1
|
Cui N, Wang P, Huang Q, Yuan Z, Su S, Xu C, Qi L. Detection of Avian Influenza Virus in Pigeons. Viruses 2025; 17:585. [PMID: 40285026 PMCID: PMC12031089 DOI: 10.3390/v17040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Pigeons (Columba livia) are usually kept as free-ranging or racing birds, and they have direct contact with livestock, poultry, and humans. Therefore, they may have an important role in the ecology of influenza virus among various species. In the present study, we bring together all available sequence data of pigeon avian influenza virus (AIV) from public databases to address the current understanding of the genomic characteristics and emergence of each subtype of AIV in pigeons. Collectively, we identified 658 pigeon AIV strains in 21 countries across the world, which were mainly distributed in Europe, Asia, and North America. H1 (2), H2 (1), H3 (8), H5 (71), H6 (16), H7 (16), H9 (543), and H11 (1) AIV subtypes have been identified in pigeons. In addition, we interrogate features of the H5, H6, H7, and H9 subtypes of pigeon AIV, which are relatively common in pigeons. It is particularly noteworthy that the H5 AIV strains identified in pigeons are all classified as HPAIV. For the first time, this study presents a complete overview of the multiple AIV subtypes that have been circulating in pigeons, providing information on their distribution and genomic characteristics. This study will help to understand the molecular evolution of AIV in pigeons.
Collapse
Affiliation(s)
- Ning Cui
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Peipei Wang
- Tiankang Bio-Pharmaceutical Co., Ltd., Wulumuqi 830011, China
| | - Qinghua Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Zihao Yuan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Chuantian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Lihong Qi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
2
|
Vatzia E, Zhang Y, Sedaghat-Rostami E, Martini V, Paudyal B, Carr BV, McNee A, Chiu C, Moffat K, Asquith B, Beverley P, Macallan D, Tchilian E. Proliferation makes a substantive contribution to the maintenance of airway resident memory T-cell subsets in young pigs. DISCOVERY IMMUNOLOGY 2025; 4:kyaf007. [PMID: 40370578 PMCID: PMC12076203 DOI: 10.1093/discim/kyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
Tissue-resident memory (TRM) T cells play an important role in protection against respiratory infection but whether this memory is maintained by long-lived or dividing cells remains controversial. To address the rate of division of lung TRM T cells, deuterium-enriched water was administered orally to young pigs to label dividing lymphocytes. T-cell subsets were separated from blood, lymph nodes, and airways [bronchoalveolar lavage (BAL)], the latter comprising almost exclusively TRM. We show that, as in other species, circulating memory T-cell subsets divide more rapidly than naïve T cells. Rates of labelling of memory subsets were similar in blood and lymph nodes, consistent with the rapid and free exchange. Strikingly, the fraction of label in BAL was similar to those in blood/lymph nodes after 5-21 days of labelling, suggesting replacement with recently divided cells, but this was preceded at Day 2 by a phase when labelling was lower in BAL than blood/lymph node in some memory subsets. Our data exclude long-lived TRM as the source of BAL memory cells leaving three possible hypotheses: blood/airway exchange, in situ proliferation, or proliferation in the lung interstitium followed by migration to BAL. When considered in the context of other information, we favour the latter interpretation. These results indicate the dynamic nature of memory in the lung and have implications for harnessing immune responses against respiratory pathogens.
Collapse
Affiliation(s)
| | - Yan Zhang
- Institute for Infection and Immunity, City St George’s, University of London, London, UK
| | - Ehsan Sedaghat-Rostami
- The Pirbright Institute, Pirbright, UK
- Section of Immunology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | | | | | | | | | | | | | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Peter Beverley
- Department of Infectious Disease, Imperial College London, London, UK
| | - Derek Macallan
- Institute for Infection and Immunity, City St George’s, University of London, London, UK
| | | |
Collapse
|
3
|
Su G, Chen Y, Li X, Shao JW. Virus versus host: influenza A virus circumvents the immune responses. Front Microbiol 2024; 15:1394510. [PMID: 38817972 PMCID: PMC11137263 DOI: 10.3389/fmicb.2024.1394510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen causing dreadful losses to humans and animals around the globe. As is known, immune escape is a strategy that benefits the proliferation of IAVs by antagonizing, blocking, and suppressing immune surveillance. The HA protein binds to the sialic acid (SA) receptor to enter the cytoplasm and initiate viral infection. The conserved components of the viral genome produced during replication, known as the pathogen-associated molecular patterns (PAMPs), are thought to be critical factors for the activation of effective innate immunity by triggering dependent signaling pathways after recognition by pattern recognition receptors (PRRs), followed by a cascade of adaptive immunity. Viral infection-induced immune responses establish an antiviral state in the host to effectively inhibit virus replication and enhance viral clearance. However, IAV has evolved multiple mechanisms that allow it to synthesize and transport viral components by "playing games" with the host. At its heart, this review will describe how host and viral factors interact to facilitate the viral evasion of host immune responses.
Collapse
Affiliation(s)
- Guanming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
4
|
Costa VA, Ronco F, Mifsud JCO, Harvey E, Salzburger W, Holmes EC. Host adaptive radiation is associated with rapid virus diversification and cross-species transmission in African cichlid fishes. Curr Biol 2024; 34:1247-1257.e3. [PMID: 38428417 DOI: 10.1016/j.cub.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fabrizia Ronco
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Flores RA, Cammayo-Fletcher PLT, Nguyen BT, Villavicencio AGM, Lee SY, Son Y, Kim JH, Park KI, Yoo WG, Jin YB, Min W, Kim WH. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024; 16:285. [PMID: 38400060 PMCID: PMC10891532 DOI: 10.3390/v16020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.
Collapse
Affiliation(s)
- Rochelle A. Flores
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Paula Leona T. Cammayo-Fletcher
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Binh T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Andrea Gail M. Villavicencio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Seung Yun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Yongwoo Son
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Jae-Hoon Kim
- National Park Research Institute, Korean National Park Service, Wonju 26441, Gangwon, Republic of Korea;
| | - Kwang Il Park
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongnam, Republic of Korea;
| | - Yeung Bae Jin
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Woo H. Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| |
Collapse
|
6
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Zhang F, Shang J, Luo J, Yin X, Yu X, Jiang W, Li J, Yuan L, Hou G, Liu H, Li Y. Development of a recombinase-aided amplification combined with a lateral flow dipstick assay for rapid detection of H7 subtype avian influenza virus. Front Microbiol 2023; 14:1286713. [PMID: 38029110 PMCID: PMC10654746 DOI: 10.3389/fmicb.2023.1286713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Avian influenza viruses (AIV) pose a significant persistent threat to the public health and safety. It is estimated that there have been over 100 outbreaks caused by various H7 subtypes of avian influenza viruses (AIV-H7) worldwide, resulting in over 33 million deaths of poultry. In this study, we developed a recombinase-aided amplification combined with a lateral flow dipstick assay for the detection of hemagglutinin (HA) genes to provide technical support for rapid clinical detection of AIV-H7. The results showed that the assay can complete the reaction within 30 min at a temperature of 39°C. Specificity tests demonstrated that there was no cross-reactivity with other common poultry pathogens, including Newcastle disease virus (NDV) and infections bronchitis virus (IBV). The detection limit of this assay was 1 × 101 copies/μL, while RT-qPCR method was 1 × 101 copies/μL, and RT-PCR was 1 × 102 copies/μL. The κ value of the RT-RAA-LFD and RT-PCR assay in 132 avian clinical samples was 0.9169 (p < 0.001). These results indicated that the developed RT-RAA-LFD assay had good specificity, sensitivity, stability and repeatability and may be used for rapid detection of AIV-H7 in clinical diagnosis.
Collapse
Affiliation(s)
- Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
8
|
Alfaro M, Hamel F, Patout F, Roques L. Adaptation in a heterogeneous environment II: to be three or not to be. J Math Biol 2023; 87:68. [PMID: 37814160 DOI: 10.1007/s00285-023-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/20/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
We propose a model to describe the adaptation of a phenotypically structured population in a H-patch environment connected by migration, with each patch associated with a different phenotypic optimum, and we perform a rigorous mathematical analysis of this model. We show that the large-time behaviour of the solution (persistence or extinction) depends on the sign of a principal eigenvalue, [Formula: see text], and we study the dependency of [Formula: see text] with respect to H. This analysis sheds new light on the effect of increasing the number of patches on the persistence of a population, which has implications in agroecology and for understanding zoonoses; in such cases we consider a pathogenic population and the patches correspond to different host species. The occurrence of a springboard effect, where the addition of a patch contributes to persistence, or on the contrary the emergence of a detrimental effect by increasing the number of patches on the persistence, depends in a rather complex way on the respective positions in the phenotypic space of the optimal phenotypes associated with each patch. From a mathematical point of view, an important part of the difficulty in dealing with [Formula: see text], compared to [Formula: see text] or [Formula: see text], comes from the lack of symmetry. Our results, which are based on a fixed point theorem, comparison principles, integral estimates, variational arguments, rearrangement techniques, and numerical simulations, provide a better understanding of these dependencies. In particular, we propose a precise characterisation of the situations where the addition of a third patch increases or decreases the chances of persistence, compared to a situation with only two patches.
Collapse
Affiliation(s)
- Matthieu Alfaro
- Univ. Rouen Normandie, LMRS, CNRS, Rouen, France
- INRAE, BioSP, 84914, Avignon, France
| | | | | | | |
Collapse
|
9
|
Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Niang MN, Fall G, Fall M, Dia N. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms 2023; 11:1961. [PMID: 37630521 PMCID: PMC10459748 DOI: 10.3390/microorganisms11081961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.
Collapse
Affiliation(s)
- Mamadou Malado Jallow
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar BP 220, Senegal;
| | - Amary Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Ndiendé Koba Ndiaye
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Davy Kiori
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Sara Sy
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Déborah Goudiaby
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Mbayame Ndiaye Niang
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Gamou Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Malick Fall
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Ndongo Dia
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| |
Collapse
|
10
|
Walsh SK, Imrie RM, Matuszewska M, Paterson GK, Weinert LA, Hadfield JD, Buckling A, Longdon B. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLoS Pathog 2023; 19:e1011433. [PMID: 37289828 PMCID: PMC10284401 DOI: 10.1371/journal.ppat.1011433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/21/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.
Collapse
Affiliation(s)
- Sarah K. Walsh
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ryan M. Imrie
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| | - Marta Matuszewska
- Department of Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute; University of Edinburgh;Edinburgh; United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology; The University of Edinburgh; Edinburgh; United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ben Longdon
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| |
Collapse
|
11
|
Daniels RS, McCauley JW. The health of influenza surveillance and pandemic preparedness in the wake of the COVID-19 pandemic. J Gen Virol 2023; 104. [PMID: 36800222 DOI: 10.1099/jgv.0.001822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic is the first to have emerged when Next Generation Sequencing was readily available and it has played the major role in following evolution of the causative agent, Severe Acute Respiratory Syndrome Coronavirus 2. Response to the pandemic was greatly facilitated though use of existing influenza surveillance networks: World Health Organization (WHO) Global Influenza Surveillance and Response System (GISRS), focussing largely on human influenza, and the OFFLU network of expertise on avian influenza established by the Food and Agricultural Organization of the United Nations (FAO) and the World Organization for Animal Health (WOAH). Data collection/deposition platforms associated with these networks, notably WHO's FluNet and the Global Initiative on Sharing All Influenza Data (GISAID) were/are being used intensely. Measures introduced to combat COVID-19 resulted in greatly decreased circulation of human seasonal influenza viruses for approximately 2 years, but circulation continued in the animal sector with an upsurge in the spread of highly pathogenic avian influenza subtype H5N1 with large numbers of wild bird deaths, culling of many poultry flocks and sporadic spill over into mammalian species, including humans, thereby increasing pandemic risk potential. While there are proposals/implementations to extend use of GISRS and GISAID to other infectious disease agents (e.g. Respiratory Syncytial Virus and Monkeypox), there is need to ensure that influenza surveillance is maintained and improved in both human and animal sectors in a sustainable manner to be truly prepared (early detection) for the next influenza pandemic.
Collapse
Affiliation(s)
- Rodney Stuart Daniels
- Worldwide Influenza Centre (WIC), The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John William McCauley
- Worldwide Influenza Centre (WIC), The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
12
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
13
|
Hicks JT, Edwards K, Qiu X, Kim DK, Hixson JE, Krauss S, Webby RJ, Webster RG, Bahl J. Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species. PLoS Pathog 2022; 18:e1009973. [PMID: 35417497 PMCID: PMC9037922 DOI: 10.1371/journal.ppat.1009973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/25/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.
Collapse
Affiliation(s)
- Joseph T. Hicks
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Kimberly Edwards
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xueting Qiu
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Do-Kyun Kim
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, United States of America
| | - James E. Hixson
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, United States of America
| | - Scott Krauss
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
14
|
Prevalence, Genetics, and Evolutionary Properties of Eurasian Avian-Like H1N1 Swine Influenza Viruses in Liaoning. Viruses 2022; 14:v14030643. [PMID: 35337050 PMCID: PMC8953428 DOI: 10.3390/v14030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Swine influenza virus (SIV) is an important zoonosis pathogen. The 2009 pandemic of H1N1 influenza A virus (2009/H1N1) highlighted the importance of the role of pigs as intermediate hosts. Liaoning province, located in northeastern China, has become one of the largest pig-farming areas since 2016. However, the epidemiology and evolutionary properties of SIVs in Liaoning are largely unknown. We performed systematic epidemiological and genetic dynamics surveillance of SIVs in Liaoning province during 2020. In total, 33,195 pig nasal swabs were collected, with an SIV detection rate of 2%. Our analysis revealed that multiple subtypes of SIVs are co-circulating in the pig population in Liaoning, including H1N1, H1N2 and H3N2 SIVs. Furthermore, 24 H1N1 SIVs were confirmed to belong to the EA H1N1 lineage and divided into two genotypes. The two genotypes were both triple reassortant, and the predominant one with polymerase, nucleoprotein (NP), and matrix protein (M) genes originating from 2009/H1N1; hemagglutinin (HA) and neuraminidase (NA) genes originating from EA H1N1; and the nonstructural protein (NS) gene originating from triple reassortant H1N2 (TR H1N2) was detected in Liaoning for the first time. According to our evolutionary analysis, the EA H1N1 virus in Liaoning will undergo further genome variation.
Collapse
|
15
|
Hierarchical Clustering on Principal Components Analysis to Detect Clusters of Highly Pathogenic Avian Influenza Subtype H5N6 Epidemic across South Korean Poultry Farms. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several outbreaks of highly pathogenic avian influenza (HPAI) in poultry have already been documented across the world, causing major economic losses. Research on diverse perspectives for future HPAI outbreaks’ prevention is desperately needed. It is critical to determine high-risk areas for HPAI outbreaks in order to develop high-level biosecurity in all such areas. The aim of this study is to identify high-risk areas as hotspots for high rates of birds’ infection and mortality and culling. We used “hierarchical clustering on principal components” (HCPC) to classify infected poultry farms in South Korea based on the point prevalence rate, infections, and deaths in susceptible birds. The linear combination of the original predictors was determined using “principal component analysis (PCA)”. Based on PCA, we applied the hierarchical clustering algorithm, which divided the data into four clusters based on the dissimilarity matrix. These four groups of poultry farms were identified on the basis of five variables. According to the findings based on the HCPC method, poultry farms in “cluster 4” had significantly higher average bird infections with high mortality when compared to other clusters. Similarly, the poultry farms in “cluster 2” had robust average bird culling in place to limit bird infectivity and mortality due to a high number of susceptible birds. The poultry farms belonging to “cluster 3” had a significantly higher average point prevalence rate of HPAI H5N6 cases than the rest of the clusters. Based on this study, it is recommended that poultry farms with a high number of infections and mortality in susceptible birds should implement proper biosecurity management to control HPAI infections while avoiding the culling of a large number of birds.
Collapse
|
16
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
Affiliation(s)
- Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Jasmine Kwong
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Chi S. Lau
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Zheng Xiang
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
17
|
Duong BT, Bal J, Sung HW, Yeo SJ, Park H. Molecular Analysis of the Avian H7 Influenza Viruses Circulating in South Korea during 2018-2019: Evolutionary Significance and Associated Zoonotic Threats. Viruses 2021; 13:v13112260. [PMID: 34835066 PMCID: PMC8623559 DOI: 10.3390/v13112260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Avian influenza virus (AIV) subtypes H5 and H7, possessing the ability to mutate spontaneously from low pathogenic (LP) to highly pathogenic (HP) variants, are major concerns for enormous socio-economic losses in the poultry industry, as well as for fatal human infections. Through antigenic drift and shift, genetic reassortments of the genotypes pose serious threats of increased virulence and pathogenicity leading to potential pandemics. In this study, we isolated the H7-subtype AIVs circulating in the Republic of Korea during 2018–2019, and perform detailed molecular analysis to study their circulation, evolution, and possible emergence as a zoonotic threat. Phylogenetic and nucleotide sequence analyses of these isolates revealed their distribution into two distinct clusters, with the HA gene sharing the highest nucleotide identity with either the A/common teal/Shanghai/CM1216/2017, isolated from wild birds in Shanghai, China, or the A/duck/Shimane/2014, isolated from Japan. Mutations were found in HA (S138A (H3 numbering)), M1 (N30D and T215A), NS1 (P42S), PB2 (L89V), and PA (H266R and F277S) proteins—the mutations had previously been reported to be related to mammalian adaptation and changes in the virulence of AIVs. Taken together, the results firmly put forth the demand for routine surveillance of AIVs in wild birds to prevent possible pandemics arising from reassortant AIVs.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
| | - Jyotiranjan Bal
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| |
Collapse
|
18
|
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc 2021; 97:179-194. [PMID: 34514703 DOI: 10.1111/brv.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems. Most haptophytes are, however, part of highly diverse communities and occur at low densities, decreasing their chance of being infected by viruses with high host specificity. Viruses infecting these microalgae have been isolated in the laboratory, and there are several characteristics that distinguish them from acute viruses infecting bloom-forming haptophytes. Herein we synthesise what is known of viruses infecting haptophyte hosts in the ocean, discuss the adaptive evolution of haptophyte-infecting viruses -from those that cause acute infections to those that stably coexist with their host - and identify traits of importance for successful survival in the ocean.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Haina Wang
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Université Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, Postbox 1066, N-0316, Oslo, Norway
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Janice Lawrence
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
19
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
20
|
Mettelman RC, Thomas PG. Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038711. [PMID: 31964647 PMCID: PMC8091954 DOI: 10.1101/cshperspect.a038711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza viruses are a persistent threat to global human health. Increased susceptibility to infection and the risk factors associated with progression to severe influenza-related disease are determined by a multitude of viral, host, and environmental conditions. Decades of epidemiologic research have broadly defined high-risk groups, while new genomic association studies have identified specific host factors impacting an individual's response to influenza. Here, we review and highlight both human susceptibility to influenza infection and the conditions that lead to severe influenza disease.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
21
|
Nagashima KA, Mousa JJ. Next-Generation Influenza HA Immunogens and Adjuvants in Pursuit of a Broadly Protective Vaccine. Viruses 2021; 13:v13040546. [PMID: 33805245 PMCID: PMC8064354 DOI: 10.3390/v13040546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kaito A. Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
22
|
Hill NJ, Smith LM, Muzaffar SB, Nagel JL, Prosser DJ, Sullivan JD, Spragens KA, DeMattos CA, DeMattos CC, El Sayed L, Erciyas-Yavuz K, Davis CT, Jones J, Kis Z, Donis RO, Newman S H, Takekawa JY. Crossroads of highly pathogenic H5N1: overlap between wild and domestic birds in the Black Sea-Mediterranean impacts global transmission. Virus Evol 2021; 7:veaa093. [PMID: 34956648 PMCID: PMC7947991 DOI: 10.1093/ve/veaa093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region. Results indicated that multiple ducks (Northern Shoveler and Northern Pintail) hosted segments that shared ancestry with HPAI H5 from both clade 2.2.1 and clade 2.3.4 supporting the role of Anseriformes in linking viral populations in East Asia and Africa over large distances. Quantifying the overlap between wild ducks and H5N1-infected poultry revealed an increasing interface in late winter peaking in early spring when ducks expanded their range before migration, with key differences in the timing of poultry contact risk between local and long-distance migrants.
Collapse
Affiliation(s)
- Nichola J Hill
- Tufts University, Department of Infectious Disease & Global Health, 200 Westboro Rd, North Grafton, MA 01536, USA
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
| | - Lacy M Smith
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
| | - Sabir B Muzaffar
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- United Arab Emirates University, Department of Biology, PO Box 15551, Al Ain, United Arab Emirates
| | - Jessica L Nagel
- Natural Systems Analysts, 201 West Canton Ave, Winter Park, FL 32790, USA
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| | - Jeffery D Sullivan
- U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| | - Kyle A Spragens
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- Washington Department of Fish & Wildlife, P.O. Box 43141, Olympia, WA 98501, USA
| | - Carlos A DeMattos
- U.S. Naval Medical Research Unit No. 3, 1a Etisalat Club Rd, Ezbet Fahmy, El Basatin Cairo, 11435, Egypt
| | - Cecilia C DeMattos
- U.S. Naval Medical Research Unit No. 3, 1a Etisalat Club Rd, Ezbet Fahmy, El Basatin Cairo, 11435, Egypt
| | - Lu’ay El Sayed
- Egyptian Environmental Affairs Agency, 30 Misr Helwan El-Zyrae Road, Maadi, Cairo, 11728, Egypt
| | | | - C Todd Davis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Joyce Jones
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Zoltan Kis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Ruben O Donis
- Centers for Disease Control and Prevention, 1600 Clifton Rd Atlanta, GA 30333, USA
| | - Scott H Newman
- Food & Agriculture Organization of the United Nations, Liberia Rd, Accra, Ghana
| | - John Y Takekawa
- U.S. Geological Survey, 505 Azuar Drive, Vallejo, CA 94592, USA
- Suisun Resource Conservation District, 2544 Grizzly Island Road, Suisun City, CA 94585, USA
| |
Collapse
|
23
|
Naeem A, Elbakkouri K, Alfaiz A, Hamed ME, Alsaran H, AlOtaiby S, Enani M, Alosaimi B. Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J Med Virol 2020; 92:3016-3027. [PMID: 32159230 PMCID: PMC7228267 DOI: 10.1002/jmv.25759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
Abstract
Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus cause a decrease in vaccine efficacy. Since the information about the evolution of these viruses in Saudi is deficient so we investigated the genetic diversity of circulating H1N1 viruses. Nasopharyngeal aspirates/swabs collected from 149 patients hospitalized with flu-like symptoms during 2014 and 2015 were analyzed. Viral RNA extraction was followed by a reverse transcription-polymerase chain reaction and genetic sequencing. We analyzed complete gene sequences of HA and NA from 80 positive isolates. Phylogenetic analysis of HA and NA genes of 80 isolates showed similar topologies and co-circulation of clades 6b. Genetic diversity was observed among circulating viruses belonging to clade 6B.1A. The amino acid residues in the HA epitope domain were under purifying selection. Amino acid changes at key antigenic sites, such as position S101N, S179N (antigenic site-Sa), I233T (antigenic site-Sb) in the head domain might have resulted in antigenic drift and emergence of variant viruses. For NA protein, 36% isolates showed the presence of amino acid changes such as V13I (n = 29), I314M (n = 29) and 12% had I34V (n = 10). However, H257Y mutation responsible for resistance to neuraminidase inhibitors was missing. The presence of amino acid changes at key antigenic sites and their topologies with structural mapping of residues under purifying selection highlights the importance of antigenic drift and warrants further characterization of recently circulating viruses in view of vaccine effectiveness. The co-circulation of several clades and the predominance of clade 6B.1 suggest multiple introductions in Saudi.
Collapse
MESH Headings
- Humans
- Neuraminidase/genetics
- Saudi Arabia/epidemiology
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Phylogeny
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Male
- Female
- Young Adult
- Genetic Variation
- Middle Aged
- Adolescent
- Genetic Drift
- Child
- Child, Preschool
- Amino Acid Substitution
- Viral Proteins/genetics
- Nasopharynx/virology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- RNA, Viral/genetics
- Antigenic Variation
- Aged
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Asif Naeem
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Ali Alfaiz
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Hadel Alsaran
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
| | | | - Mushira Enani
- Medical Specialties Department, Section of Infectious DiseasesKing Fahad Medical CityRiyadhSaudi Arabia
| | - Bandar Alosaimi
- Research CenterKing Fahad Medical CityRiyadhSaudi Arabia
- College of MedicineKing Fahad Medical CityRiyadhSaudi Arabia
| |
Collapse
|
24
|
King J, Harder T, Conraths FJ, Beer M, Pohlmann A. The genetics of highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006-2020. Transbound Emerg Dis 2020; 68:1136-1150. [PMID: 32964686 DOI: 10.1111/tbed.13843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
The H5 A/Goose/Guangdong/1/1996 (gs/GD) lineage emerged in China in 1996. Rooted in the respective gs/GD lineage, the hemagglutinin (HA) gene of highly pathogenic avian influenza viruses (HPAIV) has genetically diversified into a plethora of clades and subclades and evolved into an assortment of sub- and genotypes. Some caused substantial losses in the poultry industry and had a major impact on wild bird populations alongside public health implications due to a zoonotic potential of certain clades. After the primary introduction of the HPAI H5N1 gs/GD lineage into Europe in autumn 2005 and winter 2005/2006, Germany has seen recurring incursions of four varying H5Nx subtypes (H5N1, H5N8, H5N5, H5N6) carrying multiple distinct reassortants, all descendants of the gs/GD virus. The first HPAIV H5 epidemic in Germany during 2006/2007 was caused by a clade 2.2 subtype H5N1 virus. Phylogenetic analysis confirmed three distinct clusters belonging to clades 2.2.1, 2.2.2 and 2.2, concurring with geographic and temporal structures. From 2014 onwards, HPAIV clade 2.3.4.4 has dominated the epidemiological situation in Germany. The initial clade 2.3.4.4a HPAIV H5N8, reaching Germany in November 2014, caused a limited epidemic affecting five poultry holdings, one zoo in Northern Germany and few wild birds. After November 2016, HPAIV of clade 2.3.4.4b have dominated the situation to date. The most extensive HPAIV H5 epidemic on record reached Germany in winter 2016/2017, encompassing multiple incursion events with two subtypes (H5N8, H5N5) and entailing five reassortants. A novel H5N6 clade 2.3.4.4b strain affected Germany from December 2017 onwards, instigating low-level infection in smallholdings and wild birds. Recently, in spring 2020, a novel incursion of a genetically distinct HPAI clade 2.3.4.4b H5N8 virus caused another epidemic in Europe, which affected a small number of poultry holdings, one zoo and two wild birds throughout Germany.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
25
|
Abstract
Coronaviruses are spherical and enveloped RNA viruses that infect diverse vertebrates like mammals, birds and fish. There are five human coronavirus species and all of their origin is linked to animal like bat and rodent. The two coronavirus species, Middle East respiratory syndrome-related coronavirus and Severe acute respiratory syndrome-related coronavirus are lethal to human. In the second week of December 2019, there was an outbreak of pneumonia of unknown cause in the people associated with a seafood market in Wuhan, China. The disease was designated as coronavirus disease 2019 (COVID-19) and the virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the genus Betacoronavirus. SARS-CoV-2 being highly transmissible and pathogenic, soon it has spread to 213 countries killing > 0.47 million people. The information on the research findings of SARS-CoC-2 are pouring from all over the world. In a special issue of VirusDisease, “The global emergence of coronavirus in human”, various topics relating to emergence, potential cases, transmission dynamics, diagnosis, pathogenesis, food safety, therapeutic strategies and antiviral properties of Ayurveda products are covered.
Collapse
Affiliation(s)
- Bikash Mandal
- Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
26
|
Ruan BY, Yao Y, Wang SY, Gong XQ, Liu XM, Wang Q, Yu LX, Zhu SQ, Wang J, Shan TL, Zhou YJ, Tong W, Zheng H, Li GX, Gao F, Kong N, Yu H, Tong GZ. Protective efficacy of a bivalent inactivated reassortant H1N1 influenza virus vaccine against European avian-like and classical swine influenza H1N1 viruses in mice. Vet Microbiol 2020; 246:108724. [PMID: 32605742 DOI: 10.1016/j.vetmic.2020.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022]
Abstract
The classical swine (CS) H1N1 swine influenza virus (SIVs) emerged in humans as a reassortant virus that caused the H1N1 influenza virus pandemic in 2009, and the European avian-like (EA) H1N1 SIVs has caused several human infections in European and Asian countries. Development of the influenza vaccines that could provide effective protective efficacy against SIVs remains a challenge. In this study, the bivalent reassortant inactivated vaccine comprised of SH1/PR8 and G11/PR8 arboring the hemagglutinin (HA) and neuraminidase (NA) genes from prevalent CS and EA H1N1 SIVs and six internal genes from the A/Puerto Rico/8/34(PR8) virus was developed. The protective efficacy of this bivalent vaccine was evaluated in mice challenged with the lethal doses of CS and EA H1N1 SIVs. The result showed that univalent inactivated vaccine elicited high-level antibody against homologous H1N1 viruses while cross-reactive antibody responses to heterologous H1N1 viruses were not fully effective. In a mouse model, the bivalent inactivated vaccine conferred complete protection against lethal challenge doses of EA SH1 virus or CS G11 virus, whereas the univalent inactivated vaccine only produced insufficient protection against heterologous SIVs. In conclusion, our data demonstrated that the reassortant bivalent inactivated vaccine comprised of SH1/PR8 and G11/PR8 could provide effective protection against the prevalent EA and CS H1N1 subtype SIVs in mice.
Collapse
Affiliation(s)
- Bao-Yang Ruan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yun Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuai-Yong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Qian Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Min Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shi-Qiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
27
|
A System Based-Approach to Examine Host Response during Infection with Influenza A Virus Subtype H7N9 in Human and Avian Cells. Cells 2020; 9:cells9020448. [PMID: 32075271 PMCID: PMC7072757 DOI: 10.3390/cells9020448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Although the influenza A virus H7N9 subtype circulates within several avian species, it can also infect humans with a severe disease outcome. To better understand the biology of the H7N9 virus we examined the host response to infection in avian and human cells. In this study we used the A/Anhui/1/2013 strain, which was isolated during the first wave of the H7N9 epidemic. The H7N9 virus-infected both human (Airway Epithelial cells) and avian (Chick Embryo Fibroblast) cells, and each infected host transcriptome was examined with bioinformatic tools and compared with other representative avian and human influenza A virus subtypes. The H7N9 virus induced higher expression changes (differentially regulated genes) in both cell lines, with more prominent changes observed in avian cells. Ortholog mapping of differentially expression genes identified significant enriched common and cell-type pathways during H7N9 infections. This data confirmed our previous findings that different influenza A virus subtypes have virus-specific replication characteristics and anti-virus signaling in human and avian cells. In addition, we reported for the first time, the new HIPPO signaling pathway in avian cells, which we hypothesized to play a vital role to maintain the antiviral state of H7N9 virus-infected avian cells. This could explain the absence of disease symptoms in avian species that tested positive for the presence of H7N9 virus.
Collapse
|
28
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
29
|
Pereira H, Artois M, Bicout DJ. Fireworks-like surveillance approach: The case of HPAI H5N1 in wild birds in Europe. Transbound Emerg Dis 2019; 67:206-222. [PMID: 31482660 DOI: 10.1111/tbed.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022]
Abstract
Highly pathogenic avian influenza (HPAI) risk management requires efficient surveillance of the infection in wild birds for early warning purposes. In this study, our aim was to describe the spread of continent-wide infection cases using a fireworks model and therefore improve current surveillance systems. The fireworks model is a metaphor illustrating the spread of HPAI as a point source epizootic. The approach is based on early detection of the outbreak seeds (sparks from the fireworks) and uses a predictive model of the probability of the occurrence of new cases following a seed introduction; this then determines the spatiotemporal perimeter for intense surveillance investigations. For a case study, we used surveillance data on HPAI H5N1 in wild birds across Europe between 2005 and 2010 to describe the outbreaks and determine the success of the case detection used to inform management of the disease. The fireworks description assumes simultaneous introductions of 'seeds' of cases, which then 'explode' in local foci but do not merge into a progressive disease wave. This model fits the data well. Using this predictive approach for HPAI cases in EU countries, we found that the investigation radius needed to achieve a detection level of 90% of new cases after an outbreak ranged from 10 km to more than 300 km, depending on the outbreak pattern. Based on these findings, the fireworks approach can be a valuable method for identifying the perimeters and risk areas to be targeted for enhanced surveillance. The rationale of the fireworks approach is quite generic and can easily be adapted to different situations and contexts.
Collapse
Affiliation(s)
- Helena Pereira
- VetAgro Sup, Veterinary Campus of Lyon, Marcy l'Étoile, France
| | - Marc Artois
- VetAgro Sup, Veterinary Campus of Lyon, Marcy l'Étoile, France
| | - Dominique J Bicout
- VetAgro Sup, Veterinary Campus of Lyon, Marcy l'Étoile, France.,Biomathematics and Epidemiology, EPSP- Labo TIMC, UMR 5525 CNRS, Grenoble Alpes University and VetAgro Sup, Marcy l'Étoile, France
| |
Collapse
|
30
|
Zhao P, Sun L, Xiong J, Wang C, Chen L, Yang P, Yu H, Yan Q, Cheng Y, Jiang L, Chen Y, Zhao G, Jiang Q, Xiong C. Semiaquatic mammals might be intermediate hosts to spread avian influenza viruses from avian to human. Sci Rep 2019; 9:11641. [PMID: 31406229 PMCID: PMC6690891 DOI: 10.1038/s41598-019-48255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A viruses (AIVs) can occasionally transmit to mammals and lead to the development of human pandemic. A species of mammal is considered as a mixing vessel in the process of host adaptation. So far, pigs are considered as a plausible intermediate host for the generation of human pandemic strains, and are labelled ‘mixing vessels’. In this study, through the analysis of two professional databases, the Influenza Virus Resource of NCBI and the Global Initiative on Sharing Avian Influenza Data (GISAID), we found that the species of mink (Neovison vison) can be infected by more subtypes of influenza A viruses with considerably higher α-diversity related indices. It suggested that the semiaquatic mammals (riverside mammals), rather than pigs, might be the intermediate host to spread AIVs and serve as a potential mixing vessel for the interspecies transmission among birds, mammals and human. In epidemic areas, minks, possibly some other semiaquatic mammals as well, could be an important sentinel species for influenza surveillance and early warning.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingsha Sun
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiasheng Xiong
- College of Marine Science, Shandong University, Weihai, China
| | - Chuan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Yang
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Hao Yu
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Qingli Yan
- Huai'an Center for Disease Control and Prevention, Huai'an, China
| | - Yan Cheng
- Hongze Center for Disease Control and Prevention, Hongze, China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China. .,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
31
|
Liu M, Wang B, Wang F, Yang Z, Gao D, Zhang C, Ma L, Yu X. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner. Appl Microbiol Biotechnol 2019; 103:6071-6079. [PMID: 31175428 DOI: 10.1007/s00253-019-09925-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Single-chain variable fragment (scFv) has great prospect in medical therapies and diagnostic applications due to its binding affinity and low immunogenicity. However, the application of scFv is limited by its heterologous expression facing challenges of insoluble aggregation. sfGFP has been developed as fusion tag to facilitate the solubility of fusion partner in Escherichia coli. We designed fusion protein of anti-influenza PB2 scFv at C-terminus of sfGFP and successfully obtained soluble expression of sfGFP-scFv-His in Escherichia coli. The expression level of sfGFP-scFv-His reached at 20 mg/L of bacterial culture when the culture was induced with 0.1 mM IPTG at 18 °C for 16 h. And 6 mg scFv-His was obtained from the cleavage of 10 mg pure sfGFP-scFv-His with TEV protease. In addition, we found that sfGFP-scFv-His was more stable than scFv-His in chicken serum, suggesting that sfGFP not only facilitated the solubility of scFv in Escherichia coli, but also promoted the stability of scFv. The immunologic activity of sfGFP-scFv-His was confirmed by Western blot and ELISA; the results showed that anti-PB2 sfGFP-scFv-His exhibited specific binding to PB2. Hemagglutination and comparative real-time RT-PCR analysis indicated that sfGFP-scFv-His and scFv-His inhibited the replication of H1N1 influenza virus in the infected A549 cells. These results further develop the application of scFv as an agent, such as anti-influenza. Furthermore, soluble expression of scFv using sfGFP as fusion partner provide a cost-effective preparation model for manufacturing scFv against pandemic disease.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Bin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhi Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dan Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chenyao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
32
|
|
33
|
Megiddo I, Drabik D, Bedford T, Morton A, Wesseler J, Laxminarayan R. Investing in antibiotics to alleviate future catastrophic outcomes: What is the value of having an effective antibiotic to mitigate pandemic influenza? HEALTH ECONOMICS 2019; 28:556-571. [PMID: 30746802 DOI: 10.1002/hec.3867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Over 95% of post-mortem samples from the 1918 pandemic, which caused 50 to 100 million deaths, showed bacterial infection complications. The introduction of antibiotics in the 1940s has since reduced the risk of bacterial infections, but growing resistance to antibiotics could increase the toll from future influenza pandemics if secondary bacterial infections are as serious as in 1918, or even if they are less severe. We develop a valuation model of the option to withhold wide use of an antibiotic until significant outbreaks such as pandemic influenza or foodborne diseases are identified. Using real options theory, we derive conditions under which withholding wide use is beneficial, and calculate the option value for influenza pandemic scenarios that lead to secondary infections with a resistant Staphylococcus aureus strain. We find that the value of withholding an effective novel oral antibiotic can be positive and significant unless the pandemic is mild and causes few secondary infections with the resistant strain or if most patients can be treated intravenously. Although the option value is sensitive to parameter uncertainty, our results suggest that further analysis on a case-by-case basis could guide investment in novel agents as well as strategies on how to use them.
Collapse
Affiliation(s)
- Itamar Megiddo
- Department of Management Science, University of Strathclyde, Glasgow, UK
- Center for Disease Dynamics, Economics & Policy, Washington, DC
| | - Dusan Drabik
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, The Netherlands
| | - Tim Bedford
- Department of Management Science, University of Strathclyde, Glasgow, UK
| | - Alec Morton
- Department of Management Science, University of Strathclyde, Glasgow, UK
| | - Justus Wesseler
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, The Netherlands
| | - Ramanan Laxminarayan
- Department of Management Science, University of Strathclyde, Glasgow, UK
- Center for Disease Dynamics, Economics & Policy, Washington, DC
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
34
|
Wille M, Bröjer C, Lundkvist Å, Järhult JD. Alternate routes of influenza A virus infection in Mallard (Anas platyrhynchos). Vet Res 2018; 49:110. [PMID: 30373662 PMCID: PMC6206871 DOI: 10.1186/s13567-018-0604-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Abstract
The natural reservoir for all influenza A viruses (IAVs) is wild birds, particularly dabbling ducks. During the autumn, viral prevalence can be very high in dabbling ducks (> 30%) in the Northern Hemisphere, and individuals may be repeatedly infected. Transmission and infection is through the fecal-oral route, whereby birds shed viruses in feces and conspecifics are infected though feeding in virus-contaminated water. In this study we wanted to assess two alternative infection routes: cloacal drinking and preening. Using experimental infections, we assessed patterns of infection using a combination of virus shedding, as assessed by real-time PCR from cloacal swabs, and patterns of viral replication using virus-immunohistochemistry of gastrointestinal tissues. The cloacal drinking experiment consisted of two trials using cloacal inoculation at two different time points to account for age differences, as well as a trial whereby ducks were allowed to take up virus-laden water through the cloaca. All ducks became infected, and rather than the bursa of Fabricius being the main site of replication, the colon had the highest intensity of replication, as inferred through immunohistochemistry. In experiments assessing preening, feathers were contaminated with virus-laden water and all ducks became infected, regardless of whether they were kept individually or together. Further, naive contacts were infected by the individuals whose feathers were virus-contaminated. Overall, we reinforce that IAV transmission in dabbling ducks is multifactorial-if exposed to virus-contaminated water ducks may be infected through dabbling, preening of infected feathers, and cloacal drinking.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. .,WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
35
|
Martin G, Becker DJ, Plowright RK. Environmental Persistence of Influenza H5N1 Is Driven by Temperature and Salinity: Insights From a Bayesian Meta-Analysis. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
36
|
Mutation W222L at the Receptor Binding Site of Hemagglutinin Could Facilitate Viral Adaption from Equine Influenza A(H3N8) Virus to Dogs. J Virol 2018; 92:JVI.01115-18. [PMID: 29997206 DOI: 10.1128/jvi.01115-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
An outbreak of respiratory disease caused by the equine-origin influenza A(H3N8) virus was first detected in dogs in 2004 and since then has been enzootic among dogs. Currently, the molecular mechanisms underlying host adaption of this virus from horses to dogs is unknown. Here, we have applied quantitative binding, growth kinetics, and immunofluorescence analyses to elucidate these mechanisms. Our findings suggest that a substitution of W222L in the hemagglutinin of the equine-origin A(H3N8) virus facilitated its host adaption to dogs. This mutation increased binding avidity of the virus specifically to receptor glycans with N-glycolylneuraminic acid (Neu5Gc) and sialyl Lewis X (SLeX) motifs. We have demonstrated these motifs are abundantly located in the submucosal glands of dog trachea. Our findings also suggest that in addition to the type of glycosidic linkage (e.g., α2,3-linkage or α2,6-linkage), the type of sialic acid (Neu5Gc or 5-N-acetyl neuraminic acid) and the glycan substructure (e.g., SLeX) also play an important role in host tropism of influenza A viruses.IMPORTANCE Influenza A viruses (IAVs) cause a significant burden on human and animal health, and mechanisms for interspecies transmission of IAVs are far from being understood. Findings from this study suggest that an equine-origin A(H3N8) IAV with mutation W222L at its hemagglutinin increased binding to canine-specific receptors with sialyl Lewis X and Neu5Gc motifs and, thereby, may have facilitated viral adaption from horses to dogs. These findings suggest that in addition to the glycosidic linkage (e.g., α2,3-linked and α2,6-linked), the substructure in the receptor saccharides (e.g., sialyl Lewis X and Neu5Gc) could present an interspecies transmission barrier for IAVs and drive viral mutations to overcome such barriers.
Collapse
|
37
|
Abstract
Influenza viruses undergo rapid antigenic evolution and reassortment, resulting in annual epidemics and the occasional pandemics. Exposure to influenza virus hemagglutinin (HA) and neuraminidase (NA) antigen, either through vaccination or infection, induces an antibody response able to recognize only the homologous antigenic subtype. However, atypical antibody responses recognizing non-homologous influenza subtypes have been reported during infection and vaccination. Here, we review the incidence of these phenomena in published literature and discuss the potential mechanisms underlying them.
Collapse
Affiliation(s)
- Dalton Hermans
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Host shifts result in parallel genetic changes when viruses evolve in closely related species. PLoS Pathog 2018; 14:e1006951. [PMID: 29649296 PMCID: PMC5897010 DOI: 10.1371/journal.ppat.1006951] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 01/23/2023] Open
Abstract
Host shifts, where a pathogen invades and establishes in a new host species, are a major source of emerging infectious diseases. They frequently occur between related host species and often rely on the pathogen evolving adaptations that increase their fitness in the novel host species. To investigate genetic changes in novel hosts, we experimentally evolved replicate lineages of an RNA virus (Drosophila C Virus) in 19 different species of Drosophilidae and deep sequenced the viral genomes. We found a strong pattern of parallel evolution, where viral lineages from the same host were genetically more similar to each other than to lineages from other host species. When we compared viruses that had evolved in different host species, we found that parallel genetic changes were more likely to occur if the two host species were closely related. This suggests that when a virus adapts to one host it might also become better adapted to closely related host species. This may explain in part why host shifts tend to occur between related species, and may mean that when a new pathogen appears in a given species, closely related species may become vulnerable to the new disease. Host shifts, where a pathogen jumps from one host species to another, are a major source of infectious disease. Hosts shifts are more likely to occur between related host species and often rely on the pathogen evolving adaptations that increase their fitness in the novel host. Here we have investigated how viruses evolve in different host species, by experimentally evolving replicate lineages of an RNA virus in 19 different host species that shared a common ancestor 40 million years ago. We then deep sequenced the genomes of these viruses to examine the genetic changes that have occurred in different host species that vary in their relatedness. We found that parallel mutations–that are indicative of selection–were significantly more likely to occur within viral lineages from the same host, and between viruses evolved in closely related species. This suggests that a mutation that may adapt a virus to a given host, may also adapt it to closely related host species.
Collapse
|
39
|
Chattopadhyay I, Kiciman E, Elliott JW, Shaman JL, Rzhetsky A. Conjunction of factors triggering waves of seasonal influenza. eLife 2018; 7:e30756. [PMID: 29485041 PMCID: PMC5864297 DOI: 10.7554/elife.30756] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/13/2018] [Indexed: 02/04/2023] Open
Abstract
Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population's socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus' antigenic drift over time; (4) the host population'€™s land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies.
Collapse
Affiliation(s)
- Ishanu Chattopadhyay
- Institute of Genomics and Systems BiologyUniversity of ChicagoChicagoUnited States
- Department of MedicineUniversity of ChicagoChicagoUnited States
| | - Emre Kiciman
- Information and Data Science GroupMicrosoft ResearchRedmondUnited States
| | | | - Jeffrey L Shaman
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkUnited States
| | - Andrey Rzhetsky
- Institute of Genomics and Systems BiologyUniversity of ChicagoChicagoUnited States
- Department of MedicineUniversity of ChicagoChicagoUnited States
- Computation InstituteUniversity of ChicagoChicagoUnited States
- Departments of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
40
|
Mammalian Adaptation of an Avian Influenza A Virus Involves Stepwise Changes in NS1. J Virol 2018; 92:JVI.01875-17. [PMID: 29237841 PMCID: PMC5809720 DOI: 10.1128/jvi.01875-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAVs) are common pathogens of birds that occasionally establish endemic infections in mammals. The processes and mechanisms that result in IAV mammalian adaptation are poorly understood. The viral nonstructural 1 (NS1) protein counteracts the interferon (IFN) response, a central component of the host species barrier. We characterized the NS1 proteins of equine influenza virus (EIV), a mammalian IAV lineage of avian origin. We showed that evolutionarily distinct NS1 proteins counteract the IFN response using different and mutually exclusive mechanisms: while the NS1 proteins of early EIVs block general gene expression by binding to cellular polyadenylation-specific factor 30 (CPSF30), NS1 proteins from more evolved EIVs specifically block the induction of IFN-stimulated genes by interfering with the JAK/STAT pathway. These contrasting anti-IFN strategies are associated with two mutations that appeared sequentially and were rapidly selected for during EIV evolution, highlighting the importance of evolutionary processes in immune evasion mechanisms during IAV adaptation. IMPORTANCE Influenza A viruses (IAVs) infect certain avian reservoir species and occasionally transfer to and cause epidemics of infections in some mammalian hosts. However, the processes by which IAVs gain the ability to efficiently infect and transmit in mammals remain unclear. H3N8 equine influenza virus (EIV) is an avian-origin virus that successfully established a new lineage in horses in the early 1960s and is currently circulating worldwide in the equine population. Here, we analyzed the molecular evolution of the virulence factor nonstructural protein 1 (NS1) and show that NS1 proteins from different time periods after EIV emergence counteract the host innate immune response using contrasting strategies, which are associated with two mutations that appeared sequentially during EIV evolution. The results shown here indicate that the interplay between virus evolution and immune evasion plays a key role in IAV mammalian adaptation.
Collapse
|
41
|
Hashem AM, Azhar EI, Shalhoub S, Abujamel TS, Othman NA, Al Zahrani AB, Abdullah HM, Al-Alawi MM, Sindi AA. Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015. Arch Virol 2018; 163:1219-1230. [PMID: 29396684 DOI: 10.1007/s00705-018-3732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
The emerged influenza A/H1N1pdm09 viruses have replaced the previously circulating seasonal H1N1 viruses. The close antigenic properties of these viruses to the 1918 H1N1 pandemic viruses and their post-pandemic evolution pattern could further enhance their adaptation and pathogenicity in humans representing a major public health threat. Given that data on the dynamics and evolution of these viruses in Saudi Arabia is sparse we investigated the genetic diversity of circulating influenza A/H1N1pdm09 viruses from Jeddah, Saudi Arabia, by analyzing 39 full genomes from isolates obtained between 2014-2015, from patients with varying symptoms. Phylogenetic analysis of all gene segments and concatenated genomes showed similar topologies and co-circulation of clades 6b, 6b.1 and 6b.2, with clade 6b.1 being the most predominate since 2015. Most viruses were more closely related to the vaccine strain (Michigan/45/2015) recommended for the 2017/2018 season, than to the California/07/2009 strain. Low sequence variability was observed in the haemagglutinin protein compared to the neuraminidase protein. Resistance to neuraminidase inhibitors was limited as only one isolate had the H275Y substitution. Interestingly, two isolates had short PA-X proteins of 206 amino acids compared to the 232 amino acid protein found in most influenza A/H1N1pdm09 viruses. Together, the co-circulation of several clades and the predominance of clade 6b.1, despite its low circulation in Asia in 2015, suggests multiple introductions most probably during the mass gathering events of Hajj and Umrah. Jeddah represents the main port of entry to the holy cities of Makkah and Al-Madinah, emphasizing the need for vigilant surveillance in the kingdom.
Collapse
MESH Headings
- Amino Acid Substitution
- Female
- Genetic Variation
- Genome, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/transmission
- Influenza, Human/virology
- Male
- Nasopharynx/virology
- Neuraminidase/genetics
- Phylogeny
- RNA, Viral/genetics
- Saudi Arabia/epidemiology
- Seasons
- Sequence Analysis, DNA
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Anwar M Hashem
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Esam I Azhar
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Sarah Shalhoub
- Division of Infectious Diseases, Department of Medicine, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Turki S Abujamel
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Norah A Othman
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulwahab B Al Zahrani
- Molecular Diagnostics Laboratory, King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Hanan M Abdullah
- Students' Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Maha M Al-Alawi
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Infection Control and Environmental Health Unit, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Anees A Sindi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Kim H, Webster RG, Webby RJ. Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunol 2018; 31:174-183. [PMID: 29373086 DOI: 10.1089/vim.2017.0141] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Numerous modern technological and scientific advances have changed the vaccine industry. However, nearly 70 years of influenza vaccine usage have passed without substantial changes in the underlying principles of the vaccine. The challenge of vaccinating against influenza lies in the constantly changing nature of the virus itself. Influenza viruses undergo antigenic evolution through antigenic drift and shift in their surface glycoproteins. This has forced frequent updates of vaccine antigens to ensure that the somewhat narrowly focused vaccine-induced immune responses defend against circulating strains. Few vaccine production systems have been developed that can entertain such constant changes. Although influenza virus infection induces long-lived immunologic memory to the same or similar strains, most people do not encounter the same strain repeatedly in their lifespan, suggesting that enhancement of natural immunity is required to improve influenza vaccines. It is clear that transformative change of influenza vaccines requires a rethink of how we immunize. In this study, we review the problems associated with the changing nature of the virus, and highlight some of the approaches being employed to improve influenza vaccines.
Collapse
Affiliation(s)
- Hyunsuh Kim
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| |
Collapse
|
43
|
Malik SS, Azem-E-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do Viruses Exchange Genes across Superkingdoms of Life? Front Microbiol 2017; 8:2110. [PMID: 29163404 PMCID: PMC5671483 DOI: 10.3389/fmicb.2017.02110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
Collapse
Affiliation(s)
- Shahana S Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Azem-E-Zahra
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
44
|
Pitzer VE, Aguas R, Riley S, Loeffen WLA, Wood JLN, Grenfell BT. High turnover drives prolonged persistence of influenza in managed pig herds. J R Soc Interface 2017; 13:rsif.2016.0138. [PMID: 27358277 PMCID: PMC4938081 DOI: 10.1098/rsif.2016.0138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 11/16/2022] Open
Abstract
Pigs have long been hypothesized to play a central role in the emergence of novel human influenza A virus (IAV) strains, by serving as mixing vessels for mammalian and avian variants. However, the key issue of viral persistence in swine populations at different scales is ill understood. We address this gap using epidemiological models calibrated against seroprevalence data from Dutch finishing pigs to estimate the ‘critical herd size’ (CHS) for IAV persistence. We then examine the viral phylogenetic evidence for persistence by comparing human and swine IAV. Models suggest a CHS of approximately 3000 pigs above which influenza was likely to persist, i.e. orders of magnitude lower than persistence thresholds for IAV and other acute viruses in humans. At national and regional scales, we found much stronger empirical signatures of prolonged persistence of IAV in swine compared with human populations. These striking levels of persistence in small populations are driven by the high recruitment rate of susceptible piglets, and have significant implications for management of swine and for overall patterns of genetic diversity of IAV.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA
| | - Ricardo Aguas
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Willie L A Loeffen
- Department of Virology, Central Veterinary Institute, part of Wageningen UR, Lelystad 8200AB, The Netherlands
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan T Grenfell
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, Hang'ombe BM, Mweene AS, Teeling EC, Hall WW, Orba Y, Sawa H. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. J Gen Virol 2017; 98:2771-2785. [PMID: 28984241 DOI: 10.1099/jgv.0.000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Serena E Dool
- Zoological Institute and Museum, University of Greifswald, Anklamer Street 20, D-17489 Greifswald, Germany
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, MD 21201, USA.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
46
|
Russier M, Yang G, Marinova-Petkova A, Vogel P, Kaplan BS, Webby RJ, Russell CJ. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets. PLoS Pathog 2017; 13:e1006276. [PMID: 28282440 PMCID: PMC5362248 DOI: 10.1371/journal.ppat.1006276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/22/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
A pandemic-capable influenza virus requires a hemagglutinin (HA) surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5) and human and ferret (pH ≤5.5) species. Using an early 2009 pandemic H1N1 (pH1N1) virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5), HA1-Y17H (pH 6.0), and HA2-R106K (pH 5.3). All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0) acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like) HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.
Collapse
Affiliation(s)
- Marion Russier
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Atanaska Marinova-Petkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Bryan S. Kaplan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
47
|
Characterization of Viral Exposures in United States Occupational Environments. EXPOSURE TO MICROBIOLOGICAL AGENTS IN INDOOR AND OCCUPATIONAL ENVIRONMENTS 2017. [PMCID: PMC7122517 DOI: 10.1007/978-3-319-61688-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are considered to be the most abundant biological particles and have the capability to infect all forms of life leading to a variety of diseases. American workers in specific occupational environments are threatened by viral exposures, highlighting the importance to recognize the type and risk of exposure, as well as the preventive measures that can be taken to reduce the risk of exposure. For example, healthcare workers can potentially be exposed to air and blood-borne pathogens, such as hepatitis and the human immunodeficiency virus. These types of exposures have led to the development of preventive equipment and regulations intended to reduce viral exposures in occupational settings. This chapter will discuss the characteristics of viruses and the occupationally relevant viruses of which people in varying occupations can potentially encounter. Regulatory guidelines and protective strategies will also be reviewed.
Collapse
|
48
|
Thontiravong A, Tunterak W, Oraveerakul K, Amonsin A. In vitro characterization of the novel H3N1 reassortant influenza viruses from quail. Vet Microbiol 2016; 199:74-78. [PMID: 28110788 DOI: 10.1016/j.vetmic.2016.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
Abstract
Quail is considered as an intermediate host for generation of the novel reassortant influenza A viruses (IAVs). In this study, we evaluated the replication ability of the three novel H3N1 reassortant viruses recovered from pandemic H1N1 2009 (pH1N1) and duck H3N2 (dkH3N2) co-infected quail generated from our previous study in embryonated chicken eggs, mammalian (MDCK) and human lung derived (A549) cells. Our study demonstrated that all of the reassortant viruses replicated efficiently in avian and mammalian cells, albeit with slightly lower titers than the parental viruses. Of note, all of the reassortant viruses showed enhanced replication in human lung derived A549 cells compared to their parental viruses. Interestingly, among the reassortant viruses tested, a reassortant virus (P(NA,NS)-DK) containing NA and NS genes derived from pH1N1 and the other genes from dkH3N2 exhibited the highest replication ability in all in vitro models, indicating a high level of gene compatibility of this reassortant virus. Our results highlight the potential role of quail as intermediate hosts for the generation of the viable reassortant viruses with ability to replicate efficiently in avian, mammalian, and particularly human lung derived cells. These findings emphasize the need for the continuous IAV surveillance in quail to prevent the risk of the emergence of the novel viable reassortant viruses.
Collapse
Affiliation(s)
- Aunyaratana Thontiravong
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wikanda Tunterak
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanisak Oraveerakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
49
|
Richt JA, Lager KM, Clouser DF, Spackman E, Suarez DL, Yoon KJ. Real–Time Reverse Transcription–Polymerase Chain Reaction Assays for the Detection and Differentiation of North American Swine Influenza Viruses. J Vet Diagn Invest 2016; 16:367-73. [PMID: 15460317 DOI: 10.1177/104063870401600501] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Swine influenza is an acute respiratory disease of swine caused by type A influenza viruses. Before 1998, mainly “classical” H1N1 swine influenza viruses (SIVs) were isolated from swine in the United States. Since then, antigenically distinct reassortant H3 and H1 SIVs have been identified as causative agents of respiratory disease in pigs on US farms. Improvement in SIV diagnostics is needed in light of the recently observed rapid evolution of H1 and H3 SIVs and their zoonotic potential. To address this need, real-time reverse transcription–polymerase chain reaction (RT-PCR) assays for the detection of SIVs were developed. A highly sensitive matrix (M) gene–based RT-PCR assay that is able to detect both the H1 and H3 subtypes of SIVs, with a sensitivity per reaction of approximately 2 copies of in vitro–generated M-specific negative-sense RNA molecules and approximately 0.05 TCID50 in lung lavage of experimentally SIV-infected pigs, was established. This RT-PCR assay can be performed within a few hours and showed a sensitivity of 94% and a specificity of 85% when compared with virus isolation. In addition, H1-, H3-, N1-, and N2-specific primer and probe sets were designed for use in the differentiation of different SIV subtypes. The hemagglutinin (H)- and neuraminidase (N)-specific primer and probe sets were less sensitive than the M-specific assay, although they were found to be specific for their respective viral genes and able to distinguish between their respective SIV subtypes.
Collapse
Affiliation(s)
- Jürgen A Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
50
|
Mahardika GN, Jonas M, Murwijati T, Fitria N, Suartha IN, Suartini IGA, Wibawan IWT. Molecular analysis of hemagglutinin-1 fragment of avian influenza H5N1 viruses isolated from chicken farms in Indonesia from 2008 to 2010. Vet Microbiol 2016; 186:52-8. [DOI: 10.1016/j.vetmic.2016.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
|