1
|
Daher IP, Almeida BDS, de Souza-Silva GA, Marques RF, Soares GHC, Andreata-Santos R, Moretti A, de Oliveira Silva M, Schuch V, Sasahara GL, Kuramoto A, Yamamoto M, Ferreira LCDS, Santos K, Coelho VPCV, Kalil J, Rosa DS, Cunha-Neto E, Boscardin SB. Neutralizing antibody responses after a two-dose regimen with BNT162b2, CoronaVac or ChAdOx1-S in Brazil: Differential neutralization of SARS-CoV-2 omicron variants. Clin Immunol 2025; 276:110492. [PMID: 40185297 DOI: 10.1016/j.clim.2025.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The emergence of SARS-CoV-2 variants has reduced antibody effectiveness, affecting vaccine protection. This study evaluated neutralizing antibodies against Wuhan strain and several variants, including Alpha, Beta, Gamma, Delta, and Omicron, in Brazilians vaccinated twice with CoronaVac, ChAdOx1-S, or BNT162b2 before Delta and Omicron emerged. After the booster, strong antibody responses to the Wuhan strain were seen in all groups, but BNT162b2 resulted in higher anti-Spike and anti-RBD IgG levels. While all vaccines showed some cross-neutralization against Alpha, Beta, Gamma, and Delta, only BNT162b2 was effective against Omicron BA.2 and BA.4/5 subvariants. Furthermore, BNT162b2 vaccination showed a positive correlation between Wuhan RBD-specific IgG and Omicron neutralizing antibodies. This group demonstrated distinct clustering patterns of neutralizing antibodies against all variants, unlike those from CoronaVac and ChAdOx1-S. The findings suggest BNT162b2 offers broader neutralization capability, highlighting the benefit of booster shots with bivalent mRNA vaccines to enhance immune responses against emerging variants.
Collapse
Affiliation(s)
- Isabela Pazotti Daher
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | - Bianca da Silva Almeida
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Rodolfo Ferreira Marques
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Robert Andreata-Santos
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | - Ana Moretti
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | - Viviane Schuch
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Greyce Luri Sasahara
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Andréia Kuramoto
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Marcio Yamamoto
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Keity Santos
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Verônica P C V Coelho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Jorge Kalil
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Edecio Cunha-Neto
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil.
| | - Silvia Beatriz Boscardin
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil.
| |
Collapse
|
2
|
Kousar R, Akhtar T, Lin CJ, Lebedev T, Li YC, Yang CC, Wang WJ, Chen HF, Su WC, Biswas PK, Saqib NU, Belay SA, Chang TC, Guo DW, Li Q, Patrick B, Usama M, Wu CS, Ma WL, Sher YP, Huang CC, Hung MC, Li XG. Anti-SARS-CoV-2 and anticancer properties of triptolide and its derived carbonized nanomaterials. Cancer Lett 2025; 619:217677. [PMID: 40147583 DOI: 10.1016/j.canlet.2025.217677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The COVID-19 pandemic remains an ongoing global health threat, yet effective treatments are still lacking. This has led to a high demand for complementary/alternative medicine, such as Chinese herbal medicines for curbing the COVID-19 pandemic. Given the dual anticancer and antiviral activities of many herbal drugs, they may hold a multifaceted potential to tackle both cancer and SARS-CoV-2. Triptolide is the major bioactive compound isolated from Tripterygium wilfordii Hook F (TwHF), a traditional Chinese medicinal herb recognized for its beneficial pharmacological properties in many diseases, including cancer and viral infection. However, its application in the clinic has been greatly limited due to its toxicity and poor water solubility. Here, from a screen of a natural compound library of Chinese Pharmacopoeia, we identified triptolide as a top candidate to inhibit cell entry of SARS-CoV-2. We demonstrated that triptolide robustly blocked viral entry at nanomolar concentrations in cellular models, with broad range activity against emerging Omicron variants of SARS-CoV-2. Mechanistically, triptolide disrupted the interaction of SARS-CoV-2 spike protein with its receptor ACE2. Furthermore, we synthesized water-soluble, triptolide-derived carbon quantum dots. Compared to triptolide, these highly biocompatible nanomaterials exhibited prominent antiviral capabilities against Omicron variants of SARS-CoV-2 with less cytotoxicity. Finally, we showed that triptolide-derived carbonized materials excelled in their anticancer properties compared to triptolide and Minnelide, a water-soluble analog of triptolide. Together, our results provide a rationale for the potential development of triptolide-carbonized derivatives as a promising antiviral candidate for the current pandemic and future outbreaks, as well as anticancer agents.
Collapse
Affiliation(s)
- Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Tahira Akhtar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Yi-Chuan Li
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Chih-Chao Yang
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Cell Biology, China Medical University, Taichung, 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Pulak Kumar Biswas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Najm Us Saqib
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Sefealem Assefa Belay
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Tzu-Chi Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Da-Wei Guo
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, 413305, Taiwan
| | - Qiangdu Li
- Department of Psychiatry, The Third Municipal Hospital of Weihai, Shandong Province, China
| | - Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Muhammad Usama
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
3
|
Youssef N, Gurev S, Ghantous F, Brock KP, Jaimes JA, Thadani NN, Dauphin A, Sherman AC, Yurkovetskiy L, Soto D, Estanboulieh R, Kotzen B, Notin P, Kollasch AW, Cohen AA, Dross SE, Erasmus J, Fuller DH, Bjorkman PJ, Lemieux JE, Luban J, Seaman MS, Marks DS. Computationally designed proteins mimic antibody immune evasion in viral evolution. Immunity 2025:S1074-7613(25)00178-5. [PMID: 40345199 DOI: 10.1016/j.immuni.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/09/2024] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Recurrent waves of viral infection necessitate vaccines and therapeutics that remain effective against emerging viruses. Our ability to evaluate interventions is currently limited to assessments against past or circulating variants, which likely differ in their immune escape potential compared with future variants. To address this, we developed EVE-Vax, a computational method for designing antigens that foreshadow immune escape observed in future viral variants. We designed 83 SARS-CoV-2 spike proteins that transduced ACE2-positive cells and displayed neutralization resistance comparable to variants that emerged up to 12 months later in the COVID-19 pandemic. Designed spikes foretold antibody escape from B.1-BA.4/5 bivalent booster sera seen in later variants. The designed constructs also highlighted the increased neutralization breadth elicited by nanoparticle-based, compared with mRNA-based, boosters in non-human primates. Our approach offers targeted panels of synthetic proteins that map the immune landscape for early vaccine and therapeutic evaluation against future viral strains.
Collapse
Affiliation(s)
- Noor Youssef
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Sarah Gurev
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Javier A Jaimes
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicole N Thadani
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amy C Sherman
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Daria Soto
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ralph Estanboulieh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Kotzen
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA; Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Aaron W Kollasch
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98109, USA
| | | | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98109, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jacob E Lemieux
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA; Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA.
| | - Jeremy Luban
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA; Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Michael S Seaman
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Schönfelder J, El Ayoubi O, Havryliuk O, Groß R, Seidel A, Bakchoul T, Münch J, Jumaa H, Setz CS. Mimicking immune complexes for efficient antibody responses. Front Immunol 2025; 16:1570487. [PMID: 40356891 PMCID: PMC12066251 DOI: 10.3389/fimmu.2025.1570487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Efficient antibody responses are crucial for combating infectious diseases and vaccination remains a cornerstone of this effort. This study introduces a novel approach for enhancing immune responses in wild-type mice by utilizing pre-formed immune complexes, using the receptor-binding domain (RBD) of SARS-CoV-2 as a model antigen to illustrate the broader potential of the concept. Specifically, we found that pre-treating the antigen with bis-maleimide, a chemical linker that facilitates protein cross-linking, significantly enhances antibody production. Moreover, in vitro cross-linking of antigen to unrelated IgG using bis-maleimide generated immune complexes that markedly enhanced antigen-specific antibody responses, likely by mimicking natural memory-like mechanisms, suggesting that bis-maleimide pre-treated antigens may similarly engage IgG in vivo. In contrast, antigen crosslinking with IgA or IgM did not yield comparable effects, highlighting the unique capacity of IgG to boost immunogenicity. By leveraging the principles of immune memory, this study demonstrates the potential of pre-formed immune complexes to significantly enhance vaccine efficacy using an antigen-independent strategy broadly applicable to diverse pathogens.
Collapse
Affiliation(s)
| | - Omar El Ayoubi
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Oles Havryliuk
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Corinna S. Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Karaliota S, Moussa M, Rosati M, Devasundaram S, Sengupta S, Goldfarbmuren KC, Burns R, Bear J, Stellas D, Urban EA, Deleage C, Khandhar AP, Erasmus J, Berglund P, Reed SG, Pavlakis GN, Felber BK. Highly immunogenic DNA/LION nanocarrier vaccine potently activates lymph nodes inducing long-lasting immunity in macaques. iScience 2025; 28:112232. [PMID: 40230522 PMCID: PMC11994941 DOI: 10.1016/j.isci.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
A SARS-CoV-2 spike DNA vaccine formulated with a cationic nanoparticle emulsion (LION) was tested in Rhesus macaques. It induced robust, long-lasting (>2 years) cellular and humoral immunity, including increased neutralization breadth. T cell responses were predominantly CD8+, in contrast to other DNA vaccines. A rapid transient cytokine/chemokine response was associated with expansion and trafficking of myeloid cells and lymphocytes. Increased proliferation and dynamic changes between blood and lymph node (LN) were found for monocyte-derived cells, dendritic cells, and B and T cells, resulting in activation of LN and expansion of germinal centers (GCs), likely critical in shaping long-lasting adaptive immunity. Significant GC expansion of B, CD4-, and CD8- cells, including the Tfc3 subset, reflects a balanced immune response, including antibody (Ab) development. DNA/LION vaccination activates myeloid and lymphoid cells in blood and LN and promotes effective antigen presentation, resulting in sustained antigen-specific cellular and humoral responses, emerging as an effective DNA vaccine delivery platform.
Collapse
Affiliation(s)
- Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Maha Moussa
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Soumya Sengupta
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katherine C. Goldfarbmuren
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth A. Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Meyer AR, Li L, Wholey WY, Chackerian B, Cheng W. Superior Potency of Synthetic Virus-like Structures in Vaccine-Induced Antibody Responses Compared to Qβ Bacteriophage Virus-like Particles. Viruses 2025; 17:579. [PMID: 40285021 PMCID: PMC12030905 DOI: 10.3390/v17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Virus-like particles are a well-established platform for vaccines, although the molecular mechanisms that underlie the extraordinary potency of many virus-like particles in eliciting strong antibody responses remain incompletely understood. Here, we show that synthetic virus-like structures, a new platform that we have recently developed, are superior to bacteriophage Qβ-based virus-like particles for the induction of long-term neutralizing antibody responses. For the same antigen, both platforms induced antibodies with comparable affinities. The resulting antigen-specific antibodies had similar binding on-rates and off-rates. However, synthetic virus-like structures induced a much higher concentration of functional antibodies in the serum than Qβ-based virus-like particles, suggesting that synthetic virus-like structures are more potent than Qβ-based virus-like particles in the induction of long-lived plasma cells.
Collapse
Affiliation(s)
- Alexander R. Meyer
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (A.R.M.); (L.L.); (W.-Y.W.)
| | - Libo Li
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (A.R.M.); (L.L.); (W.-Y.W.)
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (A.R.M.); (L.L.); (W.-Y.W.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (A.R.M.); (L.L.); (W.-Y.W.)
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Arora P, Kempf A, Nehlmeier I, Schulz SR, Jäck HM, Hoffmann M, Pöhlmann S. Entry Efficiency, Protease Dependence, and Antibody-Mediated Neutralization of SARS-CoV-2 Sublineages KP.3.1.1 and XEC. Vaccines (Basel) 2025; 13:385. [PMID: 40333265 PMCID: PMC12030816 DOI: 10.3390/vaccines13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 variants KP.3.1.1 and XEC currently dominate the COVID-19 epidemic. However, their cell tropism, proteolytic processing, and susceptibility to neutralization by monoclonal antibodies remain incompletely characterized. METHODS We employed pseudotyped viruses to assess the entry efficiency of KP.3.1.1 and XEC in various cell lines, their dependence on TMPRSS2 for lung cell entry, and their ability to use ACE2 for infection. Additionally, we evaluated their susceptibility to neutralization by monoclonal antibodies BD55-4637 and BD55-5514. RESULTS KP.3.1.1 and XEC entered cell lines with similar efficiency as the parental JN.1 lineage and utilized TMPRSS2 for Calu-3 lung cell entry. Unlike JN.1, KP.3.1.1 and XEC failed to efficiently use murine ACE2 for cell entry. Both variants were effectively neutralized by the monoclonal antibodies BD55-4637 and BD55-5514, suggesting therapeutic potential. CONCLUSIONS Our findings demonstrate that JN.1, KP.3.1.1, and XEC, like their predecessor BA.2.86, rely on TMPRSS2 for lung cell entry and remain sensitive to certain neutralizing monoclonal antibodies. However, these variants differ in their ability to utilize ACE2 species orthologs for cell entry.
Collapse
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (A.K.); (I.N.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (A.K.); (I.N.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (A.K.); (I.N.); (M.H.)
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (S.R.S.); (H.-M.J.)
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (S.R.S.); (H.-M.J.)
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (A.K.); (I.N.); (M.H.)
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (A.K.); (I.N.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Bianchera A, Donofrio G, Sonvico F, Bettini R. Dry powder formulations of hyperimmune serum. Drug Deliv Transl Res 2025; 15:1330-1341. [PMID: 39085576 PMCID: PMC11870897 DOI: 10.1007/s13346-024-01678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
| | - Gaetano Donofrio
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
- Department of Medical-Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy.
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy.
| |
Collapse
|
9
|
Zhang L, Kempf A, Nehlmeier I, Chen N, Stankov MV, Happle C, Dopfer-Jablonka A, Behrens GMN, Hoffmann M, Pöhlmann S. Host cell entry and neutralisation sensitivity of the emerging SARS-CoV-2 variant LP.8.1. THE LANCET. INFECTIOUS DISEASES 2025; 25:e196-e197. [PMID: 40023185 DOI: 10.1016/s1473-3099(25)00113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Nianzhen Chen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Metodi V Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Christine Happle
- Department for Paediatric Pneumology, Hannover Medical School, Hannover, Germany; Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Lung Research (DZL), partner site Hannover BREATH, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
11
|
Arora P, Zhang L, Nehlmeier I, Kempf A, Graichen L, Kreitz E, Sidarovich A, Rocha C, Gärtner S, Winkler M, Schulz S, Jäck HM, Hoffmann M, Pöhlmann S. Host cell lectins ASGR1 and DC-SIGN jointly with TMEM106B confer ACE2 independence and imdevimab resistance to SARS-CoV-2 pseudovirus with spike mutation E484D. J Virol 2025; 99:e0123024. [PMID: 39791910 PMCID: PMC11852847 DOI: 10.1128/jvi.01230-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The naturally occurring mutation E484D in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can render viral entry ACE2 independent and imdevimab resistant. Here, we investigated whether the cellular proteins ASGR1, DC-SIGN, and TMEM106B, which interact with the viral S protein, can contribute to these processes. Employing S protein-pseudotyped particles, we found that expression of ASGR1 or DC-SIGN jointly with TMEM106B allowed for robust entry of mutant E484D into otherwise non-susceptible cells, while this effect was not observed upon separate expression of the single proteins and upon infection with SARS-CoV-2 wild type (WT). Furthermore, expression of ASGR1 or DC-SIGN conferred ACE2 independence and imdevimab resistance to entry of mutant E484D but not WT, and entry under those conditions was dependent on endogenous TMEM106B. These results suggest that engagement of certain cellular lectins can direct SARS-CoV-2 mutant E484D to an ACE2-independent, TMEM106B-dependent entry pathway that is not inhibited by imdevimab.IMPORTANCEThe interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with the ACE2 receptor determines the viral cell tropism and is the key target of the neutralizing antibody response. Here, we show that SARS-CoV-2 with a single, naturally occurring mutation in the spike protein, E484D, can use the cellular lectins ASGR1 and DC-SIGN in conjunction with TMEM106B for ACE2-independent entry and evasion of therapeutic antibodies. These results suggest that engagement of cellular lectins might modulate target cell choice of SARS-CoV-2 and might allow evasion of certain neutralizing antibodies.
Collapse
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Eike Kreitz
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anzhalika Sidarovich
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Claireaux M, Elias G, Kerster G, Kuijper LH, Duurland MC, Paul AGA, Burger JA, Poniman M, Olijhoek W, de Jong N, de Jongh R, Wynberg E, van Willigen HDG, Prins M, De Bree GJ, de Jong MD, Kuijpers TW, Eftimov F, van der Schoot CE, Rispens T, Garcia-Vallejo JJ, ten Brinke A, van Gils MJ, van Ham SM. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. SCIENCE ADVANCES 2025; 11:eado1331. [PMID: 39970201 PMCID: PMC11837990 DOI: 10.1126/sciadv.ado1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Improving our understanding of B cell transition to memory B cells (MBCs) and antibody-secreting cells (ASCs) is crucial for clinical monitoring and vaccine strategies. To explore these dynamics, we compared prepandemic antigen responses (influenza hemagglutinin, respiratory syncytial virus fusion glycoprotein, and tetanus toxoid) with recently encountered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen responses in convalescent COVID-19 patients using spectral flow cytometry. Our analysis revealed the CD43+CD71+IgG+ activated B cell subset, highly enriched for SARS-CoV-2 specificities, as a juncture for ASC and MBC differentiation, with CD86+ phenotypically similar to ASCs and CD86- to IgG+ MBCs. Moreover, subpopulations within IgG+ MBCs were further identified based on CD73 and CD24 expression. Activated MBCs (CD73-/CD24lo) were predominantly SARS-CoV-2-specific, while resting MBCs (CD73+/CD24hi) recognized prepandemic antigens. A CD95- subcluster within resting MBCs accounted for over 40% of prepandemic-specific cells, indicating long-lasting memory. These findings advance our understanding of IgG+ MBC and ASC development stages, shedding light on the decision-making process guiding their differentiation.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Lisan H. Kuijper
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | | | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Nina de Jong
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Maria Prins
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. De Bree
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam University Medical Center (VUmc location), Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Adia YM, Gnanapragasam PNP, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. Cell 2025; 188:1036-1050.e11. [PMID: 39855201 PMCID: PMC11845252 DOI: 10.1016/j.cell.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2COMs), five (mosaic-5COM), or seven (mosaic-7COM) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges. Naive and COVID-19 pre-vaccinated mice immunized with mosaic-7COM elicited antibodies targeting conserved RBD epitopes, and their sera exhibited higher binding and neutralization titers against sarbecoviruses than mosaic-8b. Mosaic-2COMs and mosaic-5COM elicited higher antibody potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons, supporting its use to protect against SARS-CoV-2 variants and zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luis F Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yusuf M Adia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Kamelian K, Sievers B, Chen-Xu M, Turner S, Cheng MTK, Altaf M, Kemp SA, Abdullahi A, Csiba K, Collier DA, Mlcochova P, Meng B, Jones RB, Smith D, Bradley J, Smith KGC, Doffinger R, Smith RM, Gupta RK. Humoral responses to SARS-CoV-2 vaccine in vasculitis-related immune suppression. SCIENCE ADVANCES 2025; 11:eadq3342. [PMID: 39937891 PMCID: PMC11817922 DOI: 10.1126/sciadv.adq3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Immune suppression poses a challenge to vaccine immunogenicity. We show that serum antibody neutralization against SARS-CoV-2 Omicron descendants was largely absent post-doses 1 and 2 in individuals with vasculitis treated with rituximab. Detectable and increasing neutralizing titers were observed post-doses 3 and 4, except for XBB. Rituximab in vasculitis exacerbates neutralization deficits over standard immunosuppressive therapy, although impairment resolves over time since dosing. We observed discordance between detectable IgG binding and neutralizing activity specifically in the context of rituximab use, with high proportions of individuals showing reasonable IgG titer but no neutralization. ADCC response was more frequently detectable compared to neutralization in the context of rituximab, indicating that a notable proportion of binding antibodies are non-neutralizing. Therefore, use of rituximab is associated with severe impairment in neutralization against Omicron descendants despite repeated vaccinations, with better preservation of non-neutralizing antibody activity.
Collapse
Affiliation(s)
- Kimia Kamelian
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Benjamin Sievers
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Michael Chen-Xu
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | - Sam Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Mark Tsz Kin Cheng
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mazharul Altaf
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Kata Csiba
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Dami A. Collier
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Rachel B. Jones
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | | | - Derek Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - John Bradley
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Kenneth G. C. Smith
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia
- University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke’s Hospital, Cambridge, UK
| | - Rona M. Smith
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Ravindra K. Gupta
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
15
|
Hou CW, Williams S, Boyle V, Roeder A, Bobbett B, Garcia I, Caruth G, Magee M, Chung Y, Lake DF, LaBaer J, Murugan V. Tracking Immunity: An Increased Number of COVID-19 Boosters Increases the Longevity of Anti-RBD and Anti-RBD-Neutralizing Antibodies. Vaccines (Basel) 2025; 13:61. [PMID: 39852840 PMCID: PMC11769131 DOI: 10.3390/vaccines13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Since the World Health Organization declared COVID-19 a pandemic in March 2020, the virus has caused multiple waves of infection globally. Arizona State University (ASU), the largest four-year university in the United States, offers a uniquely diverse setting for assessing immunity within a large community. This study aimed to test our hypothesis that an increased number of exposures to SARS-CoV-2 RBD through vaccination/boosters/infection will increase SARS-CoV-2 antibody seroprevalence by increasing the longevity of anti-RBD and anti-RBD-neutralizing antibodies. METHODS A serosurvey was conducted at ASU from 30 January to 3 February 2023. Participants completed questionnaires about demographics, respiratory infection history, symptoms, and COVID-19 vaccination status. Blood samples were analyzed for anti-receptor binding domain (RBD) IgG and anti-nucleocapsid (NC) antibodies, offering a comprehensive view of immunity from both natural infection and vaccination. RESULTS The seroprevalence of anti-RBD IgG antibodies was 96.2% (95% CI: 94.8-97.2%), and 64.9% (95% CI: 61.9-67.8%) of participants had anti-NC antibodies. Anti-RBD IgG levels correlated strongly with neutralizing antibody levels, and participants who received more vaccine doses showed higher levels of both anti-RBD IgG and neutralizing antibodies. Increasing the number of exposures through vaccination and/or infection resulted in higher and long-lasting antibodies. CONCLUSIONS The high levels of anti-RBD antibodies observed reflect substantial vaccine uptake within this population. Ongoing vaccination efforts, especially as new variants emerge, are essential to maintaining protective antibody levels. These findings underscore the importance of sustained public health initiatives to support broad-based immunity and protection.
Collapse
Affiliation(s)
- Ching-Wen Hou
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Veronica Boyle
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Alexa Roeder
- School of Life Sciences, Arizona State University, Phoenix, AZ 85004, USA; (A.R.); (D.F.L.)
| | - Bradley Bobbett
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Izamar Garcia
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Giavanna Caruth
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Mitch Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Phoenix, AZ 85004, USA; (A.R.); (D.F.L.)
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
- School of Molecular Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (C.-W.H.); (S.W.); (V.B.); (B.B.); (I.G.); (G.C.); (M.M.); (Y.C.); (J.L.)
| |
Collapse
|
16
|
Fan C, Keeffe JR, Malecek KE, Cohen AA, West AP, Baharani VA, Rorick AV, Gao H, Gnanapragasam PN, Rho S, Alvarez J, Segovia LN, Hatziioannou T, Bieniasz PD, Bjorkman PJ. Cross-reactive sarbecovirus antibodies induced by mosaic RBD-nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631145. [PMID: 39803445 PMCID: PMC11722225 DOI: 10.1101/2025.01.02.631145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles. Here, we describe neutralizing mAbs from mosaic-8b-immunized rabbits, some on par with Pemgarda (the only currently FDA-approved therapeutic mAb). Deep mutational scanning, in vitro selection of spike resistance mutations, and cryo-EM structures of spike-antibody complexes demonstrated targeting of conserved epitopes. Rabbit mAbs included critical D-gene segment features in common with human anti-RBD mAbs, despite rabbit genomes lacking an equivalent human D-gene segment. Thus, mosaic RBD-nanoparticle immunization coupled with multiplexed screening represent an efficient way to generate and select therapeutic pan-sarbecovirus and pan-SARS-2 variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathryn E. Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jaasiel Alvarez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luisa N. Segovia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
17
|
de Taeye SW, Faye L, Morel B, Schriek AI, Umotoy JC, Yuan M, Kuzmina NA, Turner HL, Zhu X, Grünwald-Gruber C, Poniman M, Burger JA, Caniels TG, Fitchette AC, Desgagnés R, Stordeur V, Mirande L, Beauverger G, de Bree G, Ozorowski G, Ward AB, Wilson IA, Bukreyev A, Sanders RW, Vezina LP, Beaumont T, van Gils MJ, Gomord V. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:4-16. [PMID: 39563066 DOI: 10.1111/pbi.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants. Our plant-produced mAbs demonstrated comparable neutralizing activity with COVA2-15 produced in mammalian cells. Furthermore, they exhibited similar capacity to prevent SARS-CoV-2 infection in a hamster model. To further enhance these biosimilars, we performed three glyco- and protein engineering techniques. First, to increase antibody half-life, we introduced YTE-mutation in the Fc tail; second, optimization of N-linked glycosylation by the addition of a C-terminal ER-retention motif (HDEL), and finally; production of mAb in plant production lines lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO). These engineered biosimilars exhibited optimized glycosylation, enhanced phagocytosis and NK cell activation capacity compared to conventional plant-produced S15 and M15 biosimilars, in some cases outperforming mammalian cell produced COVA2-15. These engineered antibodies hold great potential for enhancing in vivo efficacy of mAb treatment against COVID-19 and provide a platform for the development of antibodies against other emerging viruses in a cost-effective manner.
Collapse
Affiliation(s)
- Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Loïc Faye
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Bertrand Morel
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | | | | | - Virginie Stordeur
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Lucie Mirande
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | | | - Godelieve de Bree
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | | | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Véronique Gomord
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
- ANGANY Inc, Québec, Quebec, Canada
| |
Collapse
|
18
|
Petrovsky N. Clinical development of SpikoGen®, an Advax-CpG55.2 adjuvanted recombinant spike protein vaccine. Hum Vaccin Immunother 2024; 20:2363016. [PMID: 38839044 PMCID: PMC11155708 DOI: 10.1080/21645515.2024.2363016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Research Department, Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia
- Research Department, Vaxine Pty Ltd, Warradale, Australia
| |
Collapse
|
19
|
Brangel P, Tureli S, Mühlemann B, Liechti N, Zysset D, Engler O, Hunger-Glaser I, Ghiga I, Mattiuzzo G, Eckerle I, Bekliz M, Rössler A, Schmitt MM, Knabl L, Kimpel J, Tort LFL, de Araujo MF, de Oliveira ACA, Caetano BC, Siqueira MM, Budt M, Gensch JM, Wolff T, Hassan T, Selvaraj FA, Hermanus T, Kgagudi P, Crowther C, Richardson SI, Bhiman JN, Moore PL, Cheng SMS, Li JKC, Poon LLM, Peiris M, Corman VM, Drosten C, Lai L, Hunsawong T, Rungrojcharoenkit K, Lohachanakul J, Sigal A, Khan K, Thiel V, Barut GT, Ebert N, Mykytyn AZ, Owusu Donkor I, Aboagye JO, Nartey PA, Van Kerkhove MD, Cunningham J, Haagmans BL, Suthar MS, Smith D, Subissi L. A Global Collaborative Comparison of SARS-CoV-2 Antigenicity Across 15 Laboratories. Viruses 2024; 16:1936. [PMID: 39772242 PMCID: PMC11680265 DOI: 10.3390/v16121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels. When comparing fold drops, excellent data consistency was observed across the labs using common reagents, including between pseudovirus and live virus neutralisation assays (RMSD of data from mean fold drop was 0.59). Utilising a Bayesian model, geometric mean titres and assay titre magnitudes (offsets) can describe the data efficiently. Titre magnitudes were seen to vary largely even for labs within the same assay group. We have observed that overall, live Microneutralisation assays tend to have the lowest titres, whereas Pseudovirus Neutralisation have the highest (with a mean difference of 3.2 log2 units between the two). These findings are relevant for laboratory networks, such as the WHO Coronavirus Laboratory Network (CoViNet), that seek to support a global surveillance system for evolution and antigenic characterisation of variants to support monitoring of population immunity and vaccine composition policy.
Collapse
Affiliation(s)
| | - Sina Tureli
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | - Barbara Mühlemann
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicole Liechti
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Daniel Zysset
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Olivier Engler
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | | | - Ioana Ghiga
- World Health Organization, 1202 Geneva, Switzerland
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, London SW1W 9SZ, UK
| | - Isabella Eckerle
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Meriem Bekliz
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Melanie M. Schmitt
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Luis Fernando Lopez Tort
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay
| | - Mia Ferreira de Araujo
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Any Caroline Alves de Oliveira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Braulia Costa Caetano
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Matthias Budt
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Jean-Marc Gensch
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Tarteel Hassan
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Francis Amirtharaj Selvaraj
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Tandile Hermanus
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Prudence Kgagudi
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Carol Crowther
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Samuel M. S. Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John K. C. Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor M. Corman
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Lilin Lai
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taweewun Hunsawong
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Kamonthip Rungrojcharoenkit
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Jindarat Lohachanakul
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Africa Health Research Institute, Durban 4013, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban 4013, South Africa
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - G. Tuba Barut
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - Nadine Ebert
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | | | - Irene Owusu Donkor
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
| | - James Odame Aboagye
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | - Prince Adom Nartey
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | | | | | | | - Mehul S. Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Derek Smith
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | | |
Collapse
|
20
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Arora P, Happle C, Kempf A, Nehlmeier I, Stankov MV, Dopfer-Jablonka A, Behrens GMN, Pöhlmann S, Hoffmann M. Impact of JN.1 booster vaccination on neutralisation of SARS-CoV-2 variants KP.3.1.1 and XEC. THE LANCET. INFECTIOUS DISEASES 2024; 24:e732-e733. [PMID: 39522531 DOI: 10.1016/s1473-3099(24)00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Hannover Medical School, Hannover, Germany; German Centre for Lung Research (DZL), partner site Hannover "BREATH", Hannover Medical School, Hannover, Germany; Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany; Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen 37077, Germany
| |
Collapse
|
22
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Nowak R, Gazecka M, Hoffmann M, Kierzek R, Pöhlmann S, Zmora P. TMPRSS2-specific antisense oligonucleotides inhibit host cell entry of emerging viruses. Virology 2024; 600:110218. [PMID: 39276670 DOI: 10.1016/j.virol.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Emerging viruses, such as novel influenza A viruses (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose a constant threat to animal and human health. Identification of host cell factors necessary for viral replication but dispensable for cellular survival might reveal novel, attractive targets for therapeutic intervention. Proteolytic activation of IAV hemagglutinin (HA) and SARS-CoV-2 spike protein (S) by the type II transmembrane serine protease (TTSPs), e.g. TMPRSS2 is sought to be critical for viral spread and pathogenesis. Here, we investigated the secondary structure of TMPRSS2 mRNA coding sequence and designed TMPRSS2-specific antisense oligonucleotides (ASOs). Several of these ASOs markedly reduced the TMPRSS2 expression and decreased IAV infection and SARS-CoV-2 entry into cells.
Collapse
Affiliation(s)
- Rafal Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Pawel Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
24
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
25
|
Metko M, Tonne J, Veliz Rios A, Thompson J, Mudrick H, Masopust D, Diaz RM, Barry MA, Vile RG. Intranasal Prime-Boost with Spike Vectors Generates Antibody and T-Cell Responses at the Site of SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:1191. [PMID: 39460356 PMCID: PMC11511174 DOI: 10.3390/vaccines12101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity. METHODS Here, we tested the hypothesis that a heterologous prime and boost vaccine regimen delivered intranasally (IN) will generate improved immune responses locally at the site of virus infection compared to intramuscular vaccine/booster regimens. RESULTS In a transgenic human ACE2 murine model, both a Spike-expressing single-cycle adenovirus (SC-Ad) and an IFNß safety-enhanced replication-competent Vesicular Stomatitis Virus (VSV) platform generated anti-Spike antibody and T-cell responses that diminished with age. Although SC-Ad-Spike boosted a prime with VSV-Spike-mIFNß, SC-Ad-Spike alone induced maximal levels of IgG, IgA, and CD8+ T-cell responses. CONCLUSIONS There were significant differences in T-cell responses in spleens compared to lungs, and the intranasal boost was significantly superior to the intramuscular boost in generating sentinel immune effectors at the site of the virus encounter in the lungs. These data show that serious consideration should be given to intranasal boosting with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Alexa Veliz Rios
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - David Masopust
- Department of Microbiology & Immunology, University of Minnesota Medical School, 2101 6th St. SE, Minneapolis, MN 55455, USA;
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Cimen AN, Torabfam GC, Tok YT, Yucebag E, Arslan N, Saribal D, Esken G, Dogan O, Kuskucu MA, Mete B, Aygun G, Tabak F, Can F, Ergonul O, Midilli K, Kutlu O, Cetinel S. Development of pseudotyped VSV-SARS-CoV-2 spike variants for the assessment of neutralizing antibodies. Bioanalysis 2024; 16:1167-1177. [PMID: 39411978 PMCID: PMC11583609 DOI: 10.1080/17576180.2024.2411920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: Serological studies with pseudotyped viruses offer a safer alternative to live SARS-CoV-2 in evaluating neutralizing antibodies, enabling research in standard labs.Methods: The SARS-CoV-2 Spike pseudotyped vesicular stomatitis virus (VSV) pseudoviruses were generated using Spike of Wuhan strain and two variants (B.1.1.7, B.1.351) and utilized to evaluate the serum neutralizing activity of human plasma samples of vaccinated (n = 13) and healthy people (n = 2) compared with a plaque assay with authentic virus.Results: Neutralizing titer of convalescent plasma resulted with a good correlation (R2 = 0.7).Conclusion: We evaluated a safe and reliable pseudotyped virus system that effectively mimics authentic virus and correlates well with traditional assays. The developed system allows easier testing of variants and has the potential to improve vaccine development.
Collapse
Affiliation(s)
- Atike Nur Cimen
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Gizem Celebi Torabfam
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Yesim Tuyji Tok
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
- Department of Medical Microbiology, Medical Faculty of Izmir Katip Celebi University, Istanbul, 35610, Turkey
| | - Ebru Yucebag
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Nese Arslan
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul Univesirty-Cerrahpasa, Istanbul, 34098, Turkey
| | - Gulen Esken
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Ozlem Dogan
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Mert Ahmet Kuskucu
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Bilgul Mete
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Gokhan Aygun
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Fusun Can
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Onder Ergonul
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Kenan Midilli
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
27
|
Vergouwe M, Biemond JJ, van der Straten K, van Pul L, Kerster G, Claireaux M, Burger JA, van Dort KA, Kootstra NA, Jonges M, Welkers MRA, Hazenberg MD, Peters-Sengers H, van Gils MJ, Wiersinga WJ, Birnie E, de Bree GJ. A Robust Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific T- and B-Cell Response Is Associated With Early Viral Clearance in SARS-CoV-2 Omicron-Infected Immunocompromised Individuals. J Infect Dis 2024; 230:e860-e871. [PMID: 38843052 PMCID: PMC11481360 DOI: 10.1093/infdis/jiae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND The immunological determinants of delayed viral clearance and intrahost viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in relation to viral clearance and evolution in immunocompromised individuals. METHODS Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike immunoglobulin G (IgG) and IgG3 titers, neutralization titers, and monoclonal antibody (mAb) resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (reverse-transcription polymerase chain reaction [RT-PCR] negative ≤28 days) or late (RT-PCR positive >28 days) viral clearance. RESULTS Of 30 patients included (median age, 61.9 [interquartile range, 47.4-72.3] years; 50% females), 20 (66.7%) received mAb therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral clearance. Patients with early viral clearance and patients without resistance-associated mutations had significantly higher baseline interferon-γ release, and patients with early viral clearance had a higher frequency of SARS-CoV-2-specific B cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral clearance. CONCLUSIONS An early robust adaptive immune response is vital for efficient viral clearance and associated with less emergence of mAb resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Magda Vergouwe
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
| | - Jason J Biemond
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
| | - Karlijn van der Straten
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa van Pul
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A Burger
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
| | - Marit J van Gils
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Birnie
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Godelieve J de Bree
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Wholey WY, Meyer AR, Yoda ST, Mueller JL, Mathenge R, Chackerian B, Zikherman J, Cheng W. An Integrated Signaling Threshold Initiates IgG Response toward Virus-like Immunogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1061-1075. [PMID: 39212443 PMCID: PMC11458362 DOI: 10.4049/jimmunol.2400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Class-switched neutralizing Ab (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures, in this study, we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses without T cell help or TLR but requires CD19. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response, and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harboring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab in mice and reproduced the IgG2a/2c restriction that is long observed in live viral infections. These findings reveal a shared mechanism for the nAb response in mice. High ED is capable but not necessary for driving Ab secretion. Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong IgG production. As a result, the signaling threshold for induction of IgG in individual B cells is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander R. Meyer
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James L. Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Raisa Mathenge
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, 1150 W. Medical Center Dr., University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
29
|
Antonelli R, Forconi V, Molesti E, Semplici C, Piu P, Altamura M, Dapporto F, Temperton N, Montomoli E, Manenti A. A validated and standardized pseudotyped microneutralization assay as a safe and powerful tool to measure LASSA virus neutralising antibodies for vaccine development and comparison. F1000Res 2024; 13:534. [PMID: 39512237 PMCID: PMC11541077 DOI: 10.12688/f1000research.149578.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Background Over the past few decades, World Health Organization (WHO) has made massive efforts to promote the development of a vaccine against Lassa virus (LASV), one of the top ten priority pathogens for research and development under the WHO R&D Blueprint for Emerging Infections. To date, several vaccines are at different stages of development. In this scenario, a validated and standardised assay to measure LASV neutralising antibodies is urgently needed for vaccine development and comparison. Methods The neutralisation assay remains the gold standard for determining antibody efficacy. Here we have proposed a safe and validated pseudotyped neutralisation assay for LASV, taking advantage of the development of the first WHO International Standard and Reference Panel for Anti-Lassa Fever (NIBSC code 21/332). Results and Conclusions The proposed results demonstrate that the pseudotyped luciferase neutralisation assay is a specific serological test for the measurement of LASV neutralising antibodies without cross-reacting with standard sera specific for heterologous viral infections. In addition, the assay is accurate, precise, and linear according to criteria and statistical analyses defined and accepted by international guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy,, University of Kent and Greenwich at Medway, Chatham, Kent, UK
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | |
Collapse
|
30
|
Song XD, Yang GJ, Shi C, Jiang XL, Wang XJ, Zhang YW, Wu J, Zhao LX, Wang MM, Chen RR, He XJ, Dai EH, Shen Y, Gao HX, Dong G, Ma MJ. Finite immune imprinting on neutralizing antibody responses to Omicron subvariants by repeated vaccinations. Int J Infect Dis 2024; 147:107198. [PMID: 39117174 DOI: 10.1016/j.ijid.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection (BTI) following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 BTI, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 BTI following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 BTI after primary vaccination. CONCLUSIONS Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.
Collapse
Affiliation(s)
- Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Xue-Jun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou, China
| | - Lian-Xiang Zhao
- School of Public Health, Binzhou Medical University, Binzhou, China
| | - Ming-Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Ferrero S, Batto MV, Gatto MI, Dimase F, Helguera G. Detection of Neutralizing Antibodies in Serum Samples Using a SARS-CoV-2 Pseudotyped Virus Assay. Curr Protoc 2024; 4:e70025. [PMID: 39373132 DOI: 10.1002/cpz1.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Conventional live virus research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease-19 (COVID-19), requires Biosafety Level 3 (BSL-3) facilities. SARS-CoV-2 pseudotyped viruses have emerged as valuable tools in virology, mimicking the entry process of the SARS-CoV-2 virus into human cells by expressing its spike glycoprotein in a surrogate system using recombinant plasmids. One significant application of this tool is in functional assays for the evaluation of neutralizing antibodies. Pseudotyped viruses have the advantage of being competent for only a single cycle of infection, providing better safety and versatility and allowing them to be studied in BSL-2 laboratories. Here, we describe three protocols for the detection of SARS-CoV-2 neutralizing antibodies through a pseudotyped virus assay. First, SARS-CoV-2 S pseudotyped viruses (PV SARS-CoV-2 S) are produced using a Moloney murine leukemia virus (MuLV) three-plasmid system. The plasmids are designed to express the GagPol packing proteins, enhanced green fluorescent protein (eGFP) as a readout system, and the SARS-CoV-2 S protein modified to remove the endoplasmic reticulum retention domain and to improve infection. Next, the internalization of PV SARS-CoV-2 S protein in human embryonic kidney 293T (HEK-293T) cells overexpressing angiotensin-converting enzyme 2 (HEK-293T-ACE2) is confirmed by fluorescence microscopy and quantified using flow cytometry. Finally, PV SARS-CoV-2 S is used to screen neutralizing antibodies in serum samples from convalescent COVID-19 patients; it can also be used for studying the cell entry mechanisms of different SARS-CoV-2 variants, evaluating antiviral agents, and designing vaccines. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of PV SARS-CoV-2 S pseudotyped virus Basic Protocol 2: Assay of PV SARS-CoV-2 S internalization in target cells. Basic Protocol 3: Detection of neutralizing antibodies in serum samples.
Collapse
Affiliation(s)
- Sol Ferrero
- Laboratory of Pharmaceutical Biotechnology, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María Victoria Batto
- Laboratory of Pharmaceutical Biotechnology, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Matías Iván Gatto
- Laboratory of Pharmaceutical Biotechnology, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Federico Dimase
- Hemotherapy Division, Hospital Militar Central 601 Cirujano Mayor Dr. Cosme Argerich, Buenos Aires, Argentina
| | - Gustavo Helguera
- Laboratory of Pharmaceutical Biotechnology, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen IV FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 PMCID: PMC11542851 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B. Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Green AL, De Bellis D, Cowell E, Lenchine RV, Penn T, Kris LP, McEvoy-May J, Bihari S, Dixon DL, Carr JM. The Y498T499-SARS-CoV-2 spike (S) protein interacts poorly with rat ACE2 and does not affect the rat lung. Access Microbiol 2024; 6:000839.v3. [PMID: 39346684 PMCID: PMC11432600 DOI: 10.1099/acmi.0.000839.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
The rat is a useful laboratory model for respiratory diseases. SARS-CoV-2 proteins, such as the spike (S) protein, can induce inflammation. This study has investigated the ability of the Q498Y, P499T (QP-YT) amino acid change, described in the S-protein of the mouse-adapted laboratory SARS-CoV-2 MA strain, to interact with rat angiotensin converting enzyme-2 (ACE2) and stimulate responses in rat lungs. A real-time S-ACE2 quantitative fusion assay shows that ancestral and L452R S-proteins fuse with human but not rat ACE2 expressed on HEK293 (human embryonic kidney-293) cells. The QP-YT S-protein retains the ability to fuse with human ACE2 and increases the binding to rat ACE2. Although lower lung of the rat contains both ACE2 and TMPRSS2 (transmembrane serine protease 2) target cells, intratracheal delivery of ancestral or QP-YT S-protein pseudotyped lentivirus did not induce measurable respiratory changes, inflammatory infiltration or innate mRNA responses. Isolation of primary cells from rat alveoli demonstrated the presence of cells expressing ACE2 and TMPRSS2. Infection of these cells, however, with ancestral or QP-YT S-protein pseudotyped lentivirus was not observed, and the QP-YT S-protein pseudotyped lentivirus poorly infected HEK293 cells expressing rat ACE2. Analysis of the amino acid changes across the S-ACE2 interface highlights not only the Y498 interaction with H353 as a likely facilitator of binding to rat ACE2 but also other amino acids that could improve this interaction. Thus, rat lungs contain cells expressing receptors for SARS-CoV-2, and the QP-YT S-protein variant can bind to rat ACE2, but this does not result in infection or stimulate responses in the lung. Further, amino acid changes in S-protein may enhance this interaction to improve the utility of the rat model for defining the role of the S-protein in driving lung inflammation.
Collapse
Affiliation(s)
- Amy L Green
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Dylan De Bellis
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Evangeline Cowell
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Roman V Lenchine
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Timothy Penn
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Luke P Kris
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - James McEvoy-May
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Shailesh Bihari
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Dani-Louise Dixon
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Sartingen N, Stürmer V, Kaltenböck M, Müller TG, Schnitzler P, Kreshuk A, Kräusslich HG, Merle U, Mücksch F, Müller B, Pape C, Laketa V. Multiplex Microscopy Assay for Assessment of Therapeutic and Serum Antibodies against Emerging Pathogens. Viruses 2024; 16:1473. [PMID: 39339949 PMCID: PMC11437451 DOI: 10.3390/v16091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of novel pathogens, exemplified recently by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the need for rapidly deployable and adaptable diagnostic assays to assess their impact on human health and guide public health responses in future pandemics. In this study, we developed an automated multiplex microscopy assay coupled with machine learning-based analysis for antibody detection. To achieve multiplexing and simultaneous detection of multiple viral antigens, we devised a barcoding strategy utilizing a panel of HeLa-based cell lines. Each cell line expressed a distinct viral antigen, along with a fluorescent protein exhibiting a unique subcellular localization pattern for cell classification. Our robust, cell segmentation and classification algorithm, combined with automated image acquisition, ensured compatibility with a high-throughput approach. As a proof of concept, we successfully applied this approach for quantitation of immunoreactivity against different variants of SARS-CoV-2 spike and nucleocapsid proteins in sera of patients or vaccinees, as well as for the study of selective reactivity of monoclonal antibodies. Importantly, our system can be rapidly adapted to accommodate other SARS-CoV-2 variants as well as any antigen of a newly emerging pathogen, thereby representing an important resource in the context of pandemic preparedness.
Collapse
Affiliation(s)
- Nuno Sartingen
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Vanessa Stürmer
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Matthias Kaltenböck
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Thorsten G. Müller
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Anna Kreshuk
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Frauke Mücksch
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Constantin Pape
- Institute of Computer Science, Göttingen University, 37073 Göttingen, Germany;
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Göttingen University, 37073 Göttingen, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
36
|
Janns JH, Mikkelsen JG. Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles. Hum Gene Ther 2024; 35:604-616. [PMID: 39150015 DOI: 10.1089/hum.2024.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for in vivo use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of "ready-to-work" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted in vivo, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.
Collapse
|
37
|
Grunst MW, Qin Z, Dodero-Rojas E, Ding S, Prévost J, Chen Y, Hu Y, Pazgier M, Wu S, Xie X, Finzi A, Onuchic JN, Whitford PC, Mothes W, Li W. Structure and inhibition of SARS-CoV-2 spike refolding in membranes. Science 2024; 385:757-765. [PMID: 39146425 PMCID: PMC11449073 DOI: 10.1126/science.adn5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| |
Collapse
|
38
|
Hills RA, Tan TK, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PNP, Storm KN, Rorick AV, West AP, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, Admans G, James WS, Bjorkman PJ, Townsend AR, Howarth MR. Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses. NATURE NANOTECHNOLOGY 2024; 19:1216-1223. [PMID: 38710880 PMCID: PMC11329374 DOI: 10.1038/s41565-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabrielle Admans
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Jiang XL, Song XD, Shi C, Yang GJ, Wang XJ, Zhang YW, Wu J, Zhao LX, Zhang MZ, Wang MM, Chen RR, He XJ, Dai EH, Gao HX, Shen Y, Dong G, Wang YL, Ma MJ. Variant-specific antibody response following repeated SARS-CoV-2 vaccination and infection. Cell Rep 2024; 43:114387. [PMID: 38896777 DOI: 10.1016/j.celrep.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.
Collapse
Affiliation(s)
- Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan 056001, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China
| | - Xue-Jun Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou 256613, China
| | - Lian-Xiang Zhao
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ming-Ming Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yu-Ling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China.
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
40
|
Wang Y, Wang Q, Chen X, Li B, Zhang Z, Yao L, Liu X, Zhang R. A Natural Bioactive Peptide from Pinctada fucata Pearls Can Be Used as a Potential Inhibitor of the Interaction between SARS-CoV-2 and ACE2 against COVID-19. Int J Mol Sci 2024; 25:7902. [PMID: 39063143 PMCID: PMC11277083 DOI: 10.3390/ijms25147902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The frequent occurrence of viral infections poses a serious threat to human life. Identifying effective antiviral components is urgent. In China, pearls have been important traditional medicinal ingredients since ancient times, exhibiting various therapeutic properties, including detoxification properties. In this study, a peptide, KKCH, which acts against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was derived from Pinctada fucata pearls. Molecular docking showed that it bound to the same pocket of the SARS-CoV-2 S protein and cell surface target angiotensin-converting enzyme II (ACE2). The function of KKCH was analyzed through surface plasmon resonance (SPR), Enzyme-Linked Immunosorbent Assays, immunofluorescence, and simulation methods using the SARS-CoV-2 pseudovirus and live virus. The results showed that KKCH had a good affinity for ACE2 (KD = 6.24 × 10-7 M) and could inhibit the binding of the S1 protein to ACE2 via competitive binding. As a natural peptide, KKCH inhibited the binding of the SARS-CoV-2 S1 protein to the surface of human BEAS-2B and HEK293T cells. Moreover, viral experiments confirmed the antiviral activity of KKCH against both the SARS-CoV-2 spike pseudovirus and SARS-CoV-2 live virus, with half-maximal inhibitory concentration (IC50) values of 398.1 μM and 462.4 μM, respectively. This study provides new insights and potential avenues for the prevention and treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Liping Yao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Zhang L, Dopfer-Jablonka A, Cossmann A, Stankov MV, Graichen L, Moldenhauer AS, Fichter C, Aggarwal A, Turville SG, Behrens GM, Pöhlmann S, Hoffmann M. Rapid spread of the SARS-CoV-2 JN.1 lineage is associated with increased neutralization evasion. iScience 2024; 27:109904. [PMID: 38812550 PMCID: PMC11134884 DOI: 10.1016/j.isci.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
In July/August 2023, the highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2.86 lineage emerged and its descendant JN.1 is on track to become the dominant SARS-CoV-2 lineage globally. Compared to the spike (S) protein of the parental BA.2.86 lineage, the JN.1 S protein contains one mutation, L455S, which may affect receptor binding and antibody evasion. Here, we performed a virological assessment of the JN.1 lineage employing pseudovirus particles bearing diverse SARS-CoV-2 S proteins. Using this strategy, it was found that S protein mutation L455S confers increased neutralization resistance but reduces ACE2 binding capacity and S protein-driven cell entry efficiency. Altogether, these data suggest that the benefit of increased antibody evasion outweighs the reduced ACE2 binding capacity and further enabled the JN.1 lineage to effectively spread in the human population.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi V. Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Georg M.N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Peres RAS, Alves SAS, Calil PT, Arruda LB, Costa LJ, Silva PL, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C. Toll like receptor 4 mediates the inhibitory effect of SARS-CoV-2 spike protein on proximal tubule albumin endocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167155. [PMID: 38579939 DOI: 10.1016/j.bbadis.2024.167155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro T Calil
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B Arruda
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J Costa
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Patricia R M Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
45
|
Brinkkemper M, Poniman M, Siteur-van Rijnstra E, Iddouch WA, Bijl TP, Guerra D, Tejjani K, Grobben M, Bhoelan F, Bemelman D, Kempers R, van Gils MJ, Sliepen K, Stegmann T, van der Velden YU, Sanders RW. A spike virosome vaccine induces pan-sarbecovirus antibody responses in mice. iScience 2024; 27:109719. [PMID: 38706848 PMCID: PMC11068555 DOI: 10.1016/j.isci.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Zoonotic events by sarbecoviruses have sparked an epidemic (severe acute respiratory syndrome coronavirus [SARS-CoV]) and a pandemic (SARS-CoV-2) in the past two decades. The continued risk of spillovers from animals to humans is an ongoing threat to global health and a pan-sarbecovirus vaccine would be an important contribution to pandemic preparedness. Here, we describe multivalent virosome-based vaccines that present stabilized spike proteins from four sarbecovirus strains, one from each clade. A cocktail of four monovalent virosomes or a mosaic virosome preparation induced broad sarbecovirus binding and neutralizing antibody responses in mice. Pre-existing immunity against SARS-CoV-2 and extending the intervals between immunizations enhanced antibody responses. These results should inform the development of a pan-sarbecovirus vaccine, as part of our efforts to prepare for and/or avoid a next pandemic.
Collapse
Affiliation(s)
- Mitch Brinkkemper
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Esther Siteur-van Rijnstra
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Widad Ait Iddouch
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom P.L. Bijl
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Denise Guerra
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Farien Bhoelan
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | | | - Ronald Kempers
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, CH 2333 Leiden, the Netherlands
| | - Yme U. van der Velden
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
46
|
Zhang L, Dopfer-Jablonka A, Nehlmeier I, Kempf A, Graichen L, Calderón Hampel N, Cossmann A, Stankov MV, Morillas Ramos G, Schulz SR, Jäck HM, Behrens GMN, Pöhlmann S, Hoffmann M. Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage. Vaccines (Basel) 2024; 12:487. [PMID: 38793739 PMCID: PMC11125805 DOI: 10.3390/vaccines12050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Transmissibility and immune evasion of the recently emerged, highly mutated SARS-CoV-2 BA.2.87.1 are unknown. Here, we report that BA.2.87.1 efficiently enters human cells but is more sensitive to antibody-mediated neutralization than the currently dominating JN.1 variant. Acquisition of adaptive mutations might thus be needed for efficient spread in the population.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
| | - Amy Kempf
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Noemí Calderón Hampel
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
| | - Metodi V. Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
| | - Gema Morillas Ramos
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (H.-M.J.)
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (H.-M.J.)
| | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.D.-J.); (N.C.H.); (A.C.); (M.V.S.); (G.M.R.); (G.M.N.B.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- Center for Individualized Infection Medicine (CiiM), 30625 Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (L.Z.); (I.N.); (A.K.); (L.G.); (S.P.)
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
47
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
48
|
Carrascosa-Sàez M, Marqués MC, Geller R, Elena SF, Rahmeh A, Dufloo J, Sanjuán R. Cell type-specific adaptation of the SARS-CoV-2 spike. Virus Evol 2024; 10:veae032. [PMID: 38779130 PMCID: PMC11110937 DOI: 10.1093/ve/veae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia 46010, Spain
| | - Santiago F Elena
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Amal Rahmeh
- Departament de Medicina i Ciències de La Vida (MELIS), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Jérémy Dufloo
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| |
Collapse
|
49
|
van Leeuwen LPM, Grobben M, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk FL, van Gils MJ, de Vries RD, Dalm VASH. Immunogenicity of COVID-19 booster vaccination in IEI patients and their one year clinical follow-up after start of the COVID-19 vaccination program. Front Immunol 2024; 15:1390022. [PMID: 38698851 PMCID: PMC11063285 DOI: 10.3389/fimmu.2024.1390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.
Collapse
Affiliation(s)
- Leanne P. M. van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Pauline M. Ellerbroek
- Department of Internal Medicine, Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Judith Potjewijd
- Department of Internal Medicine, Division Clinical Immunology, Maastricht UMC, Maastricht, Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
50
|
Wholey WY, Meyer AR, Yoda ST, Chackerian B, Zikherman J, Cheng W. Minimal Determinants for Lifelong Antiviral Antibody Responses in Mice from a Single Exposure to Virus-like Immunogens at Low Doses. Vaccines (Basel) 2024; 12:405. [PMID: 38675787 PMCID: PMC11054763 DOI: 10.3390/vaccines12040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs from primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of protein antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. The introduction of internal nucleic acids dramatically modulates the magnitude of Ab responses without an alteration of the long-term kinetic trends. These Abs are characterized by very slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimizing vaccine design.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Alexander R. Meyer
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|