binding sites were identified in the Wnt10b promoter region. Ablation of either site partially blocked promoter activity, while mutation of both sites completely suppressed promoter activity. These results suggest that CREB activates transcription from both the cyclin D1 and Wnt10b gene promoters. What accounts for the differential regulation of cyclin D1 and Wnt10b genes by cAMP? Chromatin immunoprecipitation revealed CREB bound to the Wnt10b promoter in untreated preadipocytes but not following treatment with Bt(2)cAMP. CREB binding to the cyclin D1 promoter was detected in untreated cells and post-Bt(2)cAMP. Differences between CREB binding to the two genes correlated with increasing methylation of the Wnt10b promoter following Bt(2)cAMP treatment, whereas no methylation of the cyclin D1 promoter was observed. Treatment of cells with the methylase inhibitor 5-azacytidine restored CREB binding to the Wnt10b gene promoter and prevented the inhibition of Wnt10b RNA expression by Bt(2)cAMP. We conclude that cAMP stimulates phosphorylation and binding of CREB to the cyclin D1 gene promoter. Simultaneously, hypermethylation of the Wnt10b gene promoter suppresses binding of CREB, allowing adipogenesis to proceed.
Collapse
Affiliation(s)
- Keith E Fox
- Cardiovascular Pulmonary Research Laboratory and Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 2008; 28:3804-16. [PMID: 18391018 DOI: 10.1128/mcb.00709-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for cAMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of cAMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response.
Collapse
|
36
|
Shukla R, Bhonde RR. Adipogenic action of vanadium: a new dimension in treating diabetes. Biometals 2007; 21:205-10. [PMID: 17671828 DOI: 10.1007/s10534-007-9109-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Vanadium is a well known anti-diabetic agent which mimics most of the actions of insulin on mature adipocytes. We report here the effect of vanadium on proliferation and differentiation of 3T3-L1 preadipocytes. Like insulin, vanadium treatment leads to increased proliferation as evidenced by H(3)thymidine uptake studies and differentiation of 3T3-L1 cells into adipocytes as evidenced by oil-red-O staining. Adipogenic potential of vanadium can be attributed to CREB activation, as documented by phospho-CREB antibody staining. This adipogenic potential is of significance in an in vivo scenario as the new adipocytes are likely to be insulin sensitive as against resistant existing mature adipocytes and thus indirectly may help in reduction of insulin resistance. Till today decrease in insulin resistance by vanadium treatment has been mainly attributed to its potential to inhibit PTP-1B, however the present study opens a new dimension in vanadium treatment for diabetes due to its novel role in adipogenesis.
Collapse
Affiliation(s)
- Ruchi Shukla
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | |
Collapse
|
37
|
Dimova EY, Kietzmann T. The MAPK pathway and HIF-1 are involved in the induction of the human PAI-1 gene expression by insulin in the human hepatoma cell line HepG2. Ann N Y Acad Sci 2007; 1090:355-67. [PMID: 17384280 DOI: 10.1196/annals.1378.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Enhanced levels of plasminogen activator inhibitor-1 (PAI-1) are considered to be a risk factor for pathological conditions associated with hypoxia or hyperinsulinemia. The expression of the PAI-1 gene is increased by insulin in different cells, although, the molecular mechanisms behind insulin-induced PAI-1 expression are not fully known yet. Here, we show that insulin upregulates human PAI-1 gene expression and promoter activity in HepG2 cells and that mutation of the hypoxia-responsive element (HRE)-binding hypoxia-inducible factor-1 (HIF-1) abolished the insulin effects. Mutation of E-boxes E4 and E5 abolished the insulin-dependent activation of the PAI-1 promoter only under normoxia, but did not affect it under hypoxia. Furthermore, the insulin effect was associated with activation of HIF-1alpha via mitogen-activated protein kinases (MAPKs) but not PDK1 and PKB in HepG2 cells. Furthermore, mutation of a putative FoxO1 binding site which was supposed to be involved in insulin-dependent PAI-1 gene expression influenced the insulin-dependent activation only under normoxia. Thus, insulin-dependent PAI-1 gene expression might be regulated by the action of both HIF-1 and FoxO1 transcription factors.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- University of Kaiserslautern, Faculty of Chemistry, Department of Biochemistry, Erwin-Schroedinger Strasse 54, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
38
|
Oknianska A, Zmuda-Trzebiatowska E, Manganiello V, Degerman E. Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2007; 353:1080-5. [PMID: 17198676 DOI: 10.1016/j.bbrc.2006.12.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 12/18/2006] [Indexed: 09/30/2022]
Abstract
Phosphodiesterase 3B (PDE3B), is known to play an important role in acute insulin and cAMP-mediated regulation of lipid metabolism, and PDE4 are the main PDE types expressed in adipocytes. Here, we show that members of all PDE4 isoforms are expressed in 3T3-L1 and primary mouse adipocytes. Long-term treatment of 3T3-L1 adipocytes with insulin induced up-regulation of PDE3B and PDE4D in a phosphatidylinositol 3-kinase-dependent manner whereas long-term treatment with beta-adrenergic agonists induced down-regulation of PDE3B and up-regulation of PDE4D. Thus, PDE3B and PDE4D can be added to the list of genes regulated by insulin and cAMP-increasing hormones. Altered expression of PDE3B and PDE4D in response to long-term treatment with insulin and catecholamines may contribute to altered regulation of metabolism in diabetes.
Collapse
Affiliation(s)
- Alina Oknianska
- Biomedical Center, C11, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
39
|
Eddy SF, Storey KB. p38MAPK regulation of transcription factor targets in muscle and heart of the hibernating bat,Myotis lucifugus. Cell Biochem Funct 2007; 25:759-65. [PMID: 17487931 DOI: 10.1002/cbf.1416] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian hibernation combines a profound net metabolic rate suppression with the selective up-regulation of key genes whose protein products address specific metabolic needs of the hibernator. The signal transduction pathways and transcription factors involved in regulating hibernation-responsive gene expression are of great interest. The present study suggests an important role for the p38 mitogen-activated protein kinase (p38 MAPK) and selected downstream transcription factors under its control (CREB, ATF-2, Elk-1) in the metabolic response by skeletal muscle during hibernation of little brown bats, Myotis lucifugus. Western blotting was used to quantify both total protein and levels of the phosphorylated, active forms of p38 MAPK, CREB, ATF-2 and Elk-1 in both skeletal muscle and heart of euthermic and hibernating bats. The p38 MAPK pathway was not apparently activated in heart during torpor but skeletal muscle showed strong increases (2.2-11-fold) in the amounts of phosphorylated p38 T180/Y182, CREB S133, ATF-2T69/71 and Elk-1(S383) in the torpid versus aroused state. By contrast both total and phosphorylated levels of Elk-1 in heart were reduced during hibernation to just 30% of the euthermic values. These data implicate p38 MAPK and its transcription factor targets, CREB, ATF-2 and Elk-1 in skeletal muscle maintenance during hibernation.
Collapse
Affiliation(s)
- Sean F Eddy
- Institute of Biochemistry and Department of Chemistry, Carleton University, Ottawa, Ont., Canada K1S 5B6.
| | | |
Collapse
|
40
|
Fox KE, Fankell DM, Erickson PF, Majka SM, Crossno JT, Klemm DJ. Depletion of cAMP-response Element-binding Protein/ATF1 Inhibits Adipogenic Conversion of 3T3-L1 Cells Ectopically Expressing CCAAT/Enhancer-binding Protein (C/EBP) α, C/EBP β, or PPARγ2. J Biol Chem 2006; 281:40341-53. [PMID: 17071615 DOI: 10.1074/jbc.m605077200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation of preadipocytes to adipocytes is orchestrated by the expression of the "master adipogenic regulators," CCAAT/enhancer-binding protein (C/EBP) beta, peroxisome proliferator-activated receptor gamma (PPARgamma), and C/EBP alpha. In addition, activation of the cAMP-response element-binding protein (CREB) is necessary and sufficient to promote adipogenic conversion and prevent apoptosis of mature adipocytes. In this report we used small interfering RNA to deplete CREB and the closely related factor ATF1 to explore the ability of the master adipogenic regulators to promote adipogenesis in the absence of CREB and probe the function of CREB in late stages of adipogenesis. Loss of CREB/ATF1 blocked adipogenic conversion of 3T3-L1 cells in culture or 3T3-F442A cells implanted into athymic mice. Loss of CREB/ATF1 prevented the expression of PPARgamma, C/EBP alpha, and adiponectin and inhibited the loss of Pref-1. Loss of CREB/ATF1 inhibited adipogenic conversion even in cells ectopically expressing C/EBP alpha, C/EBP beta, or PPARgamma2 individually. CREB/ATF1 depletion did not attenuate lipid accumulation in cells expressing both PPARgamma2 and C/EBP alpha, but adiponectin expression was severely diminished. Conversely ectopic expression of constitutively active CREB overcame the blockade of adipogenesis due to depletion of C/EBP beta but not due to loss of PPARgamma2 or C/EBP alpha. Depletion of CREB/ATF1 did not suppress the expression of C/EBP beta as we had previously observed using dominant negative forms of CREB. Finally results are presented showing that CREB promotes PPARgamma2 gene transcription. The results indicate that CREB and ATF1 play a central role in adipogenesis because expression of individual master adipogenic regulators is unable to compensate for their loss. The data also indicate that CREB not only functions during the initiation of adipogenic conversion but also at later stages.
Collapse
Affiliation(s)
- Keith E Fox
- Research Service, Veterans Affairs Medical Center, University of Colorado Health Sciences Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
41
|
Flammer JR, Popova KN, Pflum MKH. Cyclic AMP Response Element-Binding Protein (CREB) and CAAT/Enhancer-Binding Protein β (C/EBPβ) Bind Chimeric DNA Sites with High Affinity. Biochemistry 2006; 45:9615-23. [PMID: 16878996 DOI: 10.1021/bi052521a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basic region leucine zipper (bZIP) proteins are transcription factors that interact selectively with duplex DNA to regulate gene expression. Specifically, the cAMP response element-binding protein (CREB) interacts with the cAMP response element (CRE) DNA site with high affinity, while it binds the CAAT/enhancer-binding protein (CEBP) DNA site with low affinity. Despite the selectivity of CREB for the CRE site, CREB-dependent transcription is observed via chimeric DNA sites with similarities to both CRE and CEBP sites. Because CRE/CEBP and CEBP/CRE chimeric DNA are relevant for transcription regulation but have not been rigorously characterized, quantitative electrophoretic mobility shift assays were used to characterize the binding affinity and specificity of CREB to the sites. In addition to CREB, C/EBPbeta was tested because chimeric DNA was shown to stabilize CREB-C/EBPbeta heterodimerization. Despite previous work, no CREB-C/EBPbeta heterodimer was observed in the presence of chimeric DNA; only CREB and C/EBPbeta homodimers were seen. The CREB homodimer bound to the chimeric sites with high affinity, demonstrating that the presence of one CRE half-site is sufficient for high-affinity interaction. A comparison of CREB and C/EBPbeta homodimers indicated that they bind the chimeric sites with similar, high affinity. Whereas the CRE and CEBP sites preferentially interact with CREB and C/EBPbeta, respectively, the chimeric sites bind CREB and C/EBPbeta competitively. Because DNA binding correlates with transcription regulation, the results suggest that gene expression from chimeric sites can be altered by small changes in relative bZIP concentrations or bZIP accessory factors.
Collapse
Affiliation(s)
- Jamie R Flammer
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
42
|
Liu H, Tang JR, Choi YH, Napolitano M, Hockman S, Taira M, Degerman E, Manganiello VC. Importance of cAMP-response element-binding protein in regulation of expression of the murine cyclic nucleotide phosphodiesterase 3B (Pde3b) gene in differentiating 3T3-L1 preadipocytes. J Biol Chem 2006; 281:21096-21113. [PMID: 16702214 DOI: 10.1074/jbc.m601307200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incubation of 3T3-L1 preadipocytes with isobutylmethylxanthine (IBMX), dexamethasone, and insulin, alone or in combination, demonstrated that IBMX, which increased cAMP-response element-binding protein (CREB) phosphorylation, was the predominant regulator of Pde3b expression. Real time PCR and immunoblotting indicated that in 3T3-L1 preadipocytes, IBMX-stimulated induction of Pde3b mRNA and protein was markedly inhibited by dominant-negative CREB proteins. By transfecting preadipocytes, differentiating preadipocytes, and HEK293A cells with luciferase reporter vectors containing different fragments of the 5'-flanking region of the Pde3b gene, we identified a distal promoter that contained canonical cis-acting cAMP-response elements (CRE) and a proximal, GC-rich promoter region, which contained atypical CRE. Mutation of the CRE sequences dramatically reduced distal promoter activity; H89 inhibited IBMX-stimulated CREB phosphorylation and proximal and distal promoter activities. Distal promoter activity was stimulated by IBMX and phorbol ester (PMA) in Raw264.7 monocytes, but only by IBMX in 3T3-L1 preadipocytes. Chromatin immunoprecipitation analyses with specific antibodies against CREB, phospho-CREB, and CBP/p300 (CREB-binding protein) showed that these proteins associated with both distal and proximal promoters and that interaction of phospho-CREB, the active form of CREB, with both Pde3b promoter regions was increased in IBMX-treated preadipocytes. These results indicate that CRE in distal and proximal promoter regions and activation of CREB proteins play a crucial role in transcriptional regulation of Pde3b expression during preadipocyte differentiation.
Collapse
Affiliation(s)
- Hanguan Liu
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jing Rong Tang
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Young Hun Choi
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria Napolitano
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven Hockman
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Masato Taira
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Eva Degerman
- Section for Molecular Signaling, Department of Cell and Molecular Biology, University of Lund, S-22100 Lund, Sweden
| | - Vincent C Manganiello
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
43
|
Woo CWH, Siow YL, O K. Homocysteine activates cAMP-response element binding protein in HepG2 through cAMP/PKA signaling pathway. Arterioscler Thromb Vasc Biol 2006; 26:1043-50. [PMID: 16497994 DOI: 10.1161/01.atv.0000214981.58499.32] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Our previous studies demonstrated that hyperhomocysteinemia not only elicited inflammatory responses in the vascular endothelium but also induced fatty liver and hypercholesterolemia via transcriptional regulation. One of the transcription factors activated in the liver during hyperhomocysteinemia was cAMP-response element binding protein (CREB). CREB regulates the expression of many genes including those involved in lipid and glucose metabolism. In this study, we investigated the molecular mechanism by which Hcy activated CREB in rat liver and in hepatocytes (HepG2). METHOD AND RESULTS Hyperhomocysteinemia was induced in rats by feeding high-methionine diet for 4 weeks. There was a significant increase in hepatic cAMP levels, protein kinase A (PKA) activity and an activation of CREB. Incubation of HepG2 cells with Hcy (50 to 100 micromol/L) significantly enhanced CREB phosphorylation and subsequently increased CREB/DNA binding activity. PKA was activated in Hcy-treated cells as a result of increased cellular cAMP level. Inhibition of adenylyl cyclase not only reduced the intracellular cAMP levels elevated by Hcy treatment but also inhibited PKA activation and prevented Hcy-induced CREB phosphorylation. CONCLUSIONS These results suggest that the cAMP/PKA signaling pathway plays an important role in mediating Hcy-induced CREB activation in hepatocyte.
Collapse
Affiliation(s)
- Connie W H Woo
- Department of Animal Science, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | | | | |
Collapse
|
44
|
Abstract
Cell culture models have been developed to study commitment and subsequent differentiation of preadipocytes into adipocytes. Bone morphogenetic protein 4 commits mesenchymal stem cells to the adipose lineage. Other factors, including Wnt signaling, cell density, and cell shape, play a role in lineage commitment. Following commitment to the adipose lineage, growth-arrested preadipocytes can differentiate to adipocytes by treatment with insulin-like growth factor 1, glucocorticoid and an agent that increases cAMP level. This process is characterized by a rapid and transient increase in CCAAT/enhancer binding protein (C/EBP) beta and synchronous re-entry into the cell cycle. Acquisition of DNA-binding by C/EBPbeta occurs after the transcription factor becomes phosphorylated. The cells enter a growth-arrested state and begin terminal differentiation. C/EBPalpha, peroxisome proliferator-activated receptor gamma, and adipocyte determination, and differentiation-dependent factor 1 coordinate the expression of genes that create and maintain the adipocyte phenotype.
Collapse
Affiliation(s)
- Tamara C Otto
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
45
|
Woo CWH, Siow YL, Pierce GN, Choy PC, Minuk GY, Mymin D, O K. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 2005; 288:E1002-10. [PMID: 15644462 DOI: 10.1152/ajpendo.00518.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Elevated plasma homocysteine (Hcy) concentration is associated with other cardiovascular risk factors. We previously reported that Hcy stimulated cholesterol biosynthesis in HepG2 cells. In the present study, we investigated the underlying mechanisms of Hcy-induced hepatic cholesterol biosynthesis in an animal model. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. The mRNA expression and the enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were significantly increased in livers of hyperhomocysteinemic rats. There were marked hepatic lipid accumulation and an elevation of plasma cholesterol concentration in hyperhomocysteinemic rats. Three transcription factors, namely, sterol regulatory element-binding protein-2 (SREBP-2), cAMP response element-binding protein (CREB), and nuclear factor Y (NF-Y) were activated in livers of hyperhomocysteinemic rats. Upon Hcy treatment of hepatocytes, there was a significant increase in HMG-CoA reductase mRNA expression in these cells. The activation of SREBP-2, CREB, and NF-Y preceded the increase in HMG-CoA reductase expression in Hcy-treated cells. Pretreatment of hepatocytes with inhibitors for transcription factors not only blocked the activation of SREBP-2, CREB, and NF-Y but also attenuated Hcy-induced HMG-CoA reductase mRNA expression. These results suggested that hyperhomocysteinemia-induced activation of SREBP-2, CREB, and NF-Y was responsible for increased cholesterol biosynthesis by transcriptionally regulating HMG-CoA reductase expression in the liver leading to hepatic lipid accumulation and subsequently hypercholesterolemia. In conclusion, the stimulatory effect of Hcy on hepatic cholesterol biosynthesis may represent an important mechanism for hepatic lipid accumulation and cardiovascular disorder associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Connie W H Woo
- Department of Physiology, St. Boniface Hospital Research Centre, Faculty of Medicine, R4032, 351 Tache Ave., Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible domain, however, mediates signal-induced activation of CREB-mediated transcription. It is generally believed that recruitment of the coactivators CREB-binding protein (CBP) and p300 after signal-induced phosphorylation of this domain at serine-133 strongly enhances CREB-dependent transcription. Transcriptional activity of CREB can also be potentiated by phosphoserine-133-independent mechanisms, and not all stimuli that provoke phosphorylation of serine-133 stimulate CREB-dependent transcription. This review presents an overview of the diversity of stimuli that induce CREB phosphorylation at Ser-133, focuses on phosphoserine-133-dependent and -independent mechanisms that affect CREB-mediated transcription, and discusses different models that may explain the discrepancy between CREB Ser-133 phosphorylation and activation of CREB-mediated transcription.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037, Norway
| | | | | |
Collapse
|
47
|
Zhang JW, Klemm DJ, Vinson C, Lane MD. Role of CREB in Transcriptional Regulation of CCAAT/Enhancer-binding Protein β Gene during Adipogenesis. J Biol Chem 2004; 279:4471-8. [PMID: 14593102 DOI: 10.1074/jbc.m311327200] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proximal promoter of the C/EBPbeta gene possesses dual cis regulatory elements (TGA1 and TGA2), both of which contain core CREB binding sites. Comparison of the activities of C/EBPbeta promoter-reporter genes with 5'-truncations or site-directed mutations in the TGA elements showed that both are required for maximal promoter function. Electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) analyses with antibodies specific to CREB and ATF1 showed that these CREB family members associate with the proximal promoter both in vitro and ex vivo. Immunoblotting and ChIP analysis revealed that other CREB family members, CREM and ATF1, are up-regulated and associate with the proximal C/EBPbeta promoter in mouse embryonic fibroblasts (MEFs) from CREB(-/-) mice. ChIP analysis of wild-type MEFs and 3T3-L1 preadipocytes revealed that interaction of phospho-CREB, the active form of CREB, with the C/EBPbeta gene promoter occurs only after induction of differentiation of 3T3-L1 preadipocytes and MEFs. Consistent with the interaction of CREB and ATF1 at the TGA regulatory elements, expression of constitutively active CREB strongly activated C/EBPbeta promoter-reporter genes, induced expression of endogenous C/EBPbeta, and caused adipogenesis in the absence of the hormonal inducers normally required. Conversely, expression of a dominant-negative CREB blocked promoter-reporter activity, expression of C/EBPbeta, and adipogenesis. When subjected to the standard adipocyte differentiation protocol, wild-type MEFs differentiate into adipocytes at high frequency, whereas CREB(-/-) MEFs exhibit greatly reduced expression of C/EBPbeta and differentiation. The low level of expression of C/EBPbeta and differentiation in CREB(-/-) MEFs appears to be due to up-regulation of other CREB protein family members, i.e. ATF1 and CREM.
Collapse
Affiliation(s)
- Jiang-Wen Zhang
- Department of Biological Chemistry and Biochemistry, Cellular and Molecular Biology Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
48
|
Abstract
In Xenopus embryos, body patterning and cell specification are initiated by transcription factors, which are themselves transcribed during oogenesis, and their mRNAs are stored for use after fertilization. We have previously shown that the T-box transcription factor VegT is both necessary and sufficient to initiate transcription of all endoderm, and most mesoderm genes. In the absence of maternal VegT, no mesodermal organs (including the heart) or endodermal organs form. A second maternal transcription factor XTcf3 acts as a global repressor of transcription of dorsal genes, whose repression is inactivated on the dorsal side by a maternally encoded Wnt signaling pathway. In the absence of beta-catenin, no mesodermal or endodermal organs form. We show here that the maternally encoded transcription factor CREB is also essential for development. It is required for the initiation of expression of several mesodermal genes, including Xbra, Xcad2, and -3 and also regulates the cardiogenic gene Nkx 2-5. We show that maternal CREB-depleted embryos develop gastrulation defects that are rescued by the reintroduction of activated CREB mRNA. We conclude that maternal CREB must be added to the list of essential maternal transcription factors regulating cell specification in the early embryo.
Collapse
Affiliation(s)
- Nambirajan Sundaram
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
49
|
Solomon CS, Leitner JW, Goalstone ML. Dominant negative alpha-subunit of farnesyl- and geranylgeranyl-transferase I inhibits insulin-induced differentiation of 3T3-L1 pre-adipocytes. Int J Obes (Lond) 2003; 27:40-7. [PMID: 12532152 DOI: 10.1038/sj.ijo.0802189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Revised: 07/24/2002] [Accepted: 08/06/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate whether the expression of a dominant negative (DN) farnesyl- and geranygeranyl-transferase I (FTase/GGTase I) alpha-subunit in 3T3-L1 pre-adipocytes can inhibit insulin's ability to induce differentiation. DESIGN 3T3-L1 pre-adipocytes were stably transfected with vector alone or vector expressing a mutated DN FTase/GGTase I alpha-subunit (S60A)(S62A) and incubated in serum-free medium in the absence and presence of insulin. MEASUREMENTS Various assays were performed to determine the effect of DN FTase/GGTase I alpha-subunit expression in 3T3-L1 pre-adipocyte on insulin-induced DNA synthesis, cell count, phosphorylation of the FTase/GGTase I alpha-subunit, FTase and GGTase I activity, amounts of prenylated p21Ras and RhoA, phosphorylation of MAP kinase and Akt, and differentiation to mature fat cells. RESULTS Expression of DN FTase/GGTase I alpha-subunit inhibited insulin's ability to increase DNA synthesis, cell count, FTase and GGTase I activity, amounts of prenylated p21Ras and RhoA, and magnitude of phosphorylation of MAP kinase. Expression of DN FTase/GGTase I alpha-subunit in 3T3-L1 pre-adipocytes was without effect on insulin-induced Akt phosphorylation. CONCLUSION Expression of DN FTase/GGTase I alpha-subunit inhibits insulin-induced differentiation of 3T3-L1 pre-adipocytes to mature adipocytes, and thus could indicate potential therapeutic avenues to assuage the deleterious effects of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- C S Solomon
- Research Service, Denver VA Medical Center, Denver, Colorado 80220, USA
| | | | | |
Collapse
|
50
|
Servillo G, Della Fazia MA, Sassone-Corsi P. Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM. Exp Cell Res 2002; 275:143-54. [PMID: 11969286 DOI: 10.1006/excr.2002.5491] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.
Collapse
Affiliation(s)
- Giuseppe Servillo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-Université Louis Pasteur, 1, rue Laurent Fries, Illkirch, 67404, France
| | | | | |
Collapse
|