1
|
Fernández-Rueda M, Calvo-Henriquez C, Fernández-Liesa R, García-Fernández A, Pedrero-Tomé R, Blázquez-Gamero D, De Vergas Guiterrez J. Risk factors associated with late-onset hearing loss in children with congenital cytomegalovirus: a systematic review. Eur Arch Otorhinolaryngol 2025; 282:1659-1676. [PMID: 39367221 DOI: 10.1007/s00405-024-09013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE To search for existing evidence of prognostic factors related to the development of late-onset hearing loss (LOHL) in infants with congenital cytomegalovirus (cCMV). METHODS A PRISMA systematic review was performed, with the PubMed, Embase, and Web of Science databases searched from inception through to December 2023; after the application of inclusion and exclusion criteria a total of 9 papers were included in this review. PROSPERO registration number CRD42024492244. RESULTS 9 studies encompassing a total of 292 children with late-onset hearing loss were included. A total of 12 risk factors were identified in the literature, with 6 found to be statistically significant. Late-onset hearing loss was more frequently reported in children with symptomatic than asymptomatic cCMV. Moreover, in asymptomatic cCMV cases, elevated DNAemia and salivary viral load were associated with late-onset hearing loss. Additionally, first-trimester seroconversion was identified as a risk factor for late- onset hearing loss. Further, gestational age < 37 weeks and low birth weight were found to correlate with late-onset hearing loss. Remarkably, only one study documented a relationship between late-onset hearing loss and ultrasonographic abnormalities. CONCLUSIONS Although six statistically significant risk factors have been identified, the available evidence is limited and inconsistent, preventing the establishment of reliable neonatal and maternal parameters to predict the development of LOHL in patients with CMV. There are few studies addressing this topic, and those available exhibit a low level of evidence and heterogeneous designs. More studies should be done.
Collapse
Affiliation(s)
- María Fernández-Rueda
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario 12 Octubre, Avenida Córdoba S/N, 28041, Madrid, Spain.
| | - Christian Calvo-Henriquez
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Fernández-Liesa
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Miguel Servet, Saragossa, Spain
| | - Alfredo García-Fernández
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario 12 Octubre, Avenida Córdoba S/N, 28041, Madrid, Spain
| | - Roberto Pedrero-Tomé
- Research Institute Hospital 12 de Octubre (Imas12), Biomedical Foundation of the University Hospital 12 de Octubre (FBHU12O), Madrid, Spain
| | | | - Joaquín De Vergas Guiterrez
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario 12 Octubre, Avenida Córdoba S/N, 28041, Madrid, Spain
| |
Collapse
|
2
|
Jia Z, Zhang D, Zhu L, Xue J. Animal models of human herpesvirus infection. Animal Model Exp Med 2025; 8:615-628. [PMID: 39921263 PMCID: PMC12067922 DOI: 10.1002/ame2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
Human herpesvirus, a specific group within the herpesvirus family, is responsible for a variety of human diseases. These viruses can infect humans and other vertebrates, primarily targeting the skin, mucous membranes, and neural tissues, thereby significantly impacting the health of both humans and animals. Animal models are crucial for studying virus pathogenesis, vaccine development, and drug testing. Despite several vaccine candidates being in preclinical and clinical stages, no vaccines are current available to prevent lifelong infections caused by these human herpesviruses, except for varicella-zoster virus (VZV) vaccine. However, the strict host tropism of herpesviruses and other limitations mean that no single animal model can fully replicate all key features of human herpesvirus-associated diseases. This makes it challenging to evaluate vaccines and antivirals against human herpesvirus comprehensively. Herein, we summarize the current animal models used to study the human herpesviruses including α-herpesviruses (herpes simplex virus type 1(HSV-1), HSV-2, VZV), β-herpesviruses (human cytomegalovirus (HCMV), γ-herpesviruses (Epstein-Barr virus (EBV)) and Kaposi's sarcoma herpesvirus (KSHV)). By providing concise information and detailed analysis of the potential, limitations and applications of various models, such as non-human primates, mice, rabbits, guinea pigs, and tree shrews, this summary aims to help researchers efficiently select the most appropriate animal model, offering practical guidance for studying human herpesvirus.
Collapse
Affiliation(s)
- Ziqing Jia
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Ministry of EducationChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Li J, Sun J, Xu M, Yang L, Yang N, Deng J, Ma Y, Qi Y, Liu Z, Ruan Q, Liu Y, Huang Y. Human cytomegalovirus infection impairs neural differentiation via repressing sterol regulatory element binding protein 2-mediated cholesterol biosynthesis. Cell Mol Life Sci 2024; 81:289. [PMID: 38970696 PMCID: PMC11335213 DOI: 10.1007/s00018-024-05278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a major cause of abnormalities and disorders in the central nervous system (CNS) and/or the peripheral nervous system (PNS). However, the complete pathogenesis of neural differentiation disorders caused by HCMV infection remains to be fully elucidated. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells (MSCs) with a high proliferation and neurogenic differentiation capacity. Since SHEDs originate from the neural crest of the early embryonic ectoderm, SHEDs were hypothesized to serve as a promising cell line for investigating the pathogenesis of neural differentiation disorders in the PNS caused by congenital HCMV infection. In this work, SHEDs were demonstrated to be fully permissive to HCMV infection and the virus was able to complete its life cycle in SHEDs. Under neurogenic inductive conditions, HCMV infection of SHEDs caused an abnormal neural morphology. The expression of stem/neural cell markers was also disturbed by HCMV infection. The impairment of neural differentiation was mainly due to a reduction of intracellular cholesterol levels caused by HCMV infection. Sterol regulatory element binding protein-2 (SREBP2) is a critical transcription regulator that guides cholesterol synthesis. HCMV infection was shown to hinder the migration of SREBP2 into nucleus and resulted in perinuclear aggregations of SREBP2 during neural differentiation. Our findings provide new insights into the prevention and treatment of nervous system diseases caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingxuan Sun
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lei Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jingui Deng
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Microorganism Laboratory, Shenyang Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China.
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Liu J, Jaijyan DK, Chen Y, Feng C, Yang S, Xu Z, Zhan N, Hong C, Li S, Cheng T, Zhu H. Cytomegalovirus-vectored COVID-19 vaccines elicit neutralizing antibodies against the SARS-CoV-2 Omicron variant (BA.2) in mice. Microbiol Spectr 2023; 11:e0246323. [PMID: 37971259 PMCID: PMC10883801 DOI: 10.1128/spectrum.02463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Cytomegalovirus (CMV) has been used as a novel viral vector for vaccine development and gene therapy. Coronavirus disease 2019 is an infectious disease caused by the SARS-CoV-2 virus, which is highly mutable and is still circulating globally. The study showed that the CMV viral vector caused transient systemic infection and induced robust transgene expression in vivo. CMV vectors expressing different SARS-CoV-2 proteins were immunogenic and could elicit neutralizing antibodies against a highly mutated Omicron variant (BA.2). The expression level of receptor-binding domain (RBD) protein was higher than that of full-length S protein using CMV as a vaccine vector, and CMV vector expression RBD protein elicited higher RBD-binding and neutralizing antibodies. Moreover, the study showed that CMV-vectored vaccines would not cause unexpected viral transmission, and pre-existing immunity might impair the immunogenicity of subsequent CMV-vectored vaccines. These works provide meaningful insights for the development of a CMV-based vector vaccine platform and the prevention and control strategies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School , Newark, New Jersey, USA
| | - Yanling Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Changcan Feng
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Shaomin Yang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital , Shenzhen, Guangdong, China
| | - Zhenglong Xu
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Nichun Zhan
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Congming Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School , Newark, New Jersey, USA
| |
Collapse
|
5
|
De Cuyper E, Acke F, Keymeulen A, De Leenheer EMR, Van Hoecke H, Padalko E, Boudewyns A, Gilles A, Muylle M, Kuhweide R, Royackers L, Desloovere C, Verstreken M, Schatteman I, Dhooge I. Risk Factors for Hearing Loss at Birth in Newborns With Congenital Cytomegalovirus Infection. JAMA Otolaryngol Head Neck Surg 2023; 149:122-130. [PMID: 36580312 PMCID: PMC9857716 DOI: 10.1001/jamaoto.2022.4109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/26/2022] [Indexed: 12/30/2022]
Abstract
Importance With a prevalence between 0.2% and 6.1% of all live births, congenital cytomegalovirus (cCMV) infection is a major cause of congenital nonhereditary sensorineural hearing loss. Despite the large amount of research on cCMV-related hearing loss, it is still unclear which newborns are at risk of hearing loss. Objective To identify independent risk factors for cCMV-related congenital hearing loss and predictors of hearing loss severity at birth. Design, Setting, and Participants This cross-sectional study of newborns with cCMV infection used data included in the Flemish CMV registry that was collected from 6 secondary and tertiary hospitals in Flanders, Belgium, over 15 years (January 1, 2007, to February 7, 2022). Data were analyzed March 3 to October 19, 2022. Patients were included in the study after confirmed diagnosis of cCMV infection and known hearing status at birth. Patients who presented with other possible causes of sensorineural hearing loss were excluded. Main Outcomes and Measures Primary outcome was hearing status at birth. Clinical, neurological, and laboratory findings along with the timing of seroconversion and blood viral load were separately considered as risk factors. Binary logistic regression was performed to identify independent risk factors for congenital hearing loss in newborns with cCMV. Effect sizes were measured using Hedges g, odds ratio, or Cramer V. Results Of the 1033 newborns included in the study (553 of 1024 [54.0%] boys), 416 (40.3%) were diagnosed with symptomatic cCMV infection and 617 (59.7%) with asymptomatic cCMV infection. A total of 15.4% of the patients (n = 159) presented with congenital hearing loss; half of them (n = 80 [50.3%]) had isolated hearing loss. The regression model revealed 3 independent risk factors for congenital hearing loss: petechiae at birth (adjusted odds ratio [aOR], 6.7; 95% CI, 1.9-23.9), periventricular cysts on magnetic resonance imaging (MRI; aOR, 4.6; 95% CI, 1.5-14.1), and seroconversion in the first trimester (aOR, 3.1; 95% CI, 1.1-9.3). Lower viral loads were seen in patients with normal hearing compared with those with congenital hearing loss (median [IQR] viral load, 447.0 [39.3-2345.8] copies per milliliter of sample [copies/mL] vs 1349.5 [234.3-14 393.0] copies/mL; median difference, -397.0 [95% CI, -5058.0 to 174.0] copies/mL). Conclusions and Relevance Findings of this cross-sectional study suggest that newborns with cCMV infection and petechiae at birth, periventricular cysts on MRI, or a seroconversion in the first trimester had a higher risk of congenital hearing loss. Clinicians may use these risk factors to counsel parents in the prenatal and postnatal periods about the risk of congenital hearing loss. Moreover, linking clinical features to hearing loss may provide new insights into the pathogenesis of cCMV-related hearing loss. The importance of viral load as a risk factor for congenital hearing loss remains unclear.
Collapse
Affiliation(s)
- Elise De Cuyper
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Frederic Acke
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Annelies Keymeulen
- Department of Neonatal Intensive Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Els M. R. De Leenheer
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Helen Van Hoecke
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Elizaveta Padalko
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - An Boudewyns
- Faculty of Medicine and Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Annick Gilles
- Faculty of Medicine and Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Marie Muylle
- Department of Ear, Nose and Throat, Sint Jan Hospital, Bruges, Belgium
| | - Rudolf Kuhweide
- Department of Ear, Nose and Throat, Sint Jan Hospital, Bruges, Belgium
| | - Liesbeth Royackers
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals of Leuven, Leuven, Belgium
| | - Christian Desloovere
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals of Leuven, Leuven, Belgium
| | - Margriet Verstreken
- Department of Ear, Nose and Throat, GZA hospitals campus Sint Augustinus, Wilrijk, Belgium
| | - Isabelle Schatteman
- Department of Ear, Nose and Throat, GZA hospitals campus Sint Augustinus, Wilrijk, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
7
|
Fernández-Alarcón C, Meyer LE, McVoy MA, Lokensgard JR, Hu S, Benneyworth MA, Anderholm KM, Janus BC, Schleiss MR. Impairment in neurocognitive function following experimental neonatal guinea pig cytomegalovirus infection. Pediatr Res 2021; 89:838-845. [PMID: 32555536 PMCID: PMC8168912 DOI: 10.1038/s41390-020-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS Newborn pups were challenged intraperitoneally (i.p.) with a pathogenic red fluorescent protein-tagged GPCMV, or sham inoculated. On days 15-19 post infection (p.i.), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS Viremia (DNAemia) was detected at day 3 p.i. in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in the lung, liver, and spleen. CD4-positive (CD4+) and CD8-positive (CD8+) T cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance traveled (p < 0.0001). CONCLUSION Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions. IMPACT CMV impairs neonatal neurocognition and memory in the setting of postnatal infection. The MWM can be used to examine memory and learning in a guinea pig model of neonatal CMV infection. CD4+ and CD8+ T cells infiltrate the brain following neonatal CMV challenge. This article demonstrates that the MWM can be used to evaluate memory and learning after neonatal GPCMV challenge. The guinea pig can be used to examine central nervous system pathology caused by neonatal CMV infection and this attribute may facilitate the study of vaccines and antivirals.
Collapse
Affiliation(s)
| | - Lucy E Meyer
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James R Lokensgard
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Shuxian Hu
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Kaitlyn M Anderholm
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bradley C Janus
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Majima R, Koshizuka T, Inoue N. The Guinea pig cytomegalovirus GP119.1 gene encodes an IgG-binding glycoprotein that is incorporated into the virion. Microbiol Immunol 2021; 65:28-39. [PMID: 33616978 DOI: 10.1111/1348-0421.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Cytomegaloviruses (CMVs) encode various immunoevasins, including viral receptors for the Fc domain of host IgG (vFcγR), to evade host immune responses. Although guinea pig CMV (GPCMV) provides a useful animal model for congenital CMV infection, the GPCMV genes encoding such receptors have not yet been characterized. In this study, we analyzed a locus that may encode gene products for the GPCMV immune evasion mechanisms and identified the following. (a) RACE analyses identified four transcripts in the GP117 to GP122 locus. One of the transcripts contained the GP119.1 ORF, which has weak homologies with human CMV UL119/UL118 encoding a viral FcγR and with guinea pig FcγR. (b) A transient transfection assay with plasmids expressing EGFP-tagged GP119.1 or its mutated forms identified its true translational initiation site, localization mainly in the endoplasmic reticulum, and N-glycosylation. (c) Importantly, GP119.1 bound to guinea pig IgG or the IgG-Fc fragment. (d) GP119.1 is present in the virion with a molecular mass of 15 and 23~30 kDa, and a portion of the GP119.1 products are N-glycosylated. (e) GP119.1 was dispensable for viral growth on guinea pig fibroblasts and epithelial cells in vitro. Taken together, our findings indicate that GP119.1 is an IgG-Fc binding glycoprotein incorporated into the virion, and this finding warrants further studies on the functions of GP119.1 in animal models.
Collapse
Affiliation(s)
- Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Japan
| |
Collapse
|
9
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Noguchi K, Majima R, Takahashi K, Iwase Y, Yamada S, Satoh K, Koshizuka T, Inoue N. Identification and functional analyses of a cell-death inhibitor encoded by guinea pig cytomegalovirus gp38.1 in cell culture and in animals. J Gen Virol 2020; 101:1270-1279. [PMID: 32915127 DOI: 10.1099/jgv.0.001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytomegaloviruses (CMVs) employ an array of strategies designed to interfere with host defence responses against pathogens. Studies on such evasion mechanisms are important for understanding the pathogenesis of CMV diseases. Although guinea pig CMV (GPCMV) provides a useful animal model for congenital CMV infection, its evasion strategies are not fully elucidated. Here, we analysed a genome locus that may encode gene products for the GPCMV evasion mechanisms and found the following. (1) RACE analyses identified five transcripts in the GP38-gp38.4 locus, one of which was a spliced product encoding gp38.1. Similarities in the splicing pattern and gene position of gp38.1 to human CMV UL37 and its exon 1 encoding vMIA (viral mitochondria-localized inhibitor of apoptosis) suggest that the gp38.1 gene encodes an apoptosis inhibitor. (2) In a transient transfection assay, gp38.1 localized in the mitochondria and relocated BAX from the cytoplasm to the mitochondria, although its co-localization with BAK was not evident. Further, the expression of gp38.1 partially reduced staurosporine-induced apoptosis. (3) GPCMV defective in the gp38.1 ORF (Δ38.1) and the virus that rescues the defect (r38.1) were generated. Guinea pig fibroblast cells infected with Δ38.1 died earlier than r38.1-infected cells, which resulted in the lower yields of Δ38.1. (4) In animals, viral loads in the spleens of r38.1-infected guinea pigs were higher than those in the spleens of Δ38.1-infected animals. In conclusion, although GPCMV gp38.1 exerts a vMIA-like function, its inhibitory effect was not robust, suggesting the presence of additional inhibitory molecule(s), such as a BAK-specific inhibitor.
Collapse
Affiliation(s)
- Kazuma Noguchi
- Present address: Kaken Pharmaceutical, Tokyo, Japan
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshihiko Iwase
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keisuke Satoh
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
11
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Saver AE, Crawford SA, Joyce JD, Bertke AS. Route of Infection Influences Zika Virus Shedding in a Guinea Pig Model. Cells 2019; 8:E1437. [PMID: 31739508 PMCID: PMC6912420 DOI: 10.3390/cells8111437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the recent epidemic of Zika virus (ZIKV) infection and resulting sequelae, as well as concerns about both the sexual and vertical transmission of the virus, renewed attention has been paid to the pathogenesis of this unique arbovirus. Numerous small animal models have been used in various ZIKV pathogenicity studies, however, they are often performed using immunodeficient or immunosuppressed animals, which may impact disease progression in a manner not relevant to immunocompetent humans. The use of immunocompetent animal models, such as macaques, is constrained by small sample sizes and the need for specialized equipment/staff. Here we report the establishment of ZIKV infection in an immunocompetent small animal model, the guinea pig, using both subcutaneous and vaginal routes of infection to mimic mosquito-borne and sexual transmission. Guinea pigs developed clinical signs consistent with mostly asymptomatic and mild disease observed in humans. We demonstrate that the route of infection does not significantly alter viral tissue tropism but does impact mucosal shedding mechanics. We also demonstrate persistent infection in sensory and autonomic ganglia, identifying a previously unrecognized niche of viral persistence that could contribute to viral shedding in secretions. We conclude that the guinea pig represents a useful and relevant model for ZIKV pathogenesis.
Collapse
Affiliation(s)
- Ashley E. Saver
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.E.S.); (S.A.C.)
| | - Stephanie A. Crawford
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (A.E.S.); (S.A.C.)
| | - Jonathan D. Joyce
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Andrea S. Bertke
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
13
|
Tsuprun V, Keskin N, Schleiss MR, Schachern P, Cureoglu S. Cytomegalovirus-induced pathology in human temporal bones with congenital and acquired infection. Am J Otolaryngol 2019; 40:102270. [PMID: 31402062 DOI: 10.1016/j.amjoto.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Publications on histopathology of human temporal bones with cytomegalovirus (CMV) infection are limited. We aim to determine histopathology of the inner ears and the middle ears in human temporal bones with congenital and acquired CMV infections. METHODS Temporal bones from 2 infants with congenital and 2 adults with acquired CMV infection were evaluated by light microscopy. RESULTS Two infants with congenital CMV infection showed striking pathological changes in the inner ear. There was a hypervascularization of the stria vascularis in the cochlea of the first infant, but no obvious loss of outer and inner hair cells was seen in the organ of Corti. However, cytomegalic cells and a loss of outer hair cells were found in the cochlea of the second infant. The vestibular organs of both infants showed cytomegalic cells, mostly located on dark cells. There was a loss of type I and type II hair cells in the macula of the saccule and utricle. Loss of hair cells and degeneration of nerve fibers was also seen in the semicircular canals. Both infants with congenital infection showed abundant inflammatory cells and fibrous structures in the middle ear cavity. No evidence of cytomegalic cells and hair cell loss was found in the cochlea or vestibular labyrinth in acquired CMV infection. CONCLUSIONS In two infants with congenital CMV infection, the cochlea, vestibule, and middle ear were highly affected. Temporal bones of adult donors with acquired viral infection showed histological findings similar to donors of the same age without ear disease.
Collapse
|
14
|
Roles of GP33, a guinea pig cytomegalovirus-encoded G protein-coupled receptor homolog, in cellular signaling, viral growth and inflammation in vitro and in vivo. PLoS Pathog 2018; 14:e1007487. [PMID: 30571759 PMCID: PMC6319746 DOI: 10.1371/journal.ppat.1007487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/04/2019] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cytomegaloviruses (CMVs) encode cellular homologs to evade host immune functions. In this study, we analyzed the roles of GP33, a guinea pig CMV (GPCMV)-encoded G protein-coupled receptor (GPCR) homolog, in cellular signaling, viral growth and pathogenesis. The cDNA structure of GP33 was determined by RACE. The effects of GP33 on some signaling pathways were analyzed in transient transfection assays. The redET two-step recombination system for a BAC containing the GPCMV genome was used to construct a mutant GPCMV containing an early stop codon in the GP33 gene (Δ33) and a rescued GPCMV (r33). We found the following: 1) GP33 activated the CRE- and NFAT-, but not the NFκB-mediated signaling pathway. 2) GP33 was dispensable for infection in tissue cultures and in normal animals. 3) In pregnant animals, viral loads of r33 in the livers, lungs, spleens, and placentas at 6 days post-infection were higher than those of Δ33, although the viruses were cleared by 3 weeks post-infection. 4) The presence of GP33 was associated with frequent lesions, including alveolar hemorrhage in the lungs, and inflammation in the lungs, livers, and spleens of the dams. Our findings suggest that GP33 has critical roles in the pathogenesis of GPCMV during pregnancy. We hypothesize that GP33-mediated signaling activates cytokine secretion from the infected cells, which results in inflammation in some of the maternal organs and the placentas. Alternatively, GP33 may facilitate transient inflammation that is induced by the chemokine network specific to the pregnancy. Cytomegalovirus (CMV) is a major pathogen that causes congenital diseases, including birth defects and developmental abnormalities in newborns. Better understanding of the immune evasion mechanisms may open the way to the development of new types of live attenuated vaccines for congenital CMV infection. In contrast to murine and rat CMVs, guinea pig CMV (GPCMV) causes infection in utero, which makes GPCMV animal models a useful tool for understanding the pathogenesis of congenital infection and evaluation of vaccine strategies. By constructing a GPCMV mutant lacking GP33, a viral G protein-coupled receptor homolog, this study found that GP33 was involved in the induction of significant inflammatory responses in pregnant but not in normal animals. As GP33 activated the NFAT- and CRE-, but not the NFκB-signal pathway, it is plausible that GP33 enhanced cytokine expression, which results in pathogenic outcomes in the maternal organs and placentas.
Collapse
|
15
|
Murine cytomegalovirus M72 promotes acute virus replication in vivo and is a substrate of the TRiC/CCT complex. Virology 2018; 522:92-105. [PMID: 30029015 DOI: 10.1016/j.virol.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/30/2023]
Abstract
Betaherpesvirus dUTPase homologs are core herpesvirus proteins, but little is known about their role during infection. Human cytomegalovirus (HCMV) UL72 and murine cytomegalovirus (MCMV) M72 have been designated dUTPase homologs, and previous studies indicate UL72 is dispensable for replication and enzymatically inactive. Here, we report the initial characterization of MCMV M72. M72 does not possess dUTPase activity, and is expressed as a leaky-late gene product with multiple protein isoforms. Importantly, M72 augments MCMV replication in vitro and during the early stage of acute infection in vivo. We identify and confirm interaction of M72 with the eukaryotic chaperonin tailless complex protein -1 (TCP-1) ring complex (TRiC) or chaperonin containing tailless complex polypeptide 1 (CCT). Accumulating biochemical evidence indicates M72 forms homo-oligomers and is a substrate of TRiC/CCT. Taken together, we provide the first evidence of M72's contribution to viral pathogenesis, and identify a novel interaction with the TRiC/CCT complex.
Collapse
|
16
|
Dehner LP. Founders of Pediatric Pathology: Margaret G. Smith and John M. Kissane. Pediatr Dev Pathol 2016; 19:310-4. [PMID: 27054563 DOI: 10.2350/16-04-1800-pb.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Louis P Dehner
- Lauren V. Ackerman Laboratory of Surgical Pathology, St Louis Children's Hospital, Washington University Medical Center, St Louis, Missouri
| |
Collapse
|
17
|
Swanson EC, Gillis P, Hernandez-Alvarado N, Fernández-Alarcón C, Schmit M, Zabeli JC, Wussow F, Diamond DJ, Schleiss MR. Comparison of monovalent glycoprotein B with bivalent gB/pp65 (GP83) vaccine for congenital cytomegalovirus infection in a guinea pig model: Inclusion of GP83 reduces gB antibody response but both vaccine approaches provide equivalent protection against pup mortality. Vaccine 2015; 33:4013-8. [PMID: 26079615 DOI: 10.1016/j.vaccine.2015.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
Abstract
Cytomegalovirus (CMV) subunit vaccine candidates include glycoprotein B (gB), and phosphoprotein ppUL83 (pp65). Using a guinea pig cytomegalovirus (GPCMV) model, this study compared immunogenicity, pregnancy outcome, and congenital viral infection following pre-pregnancy immunization with a three-dose series of modified vaccinia virus Ankara (MVA)-vectored vaccines consisting either of gB administered alone, or simultaneously with a pp65 homolog (GP83)-expressing vaccine. Vaccinated and control dams were challenged at midgestation with salivary gland-adapted GPCMV. Comparisons included ELISA and neutralizing antibody responses, maternal viral load, pup mortality, and congenital infection rates. Strikingly, ELISA and neutralization titers were significantly lower in the gB/GP83 combined vaccine group than in the gB group. However, both vaccines protected against pup mortality (63.2% in controls vs. 11.4% and 13.9% in gB and gB/GP83 combination groups, respectively; p<0.0001). Reductions in pup viral load were noted for both vaccine groups compared to control, but preconception vaccination resulted in a significant reduction in GPCMV transmission only in the monovalent gB group (26/44, 59% v. 27/34, 79% in controls; p<0.05). We conclude that, using the MVA platform, the addition of GP83 to a gB subunit vaccine interferes with antibody responses and diminishes protection against congenital GPCMV infection, but does not decrease protection against pup mortality.
Collapse
Affiliation(s)
- Elizabeth C Swanson
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Pete Gillis
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Nelmary Hernandez-Alvarado
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Claudia Fernández-Alarcón
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Megan Schmit
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Jason C Zabeli
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States
| | - Felix Wussow
- Department of Virology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, United States
| | - Don J Diamond
- Department of Virology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, United States
| | - Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
18
|
Bradford RD, Yoo YG, Golemac M, Pugel EP, Jonjic S, Britt WJ. Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog 2015; 11:e1004774. [PMID: 25875183 PMCID: PMC4395355 DOI: 10.1371/journal.ppat.1004774] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/02/2015] [Indexed: 01/22/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice. Congenital infection with human cytomegalovirus (HCMV) is the most common viral infection of the fetus and occurs in 0.5–2.0% of all live births in most regions in the world. Infection of the fetus can result in a spectrum of end-organ disease, including long term damage to the central nervous system (CNS). Although less than 10% of infected infants exhibit clinical evidence of end-organ disease, up to 10% of the total number of infected infants develop hearing loss. Mechanisms of disease leading to hearing loss are poorly understood because of the limited availability of pathological specimens and accessibility of the inner ear. Existing small animal models fail to recapitulate many features of this infection of the inner ear. In this report we describe a mouse model in which newborn animals infected peripherally with murine CMV develop hearing loss following hematogenous spread of virus to the inner ear. Hearing loss occurs in 30–50% of animals and characteristics of hearing loss in infants with congenital HCMV infection, including delayed onset of hearing loss, progressive hearing loss, and unilateral hearing loss were present in infected mice. Our findings suggest that host derived inflammatory responses and not direct virus-mediated cytopathology are responsible for hearing loss. Findings from this study provide insight into potential mechanisms of hearing loss in infants with congenital HCMV infection.
Collapse
Affiliation(s)
- Russell D. Bradford
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Young-Gun Yoo
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ester Pernjak Pugel
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - William J. Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
19
|
Farrell H. Animal models of human cytomegalovirus congenital infection. MICROBIOLOGY AUSTRALIA 2015. [DOI: 10.1071/ma15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is highly species-specific, which means that it is unable to productively infect laboratory animals. Despite this caveat, studies of animal CMV counterparts in their natural hosts have revealed significant correlations with observed neuropathological effects of congenital HCMV infection and have improved our understanding of host responses to vaccination. The biological relatedness between human and animal CMVs has been confirmed by phylogenetic analyses; the conservation of ‘core' genes that are essential for virus replication as well as genes that contribute similar mechanisms for virus persistence in their respective host species. The common animal models of HCMV congenital infection include Rhesus CMV (RhCMV), guinea-pig CMV (GPCMV) and mouse CMV (MCMV). Whilst animal models of CMV do not fully recapitulate HCMV infection, they each offer specific advantages in understanding HCMV congenital/perinatal infection (summarised in Table 1).
Collapse
|
20
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
21
|
Complete genome sequence of cell culture-attenuated Guinea pig cytomegalovirus cloned as an infectious bacterial artificial chromosome. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00928-14. [PMID: 25323707 PMCID: PMC4200145 DOI: 10.1128/genomea.00928-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The complete genome sequence of attenuated guinea pig cytomegalovirus cloned as bacterial artificial chromosome N13R10 was determined. Comparison to pathogenic salivary gland-derived virus revealed 13 differences, 1 of which disrupted overlapping open reading frames encoding GP129 and GP130. Attenuation of N13R10 may arise from an inability to express GP129 and/or GP130.
Collapse
|
22
|
Slavuljica I, Kveštak D, Huszthy PC, Kosmac K, Britt WJ, Jonjić S. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model. Cell Mol Immunol 2014; 12:180-91. [PMID: 25042632 DOI: 10.1038/cmi.2014.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/05/2023] Open
Abstract
Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.
Collapse
Affiliation(s)
- Irena Slavuljica
- 1] Department of Histology and Embryology, School of Medicine, University of Rijeka, Rijeka, Croatia [2] Department of Infectious Diseases, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daria Kveštak
- Department of Histology and Embryology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Peter Csaba Huszthy
- 1] Department of Histology and Embryology, School of Medicine, University of Rijeka, Rijeka, Croatia [2] Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kate Kosmac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stipan Jonjić
- Department of Histology and Embryology, School of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Yamada S, Fukuchi S, Hashimoto K, Fukui Y, Tsuda M, Kataoka M, Katano H, Inoue N. Guinea pig cytomegalovirus GP129/131/133, homologues of human cytomegalovirus UL128/130/131A, are necessary for infection of monocytes and macrophages. J Gen Virol 2014; 95:1376-1382. [DOI: 10.1099/vir.0.064527-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GP129, GP131 and GP133 genes of guinea pig cytomegalovirus (GPCMV) are homologues of human cytomegalovirus UL128, UL130 and UL131A, respectively, which are essential for infection of endothelial and epithelial cells, and for viral transmission to leukocytes. Our previous study demonstrated that a GPCMV strain lacking the 1.6 kb locus that contains the GP129, GP131 and GP133 genes had a growth defect in animals. Here, we demonstrated that the WT strain, but not the 1.6 kb-deleted strain, formed capsids in macrophages prepared from the peritoneal fluid. To understand the mechanism, we prepared GPCMV strains defective in each of GP129, GP131 and GP133, and found that they were all essential for the infection of peritoneal, splenic and PBMC-derived macrophages/monocytes, and for expression of immediate-early antigens in the macrophages/monocytes, although they were dispensable for infection of fibroblasts. Monocyte/macrophage tropism could be one of the important determinants for viral dissemination in vivo.
Collapse
Affiliation(s)
- Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Saki Fukuchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaede Hashimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiko Fukui
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mihoko Tsuda
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
24
|
Schleiss MR, Choi KY, Anderson J, Mash JG, Wettendorff M, Mossman S, Van Damme M. Glycoprotein B (gB) vaccines adjuvanted with AS01 or AS02 protect female guinea pigs against cytomegalovirus (CMV) viremia and offspring mortality in a CMV-challenge model. Vaccine 2014; 32:2756-62. [PMID: 23867012 PMCID: PMC3894257 DOI: 10.1016/j.vaccine.2013.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
The transmission of cytomegalovirus (CMV) from mother to fetus can give rise to severe neurodevelopment defects in newborns. One strategy to prevent these congenital defects is prophylactic vaccination in young women. A candidate vaccine antigen is glycoprotein B (gB). This antigen is abundant on the virion surface and is a major target of neutralization responses in human infections. Here, we have evaluated in a challenge model of congenital guinea pig CMV (GPCMV) infection, GPCMV-gB vaccines formulated with the clinically relevant Adjuvant Systems AS01B and AS02V, or with Freund's adjuvant (FA). Fifty-two GPCMV-seronegative female guinea pigs were administered three vaccine doses before being mated. GPCMV-challenge was performed at Day 45 of pregnancy (of an estimated 65 day gestation). Pup mortality rates in the gB/AS01B, gB/AS02V, and gB/FA groups were 24% (8/34), 10% (4/39) and 36% (12/33), respectively, and in the unvaccinated control group was 65% (37/57). Hence, efficacies against pup mortality were estimated at 64%, 84% and 44% for gB/AS01B (p<0.001), gB/AS02V (p<0.001) and gB/FA (p=0.014), respectively. Efficacies against GPCMV viremia (i.e. DNAemia, detected by PCR) were estimated at 88%, 68% and 25% for the same vaccines, respectively, but were only significant for gB/AS01B (p<0.001), and gB/AS02V (p=0.002). In dams with viremia, viral load was approximately 6-fold lower with vaccination than without. All vaccines were highly immunogenic after two and three doses. In light of these results and of other results of AS01-adjuvanted vaccines in clinical development, vaccine immunogenicity was further explored using human CMV-derived gB antigen adjuvanted with either AS01B or the related formulation AS01E. Both adjuvanted vaccines were highly immunogenic after two doses, in contrast to the lower immunogenicity of the unadjuvanted vaccine. In conclusion, the protective efficacy and immunogenicity of adjuvanted vaccines in this guinea pig model are supportive of investigating gB/AS01 and gB/AS02 in the clinic.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - K Yeon Choi
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - Jodi Anderson
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - Janine Gessner Mash
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | | | - Sally Mossman
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89, B-1330 Rixensart, Belgium.
| | - Marc Van Damme
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89, B-1330 Rixensart, Belgium.
| |
Collapse
|
25
|
Gnanandarajah JS, Gillis PA, Hernandez-Alvarado N, Higgins L, Markowski TW, Sung H, Lumley S, Schleiss MR. Identification by mass spectrometry and immune response analysis of guinea pig cytomegalovirus (GPCMV) pentameric complex proteins GP129, 131 and 133. Viruses 2014; 6:727-51. [PMID: 24531333 PMCID: PMC3939480 DOI: 10.3390/v6020727] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 11/16/2022] Open
Abstract
Development of a vaccine against congenital infection with human cytomegalovirus (HCMV) is a major public health priority. A potential vaccine target receiving considerable recent attention is the pentameric complex (PC) of HCMV proteins consisting of gL, gH, UL128, UL130, and UL131, since some antibodies against these target proteins are capable of potently neutralizing virus at epithelial and endothelial cell surfaces. Recently, homologous proteins have been described for guinea pig cytomegalovirus (GPCMV), consisting of gH, gL, and the GPCMV proteins GP129, GP131, and GP133. To investigate these proteins as potential vaccine targets, expression of GP129-GP133 transcripts was confirmed by reverse-transcriptase PCR. Mass spectrometry combined with western blot assays demonstrated the presence of GP129, GP131, and GP133 proteins in virus particles. Recombinant proteins corresponding to these PC proteins were generated in baculovirus, and as GST fusion proteins. Recombinant proteins were noted to be immunoreactive with convalescent sera from infected animals, suggesting that these proteins are recognized in the humoral immune response to GPCMV infection. These analyses support the study of PC-based recombinant vaccines in the GPCMV congenital infection model.
Collapse
Affiliation(s)
- Josephine S Gnanandarajah
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Peter A Gillis
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Nelmary Hernandez-Alvarado
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | - Heungsup Sung
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Sheila Lumley
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | - Mark R Schleiss
- Departments of Pediatrics, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Molecular and biological characterization of a new isolate of guinea pig cytomegalovirus. Viruses 2014; 6:448-75. [PMID: 24473341 PMCID: PMC3939465 DOI: 10.3390/v6020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/28/2022] Open
Abstract
Development of a vaccine against congenital infection with human cytomegalovirus is complicated by the issue of re-infection, with subsequent vertical transmission, in women with pre-conception immunity to the virus. The study of experimental therapeutic prevention of re-infection would ideally be undertaken in a small animal model, such as the guinea pig cytomegalovirus (GPCMV) model, prior to human clinical trials. However, the ability to model re-infection in the GPCMV model has been limited by availability of only one strain of virus, the 22122 strain, isolated in 1957. In this report, we describe the isolation of a new GPCMV strain, the CIDMTR strain. This strain demonstrated morphological characteristics of a typical Herpesvirinae by electron microscopy. Illumina and PacBio sequencing demonstrated a genome of 232,778 nt. Novel open reading frames ORFs not found in reference strain 22122 included an additional MHC Class I homolog near the right genome terminus. The CIDMTR strain was capable of dissemination in immune compromised guinea pigs, and was found to be capable of congenital transmission in GPCMV-immune dams previously infected with salivary gland‑adapted strain 22122 virus. The availability of a new GPCMV strain should facilitate study of re-infection in this small animal model.
Collapse
|
27
|
Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA. J Virol 2014; 88:4021-39. [PMID: 24453373 DOI: 10.1128/jvi.03492-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Congenital human cytomegalovirus (HCMV) infection is a major cause of central nervous system structural anomalies and sensory impairments. It is likely that the stage of fetal development, as well as the state of differentiation of susceptible cells at the time of infection, affects the severity of the disease. We used human embryonic stem (ES) cell-derived primitive prerosette neural stem cells (pNSCs) and neural progenitor cells (NPCs) maintained in chemically defined conditions to study HCMV replication in cells at the early stages of neural development. In contrast to what was observed previously using fetus-derived NPCs, infection of ES cell-derived pNSCs with HCMV was nonprogressive. At a low multiplicity of infection, we observed only a small percentage of cells expressing immediate-early genes (IE) and early genes. IE expression was found to be restricted to cells negative for the anterior marker FORSE-1, and treatment of pNSCs with retinoic acid restored IE expression. Differentiation of pNSCs into NPCs restored IE expression but not the transactivation of early genes. Virions produced in NPCs and pNSCs were exclusively cell associated and were mostly non-neural tropic. Finally, we found that viral genomes could persist in pNSC cultures for up to a month after infection despite the absence of detectable IE expression by immunofluorescence, and infectious virus could be produced upon differentiation of pNSCs to neurons. In conclusion, our results highlight the complex array of hurdles that HCMV must overcome in order to infect primitive neural stem cells and suggest that these cells might act as a reservoir for the virus. IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus that is highly prevalent in the population. HCMV infection is usually asymptomatic but can lead to severe consequences in immunosuppressed individuals. HCMV is also the most important infectious cause of congenital developmental birth defects. Manifestations of fetal HCMV disease range from deafness and learning disabilities to more severe symptoms such as microcephaly. In this study, we have used embryonic stem cells to generate primitive neural stem cells and have used these to model HCMV infection of the fetal central nervous system (CNS) in vitro. Our results reveal that these cells, which are similar to those present in the developing neural tube, do not support viral replication but instead likely constitute a viral reservoir. Future work will define the effect of viral persistence on cellular functions as well as the exogenous signals leading to the reactivation of viral replication in the CNS.
Collapse
|
28
|
Abstract
Although human cytomegalovirus (HCMV) primary infection is generally asymptomatic, in immune-compromised patients HCMV increases morbidity and mortality. As a member of the betaherpesvirus family, in vivo studies of HCMV are limited due to its species specificity. CMVs from other species are often used as surrogates to express HCMV genes/proteins or used as models for inferring HCMV protein function in humans. Using innovative experiments, these animal models have answered important questions about CMV's life cycle, dissemination, pathogenesis, immune evasion, and host immune response. This chapter provides CMV biologists with an overview of the insights gained using these animal models. Subsequent chapters will provide details of the specifics of the experimental methods developed for each of the animal models discussed here.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
29
|
Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol 2014; 1119:311-48. [PMID: 24639230 DOI: 10.1007/978-1-62703-788-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of prophylactic and to lesser extent therapeutic vaccines for the prevention of disease associated with human cytomegalovirus (HCMV) infections has received considerable attention from biomedical researchers and pharmaceutical companies over the previous 15 years, even though attempts to produce such vaccines have been described in the literature for over 40 years. Studies of the natural history of congenital HCMV infection and infection in allograft recipients have suggested that prophylaxis of disease associated with HCMV infection could be possible, particularly in hosts at risk for more severe disease secondary to the lack of preexisting immunity. Provided a substantial understanding of immune response to HCMV together with several animal models that faithfully recapitulate aspects of human infection and immunity, investigators seem well positioned to design and test candidate vaccines. Yet more recent studies of the role of a maternal immunity in the natural history of congenital HCMV infection, including the recognition that reinfection of previously immune women by genetically distinct strains of HCMV occur in populations with a high seroprevalence, have raised several questions about the nature of protective immunity in maternal populations. This finding coupled with observations that have documented a significant incidence of damaging congenital infections in offspring of women with immunity to HCMV prior to conception has suggested that vaccine development based on conventional paradigms of adaptive immunity to viral infections may be of limited value in the prevention of damaging congenital HCMV infections. Perhaps a more achievable goal will be prophylactic vaccines to modify HCMV associated disease in allograft transplant recipients. Although recent descriptions of the results from vaccine trials have been heralded as evidence of an emerging success in the quest for a HCMV vaccine, careful analyses of these studies have also revealed that major hurdles remain to be addressed by current strategies.
Collapse
|
30
|
Genome Sequence of a Novel, Newly Identified Isolate of Guinea Pig Cytomegalovirus, the CIDMTR Strain. GENOME ANNOUNCEMENTS 2013; 1:1/6/e01052-13. [PMID: 24371200 PMCID: PMC3873610 DOI: 10.1128/genomea.01052-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sequence of a newly discovered isolate of guinea pig cytomegalovirus (GPCMV), the CIDMTR strain, was determined. The 232,778-nucleotide genome was generally well conserved with that of the 22122 reference strain, although some regions of substantial sequence divergence allowed annotation of strain-specific open reading frames encoding putative immune modulation gene products.
Collapse
|
31
|
Schleiss MR, Buus R, Choi KY, McGregor A. An Attenuated CMV Vaccine with a Deletion in Tegument Protein GP83 (pp65 Homolog) Protects against Placental Infection and Improves Pregnancy Outcome in a Guinea Pig Challenge Model. Future Virol 2013; 8:1151-1160. [PMID: 24465269 DOI: 10.2217/fvl.13.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Preconception vaccine strategies relevant to prevention of HCMV-mediated injury to the newborn can be studied in the guinea pig cytomegalovirus (GPCMV) model. The objectives of this study were: 1) to assess in guinea pigs the protective efficacy against congenital infection and disease of a recombinant live, attenuated vaccine with a targeted deletion of the GPCMV homolog of the HCMV pUL83 tegument protein, GP83; and, 2) to compare the extent of placental infection in vaccine and control groups, using an in situ hybridization (ISH) assay. MATERIALS AND METHODS Outbred Hartley guinea pigs were vaccinated prior to pregnancy with a two-dose series of 5×104 pfu of vAM409, a GP83 deletion virus. Deletion of the GP83 gene resulted in an attenuated virus, and vAM409 vaccinated animals did not demonstrate evidence of DNAemia following vaccination, although ELISA antibody responses were comparable to those observed in natural infection. After mating, pregnant animals were challenged with salivary gland-adapted (SG) GPCMV (1×106 pfu) in the second trimester, and pregnancy outcomes were compared to controls. RESULTS Compared to placebo-immunized controls, vaccination resulted in significantly reduced maternal DNAemia following SG challenge, and there was significantly decreased pup mortality in litters born to vaccinated dams (3/29; 10%), compared to control (35/50; 70%; p<0.001). By in situ hybridization study, recovered placentas in the vAM409 vaccine group demonstrated reduced infection and fewer infectious foci compared to the control group. CONCLUSIONS In summary, preconception immunization with a GP83 deletion vaccine reduced maternal DNAemia and results in protection against congenital GPCMV-associated pup mortality compared to unvaccinated controls. Vaccination resulted in reduced placental infection, probably related to the reduction in maternal DNAemia. Although the pp65 homolog in GPCMV, GP83, is a known target of protective T cell immune responses, it is nevertheless dispensable for effective vaccination against maternal and fetal CMV disease in this model.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Ryan Buus
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - K Yeon Choi
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Alistair McGregor
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| |
Collapse
|
32
|
Schleiss MR. Developing a Vaccine against Congenital Cytomegalovirus (CMV) Infection: What Have We Learned from Animal Models? Where Should We Go Next? Future Virol 2013; 8:1161-1182. [PMID: 24523827 DOI: 10.2217/fvl.13.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Unfortunately, CMVs are highly adapted to their specific species, precluding the evaluation of HCMV vaccines in animal models prior to clinical trials. Several species-specific CMVs have been characterized and developed in models of pathogenesis and vaccine-mediated protection against disease. These include the murine CMV (MCMV), the porcine CMV (PCMV), the rhesus macaque CMV (RhCMV), the rat CMV (RCMV), and the guinea pig CMV (GPCMV). Because of the propensity of the GPCMV to cross the placenta, infecting the fetus in utero, it has emerged as a model of particular interest in studying vaccine-mediated protection of the fetus. In this paper, a review of these various models, with particular emphasis on the value of the model in the testing and evaluation of vaccines against congenital CMV, is provided. Recent exciting developments and advances in these various models are summarized, and recommendations offered for high-priority areas for future study.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School Center for Infectious Diseases and Microbiology Translational Research Department of Pediatrics Division of Pediatric Infectious Diseases and Immunology 2001 6 Street SE Minneapolis, MN 55455-3007
| |
Collapse
|
33
|
Sinclair JH, Reeves MB. Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5:2803-24. [PMID: 24284875 PMCID: PMC3856416 DOI: 10.3390/v5112803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV.
Collapse
Affiliation(s)
- John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK; E-Mail:
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)207-794-0500 (ext. 33109)
| |
Collapse
|
34
|
An attenuated cytomegalovirus vaccine with a deletion of a viral chemokine gene is protective against congenital CMV transmission in a guinea pig model. Clin Dev Immunol 2013; 2013:906948. [PMID: 24000289 PMCID: PMC3755440 DOI: 10.1155/2013/906948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 01/05/2023]
Abstract
Development of a vaccine against congenital cytomegalovirus (CMV) infection is a public health priority, but CMVs encode immune evasion genes that complicate live virus vaccine design. To resolve this problem, this study employed guanosyl phosphoribosyl transferase (gpt) mutagenesis to generate a recombinant guinea pig CMV (GPCMV) with a knockout of a viral chemokine gene, GPCMV MIP (gp1). MIP deletion virus replicated with wild-type kinetics in cell culture but was attenuated in nonpregnant guinea pigs, demonstrating reduced viremia and reduced inflammation and histopathology (compared to a control virus with an intact GPCMV MIP gene) following footpad inoculation. In spite of attenuation, the vaccine was immunogenic, eliciting antibody responses comparable to those observed in natural infection. To assess its protective potential as a vaccine, either recombinant virus or placebo was used to immunize seronegative female guinea pigs. Dams were challenged in the early 3rd trimester with salivary gland-adapted GPCMV. Immunization protected against DNAemia (1/15 in vaccine group versus 12/13 in the control group, P < 0.01). Mean birth weights were significantly higher in pups born to vaccinated dams compared to controls (98.7 g versus 71.2 g, P < 0.01). Vaccination reduced pup mortality, from 35/50 (70%) in controls to 8/52 (15%) in the immunization group. Congenital GPCMV infection was also reduced, from 35/50 (70%) in controls to 9/52 (17%) in the vaccine group (P < 0.0001). We conclude that deletion of an immune modulation gene can attenuate the pathogenicity of GPCMV while resulting in a viral vaccine that retains immunogenicity and demonstrates efficacy against congenital infection and disease.
Collapse
|
35
|
Characterization of the guinea pig CMV gH/gL/GP129/GP131/GP133 complex in infection and spread. Virology 2013; 441:75-84. [PMID: 23562482 DOI: 10.1016/j.virol.2013.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/15/2013] [Accepted: 03/13/2013] [Indexed: 11/20/2022]
Abstract
In human cytomegalovirus (HCMV), the UL128-131A locus plays an essential role in cellular tropism and spread. Here, we report the complete annotation of the GP129-133 locus from guinea pig cytomegalovirus (GPCMV) and the discovery of the UL131A homolog, named GP133. We have found that similar to HCMV the GP129-133 proteins form a pentamer complex with the GPCMV glycoproteins gH and gL. In addition, we find that the GP129-133 proteins play a critical role in entry as the GP129-133 deletion mutant shows a defect in both endothelial and fibroblast cell entry. Although the GP129-133 deletion strain can propagate in vitro, we find that the deletion fails to spread in vivo. Interestingly, the wildtype strain can spontaneously give rise to the GP129-133 deletion strain during in vivo spread, suggesting genetic instability at this locus.
Collapse
|
36
|
Rupp A, Galban-Horcajo F, Bianchi E, Dondi M, Penderis J, Cappell J, Burgess K, Matiasek K, McGonigal R, Willison HJ. Anti-GM2 ganglioside antibodies are a biomarker for acute canine polyradiculoneuritis. J Peripher Nerv Syst 2013; 18:75-88. [PMID: 23521648 PMCID: PMC4854321 DOI: 10.1111/jns5.12011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model.
Collapse
Affiliation(s)
- Angie Rupp
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesc Galban-Horcajo
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ezio Bianchi
- Veterinary Teaching Hospital, University of Parma, Parma, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Dondi
- Veterinary Teaching Hospital, University of Parma, Parma, Italy
| | - Jacques Penderis
- School of Veterinary Medicine, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joanna Cappell
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karl Burgess
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Department of Veterinary Clinical Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - Rhona McGonigal
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hugh J. Willison
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Establishment of rat brain endothelial cells susceptible to rat cytomegalovirus ALL-03 infection. In Vitro Cell Dev Biol Anim 2013; 49:238-44. [DOI: 10.1007/s11626-012-9553-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
38
|
Ward JA, Sidell DR, Nassar M, Reece AL, Choo DI. Safety of cidofovir by intratympanic delivery technique. Antivir Ther 2013; 19:97-105. [DOI: 10.3851/imp2693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
39
|
Melnick M, Jaskoll T. An in vitro mouse model of congenital cytomegalovirus-induced pathogenesis of the inner ear cochlea. ACTA ACUST UNITED AC 2012; 97:69-78. [PMID: 23281115 DOI: 10.1002/bdra.23105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/22/2012] [Accepted: 11/06/2012] [Indexed: 11/10/2022]
Abstract
Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied.
Collapse
Affiliation(s)
- Michael Melnick
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
40
|
Bierle CJ, Schleiss MR, Geballe AP. Antagonism of the protein kinase R pathway by the guinea pig cytomegalovirus US22-family gene gp145. Virology 2012; 433:157-66. [PMID: 22917493 DOI: 10.1016/j.virol.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023]
Abstract
Viral double-stranded RNA (dsRNA) activates protein kinase R (PKR), which phosphorylates eIF2α and inhibits translation. In response, viruses have evolved various strategies to evade the antiviral impact of PKR. We investigated whether guinea pig cytomegalovirus (GPCMV), a useful model of congenital CMV infection, encodes a gene that interferes with the PKR pathway. Using a proteomic screen, we identified several GPCMV dsRNA-binding proteins, among which only gp145 rescued replication of a vaccinia virus mutant that lacks E3L. gp145 also reversed the inhibitory effects of PKR on expression of a cotransfected reporter gene. Mapping studies demonstrated that the gp145 dsRNA-binding domain has homology to the PKR antagonists of other CMVs. However, dsRNA-binding by gp145 is not sufficient for it to block PKR. gp145 differs from the PKR antagonists of murine CMV in that it functions alone and from those encoded by human CMV in functioning in cells from both primates and rodents.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
41
|
Chapman KE, Raol YH, Brooks-Kayal A. Neonatal seizures: controversies and challenges in translating new therapies from the lab to the isolette. Eur J Neurosci 2012; 35:1857-65. [PMID: 22708596 PMCID: PMC3383637 DOI: 10.1111/j.1460-9568.2012.08140.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neonatal seizures have unique properties that have proved challenging for both clinicians and basic science researchers. Clinical therapies aimed at neonatal seizures have proven only partially effective and new therapies are slow to develop. This article will discuss neonatal seizures within the framework of the barriers that exist to the development of new therapies, and the challenges inherent in bringing new therapies from the bench to the bedside. With the European Union and USA creating national collaborative project infrastructure, improved collaborative resources should advance clinical research on urgently needed new therapies for this disorder.
Collapse
Affiliation(s)
- Kevin E Chapman
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado School Of Medicine, Children's Hospital Colorado, 13123 East 16th Ave, B155, Aurora, CO 80045, USA
| | | | | |
Collapse
|
42
|
Abstract
Viral persistence is the rule following infection with all herpesviruses. The β-herpesvirus, human cytomegalovirus (HCMV), persists through chronic and latent states of infection. Both of these states of infection contribute to HCMV persistence and to the high HCMV seroprevalence worldwide. The chronic infection is poorly defined molecularly, but clinically manifests as low-level virus shedding over extended periods of time and often in the absence of symptoms. Latency requires long-term maintenance of viral genomes in a reversibly quiescent state in the immunocompetent host. In this review, we focus on recent advances in the biology of HCMV persistence, particularly with respect to the latent mode of persistence. Latently infected individuals harbour HCMV genomes in haematopoietic cells and maintain large subsets of HCMV-specific T-cells. In the last few years, impressive advances have been made in understanding virus-host interactions important to HCMV infection, many of which will profoundly impact HCMV persistence. We discuss these advances and their known or potential impact on viral latency. As herpesviruses are met with similar challenges in achieving latency and often employ conserved strategies to persist, we discuss current and future directions of HCMV persistence in the context of the greater body of knowledge regarding α- and γ-herpesviruses persistence.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | | | | |
Collapse
|
43
|
How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011; 2011:724607. [PMID: 21765638 PMCID: PMC3134397 DOI: 10.1155/2011/724607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells provide an initial host immune response to infection by many viral pathogens. Consequently, the viruses have evolved mechanisms to attenuate the host response, leading to improved viral fitness. One mechanism employed by members of the β-herpesvirus family, which includes the cytomegaloviruses, is to modulate the expression of cell surface ligands recognized by NK cell activation molecules. A novel set of cytomegalovirus (CMV) genes, exemplified by the mouse m145 family, encode molecules that have structural and functional features similar to those of host major histocompatibility-encoded (MHC) class I molecules, some of which are known to contribute to immune evasion. In this review, we explore the function, structure, and evolution of MHC-I-like molecules of the CMVs and speculate on the dynamic development of novel immunoevasive functions based on the MHC-I protein fold.
Collapse
|
44
|
Olejniczak MJ, Choi KY, McVoy MA, Cui X, Schleiss MR. Intravaginal cytomegalovirus (CMV) challenge elicits maternal viremia and results in congenital transmission in a guinea pig model. Virol J 2011; 8:89. [PMID: 21371319 PMCID: PMC3062623 DOI: 10.1186/1743-422x-8-89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The objective of this study was to compare intravaginal (ivg) and subcutaneous (sc) administration of the guinea pig cytomegalovirus (GPCMV) in pregnant and non-pregnant guinea pigs. These studies tested the hypotheses that ivg infection would elicit immune responses, produce maternal viremia, and lead to vertical transmission, with an efficiency similar to the traditionally employed sc route. RESULTS Four groups of age- and size-matched guinea pigs were studied. Two groups were pregnant, and two groups were not pregnant. Animals received 5 x 10(5) plaque-forming units (PFU) of a GPCMV reconstituted from an infectious bacterial artificial chromosome (BAC) construct containing the full-length GPCMV genome. Seroconversion was compared by IgG ELISA, and viremia (DNAemia) was monitored by PCR. In both pregnant and non-pregnant animals, sc inoculation resulted in significantly higher serum ELISA titers than ivg inoculation at 8 and 12 weeks post-infection. Patterns of viremia (DNAemia) were similar in animals inoculated by either sc or ivg route. However, in pregnant guinea pigs, animals inoculated by both routes experienced an earlier onset of DNAemia than did non-pregnant animals. Neither the percentage of dead pups nor the percentage of GPCMV positive placentas differed by inoculation route. CONCLUSIONS In the guinea pig model of congenital CMV infection, the ivg route is as efficient at causing congenital infection as the conventional but non-physiologic sc route. This finding could facilitate future experimental evaluation of vaccines and antiviral interventions in this highly relevant animal model.
Collapse
Affiliation(s)
- Megan J Olejniczak
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
45
|
Kanai K, Yamada S, Yamamoto Y, Fukui Y, Kurane I, Inoue N. Re-evaluation of the genome sequence of guinea pig cytomegalovirus. J Gen Virol 2011; 92:1005-1020. [PMID: 21270288 DOI: 10.1099/vir.0.027789-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital infection by human cytomegalovirus (HCMV) is a major cause of birth defects and developmental abnormalities. Since guinea pig cytomegalovirus (GPCMV) crosses the placenta and causes infection in utero, GPCMV models are useful for studies of the mechanisms of transplacental transmission. During our characterization of a genomic locus required for GPCMV dissemination in animals, we found that the nucleotide sequence in and around the nearby immediate-early genes in our lineage of GPCMV strain 22122 [designated GPCMV (ATCC-P5)] showed clear differences from that reported previously for the same strain [designated GPCMV (UMN)] passaged extensively in vitro. Since in vitro passaging of HCMV is known to result in genetic alterations, especially in the UL128-UL131A locus, and loss of growth ability in particular cell types, in this study we determined the complete genome sequence of GPCMV (ATCC-P5), which grows efficiently in animals. A total of 359 differences were identified between the genome sequences of GPCMV (UMN) and GPCMV (ATCC-P5), and these resulted in structural differences in 29 protein-encoding regions. In addition, some genes predicted from our analysis but not from GPCMV (UMN) are well conserved among cytomegaloviruses. An additional 18 passages of GPCMV (ATCC-P5) in vitro generated no further marked alterations in these genes or in the locus corresponding to the HCMV UL128-UL131A. Our analyses indicate that the published sequence of GPCMV (UMN) contains a substantial number of sequencing errors and, possibly, some mutations resulting from a long history of passaging in vitro. Our re-evaluation of the genetic content of GPCMV will provide a solid foundation for future studies.
Collapse
Affiliation(s)
- Kyosuke Kanai
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumiko Yamamoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiko Fukui
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ichiro Kurane
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Inoue
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
46
|
McGregor A, Choi KY, Schleiss MR. Guinea pig cytomegalovirus GP84 is a functional homolog of the human cytomegalovirus (HCMV) UL84 gene that can complement for the loss of UL84 in a chimeric HCMV. Virology 2010; 410:76-87. [PMID: 21094510 DOI: 10.1016/j.virol.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/23/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
The guinea pig cytomegalovirus (GPCMV) co-linear gene and potential functional homolog of HCMV UL84 (GP84) was investigated. The GP84 gene had delayed early transcription kinetics and transient expression studies of GP84 protein (pGP84) demonstrated that it targeted the nucleus and co-localized with the viral DNA polymerase accessory protein as described for HCMV pUL84. Additionally, pGP84 exhibited a transdominant inhibitory effect on viral growth as described for HCMV. The inhibitory domain could be localized to a minimal peptide sequence of 99 aa. Knockout of GP84 generated virus with greatly impaired growth kinetics. Lastly, the GP84 ORF was capable of complementing for the loss of the UL84 coding sequence in a chimeric HCMV. Based on this research and previous studies we conclude that GPCMV is similar to HCMV by encoding single copy co-linear functional homologs of HCMV UL82 (pp71), UL83 (pp65) and UL84 genes.
Collapse
Affiliation(s)
- A McGregor
- Center for Infectious Diseases and Microbiology, Translational Research and Division of Infectious Diseases, University of Minnesota Medical School, Department of Pediatrics, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
47
|
Human cytomegalovirus immunity and immune evasion. Virus Res 2010; 157:151-60. [PMID: 21056604 DOI: 10.1016/j.virusres.2010.10.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) infection induces both innate immune responses including Natural Killer cells as well as adaptive humoral and cell mediated (CD4+ helper, CD8+ cytotoxic and γδ T cell) responses which lead to the resolution of acute primary infection. Despite such a robust primary immune response, HCMV is still able to establish latency. Long term memory T cell responses are maintained at high frequency and are thought to prevent clinical disease following periodic reactivation of the virus. As such, a balance is established between the immune response and viral reactivation. Loss of this balance in the immunocompromised host can lead to unchecked viral replication following reactivation of latent virus, with consequent disease and mortality. HCMV encodes multiple immune evasion mechanisms that target both the innate and acquired immune system. This article describes the current understanding of Natural killer cell, antibody and T cell mediated immune responses and the mechanisms that the virus utilizes to subvert these responses.
Collapse
|
48
|
Schleiss MR, McVoy MA. Guinea Pig Cytomegalovirus (GPCMV): A Model for the Study of the Prevention and Treatment of Maternal-Fetal Transmission. Future Virol 2010; 5:207-217. [PMID: 23308078 DOI: 10.2217/fvl.10.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major public health challenge today is the problem of congenital cytomegalovirus (CMV) transmission. Maternal-fetal CMV infections are common, occurring in 0.5-2% of pregnancies, and these infections often lead to long-term injury of the newborn infant. In spite of the well-recognized burden that these infections place on society, there are as yet no clearly established interventions available to prevent transmission of CMV. In order to study potential interventions, such as vaccines or antiviral therapies, an animal model of congenital CMV transmission is required. The best small animal model of CMV transmission is the guinea pig cytomegalovirus (GPCMV) model. This article summarizes the GPCMV model, putting it into the larger context of how studies in this system have relevance to human health. An emphasis is placed on how the vertical transmission of GPCMV recapitulates the pathogenesis of congenital CMV in infants, making this a uniquely well-suited model for the study of potential CMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6 Street SE, Minneapolis, MN 55455,
| | | |
Collapse
|
49
|
Yamada S, Nozawa N, Katano H, Fukui Y, Tsuda M, Tsutsui Y, Kurane I, Inoue N. Characterization of the guinea pig cytomegalovirus genome locus that encodes homologs of human cytomegalovirus major immediate-early genes, UL128, and UL130. Virology 2009; 391:99-106. [PMID: 19559454 DOI: 10.1016/j.virol.2009.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
Abstract
We reported previously that the guinea pig cytomegalovirus (CMV) stock purchased from the American Type Culture Collection contained two types of strains, one containing and the other lacking a 1.6 kb locus, and that the 1.6 kb locus was required for efficient viral growth in animals but not in cell culture. In this study, we characterized the genetic contents of the locus, and found that i) the 1.6 kb locus encodes homologs of human CMV UL128 and UL130, GP129 and GP131, respectively, ii) these genes are expressed with late gene kinetics, iii) GP131 protein (pGP131) localized to cell surface only in the presence of glycoproteins H and L, and iv) pGP131 is a virion component. Therefore, it is plausible that pGP131 forms a complex with glycoproteins H and L and becomes a virion component as does UL130 protein (pUL130). Since pUL130 is one of the glycoproteins essential for infection of endothelial and epithelial cells in human and primates, functional and immunological analyses of this GPCMV homolog of pUL130 may help to illuminate the in vivo role of pUL130.
Collapse
Affiliation(s)
- Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
A live guinea pig cytomegalovirus vaccine deleted of three putative immune evasion genes is highly attenuated but remains immunogenic in a vaccine/challenge model of congenital cytomegalovirus infection. Vaccine 2009; 27:4209-18. [PMID: 19389443 DOI: 10.1016/j.vaccine.2009.04.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 12/29/2022]
Abstract
Live attenuated vaccines for prevention of congenital cytomegalovirus infections encode numerous immune evasion genes. Their removal could potentially improve vaccine safety and efficacy. To test this hypothesis, three genes encoding MHC class I homologs (presumed NK evasins) were deleted from the guinea pig cytomegalovirus genome and the resulting virus, 3DX, was evaluated as a live attenuated vaccine in the guinea pig congenital infection model. 3DX was attenuated in vivo but not in vitro. Vaccination with 3DX produced elevated cytokine levels and higher antibody titers than wild type (WT) virus while avidity and neutralizing titers were similar. Protection, assessed by maternal viral loads and pup mortality following pathogenic viral challenge during pregnancy, was comparable between 3DX and WT and significant compared to naïve animals. These results suggest that the safety and perhaps efficacy of live attenuated human cytomegalovirus vaccines could be enhanced by deletion of viral immunomodulatory genes.
Collapse
|