1
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
2
|
Martikainen M, Lugano R, Pietilä I, Brosch S, Cabrolier C, Sivaramakrishnan A, Ramachandran M, Yu D, Dimberg A, Essand M. VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier. Nat Commun 2024; 15:10718. [PMID: 39715740 PMCID: PMC11666578 DOI: 10.1038/s41467-024-55493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Semliki Forest virus (SFV) is a neuropathogenic alphavirus which is of interest both as a model neurotropic alphavirus and as an oncolytic virus with proven potency in preclinical cancer models. In laboratory mice, peripherally administered SFV infiltrates the central nervous system (CNS) and causes encephalitis of varying severity. The route of SFV CNS entrance is poorly understood but has been considered to occur through the blood-brain barrier. Here we show that neuroinvasion of intravenously administered SFV is strictly dependent on very-low-density-lipoprotein receptor (VLDLR) which acts as an entry receptor for SFV. Moreover, SFV primarily enters the CNS through the blood-cerebrospinal fluid (B-CSF) barrier via infecting choroid plexus epithelial cells which show distinctly high expression of VLDLR. This is the first indication of neurotropic alphavirus utilizing choroid plexus for CNS entry, and VLDLR playing a specific and crucial role for mediating SFV entry through this pathway.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofie Brosch
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Camille Cabrolier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aishwarya Sivaramakrishnan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
4
|
Zuba V, Furon J, Bellemain-Sagnard M, Martinez de Lazarrondo S, Lebouvier L, Rubio M, Hommet Y, Gauberti M, Vivien D, Ali C. The choroid plexus: a door between the blood and the brain for tissue-type plasminogen activator. Fluids Barriers CNS 2022; 19:80. [PMID: 36243724 PMCID: PMC9569045 DOI: 10.1186/s12987-022-00378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background In the vascular compartment, the serine protease tissue-type plasminogen activator (tPA) promotes fibrinolysis, justifying its clinical use against vasculo-occlusive diseases. Accumulating evidence shows that circulating tPA (endogenous or exogenous) also controls brain physiopathological processes, like cerebrovascular reactivity, blood–brain barrier (BBB) homeostasis, inflammation and neuronal fate. Whether this occurs by direct actions on parenchymal cells and/or indirectly via barriers between the blood and the central nervous system (CNS) remains unclear. Here, we postulated that vascular tPA can reach the brain parenchyma via the blood-cerebrospinal fluid barrier (BCSFB), that relies on choroid plexus (CP) epithelial cells (CPECs). Methods We produced various reporter fusion proteins to track tPA in primary cultures of CPECs, in CP explants and in vivo in mice. We also investigated the mechanisms underlying tPA transport across the BCSFB, with pharmacological and molecular approaches. Results We first demonstrated that tPA can be internalized by CPECs in primary cultures and in ex vivo CPs explants. In vivo, tPA can also be internalized by CPECs both at their basal and apical sides. After intra-vascular administration, tPA can reach the cerebral spinal fluid (CSF) and the brain parenchyma. Further investigation allowed discovering that the transcytosis of tPA is mediated by Low-density-Lipoprotein Related Protein-1 (LRP1) expressed at the surface of CPECs and depends on the finger domain of tPA. Interestingly, albumin, which has a size comparable to that of tPA, does not normally cross the CPs, but switches to a transportable form when grafted to the finger domain of tPA. Conclusions These findings provide new insights on how vascular tPA can reach the brain parenchyma, and open therapeutic avenues for CNS disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00378-0.
Collapse
Affiliation(s)
- Vincent Zuba
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Jonathane Furon
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Mathys Bellemain-Sagnard
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Sara Martinez de Lazarrondo
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Maxime Gauberti
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France.,Department of Clinical Research, Caen-Normandie Hospital (CHU), Caen, France
| | - Carine Ali
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France.
| |
Collapse
|
5
|
Lipophorin receptors regulate mushroom body development and complex behaviors in Drosophila. BMC Biol 2022; 20:198. [PMID: 36071487 PMCID: PMC9454125 DOI: 10.1186/s12915-022-01393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.
Collapse
|
6
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
7
|
Jausoro I, Marzolo MP. Reelin activates the small GTPase TC10 and VAMP7 to promote neurite outgrowth and regeneration of dorsal root ganglia (DRG) neurons. J Neurosci Res 2021; 99:392-406. [PMID: 32652719 DOI: 10.1002/jnr.24688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023]
Abstract
Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Apolipoprotein E/Amyloid-β Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by APOE4. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1621-1636. [PMID: 31108099 DOI: 10.1016/j.ajpath.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Apolipoprotein E (apoE) colocalizes with amyloid-β (Aβ) in Alzheimer disease (AD) plaques and in synapses, and evidence suggests that direct interactions between apoE and Aβ are important for apoE's effects in AD. The present work examines the hypothesis that apoE receptors mediate uptake of apoE/Aβ complex into synaptic terminals. Western blot analysis shows multiple SDS-stable assemblies in synaptosomes from human AD cortex; apoE/Aβ complex was markedly increased in AD compared with aged control samples. Complex formation between apoE and Aβ was confirmed by coimmunoprecipitation experiments. The apoE receptors low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) were quantified in synaptosomes using flow cytometry, revealing up-regulation of LRP1 in early- and late-stage AD. Dual-labeling flow cytometry analysis of LRP1- and LDLR positives indicate most (approximately 65%) of LDLR and LRP1 is associated with postsynaptic density-95 (PSD-95)-positive synaptosomes, indicating that remaining LRP1 and LDLR receptors are exclusively presynaptic. Flow cytometry analysis of Nile red labeling revealed a reduction in cholesterol esters in AD synaptosomes. Dual-labeling experiments showed apoE and Aβ concentration into LDLR and LRP1-positive synaptosomes, along with free and esterified cholesterol. Synaptic Aβ was increased by apoE4 in control and AD samples. These results are consistent with uptake of apoE/Aβ complex and associated lipids into synaptic terminals, with subsequent Aβ clearance in control synapses and accumulation in AD synapses.
Collapse
|
9
|
Dlugosz P, Tresky R, Nimpf J. Differential Action of Reelin on Oligomerization of ApoER2 and VLDL Receptor in HEK293 Cells Assessed by Time-Resolved Anisotropy and Fluorescence Lifetime Imaging Microscopy. Front Mol Neurosci 2019; 12:53. [PMID: 30873003 PMCID: PMC6403468 DOI: 10.3389/fnmol.2019.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023] Open
Abstract
The canonical Reelin signaling cascade regulates correct neuronal layering during embryonic brain development. Details of this pathway are still not fully understood since the participating components are highly variable and create a complex mixture of interacting molecules. Reelin is proteolytically processed resulting in five different fragments some of which carrying the binding site for two different but highly homologous receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). The receptors are expressed in different variants in different areas of the developing brain. Binding of Reelin and its central fragment to the receptors results in phosphorylation of the intracellular adapter disabled-1 (Dab1) in neurons. Here, we studied the changes of the arrangement of the receptors upon Reelin binding and its central fragment at the molecular level in human embryonic kidney 293 (HEK293) cells by time-resolved anisotropy and fluorescence lifetime imaging microscopy (FLIM). In the off-state of the pathway ApoER2 and VLDLR form homo or hetero-di/oligomers. Upon binding of full length Reelin ApoER2 and VLDLR homo-oligomers are rearranged to higher order receptor clusters which leads to Dab1 phosphorylation. When the central fragment of Reelin binds to the receptors the cluster size of homo-oligomers is not affected and Dab1 is not phosphorylated. Hetero-oligomerization, however, can be induced, but does not lead to Dab1 phosphorylation. Cells expressing only ApoER2 or VLDLR change their shape when stimulated with the central fragment. Cells expressing ApoER2 produce filopodia/lamellipodia and cell size increases, whereas VLDLR-expressing cells decrease in size. These findings demonstrate that the primary event in the canonical Reelin pathway is the rearrangement of preformed receptor homo-oligomers to higher order clusters. In addition the possibility of yet another signaling mechanism which is mediated by the central Reelin fragment independent of Dab1 phosphorylation became apparent.
Collapse
Affiliation(s)
- Paula Dlugosz
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | - Roland Tresky
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | - Johannes Nimpf
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| |
Collapse
|
10
|
Strazielle N, Ghersi-Egea JF. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier. Curr Pharm Des 2017; 22:5463-5476. [PMID: 27464721 PMCID: PMC5421134 DOI: 10.2174/1381612822666160726112115] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Abstract
The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates.
Collapse
Affiliation(s)
- Nathalie Strazielle
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Faculty of medicine Laennec, Rue G Paradin, 69008, Lyon, France.
| | | |
Collapse
|
11
|
Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, Takeda S. TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J 2015; 29:2247-59. [PMID: 25681460 DOI: 10.1096/fj.14-261396] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
The diffusion of materials from systemic circulation to the central nervous system (CNS) is restricted by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). Choroid plexus epithelial cells (CPECs) of the brain ventricles constitute the BCSFB and regulate the infiltration of plasma proteins as well as immune cells into the interstitium of the CNS. The barrier function is altered in pathologic conditions. However, the regulatory mechanism of BCSFB is not fully understood. Here, we investigated the function of transient receptor potential vanilloid 4 (TRPV4), a polymodally gated divalent cation channel that is highly expressed in CPECs. TRPV4 was localized broadly on the apical membrane in swine CPECs, in contrast with an intense ciliary localization found on other cell types. Treatment with the TRPV4-specific agonist, GSK1016790A (GSK; EC₅₀ 34 nM), induced a robust calcium influx and an immediate serine/threonine protein phosphorylation. The agonist treatment induced a marked decrease in the amount of filamentous actin and disintegrated the cell junctions in 10-20 minutes. In contrast, inhibition of the basal TRPV4 activity with the TRPV4-specific antagonist, HC067047 (HC; IC₅₀ 74 nM), reduced the basolateral-to-apical transport of α-2-macroglobulin (A2M). Overall, this study demonstrated a novel physiologic function of TRPV4 in the regulation of BCSFB permeability.
Collapse
Affiliation(s)
- Keishi Narita
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shohei Sasamoto
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Schuichi Koizumi
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shizuka Okazaki
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hideki Nakamura
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takafumi Inoue
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Sen Takeda
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 2015; 92:33-40. [PMID: 24986271 DOI: 10.1016/j.plefa.2014.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada.
| |
Collapse
|
13
|
Yang XP, Amar MJ, Vaisman B, Bocharov AV, Vishnyakova TG, Freeman LA, Kurlander RJ, Patterson AP, Becker LC, Remaley AT. Scavenger receptor-BI is a receptor for lipoprotein(a). J Lipid Res 2013; 54:2450-7. [PMID: 23812625 DOI: 10.1194/jlr.m038877] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) is a multi-ligand receptor that binds a variety of lipoproteins, including high density lipoprotein (HDL) and low density lipoprotein (LDL), but lipoprotein(a) [Lp(a)] has not been investigated as a possible ligand. Stable cell lines (HEK293 and HeLa) expressing human SR-BI were incubated with protein- or lipid-labeled Lp(a) to investigate SR-BI-dependent Lp(a) cell association. SR-BI expression enhanced the association of both (125)I- and Alexa Fluor-labeled protein from Lp(a). By confocal microscopy, SR-BI was also found to promote the internalization of fluorescent lipids (BODIPY-cholesteryl ester (CE)- and DiI-labeled) from Lp(a), and by immunocytochemistry the cellular internalization of apolipoprotein(a) and apolipoprotein B. When dual-labeled ((3)H-cholesteryl ether,(125)I-protein) Lp(a) was added to cells expressing SR-BI, there was a greater relative increase in lipid uptake over protein, indicating that SR-BI mediates selective lipid uptake from Lp(a). Compared with C57BL/6 control mice, transgenic mice overexpressing human SR-BI in liver were found to have increased plasma clearance of (3)H-CE-Lp(a), whereas mouse scavenger receptor class B type I knockout (Sr-b1-KO) mice had decreased plasma clearance (fractional catabolic rate: 0.63 ± 0.08/day, 1.64 ± 0.62/day, and 4.64 ± 0.40/day for Sr-b1-KO, C57BL/6, and human scavenger receptor class B type I transgenic mice, respectively). We conclude that Lp(a) is a novel ligand for SR-BI and that SR-BI mediates selective uptake of Lp(a)-associated lipids.
Collapse
Affiliation(s)
- Xiao-Ping Yang
- Cardiology Division, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013; 10:1473-91. [PMID: 23298398 DOI: 10.1021/mp300518e] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The brain develops and functions within a strictly controlled environment resulting from the coordinated action of different cellular interfaces located between the blood and the extracellular fluids of the brain, which include the interstitial fluid and the cerebrospinal fluid (CSF). As a correlate, the delivery of pharmacologically active molecules and especially macromolecules to the brain is challenged by the barrier properties of these interfaces. Blood-brain interfaces comprise both the blood-brain barrier located at the endothelium of the brain microvessels and the blood-CSF barrier located at the epithelium of the choroid plexuses. Although both barriers develop extensive surface areas of exchange between the blood and the neuropil or the CSF, the molecular fluxes across these interfaces are tightly regulated. Cerebral microvessels acquire a barrier phenotype early during cerebral vasculogenesis under the influence of the Wnt/β-catenin pathway, and of recruited pericytes. Later in development, astrocytes also play a role in blood-brain barrier maintenance. The tight choroid plexus epithelium develops very early during embryogenesis. It is specified by various signaling molecules from the embryonic dorsal midline, such as bone morphogenic proteins, and grows under the influence of Sonic hedgehog protein. Tight junctions at each barrier comprise a distinctive set of claudins from the pore-forming and tightening categories that determine their respective paracellular barrier characteristics. Vesicular traffic is limited in the cerebral endothelium and abundant in the choroidal epithelium, yet without evidence of active fluid phase transcytosis. Inorganic ion transport is highly regulated across the barriers. Small organic compounds such as nutrients, micronutrients and hormones are transported into the brain by specific solute carriers. Other bioactive metabolites, lipophilic toxic xenobiotics or pharmacological agents are restrained from accumulating in the brain by several ATP-binding cassette efflux transporters, multispecific solute carriers, and detoxifying enzymes. These various molecular effectors differently distribute between the two barriers. Receptor-mediated endocytotic and transcytotic mechanisms are active in the barriers. They enable brain penetration of selected polypeptides and proteins, or inversely macromolecule efflux as it is the case for immnoglobulins G. An additional mechanism specific to the BCSFB mediates the transport of selected plasma proteins from blood into CSF in the developing brain. All these mechanisms could be explored and manipulated to improve macromolecule delivery to the brain.
Collapse
Affiliation(s)
- N Strazielle
- Brain-i, Lyon Neuroscience Research Center, Lyon, France.
| | | |
Collapse
|
15
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Lichota J, Skjørringe T, Thomsen LB, Moos T. Macromolecular drug transport into the brain using targeted therapy. J Neurochem 2009; 113:1-13. [PMID: 20015155 DOI: 10.1111/j.1471-4159.2009.06544.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain forms a vascular barrier system comprised of the blood-brain barrier (BBB) and the blood-CSF barriers. Together they prevent the passage of a number of drugs from the bloodstream into the brain parenchyma, because their molecules are either hydrophilic, too large or both. In many disorders affecting the CNS, these barriers are physically intact, which limits the entry of large molecules with potentially important therapeutic implications. The BBB is the most relevant barrier against drug delivery to the brain as the area of the BBB is about 1000 times larger than that of the blood-CSF barrier. Moreover, the transport through the choroid plexus is directed to the ventricular system, only allowing the transported molecules to access cells near the ventricular and subarachnoid surfaces. This review outlines possible routes for targeted entry of macromolecules like polypeptides, siRNA and cDNA. In the vascular compartment, targeting molecules should interact specifically with proteins expressed exclusively by these barrier cells, and therefore prevent uptake elsewhere in the body. Preferably, the targeting molecule should be conjugated to a drug carrier that allows uptake of a defined cargo. However, evidence for transport of such targetable drug-carrier complexes through the barriers, in particular the BBB, is contentious, and is discussed with emphasis on the different attempts that have evinced transport through the BBB not only from blood-to-endothelium, but also from endothelium-to-brain.
Collapse
Affiliation(s)
- Jacek Lichota
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
17
|
Duit S, Mayer H, Blake SM, Schneider WJ, Nimpf J. Differential functions of ApoER2 and very low density lipoprotein receptor in Reelin signaling depend on differential sorting of the receptors. J Biol Chem 2009; 285:4896-908. [PMID: 19948739 DOI: 10.1074/jbc.m109.025973] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ApoER2 and very low density lipoprotein (VLDL) receptor transmit the Reelin signal into target cells of the central nervous system. To a certain extent, both receptors can compensate for each other, and only the loss of both receptors results in the reeler phenotype, which is characterized by a gross defect in the architecture of laminated brain structures. Nevertheless, both receptors also have specific distinct functions, as corroborated by analyses of the subtle phenotypes displayed in mice lacking either ApoER2 or VLDL receptor. The differences in their function(s), however, have not been defined at the cellular level. Here, using a panel of chimeric receptors, we demonstrate that endocytosis of Reelin and the fate of the individual receptors upon stimulation are linked to their specific sorting to raft versus non-raft domains of the plasma membrane. VLDL receptor residing in the non-raft domain endocytoses and destines Reelin for degradation via the clathrin-coated pit/clathrin-coated vesicle/endosome pathway without being degraded to a significant extent. Binding of Reelin to ApoER2, a resident of rafts, leads to the production of specific receptor fragments with specific functions of their own and to degradation of ApoER2 via lysosomes. These features contribute to a receptor-specific fine tuning of the Reelin signal, leading to a novel model that emphasizes negative feedback loops specifically mediated by ApoER2 and VLDL receptor, respectively.
Collapse
Affiliation(s)
- Sarah Duit
- Max F. Perutz Laboratories, Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
18
|
Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008; 55:1265-73. [PMID: 18402986 PMCID: PMC2638588 DOI: 10.1016/j.neuropharm.2008.02.019] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/15/2008] [Accepted: 02/26/2008] [Indexed: 01/11/2023]
Abstract
Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate different cellular processes such as neurotransmission and receptor trafficking. In this article, we provide an overview of current methods for studying lipid rafts and models for how lipid rafts might form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington's, Alzheimer's, and Niemann-Pick Type C diseases.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry and the Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Anne K. Kenworthy
- Departments of Molecular Physiology & Biophysics and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
19
|
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-69. [PMID: 17901255 PMCID: PMC2849133 DOI: 10.1177/1073858407303611] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rho-associated protein kinases (ROCKs) play key roles in mediating the control of the actin cytoskeleton by Rho family GTPases in response to extracellular signals. Such signaling pathways contribute to diverse neuronal functions from cell migration to axonal guidance to dendritic spine morphology to axonal regeneration to cell survival. In this review, the authors summarize biochemical knowledge of ROCK function and categorize neuronal ROCK-dependent signaling pathways. Further study of ROCK signal transduction mechanisms and specificities will enhance our understanding of brain development, plasticity, and repair. The ROCK pathway also provides a potential site for therapeutic intervention to promote neuronal regeneration and to limit degeneration.
Collapse
Affiliation(s)
- André Schmandke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
20
|
Fayad T, Lefebvre R, Nimpf J, Silversides DW, Lussier JG. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8) Is Upregulated in Granulosa Cells of Bovine Dominant Follicle: Molecular Characterization and Spatio-Temporal Expression Studies1. Biol Reprod 2007; 76:466-75. [PMID: 17108332 DOI: 10.1095/biolreprod.106.057216] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a member of the LDL receptor family that participates in endocytosis and signal transduction. We cloned the full-length bovine LRP8 cDNA in granulosa cells (GC) of the dominant follicle (DF) as well as several LRP8 mRNA splicing variants, including a variant that contains a proline-rich cytoplasmic insert (A759-K817) that is involved in intracellular signaling. Expression of the A759-K817 variant was analyzed in the GC of follicles at different developmental stages: the small follicle (SF; 2-4 mm), the DF at Day 5 (D5) of the estrus cycle, ovulatory follicles (OF) 24 h after hCG injection, and corpora lutea (CL) at D5. RT-PCR analysis showed that expression was predominant in the GC of DF compared to other follicles and CL (P<0.0001), whereas the expression of other related receptors, such as LDLR and VLDLR, did not show differences. Temporal analyses of follicular walls from the OF following hCG treatment revealed a decrease in LRP8 mRNA expression starting 12 h post-hCG treatment (P<0.0001). LRP8 protein was exclusively localized to the GC, with higher levels in the DF than in the SF (P<0.05). RELN mRNA, which encodes an LRP8 ligand, was highly expressed in the theca of the DF as compared to the OF (P<0.004), whereas MAPK8IP1 mRNA, which encodes an LRP8 intracellular interacting partner, is expressed in the GC of the DF. These results demonstrate the differential expression patterns of LRP8, RELN, and MAPK8IP1 mRNAs during final follicular growth and ovulation, and suggest that a RELN/LRP8/MAPK8IP1 paracrine interaction regulates follicular growth.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
21
|
Hoareau C, Borrell V, Soriano E, Krebs MO, Prochiantz A, Allinquant B. Amyloid precursor protein cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neurons. Neurobiol Aging 2006; 29:542-53. [PMID: 17169463 DOI: 10.1016/j.neurobiolaging.2006.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/09/2006] [Accepted: 11/13/2006] [Indexed: 01/12/2023]
Abstract
The function of the amyloid precursor protein (APP), a key molecule in Alzheimer's disease (AD) remains unknown. Among the proteins that interact with the APP cytoplasmic domain in vitro and in heterologous systems is Disabled-1, a signaling molecule of the reelin pathway. The physiological consequence of this interaction is unknown. Here we used an in vitro model of hippocampal neurons grown on a reelin substrate that inhibits neurite outgrowth. Our results show that an excess of APP cytoplasmic domain internalized by a cell permeable peptide, is able to antagonize the neurite outgrowth inhibition of reelin. The APP cytoplasmic domain binds Disabled-1 and retains it in the cytoplasm, preventing it from reaching the plasma membrane and sequesters tyrosine phosphorylated Disabled-1, both of which disrupt reelin signaling. In the context of AD, increased formation of APP cytoplasmic domain in the cytosol released after cleavage of the A beta peptide, could then inhibit reelin signaling pathway in the hippocampus and thus influence synaptic plasticity.
Collapse
Affiliation(s)
- C Hoareau
- INSERM U796, Centre Paul Broca, 2 ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Korade Z, Mi Z, Portugal C, Schor NF. Expression and p75 neurotrophin receptor dependence of cholesterol synthetic enzymes in adult mouse brain. Neurobiol Aging 2006; 28:1522-31. [PMID: 16887237 DOI: 10.1016/j.neurobiolaging.2006.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/06/2006] [Accepted: 06/22/2006] [Indexed: 11/30/2022]
Abstract
Normal brain function depends critically on cholesterol. Although cholesterol is synthesized locally in the adult brain, the precise anatomical localization of cholesterogenic enzymes is not known. Here we show that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAred) and 7-dehydrocholesterol reductase (7dhcred), the first and last enzymes, respectively, in the cholesterol biosynthesis pathway, are co-expressed in neurons throughout adult murine brain. Co-localization is most prominent in cortical, hippocampal, and cholinergic neurons. Since adult hippocampal and cholinergic neurons express p75 neurotrophin receptors (p75NTR) we hypothesized that p75NTR regulates expression of cholesterogenic enzymes. Treatment of Neuro2a neuroblastoma cells or primary cerebellar cultures with siRNA downregulates p75NTR and decreases the expression level of HMG-CoAred and 7dhcred. Native neuroblastoma cell lines with differential expression of p75NTR differentially express 7dhcred; 7dhcred expression correlates with p75NTR expression. This suggests that, in p75NTR-expressing cells, p75NTR regulates cholesterol synthesis through regulation of HMG-CoAred and 7dhcred expression. The unexpected localization of cholesterogenic enzymes in adult neurons suggests that at least some adult neurons retain the ability to synthesize cholesterol.
Collapse
Affiliation(s)
- Zeljka Korade
- Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh, PA, United States
| | | | | | | |
Collapse
|
23
|
Botella-López A, Burgaya F, Gavín R, García-Ayllón MS, Gómez-Tortosa E, Peña-Casanova J, Ureña JM, Del Río JA, Blesa R, Soriano E, Sáez-Valero J. Reelin expression and glycosylation patterns are altered in Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:5573-8. [PMID: 16567613 PMCID: PMC1414634 DOI: 10.1073/pnas.0601279103] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Indexed: 01/24/2023] Open
Abstract
Reelin is a glycoprotein that is essential for the correct cytoarchitectonic organization of the developing CNS. Its function in the adult brain is less understood, although it has been proposed that Reelin is involved in signaling pathways linked to neurodegeneration. Here we analyzed Reelin expression in brains and cerebrospinal fluid (CSF) from Alzheimer's disease (AD) patients and nondemented controls. We found a 40% increase in the Reelin protein levels in the cortex of AD patients compared with controls. Similar increases were detected at the Reelin mRNA transcriptional level. This expression correlates with parallel increases in CSF but not in plasma samples. Next, we examined whether CSF Reelin levels were also altered in neurological diseases, including frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease. The Reelin 180-kDa band increased in all of the neurodegenerative disorders analyzed. Moreover, the 180-kDa Reelin levels correlated positively with Tau protein in CSF. Finally, we studied the pattern of Reelin glycosylation by using several lectins and the anti-HNK-1 antibody. Glycosylation differed in plasma and CSF. Furthermore, the pattern of Reelin lectin binding differed between the CSF of controls and in AD. Our results show that Reelin is up-regulated in the brain and CSF in several neurodegenerative diseases and that CSF and plasma Reelin have distinct cellular origins, thereby supporting that Reelin is involved in the pathogenesis of a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Arancha Botella-López
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| | - Ferran Burgaya
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Rosalina Gavín
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - M. Salud García-Ayllón
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| | - Estrella Gómez-Tortosa
- Neurology Department, Fundación Jiménez Díaz, Brain Bank for Neurological Research, Complutense University, E-28040 Madrid, Spain
| | - Jordi Peña-Casanova
- Neurology Department, Hospital del Mar, Institut Municipal d’Assistencia Sanitaria, E-08003 Barcelona, Spain; and
| | - Jesús M. Ureña
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - José A. Del Río
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Rafael Blesa
- Neurology Department, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain
| | - Eduardo Soriano
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Javier Sáez-Valero
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| |
Collapse
|
24
|
Mayer H, Duit S, Hauser C, Schneider WJ, Nimpf J. Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol Cell Biol 2006; 26:19-27. [PMID: 16354676 PMCID: PMC1317641 DOI: 10.1128/mcb.26.1.19-27.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Reelin signaling pathway operates in migrating neurons and is indispensable for their correct positioning during embryonic brain development. Many biochemical and cell biological studies to dissect the Reelin pathway at the molecular level are hampered by the lack of a cell line harboring a functional Reelin signaling pathway. Here we present fibroblast cell lines in which all required functional components of the pathway have been reconstituted. These cells react upon Reelin treatment in the same way as primary neurons. We have subsequently used these cell lines to study the subcellular localization of ApoER2 and the VLDL receptor and could demonstrate that receptor-mediated Dab1 phosphorylation does not depend on lipid rafts and that phosphorylated Dab1 remains bound to the receptor tail when the pathway is activated by Reelin.
Collapse
Affiliation(s)
- Harald Mayer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, University Department at the Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
25
|
Hoe HS, Rebeck GW. Regulation of ApoE receptor proteolysis by ligand binding. ACTA ACUST UNITED AC 2005; 137:31-9. [PMID: 15950758 DOI: 10.1016/j.molbrainres.2005.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/18/2005] [Accepted: 02/06/2005] [Indexed: 11/22/2022]
Abstract
Two brain receptors for apolipoprotein E (apoE), the apoE receptor 2 (apoEr2) and the very low density lipoprotein receptor (VLDLr), are important in neuronal migration during development. Using a series of tagged constructs, we found that these two receptors undergo extracellular cleavages to release secreted forms of the receptors and intramembranous cleavages to degrade the C-terminal fragments. Release of the extracellular domains was blocked by an inhibitor of metalloproteinases and increased by PMA. Accumulation of the intracellular domain was increased by the presence of an inhibitor of gamma-secretase. ApoE binding to these receptors caused increased release of the extracellular domain and accumulation of the intracellular domains; similar increases in receptor proteolytic domains were observed from endogenous apoEr2 after treatment of primary neurons or rat hippocampus with an apoE-derived peptide. The human apoE isoforms promoted proteolysis to different degrees, with apoE2 resulting in a greater accumulation of the C-terminal fragments of apoEr2 compared with apoE4. These effects of apoE on receptor proteolysis were mediated by the ligand binding domain of the receptor. Similar promotion of receptor cleavage was seen with two other ligands, reelin and activated alpha2-macroglobulin. We suggest that signaling promoted by these receptors depends in part on these regulated proteolytic events.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | |
Collapse
|
26
|
Argov N, Sklan D. Expression of mRNA of lipoprotein receptor related protein 8, low density lipoprotein receptor, and very low density lipoprotein receptor in bovine ovarian cells during follicular development and corpus luteum formation and regression. Mol Reprod Dev 2005; 68:169-75. [PMID: 15095337 DOI: 10.1002/mrd.20072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipoproteins in the plasma are the major source of cholesterol obtained by the ovarian theca and granulosa cells for steroidogenesis. In this study, we have identified mRNA expression in bovine theca and granulosa cells of two lipoprotein receptors, low density lipoprotein receptor (LDLr) and very low density lipoprotein receptor (VLDLr) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. In the corpus luteum (CL) both these receptors were found in the developing and differentiating stages whereas only mRNA for VLDLr was detected in the regression stage. This study also described for the first time, the presence of lipoprotein receptor related protein (LRP8) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. This may indicate a role of LRP8 in cholesterol delivery to steriodogenic cells. LRP8 was not detected in any of the CL stages. The roles of the LDLr superfamily in lipid transport to ovarian cells and its participation in follicular and CL development and regression is discussed.
Collapse
Affiliation(s)
- Nurit Argov
- Faculty of Agriculture, PO Box 12, Hebrew University, Rehovot 76-100, Israel
| | | |
Collapse
|
27
|
Jiménez CR, Stam FJ, Li KW, Gouwenberg Y, Hornshaw MP, De Winter F, Verhaagen J, Smit AB. Proteomics of the injured rat sciatic nerve reveals protein expression dynamics during regeneration. Mol Cell Proteomics 2004; 4:120-32. [PMID: 15509515 DOI: 10.1074/mcp.m400076-mcp200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using proteomics, we investigated the temporal expression profiles of proteins in rat sciatic nerve after experimental crush. Extracts of sciatic nerves collected at 5, 10, and 35 days after injury were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. Of the approximately 1,500 protein spots resolved on each gel, 121 showed significant regulation during at least one time point. Using cluster analysis, these proteins were grouped into two expression profiles of down-regulation and four of up-regulation. These profiles mainly reflected differences in cellular origins in addition to different functional roles. Mass spectrometric analysis identified 82 proteins pertaining to several functional classes, i.e. acute-phase proteins, antioxidant proteins, and proteins involved in protein synthesis/maturation/degradation, cytoskeletal (re)organization, and in lipid metabolism. Several proteins not previously implicated in nerve regeneration were identified, e.g. translationally controlled tumor protein, annexin A9/31, vitamin D-binding protein, alpha-crystallin B, alpha-synuclein, dimethylargininases, and reticulocalbin. Real-time PCR analysis of selected genes showed which were expressed in the nerve versus the dorsal root ganglion neurons. In conclusion, this study highlights the complexity and temporal aspect of the molecular process underlying nerve regeneration and points to the importance of glial and inflammatory determinants.
Collapse
Affiliation(s)
- Connie R Jiménez
- Department of Molecular and Cellular Neurobiology, Research Institute Neurosciences Amsterdam, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Strasser V, Fasching D, Hauser C, Mayer H, Bock HH, Hiesberger T, Herz J, Weeber EJ, Sweatt JD, Pramatarova A, Howell B, Schneider WJ, Nimpf J. Receptor clustering is involved in Reelin signaling. Mol Cell Biol 2004; 24:1378-86. [PMID: 14729980 PMCID: PMC321426 DOI: 10.1128/mcb.24.3.1378-1386.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.
Collapse
Affiliation(s)
- Vera Strasser
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Makarova A, Mikhailenko I, Bugge TH, List K, Lawrence DA, Strickland DK. The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J Biol Chem 2003; 278:50250-8. [PMID: 14522960 DOI: 10.1074/jbc.m309150200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases contribute to a variety of processes in the brain; consequently, their activity is carefully regulated by protease inhibitors, such as neuroserpin. This inhibitor is thought to be secreted by axons at synaptic regions where it controls tissue-type plasminogen activator (tPA) activity. Mechanisms regulating neuroserpin are not known, and the current studies were undertaken to define the cellular pathways involved in neuroserpin catabolism. We found that both active neuroserpin and neuroserpin.tPA complexes were internalized by mouse cortical cultures and embryonic fibroblasts in a process mediated by the low density lipoprotein receptor-related protein (LRP). Surprisingly, despite the fact that active neuroserpin is internalized by LRP, this form of the molecule does not directly bind to LRP on its own, indicating the requirement of a cofactor for neuroserpin internalization. Our studies ruled out the possibility that endogenously produced plasminogen activators (i.e. tPA and urokinase-type plasminogen activator) are responsible for the LRP-mediated internalization of active neuroserpin, but could not rule out the possibility that another cell-associated proteases capable of binding active neuroserpin functions in this capacity. In summary, neuroserpin levels appear to be carefully regulated by LRP and an unidentified cofactor, and this pathway may be critical for maintaining the balance between proteases and inhibitors.
Collapse
Affiliation(s)
- Alexandra Makarova
- Department of Vascular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hartfuss E, Förster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Götz M. Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 2003; 130:4597-609. [PMID: 12925587 DOI: 10.1242/dev.00654] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radial glial cells are characterized, besides their astroglial properties, by long radial processes extending from the ventricular zone to the pial surface, a crucial feature for the radial migration of neurons. The molecular signals that regulate this characteristic morphology, however, are largely unknown. We show an important role of the secreted molecule reelin for the establishment of radial glia processes. We describe a significant reduction in ventricular zone cells with long radial processes in the absence of reelin in the cortex of reeler mutant mice. These defects were correlated to a decrease in the content of brain lipid-binding protein (Blbp) and were detected exclusively in the cerebral cortex, but not in the basal ganglia of reeler mice. Conversely, reelin addition in vitro increased the Blbp content and process extension of radial glia from the cortex, but not the basal ganglia. Isolation of radial glia by fluorescent-activated cell sorting showed that these effects are due to direct signaling of reelin to radial glial cells. We could further demonstrate that this signaling requires Dab1, as the increase in Blbp upon reelin addition failed to occur in Dab1-/- mice. Taken together, these results unravel a novel role of reelin signaling to radial glial cells that is crucial for the regulation of their Blbp content and characteristic morphology in a region-specific manner.
Collapse
Affiliation(s)
- Eva Hartfuss
- Max-Planck-Institute of Neurobiology, Neuronal Specification, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sáez-Valero J, Costell M, Sjögren M, Andreasen N, Blennow K, Luque JM. Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer's disease. J Neurosci Res 2003; 72:132-6. [PMID: 12645087 DOI: 10.1002/jnr.10554] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reelin is an essential glycoprotein for correct cytoarchitectonic organization during CNS development. Its function in the adult brain is far less well understood, but altered brain and blood reelin levels have been reported in some psychiatric disorders, and the possibility has been considered of an involvement of the reelin signaling pathway in neurodegeneration. Here we report, for the first time, the presence of detectable levels of reelin in rat and human cerebrospinal fluid (CSF) and show evidence for the involvement of a 180-kDa reelin fragment in two neurodegenerative disorders. This fragment was analyzed by Western blotting in CSF samples from 13 healthy control individuals and 14 frontotemporal dementia (FTD) and 20 Alzheimer's disease (AD) patients. Increased CSF 180-kDa reelin was found in FTD (161.7 +/- 6.7 arbitrary units; a.u.) and AD (151.4 +/- 3.8 a.u.) compared with control individuals (141.4 +/- 1.2 a.u., P < 0.05). Our results strongly suggest the involvement of reelin signaling in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Javier Sáez-Valero
- Instituto de Neurociencias, UMH/CSIC, Campus de San Juan, San Juan, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Tsatas D, Kaye AH. The role of the plasminogen activation cascade in glioma cell invasion: a review. J Clin Neurosci 2003; 10:139-45. [PMID: 12637039 DOI: 10.1016/s0967-5868(02)00328-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tumour cell invasion is a dynamic process that depends on a co-ordinated series of biochemical events. This review discusses the role of the proteolytic enzyme system, the plasminogen activation cascade, in glioma cell invasion.
Collapse
Affiliation(s)
- Dina Tsatas
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Grattan St., Parkville, Vic. 3052, Australia
| | | |
Collapse
|
33
|
Luque JM, Morante-Oria J, Fairén A. Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:195-203. [PMID: 12586425 DOI: 10.1016/s0165-3806(02)00604-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reelin signaling pathway regulates laminar positioning of radially migrating neurons during cortical development. It has been suggested that reelin secreted by Cajal-Retzius cells in the marginal zone could provide either a stop or an attractant signal for migratory neurons expressing reelin receptors, but the proposed models fail to explain recent experimental findings. Here we provide evidence that the reelin receptor machinery, including the lipoprotein receptors ApoER2 and VLDLR along with the cytoplasmic adaptor protein Dab1, is located in radial glia precursors whose processes span the entire cortical wall from the ventricular zone to the pial surface. Moreover, in reeler mice, defective in reelin, decreased levels of Dab1 in the ventricular zone correspond to an accumulation of the protein in radial end-feet beneath the pia matter. Our results support that neural stem cells receive a functional reelin signal. They are also consistent with a working model of reelin action, according to which reelin signaling on the newborn neuron-inherited radial process regulates perikaryal translocation and positioning.
Collapse
Affiliation(s)
- Juan M Luque
- Instituto de Neurociencias, Universidad Miguel Hernández, CSIC, Campus de San Juan, E-03550, San Juan de Alicante, Spain.
| | | | | |
Collapse
|
34
|
Qiu Z, Crutcher KA, Hyman BT, Rebeck GW. ApoE isoforms affect neuronal N-methyl-d-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience 2003; 122:291-303. [PMID: 14614897 DOI: 10.1016/j.neuroscience.2003.08.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Apolipoprotein E (apoE) alters the pathophysiology of Alzheimer's disease, but its mechanism is not fully understood. We examined the effects of recombinant human apoE3 and apoE4 on the neuronal calcium response to N-methyl-D-aspartate (NMDA), and compared them to their toxicity. ApoE4 (100 nM) significantly increased the resting calcium (by 70%) and the calcium response to NMDA (by 185%), whereas similar changes were not obtained in apoE3-treated neurons. ApoE4, but not apoE3, also significantly increased neurotoxicity, as evidenced by enhanced lactate dehydrogenase release (by 53%) and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide levels (by 32%). ApoE4-induced changes in the calcium response to NMDA and associated neurotoxicity were blocked by coincubation with MK-801. Both the receptor-associated protein, which inhibits interaction of apoE with members of the LDL receptor family, including the low-density lipoprotein receptor-related protein (LRP), and activated alpha2-macroglobulin, another LRP ligand, prevented apoE4-induced enhancement of the calcium response to NMDA, resting calcium levels, and neurotoxicity. A tandem apoE peptide (100 nM) containing only the receptor binding region residues also eliminated the enhanced calcium signaling and neurotoxicity by apoE4. Taken together, our data demonstrate that differential effects of apoE3 and apoE4 on the calcium signaling in neurons correlate with their effect on neurotoxicity, which are secondary to receptor binding.
Collapse
Affiliation(s)
- Z Qiu
- Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Brain function depends on the cooperation between highly specialized cells. Neurons generate electrical signals and glial cells provide structural and metabolic support. Here, I propose a new kind of job-sharing between neurons and astrocytes. Recent studies on primary cultures of highly purified neurons from the rodent central nervous system (CNS) suggest that, during development, neurons reduce or even abandon cholesterol synthesis to save energy and import cholesterol from astrocytes via lipoproteins. The cholesterol shuttle may be restricted to compartments distant from the soma including synapses and may be regulated by electrical activity. Testing these hypotheses will help to improve our still insufficient understanding of brain cholesterol metabolism and its role in neurodegeneration.
Collapse
Affiliation(s)
- Frank W Pfrieger
- Max-Planck/CNRS Group, UPR2356, Centre de Neurochimie, Strasbourg, France.
| |
Collapse
|
36
|
Abstract
The low-density-lipoprotein (LDL) receptor family is an evolutionarily ancient gene family of structurally closely related cell-surface receptors. Members of the family are involved in the cellular uptake of extracellular ligands and regulate diverse biological processes including lipid and vitamin metabolism and cell-surface protease activity. Some members of the family also participate in cellular signaling and regulate the development and functional maintenance of the nervous system. Here we review the roles of this family of multifunctional receptors in the nervous system and focus on recent advances toward the understanding of the mechanisms by which lipoprotein receptors and their ligands transmit and modulate signals in the brain.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA.
| | | |
Collapse
|
37
|
Koch S, Strasser V, Hauser C, Fasching D, Brandes C, Bajari TM, Schneider WJ, Nimpf J. A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits Reelin signaling. EMBO J 2002; 21:5996-6004. [PMID: 12426372 PMCID: PMC137191 DOI: 10.1093/emboj/cdf599] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specialized neurons throughout the developing central nervous system secrete Reelin, which binds to ApoE receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), triggering a signal cascade that guides neurons to their correct position. Binding of Reelin to ApoER2 and VLDLR induces phosphorylation of Dab1, which binds to the intracellular domains of both receptors. Due to differential splicing, several isoforms of ApoER2 differing in their ligand-binding and intracellular domains exist. One isoform harbors four binding repeats plus an adjacent short 13 amino acid insertion containing a furin cleavage site. It is not known whether furin processing of this ApoER2 variant actually takes place and, if so, whether the produced fragment is secreted. Here we demonstrate that cleavage of this ApoER2 variant does indeed take place, and that the resulting receptor fragment consisting of the entire ligand-binding domain is secreted as soluble polypeptide. This receptor fragment inhibits Reelin signaling in primary neurons, indicating that it can act in a dominant-negative fashion in the regulation of Reelin signaling during embryonic brain development.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Binding Sites
- Brain/embryology
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Exons/genetics
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Fungal Proteins/metabolism
- Furin
- Genes, Dominant
- Glycosylation
- Heymann Nephritis Antigenic Complex/metabolism
- LDL-Receptor Related Proteins
- Mice
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Phosphorylation
- Protein Interaction Mapping
- Protein Isoforms/biosynthesis
- Protein Isoforms/chemistry
- Protein Isoforms/physiology
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Receptors, LDL/metabolism
- Receptors, Lipoprotein/biosynthesis
- Receptors, Lipoprotein/chemistry
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/physiology
- Recombinant Fusion Proteins/physiology
- Reelin Protein
- Serine Endopeptidases
- Signal Transduction/physiology
- Solubility
- Subtilisins/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johannes Nimpf
- The Institute of Medical Biochemistry, Department of Molecular Genetics, BioCenter and University of Vienna, Vienna, Austria
Corresponding author e-mail: S.Koch, V.Strasser and C.Hauser contributed equally to this work
| |
Collapse
|
38
|
Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D, Kahr L, Schneider WJ, Nimpf J. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J 2002; 21:4259-67. [PMID: 12169628 PMCID: PMC126172 DOI: 10.1093/emboj/cdf435] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sorting nexins (SNXs) comprise a family of proteins characterized by the presence of a phox-homology domain, which mediates the association of these proteins with phosphoinositides and recruits them to specific membranes or vesicular structures within cells. Although only limited information about SNXs and their functions is available, they seem to be involved in membrane trafficking and sorting processes by directly binding to target proteins such as certain growth factor receptors. We show that SNX17 binds to the intracellular domain of some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2 and LDLR-related protein. SNX17 resides on distinct vesicular structures partially overlapping with endosomal compartments characterized by the presence of EEA1 and rab4. Using rhodamine-labeled LDL, it was possible to demonstrate that during endocytosis, LDL passes through SNX17-positive compartments. Functional studies on the LDLR pathway showed that SNX17 enhances the endocytosis rate of this receptor. Our results identify SNX17 as a novel adaptor protein for LDLR family members and define a novel mechanism for modulation of their endocytic activity.
Collapse
Affiliation(s)
- Walter Stockinger
- The Institute of Medical Biochemistry, Department of Molecular Genetics, BioCenter and University of Vienna, A-1030 Vienna, Austria
Present address: Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Corresponding author e-mail:
| | | | | | | | | | | | | | - Johannes Nimpf
- The Institute of Medical Biochemistry, Department of Molecular Genetics, BioCenter and University of Vienna, A-1030 Vienna, Austria
Present address: Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Corresponding author e-mail:
| |
Collapse
|
39
|
Goti D, Balazs Z, Panzenboeck U, Hrzenjak A, Reicher H, Wagner E, Zechner R, Malle E, Sattler W. Effects of lipoprotein lipase on uptake and transcytosis of low density lipoprotein (LDL) and LDL-associated alpha-tocopherol in a porcine in vitro blood-brain barrier model. J Biol Chem 2002; 277:28537-44. [PMID: 12032155 DOI: 10.1074/jbc.m203989200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the present study the contribution of lipoprotein lipase (LPL) to low density lipoprotein (LDL) holoparticle and LDL-lipid (alpha-tocopherol (alphaTocH)) turnover in primary porcine brain capillary endothelial cells (BCECs) was investigated. The addition of increasing LPL concentrations to BCECs resulted in up to 11-fold higher LDL holoparticle cell association. LPL contributed to LDL holoparticle turnover, an effect that was substantially increased in response to LDL-receptor up-regulation. The addition of LPL increased selective uptake of LDL-associated alphaTocH in BCECs up to 5-fold. LPL-dependent selective alphaTocH uptake was unaffected by the lipase inhibitor tetrahydrolipstatin but was substantially inhibited in cells where proteoglycan sulfation was inhibited by treatment with NaClO(3). Thus, selective uptake of LDL-associated alphaTocH requires interaction of LPL with heparan-sulfate proteoglycans. Although high level adenoviral overexpression of scavenger receptor BI (SR-BI) in BCECs resulted in a 2-fold increase of selective LDL-alphaTocH uptake, SR-BI did not act in a cooperative manner with LPL. Although the addition of LPL to BCEC Transwell cultures significantly increased LDL holoparticle cell association and selective uptake of LDL-associated alphaTocH, holoparticle transcytosis across this porcine blood-brain barrier (BBB) model was unaffected by the presence of LPL. An important observation during transcytosis experiments was a substantial alphaTocH depletion of LDL particles that were resecreted into the basolateral compartment. The relevance of LPL-dependent alphaTocH uptake across the BBB was confirmed in LPL-deficient mice. The absence of LPL resulted in significantly lower cerebral alphaTocH concentrations than observed in control animals.
Collapse
Affiliation(s)
- Daniel Goti
- Institute of Medical Biochemistry and Molecular Biology, University Graz, Harrachgasse 21, Graz 8010, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bu G. The roles of receptor-associated protein (RAP) as a molecular chaperone for members of the LDL receptor family. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:79-116. [PMID: 11580203 DOI: 10.1016/s0074-7696(01)09011-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the LDL receptor family mediate endocytosis and signal transduction of many extracellular ligands which participate in lipoprotein metabolism, protease regulation, embryonic development, and the pathogenesis of disease (e.g., Alzheimer's disease). Structurally, these receptors share common motifs and modules that are highlighted with clusters of cysteine-rich ligand-binding repeats. Perhaps, the most significant feature that is shared by members of the LDL receptor family is the ability of a 39-kDa receptor-associated protein (RAP) to universally inhibit ligand interaction with these receptors. Under physiological conditions, RAP serves as a molecular chaperone/escort protein for these receptors to prevent premature interaction of ligands with the receptors and thereby ensures their safe passage through the secretory pathway. In addition, RAP promotes the proper folding of these receptors, a function that is likely independent from its ability to inhibit ligand binding. The molecular mechanisms underlying these functions of RAP, as well as the molecular determinants that contribute to RAP-receptor interaction will be discussed in this review. Elucidation of these mechanisms should help to clarify how a specialized chaperone promotes the biogenesis of LDL receptor family members, and may provide insights into how the expression and function of these receptors can be regulated via the expression of RAP under pathological states.
Collapse
Affiliation(s)
- G Bu
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
41
|
Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K, Ishii I, Miida T, Schneider WJ, Saito Y. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol 2001; 21:1501-6. [PMID: 11557679 DOI: 10.1161/hq0901.094500] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the molecular identification of the low density lipoprotein receptor (LDLR), an ever increasing number of related proteins have been discovered. These receptors belonging to the LDLR family are thought to play key roles in lipoprotein metabolism in a variety of tissues, including the arterial wall. We have discovered that the expression of a 250-kDa mosaic LDLR-related protein, which we termed LR11 for the presence of 11 LDLR ligand-binding repeats, is markedly induced in smooth muscle cells in the hyperplastic intima of animal models used for the study of atherosclerosis. Here, we demonstrate that the human LR11, when overexpressed in hamster cells, binds and internalizes 39-kDa receptor-associated protein (RAP), an in vitro ligand for all receptors belonging to the LDLR family. Furthermore, LR11 binds the apolipoprotein E (apoE)-rich lipoproteins, beta-very low density lipoproteins (VLDLs), with a high affinity similar to that of other members, such as the LDLR and VLDL receptor. RAP and beta-VLDL compete with each other; however, other serum lipoproteins are not able to inhibit their binding. LR11 shows specific binding of apoE-enriched HDL prepared from human cerebrospinal fluid as well as of beta-VLDL, suggesting that the apoE content of lipoproteins is most likely important for mediating the high-affinity binding to the receptor. LR11-overexpressing cells are able to internalize and degrade the bound beta-VLDL; these cells also show increased accumulation of cholesteryl esters when incubated with beta-VLDL. Incubation for 48 hours with beta-VLDL of LR11-overexpressing cells, but not of control cells, promotes the appearance of numerous intracellular lipid droplets. Taken together, LR11, a mosaic LDLR family member whose expression in smooth muscle cells is markedly induced in atheroma, has all the properties of a receptor for the endocytosis of lipoproteins, particularly for the incorporation of apoE-rich lipoproteins.
Collapse
Affiliation(s)
- K Taira
- Department of Clinical Cell Biology, Graduate School of Medicine, Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brandes C, Kahr L, Stockinger W, Hiesberger T, Schneider WJ, Nimpf J. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J Biol Chem 2001; 276:22160-9. [PMID: 11294845 DOI: 10.1074/jbc.m102662200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LR7/8B and ApoER2 are recently discovered members of the low density lipoprotein (LDL) receptor family. Although structurally different, these two proteins are derived from homologous genes in chicken and man by alternative splicing and contain 7 or 8 LDL receptor ligand-binding repeats. Here we present the cDNA for ApoER2 cloned from mouse brain and describe splice variants in the ligand binding domain of this protein, which are distinct from those present in man and chicken. The cloned cDNA is coding for a receptor with only five LDL receptor ligand-binding repeats, i.e. comprising repeats 1-3, 7, and 8. Reverse transcriptase-polymerase chain reaction analysis of mRNA from murine brain revealed the existence of two additional transcripts. One is lacking repeat 8, and in the other repeat 8 is substituted for by a 13-amino acid insertion with a consensus site for furin cleavage arising from an additional small exon present in the murine gene. None of the transcripts in the mouse, however, contain repeats 4-6. In murine placenta only the form containing repeats 1-3 and 7 and the furin cleavage site is detectable. Analysis of the corresponding region of the murine gene showed the existence of 6 exons coding for a total of 8 ligand binding repeats, with one exon encoding repeats 4-6. Exon trapping experiments demonstrated that this exon is constitutively spliced out in all murine transcripts. Thus, the murine ApoER2 gene codes for receptor variants harboring either 4 or 5 binding repeats only. Recombinant expression of the 5-repeat and 4-repeat variants showed that repeats 1-3, 7, and 8 are sufficient for binding of beta-very low density lipoprotein and reelin, but not for recognition of alpha(2)-macroglobulin, which binds to the avian homologue of ApoER2 harboring 8 ligand binding repeats.
Collapse
Affiliation(s)
- C Brandes
- Institute of Medical Biochemistry, Department of Molecular Genetics, Biocenter and University of Vienna, A 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
44
|
White F, Nicoll JA, Horsburgh K. Alterations in ApoE and ApoJ in Relation to Degeneration and Regeneration in a Mouse Model of Entorhinal Cortex Lesion. Exp Neurol 2001; 169:307-18. [PMID: 11358444 DOI: 10.1006/exnr.2001.7655] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoproteins are primarily involved in the transport of lipid and cholesterol within the central nervous system (CNS) and are thought to play a role in synaptic remodeling, repair, and regeneration after brain injury. In the present study, alterations in apolipoproteins E (apoE) and J (apoJ) were examined in the molecular layers of the dentate gyrus after unilateral chemical lesioning of the entorhinal cortex (ECL), at days 0, 1, 3, 7, 28, and 90 days following injury. Alterations in immunostaining for these proteins were assessed in relation to accumulation of silver-labeled degeneration products and alterations in synaptophysin and GAP-43 immunoreactivity. Quantitative analysis of synaptophysin and GAP-43 immunostaining highlighted synaptic loss and fiber degeneration initially (3-7 days post-ECL), with subsequent terminal sprouting and reactive synaptogenesis occurring at longer survival periods (28-90 days post-ECL). Increased apoE and apoJ immunoreactivity was evident first within the neuropil (*P < 0.05 and **P < 0.01) followed by intense glial staining by day 7 post-ECL. By day 28 apoE and apoJ immunostaining had returned almost to baseline levels. However, at day 90 post-ECL, neuropil apoE and apoJ immunoreactivity was dramatically increased compared to contralateral levels (**P < 0.01 and ***P < 0.0001, respectively). Silver-labeled degeneration products were found to be in abundance at day 3 postlesion; however, by day 7 this was reduced leaving only a thin band of material within the MML and at day 90 post-ECL, dentate silver staining was similar to that of controls. The results indicate that apoE and apoJ are upregulated after injury and parallel clearance of cholesterol and lipid debris from the site of injury. This coordinated alteration in apolipoproteins may redistribute lipid material to sprouting fibers to promote neurite extension and may play an important role in long-term plasticity changes following injury.
Collapse
Affiliation(s)
- F White
- Wellcome Surgical Institute, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | | | | |
Collapse
|
45
|
Kato K, Kishi T, Kamachi T, Akisada M, Oka T, Midorikawa R, Takio K, Dohmae N, Bird PI, Sun J, Scott F, Miyake Y, Yamamoto K, Machida A, Tanaka T, Matsumoto K, Shibata M, Shiosaka S. Serine proteinase inhibitor 3 and murinoglobulin I are potent inhibitors of neuropsin in adult mouse brain. J Biol Chem 2001; 276:14562-71. [PMID: 11278732 DOI: 10.1074/jbc.m010725200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular serine protease neuropsin (NP) is expressed in the forebrain limbic area of adult brain and is implicated in synaptic plasticity. We screened for endogenous NP inhibitors with recombinant NP (r-NP) from extracts of the hippocampus and the cerebral cortex in adult mouse brain. Two SDS-stable complexes were detected, and after their purification, peptide sequences were determined by amino acid sequencing and mass spectrometry, revealing that target molecules were serine proteinase inhibitor-3 (SPI3) and murinoglobulin I (MUG I). The addition of the recombinant SPI3 to r-NP resulted in an SDS-stable complex, and the complex formation followed bimolecular kinetics with an association rate constant of 3.4 +/- 0.22 x 10(6) M(-1) s(-1), showing that SPI3 was a slow, tight binding inhibitor of NP. In situ hybridization histochemistry showed that SPI3 mRNA was expressed in pyramidal neurons in the hippocampal CA1-CA3 subfields, as was NP mRNA. Alternatively, the addition of purified plasma MUG I to r-NP resulted in an SDS-stable complex, and MUG I inhibited degradation of fibronectin by r-NP to 24% at a r-NP/MUG I molar ratio of 1:2. Immunofluorescence histochemistry showed that MUG I localized in the hippocampal neurons. These findings indicate that SPI3 and MUG I serve to inactivate NP and control the level of NP in adult brain, respectively.
Collapse
Affiliation(s)
- K Kato
- Division of Structural Cell Biology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- J Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Bacskai BJ, Xia MQ, Strickland DK, Rebeck GW, Hyman BT. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 2000; 97:11551-6. [PMID: 11016955 PMCID: PMC17238 DOI: 10.1073/pnas.200238297] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP) is an endocytic receptor that is a member of the low density lipoprotein receptor family. We report that the LRP ligand, activated alpha(2)-macroglobulin (alpha(2)M*), induces robust calcium influx in cultured primary neurons, but not in nonneuronal LRP-containing cells in the same culture. The calcium influx is mediated through N-methyl-d-aspartate receptor channels, which explains the neuron specificity of the response. Microapplication of alpha(2)M* leads to a localized response at the site of application that dissipates rapidly, suggesting that the calcium signal is temporally and spatially discrete. Calcium influx to alpha(2)M* is blocked by the physiological LRP inhibitor, receptor-associated protein. Bivalent antibodies to the extracellular domain of LRP, but not Fab fragments of the same antibody, cause calcium influx, indicating that the response is specific to LRP and may require dimerization of the receptor. Thus, LRP is an endocytic receptor with a novel signaling role.
Collapse
Affiliation(s)
- B J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital East, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
48
|
Herz J, Beffert U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat Rev Neurosci 2000; 1:51-8. [PMID: 11252768 DOI: 10.1038/35036221] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease is a debilitating neurodegenerative disorder that afflicts an increasing part of our ageing population. An isoform of apolipoprotein E, a protein that mediates the transport of lipids and cholesterol in the circulatory system, predisposes carriers of this allele to the common late-onset form of the disease. How this protein is related to a neurodegenerative disorder is an enigma. Mounting evidence indicates that apolipoprotein E receptors, which are abundantly expressed in most neurons in the central nervous system, also fulfill critical functions during brain development and may profoundly influence the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- J Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9046, USA.
| | | |
Collapse
|
49
|
Bar I, Lambert de Rouvroit C, Goffinet AM. The Reelin-signaling pathway and mouse cortical development. Results Probl Cell Differ 2000; 30:255-76. [PMID: 10857193 DOI: 10.1007/978-3-540-48002-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- I Bar
- Neurobiology Unit, University of Namur School of Medicine, Belgium
| | | | | |
Collapse
|
50
|
Bausek N, Waclawek M, Schneider WJ, Wohlrab F. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J Biol Chem 2000; 275:28866-72. [PMID: 10979984 DOI: 10.1074/jbc.275.37.28866] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix surrounding vertebrate oocytes is called the zona pellucida in mammals and perivitelline membrane (pvm) in birds. We have analyzed this structure in chicken follicles and laid eggs and have identified a 95-kDa component of the pvm, which, by protein sequencing, shows homology to mammalian zona pellucida proteins. Surprisingly, we could not detect this protein in ovarian granulosa cells or oocytes but instead found high levels in the liver of the laying hen. In contrast, it is absent in rooster liver but can be efficiently induced by estrogen treatment of the animal. An immunoscreen of a liver lambda-ZAP library yielded a cDNA coding for a protein of 934 amino acids. It displayed significant homology to members of the ZP1/ZPB family from other species, notably to mouse and rat ZP1, and was therefore designated chkZP1. It is clearly different from a protein designated chkZPB that had been deposited in the data base previously. Alignment of the known members of the ZP1/ZPB family demonstrated the existence of at least three subgroups, with representatives of both the ZP1 and the ZPB sequence homology group occurring in vertebrates. Northern blot analysis of liver extracts revealed the presence of a single 3. 2-kilobase mRNA coding for chkZP1, distinct from the chkZPB transcript detectable in follicles. Immunohistochemical analysis of follicle sections demonstrates that chkZP1 can be found in the blood vessels of the theca cell layer as well as in the pvm surrounding the oocyte. Thus, in the chicken, at least one of the major pvm components is synthesized in the liver and is transported via the bloodstream to the follicle.
Collapse
Affiliation(s)
- N Bausek
- Institute of Medical Biochemistry, Department of Molecular Genetics, University and Biocenter Vienna, Dr. Bohr-Gasse 9/2, A-1030 Wien, Austria
| | | | | | | |
Collapse
|