1
|
Kamran M, Burdiak P, Karpiński S. Crosstalk Between Abiotic and Biotic Stresses Responses and the Role of Chloroplast Retrograde Signaling in the Cross-Tolerance Phenomena in Plants. Cells 2025; 14:176. [PMID: 39936968 PMCID: PMC11817488 DOI: 10.3390/cells14030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
In the natural environment, plants are simultaneously exposed to multivariable abiotic and biotic stresses. Typical abiotic stresses are changes in temperature, light intensity and quality, water stress (drought, flood), microelements availability, salinity, air pollutants, and others. Biotic stresses are caused by other organisms, such as pathogenic bacteria and viruses or parasites. This review presents the current state-of-the-art knowledge on programmed cell death in the cross-tolerance phenomena and its conditional molecular and physiological regulators, which simultaneously regulate plant acclimation, defense, and developmental responses. It highlights the role of the absorbed energy in excess and its dissipation as heat in the induction of the chloroplast retrograde phytohormonal, electrical, and reactive oxygen species signaling. It also discusses how systemic- and network-acquired acclimation and acquired systemic resistance are mutually regulated and demonstrates the role of non-photochemical quenching and the dissipation of absorbed energy in excess as heat in the cross-tolerance phenomenon. Finally, new evidence that plants evolved one molecular system to regulate cell death, acclimation, and cross-tolerance are presented and discussed.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.K.); (P.B.)
| |
Collapse
|
2
|
Hu S, Chen J, Wang H, Ji E, Su X, Zhu M, Xiang X, Gong L, Zhou Q, Xiao X, Wu G, Zha H. The transcription factor OsNAC5 regulates cadmium accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117102. [PMID: 39332196 DOI: 10.1016/j.ecoenv.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal that threatens human health through the consumption of contaminated rice. To mitigate Cd accumulation in rice grains, it is crucial to reduce Cd uptake. Nevertheless, the transcriptional mechanisms governing Cd uptake in rice remain largely unknown. This research identifies the transcription factor OsNAC5 in Oryza sativa as a positive regulator of the Cd transporter gene OsNRAMP1, thereby influencing Cd uptake. OsNAC5 is predominantly expressed in the roots, resides in the nucleus, and is upregulated by Cd-induced hydrogen peroxide (H2O2). Knocking out OsNAC5 results in lower Cd concentrations in both shoots and roots and heightens sensitivity to Cd. The expression of OsNRAMP1, enhanced by Cd stress, is dependent on OsNAC5. OsNAC5 binds to "CATGTG" motifs in the OsNRAMP1 promoter, activating its expression. The loss of OsNAC5 function leads to reduced Cd accumulation in rice grains. Our findings provide insights into the transcriptional regulation of Cd stress response in rice and propose biotechnological strategies to lower Cd uptake in crops.
Collapse
Affiliation(s)
- Shubao Hu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Jinfen Chen
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Hui Wang
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Su
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Muyao Zhu
- College of Resources and Environment, Anhui Science and Technology University, Bengbu, China
| | - Xiaoyan Xiang
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Li Gong
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xin Xiao
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - Ganlin Wu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China.
| | - Hannie Zha
- College of Computer and Information, Anqing Normal University, Anqing 246003, China.
| |
Collapse
|
3
|
Collado-Arenal AM, Exposito-Rodriguez M, Mullineaux PM, Olmedilla A, Romero-Puertas MC, Sandalio LM. Cadmium exposure induced light/dark- and time-dependent redox changes at subcellular level in Arabidopsis plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135164. [PMID: 39032180 DOI: 10.1016/j.jhazmat.2024.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.
Collapse
Affiliation(s)
- Aurelio M Collado-Arenal
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | | | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
4
|
Bian S, Shao D, Zhao Q, Li Q, Ren Y. Transcriptome-Based Screening of Candidate Low-Temperature-Associated Genes and Analysis of the BocARR-B Transcription Factor Gene Family in Kohlrabi ( Brassica oleracea L. var. caulorapa L.). Int J Mol Sci 2024; 25:9261. [PMID: 39273211 PMCID: PMC11394831 DOI: 10.3390/ijms25179261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.
Collapse
Affiliation(s)
- Shuanling Bian
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Qingsheng Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Quanhui Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
5
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
6
|
Khan Z, Jan R, Asif S, Farooq M, Jang YH, Kim EG, Kim N, Kim KM. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci Rep 2024; 14:1214. [PMID: 38216610 PMCID: PMC10786868 DOI: 10.1038/s41598-024-51369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Due to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop's yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants. Eight groups of rice plants (3 replicates, 5 plants each) underwent varied treatments: control, melatonin, salt, drought, salt + drought, salt + melatonin, drought + melatonin, and salt + drought + melatonin. Melatonin (100 µM) was alternately applied a week before stress exposure; salt stress received 100 mM NaCl every 3 days for 3 weeks, and drought stress involved 10% PEG. Young leaves were randomly sampled from each group. The results showed that melatonin treatment markedly reduces salt and drought stress damage by promoting root, shoot length, fresh and dry weight, increasing chlorophyll contents, and inhibiting excessive production of oxidative stress markers. Salt and drought stress significantly decreased the water balance, and damaged cell membrane by reducing relative water contents and increasing electrolyte leakage. However, melatonin treated rice plants showed high relative water contents and low electrolyte leakage. Under salt and drought stress conditions, exogenous application of melatonin boosted the expression level of salt and drought stress responsive genes like OsSOS, OsNHX, OsHSF and OsDREB in rice plants. Taken together, our results reveal that melatonin treatment significantly increases salt and drought tolerance of rice plants, by increasing plant biomass, suppressing ROS accumulation, elevating antioxidants defense efficiency, and up-regulating the expression of salt and drought stress responsive genes.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
7
|
Zhang L, Sun W, Gao W, Zhang Y, Zhang P, Liu Y, Chen T, Yang D. Genome-wide identification and analysis of the GGCT gene family in wheat. BMC Genomics 2024; 25:32. [PMID: 38177998 PMCID: PMC10768367 DOI: 10.1186/s12864-023-09934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Wanting Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
8
|
Upadhyay AK, Mallick S, Singh R, Singh L, Singh N, Mandotra SK, Singh A, Srivastava RP, Pandey S, Saxena G. Novel cost-effective design for bio-volatilization studies in photosynthetic microalgae exposed to arsenic with emphasis on growth and glutathione modulation. Front Microbiol 2023; 14:1170740. [PMID: 37405156 PMCID: PMC10315497 DOI: 10.3389/fmicb.2023.1170740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
A novel laboratory model was designed to study the arsenic (As) biotransformation potential of the microalgae Chlorella vulgaris and Nannochloropsis sp. and the cyanobacterium Anabaena doliolum. The Algae were treated under different concentrations of As(III) to check their growth, toxicity optimization, and volatilization potential. The results revealed that the alga Nannochloropsis sp. was better adopted in term of growth rate and biomass than C. vulgaris and A. doliolum. Algae grown under an As(III) environment can tolerate up to 200 μM As(III) with moderate toxicity impact. Further, the present study revealed the biotransformation capacity of the algae A. doliolum, Nannochloropsis sp., and Chlorella vulgaris. The microalga Nannochloropsis sp. volatilized a large maximum amount of As (4,393 ng), followed by C. vulgaris (4382.75 ng) and A. doliolum (2687.21 ng) after 21 days. The present study showed that As(III) stressed algae-conferred resistance and provided tolerance through high production of glutathione content and As-GSH chemistry inside cells. Thus, the biotransformation potential of algae may contribute to As reduction, biogeochemistry, and detoxification at a large scale.
Collapse
Affiliation(s)
- Atul K. Upadhyay
- Department of Environmental Science, School of Earth & Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shekhar Mallick
- Plant Ecology and Environmental Science, National Botanical Research Institute, Lucknow, India
| | - Ranjan Singh
- Department of Environmental Science, School of Earth & Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Lav Singh
- Central Academy for State Forest Services, Burnight, Assam, India
- Forest Training Institute, Kanpur (Ministry of Environment, Forest and Climate change, Govt. of Uttar Pradesh, India
| | - Nitesh Singh
- Department of Plant Pathology, Faculty of Agricultural Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, India
| | - S. K. Mandotra
- Department of Botany, Panjab University, Chandigarh, India
| | - Arpit Singh
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
| | | | - Shivaraman Pandey
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
- Government PG College, Datia, Madhya Pradesh, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Ito T, Ohkama-Ohtsu N. Degradation of glutathione and glutathione conjugates in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3313-3327. [PMID: 36651789 DOI: 10.1093/jxb/erad018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a ubiquitous, abundant, and indispensable thiol for plants that participates in various biological processes, such as scavenging reactive oxygen species, redox signaling, storage and transport of sulfur, detoxification of harmful substances, and metabolism of several compounds. Therefore knowledge of GSH metabolism is essential for plant science. Nevertheless, GSH degradation has been insufficiently elucidated, and this has hampered our understanding of plant life. Over the last five decades, the γ-glutamyl cycle has been dominant in GSH studies, and the exoenzyme γ-glutamyl transpeptidase has been regarded as the major GSH degradation enzyme. However, recent studies have shown that GSH is degraded in cells by cytosolic enzymes such as γ-glutamyl cyclotransferase or γ-glutamyl peptidase. Meanwhile, a portion of GSH is degraded after conjugation with other molecules, which has also been found to be carried out by vacuolar γ-glutamyl transpeptidase, γ-glutamyl peptidase, or phytochelatin synthase. These findings highlight the need to re-assess previous assumptions concerning the γ-glutamyl cycle, and a novel overview of the plant GSH degradation pathway is essential. This review aims to build a foundation for future studies by summarizing current understanding of GSH/glutathione conjugate degradation.
Collapse
Affiliation(s)
- Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
10
|
Dard A, Weiss A, Bariat L, Auverlot J, Fontaine V, Picault N, Pontvianne F, Riondet C, Reichheld JP. Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2707-2725. [PMID: 36715641 DOI: 10.1093/jxb/erad042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/28/2023] [Indexed: 06/06/2023]
Abstract
In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.
Collapse
Affiliation(s)
- Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Valentine Fontaine
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Nathalie Picault
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
11
|
Otulak-Kozieł K, Kozieł E, Treder K, Király L. Glutathione Contribution in Interactions between Turnip mosaic virus and Arabidopsis thaliana Mutants Lacking Respiratory Burst Oxidase Homologs D and F. Int J Mol Sci 2023; 24:ijms24087128. [PMID: 37108292 PMCID: PMC10138990 DOI: 10.3390/ijms24087128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play crucial and diverse roles in plant tissue-mediated production of reactive oxygen species during the development, growth, and response of plants to abiotic and biotic stress. Many studies have demonstrated the contribution of RbohD and RbohF in stress signaling in pathogen response differentially modulating the immune response, but the potential role of the Rbohs-mediated response in plant-virus interactions remains unknown. The present study analyzed, for the first time, the metabolism of glutathione in rbohD-, rbohF-, and rbohD/F-transposon-knockout mutants in response to Turnip mosaic virus (TuMV) infection. rbohD-TuMV and Col-0-TuMV interactions were characterized by susceptible reaction to TuMV, associated with significant activity of GPXLs (glutathione peroxidase-like enzymes) and induction of lipid peroxidation in comparison to mock-inoculated plants, with reduced total cellular and apoplastic glutathione content observed at 7-14 dpi and dynamic induction of apoplast GSSG (oxidized glutathione) at 1-14 dpi. Systemic virus infection resulted in the induction of AtGSTU1 and AtGSTU24, which was highly correlated with significant downregulation of GSTs (glutathione transferases) and cellular and apoplastic GGT (γ-glutamyl transferase) with GR (glutathione reductase) activities. On the contrary, resistant rbohF-TuMV reactions, and especially enhanced rbohD/F-TuMV reactions, were characterized by a highly dynamic increase in total cellular and apoplastic glutathione content, with induction of relative expression of AtGGT1, AtGSTU13, and AtGSTU19 genes. Moreover, virus limitation was highly correlated with the upregulation of GSTs, as well as cellular and apoplastic GGT with GR activities. These findings clearly indicate that glutathione can act as a key signaling factor in not only susceptible rbohD reaction but also the resistance reaction presented by rbohF and rbohD/F mutants during TuMV interaction. Furthermore, by actively reducing the pool of glutathione in the apoplast, GGT and GR enzymes acted as a cell first line in the Arabidopsis-TuMV pathosystem response, protecting the cell from oxidative stress in resistant interactions. These dynamically changed signal transductions involved symplast and apoplast in mediated response to TuMV.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute-National Research Institute, 76-009 Bonin, Poland
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 15 Herman Ottó Str., H-1022 Budapest, Hungary
| |
Collapse
|
12
|
Hipsch M, Michael Y, Lampl N, Sapir O, Cohen Y, Helman D, Rosenwasser S. Early detection of late blight in potato by whole-plant redox imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:649-664. [PMID: 36534114 DOI: 10.1111/tpj.16071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.
Collapse
Affiliation(s)
- Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yaron Michael
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290000, Israel
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
13
|
Boro P, Chattopadhyay S. Crosstalk between MAPKs and GSH under stress: A critical review. J Biosci 2022. [DOI: 10.1007/s12038-022-00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Pavlů J, Kerchev P, Černý M, Novák J, Berka M, Jobe TO, López Ramos JM, Saiz-Fernández I, Rashotte AM, Kopriva S, Brzobohatý B. Cytokinin modulates the metabolic network of sulfur and glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7417-7433. [PMID: 36226742 DOI: 10.1093/jxb/erac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - José Maria López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aaron Michael Rashotte
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
15
|
Exploring the Potential Enhancing Effects of Trans-Zeatin and Silymarin on the Productivity and Antioxidant Defense Capacity of Cadmium-Stressed Wheat. BIOLOGY 2022; 11:biology11081173. [PMID: 36009800 PMCID: PMC9404800 DOI: 10.3390/biology11081173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Simple Summary Wheat experiments have provided insight into tolerance to cadmium (Cd) stress, the way in which wheat alters its morpho-physio-biochemical and antioxidant system responses when trans-Zeatin + silymarin (applied as seed priming + leaf spray) treatment is offered against Cd stress. This integrative treatment effectively enhanced growth, productivity, photosynthetic efficiency, leaf integrity, and antioxidant systems in the Cd-stressed wheat plants. This treatment reduced the Cd contamination (healthy grains) and increased growth and productivity by increasing osmo-regulatory compounds along with different antioxidant activities, which serve as potent defenses to protect plants from Cd stress by increasing tolerance to Cd stress in wheat. Abstract Pot trials were performed to explore the impacts of seed priming (SPr) plus leaf treatment (LTr) with trans-zeatin-type cytokinin (tZck; 0.05 mM) and silymarin (Sim; 0.5 mM) on growth, yield, physio-biochemical responses, and antioxidant defense systems in Cd-stressed wheat. tZck + Sim applied as SPr + LTr was more effective than individual treatments, and the impacts were more pronounced under stress conditions. Cd stress (0.6 mM) severely declined growth and yield traits, and photosynthesis efficiency (pigment contents, instantaneous carboxylation efficiency, and photochemical activity) compared to the control. These negative impacts coincided with increased levels of Cd2+, O2•− (superoxide), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and EL (electrolyte leakage). Non-enzymatic and enzymatic antioxidant activities, and tZck and Sim contents were also increased. However, tZck + Sim increased photosynthesis efficiency, and further boosted antioxidant activities, and contents of tZck and Sim, while minimizing Cd2+ levels in roots, leaves, and grains. The levels of O2•−, H2O2, MDA, and EL were also minimized, reflecting positively on growth and productivity. tZck + Sim applied as SPr + LTr was highly effective in promoting antioxidants and photosynthesis machineries, minimizing oxidative stress biomarkers and Cd2+ levels, boosting tolerance to Cd stress, and improving wheat productivity under Cd stress.
Collapse
|
16
|
Liu H, Yang H, Zhao H, Lyu L, Wu W, Li W. The mechanism of protective effect on postharvest blackberry fruit treated with ferulic acid and natamycin jointly using transcriptomics and proteomics methods. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hasan MS, Chopra D, Damm A, Koprivova A, Kopriva S, Meyer AJ, Müller‐Schüssele S, Grundler FMW, Siddique S. Glutathione contributes to plant defence against parasitic cyst nematodes. MOLECULAR PLANT PATHOLOGY 2022; 23:1048-1059. [PMID: 35352464 PMCID: PMC9190975 DOI: 10.1111/mpp.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cyst nematodes (CNs) are an important group of root-infecting sedentary endoparasites that severely damage many crop plants worldwide. An infective CN juvenile enters the host's roots and migrates towards the vascular cylinder, where it induces the formation of syncytial feeding cells, which nourish the CN throughout its parasitic stages. Here, we examined the role of glutathione (l-γ-glutamyl-l-cysteinyl-glycine) in Arabidopsis thaliana on infection with the CN Heterodera schachtii. Arabidopsis lines with mutations pad2, cad2, or zir1 in the glutamate-cysteine ligase (GSH1) gene, which encodes the first enzyme in the glutathione biosynthetic pathway, displayed enhanced CN susceptibility, but susceptibility was reduced for rax1, another GSH1 allele. Biochemical analysis revealed differentially altered thiol levels in these mutants that was independent of nematode infection. All glutathione-deficient mutants exhibited impaired activation of defence marker genes as well as genes for biosynthesis of the antimicrobial compound camalexin early in infection. Further analysis revealed a link between glutathione-mediated plant resistance to CN infection and the production of camalexin on nematode infection. These results suggest that glutathione levels affect plant resistance to CN by fine-tuning the balance between the cellular redox environment and the production of compounds related to defence against infection.
Collapse
Affiliation(s)
- M. Shamim Hasan
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Plant PathologyFaculty of AgricultureHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Divykriti Chopra
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anika Damm
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Anna Koprivova
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Stanislav Kopriva
- Institute for Plant SciencesCluster of Excellence on Plant SciencesUniversity of CologneCologneGermany
| | - Andreas J. Meyer
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Stefanie Müller‐Schüssele
- Institute of Crop Science and Resource Conservation (INRES)Chemical SignallingUniversity of BonnBonnGermany
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation (INRES)Molecular PhytomedicineUniversity of BonnINRESBonnGermany
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
18
|
Ghosh A, Islam MS, Alam NB, Mustafiz A, Islam T. Transcript profiling of glutathione metabolizing genes reveals abiotic stress and glutathione-specific alteration in Arabidopsis and rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1375-1390. [PMID: 36051227 PMCID: PMC9424389 DOI: 10.1007/s12298-022-01220-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Homoeostasis of glutathione (GSH) is crucial for plant survival and adaptability against stress. Despite the presence of complete Arabidopsis and rice genome sequence, the comprehensive analysis of the GSH metabolizing genes is still missing. This research concentrated on the comprehensive understanding of GSH metabolizing genes in two model plants-Arabidopsis and rice in terms of their subcellular localization, exon-intron distribution, protein domain structure, and transcript abundance. Expression profiling using the microarray data provided significant evidence of their participation in response to various abiotic stress conditions. Besides, some of these GSH metabolizing genes revealed their expression alteration in several developmental changes and tissue diversification. The presence of various stress-specific cis-regulatory elements in the promoter region of GSH metabolizing genes could be directly correlated with their stress-specific transcript alteration. Moreover, the application of exogenous GSH significantly downregulated GSH synthesizing genes and upregulated GSH metabolizing genes in Arabidopsis with few exceptions indicating a product-dependent regulation of GSH metabolizing genes. Interestingly, validation of rice GSH metabolizing genes in response to drought and salinity showed an almost similar pattern of expression in quantitative real-time as observed by microarray data. Altogether, GSH metabolizing members are a promising and underutilized genetic source for plant improvement that could be used to enhance stress tolerance in plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01220-5.
Collapse
Affiliation(s)
- Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Md. Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Tahmina Islam
- Department of Botany, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
19
|
Shee R, Ghosh S, Khan P, Sahid S, Roy C, Shee D, Paul S, Datta R. Glutathione regulates transcriptional activation of iron transporters via S-nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:2176-2190. [PMID: 35394650 DOI: 10.1111/pce.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions. Exogenous GSH treatment enhanced chloroplast Fe contents in Col-0 but failed to do so in the nramp3nramp4 double mutants demonstrating that GSH plays a role in modulating subcellular Fe homoeostasis. Pharmacological experiments, mutant analysis, and promoter assays revealed that this regulation involves the transcriptional activation of Fe transporter genes by a GSH-S-nitrosoglutathione (GSNO) module. The Fe responsive bHLH transcription factors (TFs), AtbHLH29, AtbHLH38, and AtbHLH101 were found to interact with the promoters of these genes, which were, in turn, activated via S-nitrosylation (SNO). Taken together, the present study highlights the role of the GSH-GSNO module in regulating subcellular Fe homoeostasis by transcriptional activation of the Fe transporters AtNRAMP3, AtNRAMP4, and AtPIC1 via SNO of bHLH TFs during Fe deficiency.
Collapse
Affiliation(s)
- Ranjana Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Soumi Ghosh
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Pinki Khan
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Salman Sahid
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Dibyendu Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| |
Collapse
|
20
|
Wang J, Wang R, Shi Z, Zeng R, Ren T, Zhang B. Glutathione-Responsive Pyraclostrobin-Loaded Polyurea Microcapsules for Their Intelligent Controlled Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5310-5318. [PMID: 35467347 DOI: 10.1021/acs.jafc.1c08182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of intelligent controlled release technology to create stimuli-responsive pesticide formulations has been shown to effectively improve pesticide efficacy and reduce environmental pollution. Herein, a glutathione-responsive release polyurea (PU) microcapsules (MCs) loaded with pyraclostrobin were developed via the interface polymerization method. The pyraclostrobin-loaded PU-MCs showed a regular spherical shape with an average diameter of 480 nm. It also showed good thermal stability and rheological properties. Furthermore, the pyraclostrobin-loaded PU-MCs exhibited favorable wettability on wheat leaves, which was beneficial for enhancing the retention capacity of pesticide droplets and improving pesticide utilization. The pyraclostrobin can be released from MCs and directly proportional to glutathione (GSH) concentrations with Fickian diffusion. Importantly, the control efficacy of pyraclostrobin-loaded PU-MCs against Fusarium graminearum was positively correlated with GSH, indicating a promising candidate for a controlled release of pesticides in agriculture and laying the foundation for further field experiments.
Collapse
Affiliation(s)
- Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| | - Rong Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| | - Zefeng Shi
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| | - Rong Zeng
- Shanghai Key Laboratory of Protection Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, P. R. China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| |
Collapse
|
21
|
Otulak-Kozieł K, Kozieł E, Przewodowski W, Ciacka K, Przewodowska A. Glutathione Modulation in PVY NTN Susceptible and Resistant Potato Plant Interactions. Int J Mol Sci 2022; 23:ijms23073797. [PMID: 35409157 PMCID: PMC8998174 DOI: 10.3390/ijms23073797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Włodzimierz Przewodowski
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Agnieszka Przewodowska
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| |
Collapse
|
22
|
Ivanova KA, Chernova EN, Kulaeva OA, Tsyganova AV, Kusakin PG, Russkikh IV, Tikhonovich IA, Tsyganov VE. The Regulation of Pea ( Pisum sativum L.) Symbiotic Nodule Infection and Defense Responses by Glutathione, Homoglutathione, and Their Ratio. FRONTIERS IN PLANT SCIENCE 2022; 13:843565. [PMID: 35432395 PMCID: PMC9006610 DOI: 10.3389/fpls.2022.843565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, the roles of glutathione (GSH), homoglutathione (hGSH), and their ratio in symbiotic nodule development and functioning, as well as in defense responses accompanying ineffective nodulation in pea (Pisum sativum) were investigated. The expression of genes involved in (h)GSH biosynthesis, thiol content, and localization of the reduced form of GSH were analyzed in nodules of wild-type pea plants and mutants sym33-3 (weak allele, "locked" infection threads, occasional bacterial release, and defense reactions) and sym33-2 (strong allele, "locked" infection threads, defense reactions), and sym40-1 (abnormal bacteroids, oxidative stress, early senescence, and defense reactions). The effects of (h)GSH depletion and GSH treatment on nodule number and development were also examined. The GSH:hGSH ratio was found to be higher in nodules than in uninoculated roots in all genotypes analyzed, with the highest value being detected in wild-type nodules. Moreover, it was demonstrated, that a hGSHS-to-GSHS switch in gene expression in nodule tissue occurs only after bacterial release and leads to an increase in the GSH:hGSH ratio. Ineffective nodules showed variable GSH:hGSH ratios that correlated with the stage of nodule development. Changes in the levels of both thiols led to the activation of defense responses in nodules. The application of a (h)GSH biosynthesis inhibitor disrupted the nitrogen fixation zone in wild-type nodules, affected symbiosome formation in sym40-1 mutant nodules, and meristem functioning and infection thread growth in sym33-3 mutant nodules. An increase in the levels of both thiols following GSH treatment promoted both infection and extension of defense responses in sym33-3 nodules, whereas a similar increase in sym40-1 nodules led to the formation of infected cells resembling wild-type nitrogen-fixing cells and the disappearance of an early senescence zone in the base of the nodule. Meanwhile, an increase in hGSH levels in sym40-1 nodules resulting from GSH treatment manifested as a restriction of infection similar to that seen in untreated sym33-3 nodules. These findings indicated that a certain level of thiols is required for proper symbiotic nitrogen fixation and that changes in thiol content or the GSH:hGSH ratio are associated with different abnormalities and defense responses.
Collapse
Affiliation(s)
- Kira A. Ivanova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Ekaterina N. Chernova
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Kulaeva
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Iana V. Russkikh
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Saint Petersburg Scientific Center of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
23
|
Günal S, Kopriva S. Measurement of flux through sulfate assimilation using [35S]sulfate. Methods Enzymol 2022; 676:197-209. [DOI: 10.1016/bs.mie.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
25
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
26
|
Alvarez-Fernandez R, Penfold CA, Galvez-Valdivieso G, Exposito-Rodriguez M, Stallard EJ, Bowden L, Moore JD, Mead A, Davey PA, Matthews JSA, Beynon J, Buchanan-Wollaston V, Wild DL, Lawson T, Bechtold U, Denby KJ, Mullineaux PM. Time-series transcriptomics reveals a BBX32-directed control of acclimation to high light in mature Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1363-1386. [PMID: 34160110 DOI: 10.1111/tpj.15384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ellie J Stallard
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Laura Bowden
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Jonathan D Moore
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Andrew Mead
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Phillip A Davey
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jim Beynon
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | | | - David L Wild
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
27
|
Sulfur Deprivation Modulates Salicylic Acid Responses via Nonexpressor of Pathogenesis-Related Gene 1 in Arabidopsis thaliana. PLANTS 2021; 10:plants10061065. [PMID: 34073325 PMCID: PMC8230334 DOI: 10.3390/plants10061065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Mineral nutrients are essential for plant growth and reproduction, yet only a few studies connect the nutritional status to plant innate immunity. The backbone of plant defense response is mainly controlled by two major hormones: salicylic acid (SA) and jasmonic acid (JA). This study investigated changes in the macronutrient concentration (deficiency/excess of nitrogen, phosphorus, potassium, magnesium, and sulfur) on the expression of PR1, a well-characterized marker in the SA-pathway, and PDF1.2 and LOX2 for the JA-pathway, analyzing plants carrying the promoter of each gene fused to GUS as a reporter. After histochemical GUS assays, we determined that PR1 gene was strongly activated in response to sulfur (S) deficiency. Using RT-PCR, we observed that the induction of PR1 depended on the function of Non-expressor of Pathogenesis-Related gene 1 (NPR1) and SA accumulation, as PR1 was not expressed in npr1-1 mutant and NahG plants under S-deprived conditions. Plants treated with different S-concentrations showed that total S-deprivation was required to induce SA-mediated defense responses. Additionally, bioassays revealed that S-deprived plants, induced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv. DC3000 and increase susceptibility to the necrotrophic Botrytis cinerea. In conclusion, we observed a relationship between S and SA/JA-dependent defense mechanisms in Arabidopsis.
Collapse
|
28
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
29
|
Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:672884. [PMID: 33995498 PMCID: PMC8120245 DOI: 10.3389/fgene.2021.672884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/23/2023] Open
Abstract
Drought is one of the major abiotic stress factors limiting peanut production. It causes the loss of pod yield during the pod formation stage. Here, one previously identified drought-tolerant cultivar, "L422" of peanut, was stressed by drought (35 ± 5%) at pod formation stage for 5, 7, and 9 days. To analyze the drought effects on peanut, we conducted physiological and transcriptome analysis in leaves under well-watered (CK1, CK2, and CK3) and drought-stress conditions (T1, T2, and T3). By transcriptome analysis, 3,586, 6,730, and 8,054 differentially expressed genes (DEGs) were identified in "L422" at 5 days (CK1 vs T1), 7 days (CK2 vs T2), and 9 days (CK3 vs T3) of drought stress, respectively, and 2,846 genes were common DEGs among the three-time points. Furthermore, the result of weighted gene co-expression network analysis (WGCNA) revealed one significant module that was closely correlated between drought stress and physiological data. A total of 1,313 significantly up-/down-regulated genes, including 61 transcription factors, were identified in the module at three-time points throughout the drought stress stage. Additionally, six vital metabolic pathways, namely, "MAPK signaling pathway-plant," "flavonoid biosynthesis," "starch and sucrose metabolism," "phenylpropanoid biosynthesis," "glutathione metabolism," and "plant hormone signal transduction" were enriched in "L422" under severe drought stress. Nine genes responding to drought tolerance were selected for quantitative real-time PCR (qRT-PCR) verification and the results agreed with transcriptional profile data, which reveals the reliability and accuracy of transcriptome data. Taken together, these findings could lead to a better understanding of drought tolerance and facilitate the breeding of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lifeng Liu
- State Key Laboratory for Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
30
|
Müller M, Munné-Bosch S. Hormonal impact on photosynthesis and photoprotection in plants. PLANT PHYSIOLOGY 2021; 185:1500-1522. [PMID: 33793915 PMCID: PMC8133604 DOI: 10.1093/plphys/kiaa119] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/19/2023]
Abstract
Photosynthesis is not only essential for plants, but it also sustains life on Earth. Phytohormones play crucial roles in developmental processes, from organ initiation to senescence, due to their role as growth and developmental regulators, as well as their central role in the regulation of photosynthesis. Furthermore, phytohormones play a major role in photoprotection of the photosynthetic apparatus under stress conditions. Here, in addition to discussing our current knowledge on the role of the phytohormones auxin, cytokinins, gibberellins, and strigolactones in promoting photosynthesis, we will also highlight the role of abscisic acid beyond stomatal closure in modulating photosynthesis and photoprotection under various stress conditions through crosstalk with ethylene, salicylates, jasmonates, and brassinosteroids. Furthermore, the role of phytohormones in controlling the production and scavenging of photosynthesis-derived reactive oxygen species, the duration and extent of photo-oxidative stress and redox signaling under stress conditions will be discussed in detail. Hormones have a significant impact on the regulation of photosynthetic processes in plants under both optimal and stress conditions, with hormonal interactions, complementation, and crosstalk being important in the spatiotemporal and integrative regulation of photosynthetic processes during organ development at the whole-plant level.
Collapse
Affiliation(s)
- Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Author for communication:
| |
Collapse
|
31
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
32
|
Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Appl Microbiol Biotechnol 2021; 105:2139-2156. [PMID: 33576880 PMCID: PMC7907027 DOI: 10.1007/s00253-021-11147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/13/2022]
Abstract
Abstract The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. Key points • Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. • Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. • Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11147-8.
Collapse
|
33
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
34
|
Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating Sulfur Pools under Sulfate Deprivation. TRENDS IN PLANT SCIENCE 2020; 25:1227-1239. [PMID: 32800669 DOI: 10.1016/j.tplants.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
35
|
Glutathione Enhances Auxin Sensitivity in Arabidopsis Roots. Biomolecules 2020; 10:biom10111550. [PMID: 33202956 PMCID: PMC7697393 DOI: 10.3390/biom10111550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023] Open
Abstract
Root development is regulated by the tripeptide glutathione (GSH), a strong non-enzymatic antioxidant found in plants but with a poorly understood function in roots. Here, Arabidopsis mutants deficient in GSH biosynthesis (cad2, rax1, and rml1) and plants treated with the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) showed root growth inhibition, significant alterations in the root apical meristem (RAM) structure (length and cell division), and defects in lateral root formation. Investigation of the molecular mechanisms of GSH action showed that GSH deficiency modulated total ubiquitination of proteins and inhibited the auxin-related, ubiquitination-dependent degradation of Aux/IAA proteins and the transcriptional activation of early auxin-responsive genes. However, the DR5 auxin transcriptional response differed in root apical meristem (RAM) and pericycle cells. The RAM DR5 signal was increased due to the up-regulation of the auxin biosynthesis TAA1 protein and down-regulation of PIN4 and PIN2, which can act as auxin sinks in the root tip. The transcription auxin response (the DR5 signal and expression of auxin responsive genes) in isolated roots, induced by a low (0.1 µM) auxin concentration, was blocked following GSH depletion of the roots by BSO treatment. A higher auxin concentration (0.5 µM) offset this GSH deficiency effect on DR5 expression, indicating that GSH deficiency does not completely block the transcriptional auxin response, but decreases its sensitivity. The ROS regulation of GSH, the active GSH role in cell proliferation, and GSH cross-talk with auxin assume a potential role for GSH in the modulation of root architecture under stress conditions.
Collapse
|
36
|
Yang Y, Wang X, Chen P, Zhou K, Xue W, Abid K, Chen S. Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:559070. [PMID: 33101327 PMCID: PMC7546314 DOI: 10.3389/fpls.2020.559070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 05/28/2023]
Abstract
Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2 -, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytis cinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.
Collapse
Affiliation(s)
- Yuting Yang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Xuewei Wang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Panpan Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Kan Abid
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| |
Collapse
|
37
|
Habermann K, Tiwari B, Krantz M, Adler SO, Klipp E, Arif MA, Frank W. Identification of small non-coding RNAs responsive to GUN1 and GUN5 related retrograde signals in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:138-155. [PMID: 32639635 DOI: 10.1111/tpj.14912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.
Collapse
Affiliation(s)
- Kristin Habermann
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Bhavika Tiwari
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Maria Krantz
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Stephan O Adler
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
38
|
Hendrix S, Jozefczak M, Wójcik M, Deckers J, Vangronsveld J, Cuypers A. Glutathione: A key player in metal chelation, nutrient homeostasis, cell cycle regulation and the DNA damage response in cadmium-exposed Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:498-507. [PMID: 32673998 DOI: 10.1016/j.plaphy.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Glutathione (GSH) is an important player in plant responses to cadmium (Cd) through its dual function as an antioxidant and precursor for metal-chelating phytochelatins (PCs). In addition, it was shown to be involved in cell cycle regulation in Arabidopsis thaliana roots, but its involvement in this process in leaves is largely unknown and has never been evaluated in Cd-exposed plants. This study aimed to elucidate the role of GSH in leaf growth and development, metal chelation, nutrient homeostasis and cell cycle regulation in A. thaliana plants upon prolonged Cd exposure. Responses were compared between wild-type (WT) plants and three GSH-deficient mutants. Our results indicate that PC production remains important in plants exposed to Cd for an extended duration. Furthermore, an important role for GSH in regulating nutrient homeostasis in Cd-exposed plants was revealed. Cell cycle analysis demonstrated that negative effects of Cd exposure on cell division and endoreplication were more pronounced in leaves of the GSH-deficient cadmium-sensitive 2-1 (cad2-1) mutant in comparison to the WT, indicating the involvement of GSH in cell cycle regulation. Finally, a crucial role for GSH in transcriptional activation of the Cd-induced DNA damage response (DDR) was revealed, as the Cd-induced upregulation of DDR-related genes was either less pronounced or completely abolished in leaves of the GSH-deficient mutants.
Collapse
Affiliation(s)
- Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Marijke Jozefczak
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Małgorzata Wójcik
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jana Deckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
39
|
Zechmann B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. PLANTS 2020; 9:plants9091067. [PMID: 32825274 PMCID: PMC7569779 DOI: 10.3390/plants9091067] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| |
Collapse
|
40
|
Trujillo-Hernandez JA, Bariat L, Enders TA, Strader LC, Reichheld JP, Belin C. A glutathione-dependent control of the indole butyric acid pathway supports Arabidopsis root system adaptation to phosphate deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4843-4857. [PMID: 32309856 PMCID: PMC7410191 DOI: 10.1093/jxb/eraa195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/17/2020] [Indexed: 05/04/2023]
Abstract
Root system architecture results from a highly plastic developmental process to adapt to environmental conditions. In particular, the development of lateral roots and root hair growth are constantly optimized to the rhizosphere properties, including biotic and abiotic constraints. The development of the root system is tightly controlled by auxin, the driving morphogenic hormone in plants. Glutathione, a major thiol redox regulator, is also critical for root development but its interplay with auxin is scarcely understood. Previous work showed that glutathione deficiency does not alter root responses to indole acetic acid (IAA), the main active auxin in plants. Because indole butyric acid (IBA), another endogenous auxinic compound, is an important source of IAA for the control of root development, we investigated the crosstalk between glutathione and IBA during root development. We show that glutathione deficiency alters lateral roots and root hair responses to exogenous IBA but not IAA. Detailed genetic analyses suggest that glutathione regulates IBA homeostasis or conversion to IAA in the root cap. Finally, we show that both glutathione and IBA are required to trigger the root hair response to phosphate deprivation, suggesting an important role for this glutathione-dependent regulation of the auxin pathway in plant developmental adaptation to its environment.
Collapse
Affiliation(s)
- José A Trujillo-Hernandez
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Laetitia Bariat
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Tara A Enders
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Present address: Hofstra University, Department of Biology, Hempstead, NY 11549, USA
| | - Lucia C Strader
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jean-Philippe Reichheld
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Christophe Belin
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- Correspondence:
| |
Collapse
|
41
|
Asgher M, Verma S, Khan NA, Vyas D, Kumari P, Rashid S, Khan S, Qadir S, Ajmal Ali M, Ahmad P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. PLANTS 2020; 9:plants9020131. [PMID: 31973064 PMCID: PMC7076705 DOI: 10.3390/plants9020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/29/2022]
Abstract
Valeriana wallichii, a perennial herb belonging to family Valerianaceae, is an important medicinal herb of the Himalayan region. The incessant exploitation of nature for meeting the demands of the pharmaceutical industry has put unbearable pressure on its natural habitats. A study on its physiological, biochemical, growth and reproductive attributes was planned. Physiological study revealed that ex-situ (outside their natural habitat) populations faced severe stress as compared to in-situ (natural habitat) plants. The difference in the performance of these habitat plants was related to superoxide and H2O2 in the leaves. Photosynthetic attributes were increased in in-situ populations. Proline content and its biosynthetic enzymes ornithine aminotransferase, and pyrroline-5-carboxylate reductase showed an increase in ex-situ plants; proline oxidase decreased. Glucose-6-phosphate dehydrogenase, shikimic acid dehydrogenese, phenylalanine lyase, and flavonoids content showed an increment in ex-situ plants. Antioxidants enzyme superoxide dismutase, catalase, ascorbate peroxidase and reduced glutathione showed an increment in ex-situ conditions. Growth and reproductive attributes were more in ex-situ plants. The observations made are suggestive that a comprehensive conservation programme involving in-situ as well as ex-situ strategies will be effective for the conservation and long term survival of the species.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| | - Susheel Verma
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir 180001, India;
| | - Priyanka Kumari
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Rashid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
| | - Sajid Khan
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Qadir
- Department of Botany, Womens College, Maulana Azad Road, Srinagar, Jammu and Kashmir 190001, India;
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir 190001, India
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| |
Collapse
|
42
|
García-Quirós E, Alché JDD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:730-741. [PMID: 31557297 PMCID: PMC6946011 DOI: 10.1093/jxb/erz376] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.
Collapse
Affiliation(s)
- Estefanía García-Quirós
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Christine H Foyer
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Correspondence:
| |
Collapse
|
43
|
Rasool B, Karpinska B, Pascual J, Kangasjärvi S, Foyer CH. Catalase, glutathione, and protein phosphatase 2A-dependent organellar redox signalling regulate aphid fecundity under moderate and high irradiance. PLANT, CELL & ENVIRONMENT 2020; 43:209-222. [PMID: 31702837 DOI: 10.1111/pce.13669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/29/2023]
Abstract
Redox processes regulate plant/insect responses, but the precise roles of environmental triggers and specific molecular components remain poorly defined. Aphid fecundity and plant responses were therefore measured in Arabidopsis thaliana mutants deficient in either catalase 2 (cat2), different protein phosphatase 2A (PP2A) subunits or glutathione (cad2, pad2, and clt1) under either moderate (250 μmol m-2 s-1 ) or high (800 μmol m-2 s-1 ) light. Aphid fecundity was decreased in pp2a-b'γ, cat2 and the cat2 pp2a-b'γ double mutants relative to the wild type under moderate irradiance. High light decreased aphid numbers in all genotypes except for cat2. Aphid fecundity was similar in the cat2 and glutathione-, phytoalexin-, and glucosinolate-deficient cat2cad2 double mutants under both irradiances. Aphid-induced increases in transcripts encoding the abscisic acid-related ARABIDOPSIS ZINC-FINGER PROTEIN 1 transcription factor were observed only under moderate light. Conversely, aphid induced increases in transcripts encoding the jasmonate-synthesis enzyme ALLENE OXIDE CYCLASE 3 was observed in all genotypes only under high light. Aphid-induced increases in REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 mRNAs were observed in all genotypes except pp2a-b'ζ1-1 under both irradiances. Aphid fecundity is therefore regulated by cellular redox signalling that is mediated, at least in part, through PP2A-dependent mitochondria to nucleus signalling pathways.
Collapse
Affiliation(s)
- Brwa Rasool
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Technical College of Applied Science, Sulaimani Polytechnic University, 46001, Sulaymaniyah, Iraq
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
44
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
45
|
Bangash SAK, Müller-Schüssele SJ, Solbach D, Jansen M, Fiorani F, Schwarzländer M, Kopriva S, Meyer AJ. Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit. PLoS One 2019; 14:e0220589. [PMID: 31626663 PMCID: PMC6799929 DOI: 10.1371/journal.pone.0220589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Glutathione is considered a key metabolite for stress defense and elevated levels have frequently been proposed to positively influence stress tolerance. To investigate whether glutathione affects plant performance and the drought tolerance of plants, wild-type Arabidopsis plants and an allelic series of five mutants (rax1, pad2, cad2, nrc1, and zir1) with reduced glutathione contents between 21 and 63% compared to wild-type glutathione content were phenotypically characterized for their shoot growth under control and water-limiting conditions using a shoot phenotyping platform. Under non-stress conditions the zir1 mutant with only 21% glutathione showed a pronounced dwarf phenotype. All other mutants with intermediate glutathione contents up to 62% in contrast showed consistently slightly smaller shoots than the wild-type. Moderate drought stress imposed through water withdrawal until shoot growth ceased showed that wild-type plants and all mutants responded similarly in terms of chlorophyll fluorescence and growth retardation. These results lead to the conclusion that glutathione is important for general plant performance but that the glutathione content does not affect tolerance to moderate drought conditions typically experienced by crops in the field.
Collapse
Affiliation(s)
| | | | - David Solbach
- INRES–Chemical Signalling, University of Bonn, Bonn, Germany
| | - Marcus Jansen
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Schwarzländer
- INRES–Chemical Signalling, University of Bonn, Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, Jülich, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| | - Andreas J. Meyer
- INRES–Chemical Signalling, University of Bonn, Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
46
|
Borges KLR, Salvato F, Loziuk PL, Muddiman DC, Azevedo RA. Quantitative proteomic analysis of tomato genotypes with differential cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26039-26051. [PMID: 31278641 DOI: 10.1007/s11356-019-05766-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
This is a report on comprehensive characterization of cadmium (Cd)-exposed root proteomes in tomato using label-free quantitative proteomic approach. Two genotypes differing in Cd tolerance, Pusa Ruby (Cd-tolerant) and Calabash Rouge (Cd-sensitive), were exposed during 4 days to assess the Cd-induced effects on root proteome. The overall changes in both genotypes in terms of differentially accumulated proteins (DAPs) were mainly associated to cell wall, redox, and stress responses. The proteome of the sensitive genotype was more responsive to Cd excess, once it presented higher number of DAPs. Contrasting protein accumulation in cellular component was observed: Cd-sensitive enhanced intracellular components, while the Cd-tolerant increased proteins of extracellular and envelope regions. Protective and regulatory mechanisms were different between genotypes, once the tolerant showed alterations of various protein groups that lead to a more efficient system to cope with Cd challenge. These findings could shed some light on the molecular basis underlying the Cd stress response in tomato, providing fundamental insights for the development of Cd-safe cultivars. Graphical abstract.
Collapse
Affiliation(s)
- Karina Lima Reis Borges
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
| | - Fernanda Salvato
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brasil
| | - Philip L Loziuk
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil.
| |
Collapse
|
47
|
Deciphering the involvement of glutathione in phytohormone signaling pathways to mitigate stress in planta. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Liu T, Du Q, Li S, Yang J, Li X, Xu J, Chen P, Li J, Hu X. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC PLANT BIOLOGY 2019; 19:323. [PMID: 31319801 PMCID: PMC6639942 DOI: 10.1186/s12870-019-1929-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exogenous 5-aminolevulinic acid (ALA) positively regulates plants chlorophyll synthesis and protects them against environmental stresses, although the protection mechanism is not fully clear. Here, we explored the effects of ALA on chlorophyll synthesis in tomato plants, which are sensitive to low temperature. We also examined the roles of the glutathione S-transferase (GSTU43) gene, which is involved in ALA-induced tolerance to oxidation stress and regulation of chlorophyll synthesis under low temperature. RESULTS Exogenous ALA alleviated low temperature caused chlorophyll synthesis obstacle of uroporphyrinogen III (UROIII) conversion to protoporphyrin IX (Proto IX), and enhanced the production of chlorophyll and its precursors, including endogenous ALA, Proto IX, Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl), under low temperature in tomato leaves. However, ALA did not regulate chlorophyll synthesis at the level of transcription. Notably, ALA up-regulated the GSTU43 gene and protein expression and increased GST activity. Silencing of GSTU43 with virus-induced gene silencing reduced the activities of GST, superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and increased the membrane lipid peroxidation; while fed with ALA significant increased all these antioxidase activities and antioxidant contents, and alleviated the membrane damage. CONCLUSIONS ALA triggered GST activity encoded by GSTU43, and increased tomato tolerance to low temperature-induced oxidative stress, perhaps with the assistance of ascorbate- and/or a glutathione-regenerating cycles, and actively regulated the plant redox homeostasis. This latter effect reduced the degree of membrane lipid peroxidation, which was essential for the coordinated synthesis of chlorophyll.
Collapse
Affiliation(s)
- Tao Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Qingjie Du
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Suzhi Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jianyu Yang
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaojing Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jiaojiao Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Pengxiang Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianming Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaohui Hu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| |
Collapse
|
49
|
Besbes F, Habegger R, Schwab W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:128. [PMID: 30953454 PMCID: PMC6451215 DOI: 10.1186/s12870-019-1718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/14/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The soil-borne vascular pathogen Verticillium dahliae causes severe wilt symptoms in a wide range of plants including strawberry (Fragaria × ananassa). To enhance our understanding of the effects of V. dahliae on the growth and development of F. × ananassa, the expression patterns of 21 PR-10 genes were investigated by qPCR analysis and metabolite changes were determined by LC-MS in in vitro F. × ananassa plants upon pathogen infection. RESULTS The expression patterns of the 21 isoforms showed a wide range of responses. Four PR-10 genes were highly induced in leaves upon pathogen infection while eight members were significantly up-regulated in roots. A simultaneously induced expression in leaves and roots was detected for five PR-10 genes. Interestingly, two isoforms were expressed upon infection in all three tissues (leaves, roots and stems) while no induction was detected for two other members. Accumulation of antifungal catechin and epicatechin was detected upon pathogen infection in roots and stems at late stages, while caffeic acid and citric acid were observed only in infected roots. Production of abscisic acid, salicylic acid, jasmonic acid (JA), gibberellic acid and indole acetic acid (IAA) was induced in infected leaves and stems at early stages. IAA and JA were the sole hormones to be ascertained in infected roots at late stages. CONCLUSIONS The induction of several PR-10 genes upon infection of strawberry plants with V. dahliae suggest a role of PR-10 genes in the defense response against this pathogen. Production of phytohormones in the early stages of infection and antifungal metabolites in late stages suppose that they are implicated in this response. The results may possibly improve the control measures of the pathogen.
Collapse
Affiliation(s)
- Fatma Besbes
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Ruth Habegger
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
50
|
Carvalho LC, Amâncio S. Cutting the Gordian Knot of abiotic stress in grapevine: From the test tube to climate change adaptation. PHYSIOLOGIA PLANTARUM 2019; 165:330-342. [PMID: 30357847 PMCID: PMC7379562 DOI: 10.1111/ppl.12857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
In Mediterranean climate areas, the available scenarios for climate change suggest an increase in the frequency of heat waves and severe drought in summer. Grapevine (Vitis vinifera L.) is a traditional Mediterranean species and is the most valuable fruit crop in the world. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of irrigation, with the concomitant losses in wine quality, and researchers to study tolerance to stress in existing genotypes. The viticulture and winemaking worlds are in demand to understand the physiological potential of the available genotypes to respond to climate changes. In this review, we will focus on the cross-talk between common abiotic stresses that currently affect grapevine productivity and that are prone to affect it deeper in the future. We will discuss results obtained under three experimental stress conditions and that call for specific responses: (1) acclimatization of in vitro plantlets, (2) stress combinations in controlled conditions for research purposes, (3) extreme events in the field that, driven by climate changes, are pushing Mediterranean species to the limit. The different levels of tolerance to stress put in evidence by the plasticity of phenotypic and genotypic response mechanisms, will be addressed. This information is relevant to understand varietal adaptation to impending climate changes and to assist vine growers in choosing genotypes and viticulture practices.
Collapse
Affiliation(s)
- Luísa C. Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de AgronomiaUniversidade de LisboaTapada da Ajuda, 1349‐017, LisboaPortugal
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de AgronomiaUniversidade de LisboaTapada da Ajuda, 1349‐017, LisboaPortugal
| |
Collapse
|