1
|
Sajadi MM, Abbasi A, Tehrani ZR, Siska C, Clark R, Chi W, Seaman MS, Mielke D, Wagh K, Liu Q, Jumpa T, Ketchem RR, Nguyen DN, Tolbert WD, Pierce BG, Atkinson B, Deming D, Sprague M, Asakawa A, Ferrer D, Dunn Y, Calvillo S, Yin R, Guest JD, Korber B, Mayer BT, Sato AH, Ouyang X, Foulke S, Habibzadeh P, Karimi M, Aslanabadi A, Hojabri M, Saadat S, Zareidoodeji R, Kędzior M, Pozharski E, Heredia A, Chen H, Montefiori D, Ferrari G, Pazgier M, Lewis GK, Jardine JG, Lusso P, DeVico A. A comprehensive engineering strategy improves potency and manufacturability of a near pan-neutralizing antibody against HIV. Structure 2025:S0969-2126(25)00150-9. [PMID: 40373766 DOI: 10.1016/j.str.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/20/2025] [Accepted: 04/18/2025] [Indexed: 05/17/2025]
Abstract
Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first-generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing Current Good Manufacturing Practices (cGMP) manufacturing capability. Here, we report the engineering of an anti-CD4-binding site (CD4bs) bnAb, N49P9.3. Through a series of rational modifications, we produced a variant, N49P9.6-FR-LS, that demonstrates enhanced potency, superior antiviral activity in combination with other bnAbs, low polyreactivity, and longer circulating half-life. Additional engineering for manufacturing produced a final variant, eN49P9, with properties conducive to cGMP production. Overall, these efforts demonstrate the feasibility of developing enhanced anti-CD4bs bnAbs with greatly improved antiviral properties as well as potential translational value.
Collapse
Affiliation(s)
- Mohammad M Sajadi
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Maryland VA Healthcare System, Baltimore, MD, USA.
| | - Abdolrahim Abbasi
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zahra Rikhtegaran Tehrani
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine Siska
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Rutilio Clark
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Woo Chi
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Qingbo Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Taylor Jumpa
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | | | - Dung N Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ben Atkinson
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derrick Deming
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Megan Sprague
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Andrew Asakawa
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - David Ferrer
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Yasmin Dunn
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Sarah Calvillo
- Just-Evotec Biologics, 401 Terry Avenue North, Seattle, WA, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Bette Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alicia H Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xin Ouyang
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott Foulke
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Parham Habibzadeh
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maryam Karimi
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arash Aslanabadi
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahsa Hojabri
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saman Saadat
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roza Zareidoodeji
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Edwin Pozharski
- University of Maryland Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alonso Heredia
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Durham, NC, USA; Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - George K Lewis
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph G Jardine
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Anthony DeVico
- Divisions of Vaccine Research and Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Lee YZ, Zhang YN, Newby ML, Ward G, Gomes KB, Auclair S, DesRoberts C, Allen JD, Ward AB, Stanfield RL, He L, Crispin M, Wilson IA, Zhu J. Rational design of next-generation filovirus vaccines with glycoprotein stabilization, nanoparticle display, and glycan modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641072. [PMID: 40060701 PMCID: PMC11888476 DOI: 10.1101/2025.03.02.641072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus. A 3.2 Å-resolution crystal structure provides atomic details for the redesigned Ebola virus GP, and cryo-electron microscopy reveals how a pan-ebolavirus neutralizing antibody targets a conserved site on the Sudan virus GP (3.13 Å-resolution), in addition to a low-resolution model of antibody-bound Ravn virus GP. A self-assembling protein nanoparticle (SApNP), I3-01v9, is redesigned at the N-terminus to allow the optimal surface display of filovirus GP trimers. Following detailed in vitro characterization, the lymph node dynamics of Sudan virus GP and GP-presenting SApNPs are investigated in a mouse model. Compared with soluble GP trimer, SApNPs show ~112 times longer retention in lymph node follicles, up-to-28 times greater presentation on follicular dendritic cell dendrites, and up-to-3 times stronger germinal center reactions. Functional antibody responses induced by filovirus GP trimers and SApNPs bearing wildtype and modified glycans are assessed in mice. Our study provides a foundation for next-generation filovirus vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Connor DesRoberts
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Uvax Bio, LLC, Newark, DE 19702, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Bruton J, Hanke T. Exploitation of Unconventional CD8 T-Cell Responses Induced by Engineered Cytomegaloviruses for the Development of an HIV-1 Vaccine. Vaccines (Basel) 2025; 13:72. [PMID: 39852851 PMCID: PMC11769474 DOI: 10.3390/vaccines13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8+ T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge. The RhCMV68-1.SIV-induced responses mediated a post-infection replication arrest of the challenge virus and eventually cleared it from the body. These observations in rhesus macaques opened a possibility that MHC-E-restricted CD8+ T-cells could achieve similar control of HIV-1 in humans. The potentially game-changing advantage of the human CMV (HCMV)-based vaccines is that they would induce protective CD8+ T-cells persisting at the sites of entry that would be insensitive to HIV-1 evasion. In the RhCMV68-1-protected rhesus macaques, MHC-E molecules and their peptide cargo utilise complex regulatory mechanisms and unique transport patterns, and researchers study these to guide human vaccine development. However, CMVs are highly species-adapted viruses and it is yet to be shown whether the success of RhCMV68-1 can be translated into an HCMV ortholog for humans. Despite some safety concerns regarding using HCMV as a vaccine vector in humans, there is a vision of immune programming of HCMV to induce pathogen-tailored CD8+ T-cells effective against HIV-1 and other life-threatening diseases.
Collapse
Affiliation(s)
- Joseph Bruton
- Hertford College, University of Oxford, Oxford OX1 3BW, UK;
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
Sajadi MM, Abbasi A, Tehrani ZR, Siska C, Clark R, Chi W, Seaman MS, Mielke D, Wagh K, Liu Q, Jumpa T, Ketchem RR, Nguyen DN, Tolbert WD, Pierce BG, Atkinson B, Deming D, Sprague M, Asakawa A, Ferrer D, Dunn Y, Calvillo S, Yin R, Guest JD, Korber B, Mayer BT, Sato AH, Ouyang X, Foulke S, Habibzadeh P, Karimi M, Aslanabadi A, Hojabri M, Saadat S, Zareidoodeji R, Kędzior M, Pozharski E, Heredia A, Montefiori D, Ferrari G, Pazgier M, Lewis GK, Jardine JG, Lusso P, DeVico A. A comprehensive engineering strategy improves potency and manufacturability of a near pan-neutralizing antibody against HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618178. [PMID: 39464103 PMCID: PMC11507801 DOI: 10.1101/2024.10.14.618178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing cGMP manufacturing capability. Here we report the engineering of an anti-CD4 binding-site (CD4bs) bnAb, N49P9.3, purified from the plasma of an HIV elite-neutralizer. Through a series of rational modifications we produced a variant that demonstrates: enhanced potency; superior antiviral activity in combination with other bnAbs; low polyreactivity; and longer circulating half-life. Additional engineering for manufacturing produced a final variant, eN49P9, with properties conducive to cGMP production. Overall, these efforts demonstrate the feasibility of developing enhanced anti-CD4bs bnAbs with greatly improved antiviral properties as well as potential translational value.
Collapse
|
5
|
Nelson GW, van Duijn J, Yuki Y, Pau MG, Tomaka F, Lavreys L, DeRosa SC, McElrath MJ, Kirk GD, Michael NL, Haas DW, Deeks SG, Wolinsky S, Walker B, Barouch DH, Stieh D, Carrington M. Prediction of differential Gag versus Env responses to a mosaic HIV-1 vaccine regimen by HLA class I alleles. J Virol 2024; 98:e0028124. [PMID: 39046263 PMCID: PMC11338073 DOI: 10.1128/jvi.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
HLA class I variation has the strongest effect genome-wide on outcome after HIV infection, and as such, an understanding of the impact of HLA polymorphism on response to HIV vaccination may inform vaccine design. We sought HLA associations with HIV-directed immunogenicity in the phase 1/2a APPROACH vaccine trial, which tested vaccine regimens containing mosaic inserts in Ad26 and MVA vectors, with or without a trimeric gp140 protein. While there were no HLA allelic associations with the overall cellular immune response to the vaccine assessed by ELISpot (Gag, Pol, and Env combined), significant associations with differential response to Gag compared to Env antigens were observed. Notably, HLA class I alleles known to associate with disease susceptibility in HIV natural history cohorts are associated with stronger Env-directed responses, whereas protective alleles are associated with stronger Gag-directed responses. Mean viral loads determined for each HLA allele in untreated individuals correlated negatively with the strength of the Gag response minus the Env response in Black vaccinees based on both ELISpot and CD8+ T cell ICS responses. As the association of T cell responses to conserved Gag epitopes with lower viral load in untreated individuals is well established, our data raise the possibility that the Ad26.Mos.HIV vaccine may induce more effective cellular responses in those with HLA alleles that confer improved virologic control in untreated HIV infection.IMPORTANCENo vaccine tested to date has shown sufficient efficacy against HIV infection. A vaccine that induces robust responses in one individual may fail to do so in another individual due to variation in HLA class I genes, loci central to the immune response. Extensive data have shown the strong effect of HLA variation on outcome after HIV infection, but very little is known about the effect of such variation on HIV vaccine success. Here, we identify a link between the effect of HLA variation on HIV disease outcome and immune responses to an HIV vaccine. HLA variants associated with better HIV control after infection also induce stronger responses against the HIV Gag protein relative to the Env protein after vaccination. Given the virologic control conferred by responses to Gag in natural history of HIV infection, these data suggest that HLA alleles conferring protection after HIV infection may also support a more effective cellular response to HIV vaccination.
Collapse
Affiliation(s)
- George W. Nelson
- Basic Science Program
Frederick National Laboratory for Cancer Research, National Cancer
Institute and Laboratory of Integrative Cancer Immunology, Center for
Cancer Research, National Cancer
Institute, Bethesda,
Maryland, USA
| | | | - Yuko Yuki
- Basic Science Program
Frederick National Laboratory for Cancer Research, National Cancer
Institute and Laboratory of Integrative Cancer Immunology, Center for
Cancer Research, National Cancer
Institute, Bethesda,
Maryland, USA
| | - Maria G. Pau
- Janssen Vaccines
& Prevention,
Leiden, the Netherlands
| | - Frank Tomaka
- Janssen Research and
Development, Titusville,
New Jersey, USA
| | | | - Steven C. DeRosa
- Department of
Laboratory Medicine and Pathology, University of
Washington, Seattle,
Washington, USA
- Division of Vaccine
and Infectious Disease, Fred Hutchinson Cancer
Center, Seattle,
Washington, USA
| | - M. Juliana McElrath
- Department of
Laboratory Medicine and Pathology, University of
Washington, Seattle,
Washington, USA
- Division of Vaccine
and Infectious Disease, Fred Hutchinson Cancer
Center, Seattle,
Washington, USA
- Department of
Medicine, Division of Allergy and Infectious Diseases, University of
Washington, Seattle,
Washington, USA
| | - Gregory D. Kirk
- Department of
Epidemiology, Bloomberg School of Public Health, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Nelson L. Michael
- US Military HIV
Research Program, Walter Reed Army Institute of
Research, Silver Spring,
Maryland, USA
| | - David W. Haas
- Department of
Medicine, Vanderbilt University School of
Medicine, Nashville,
Tennessee, USA
| | - Steven G. Deeks
- Department of
Medicine, University of California,
San Francisco, California,
USA
| | - Steven Wolinsky
- Division of
Infectious Diseases, Department of Medicine, The Feinberg School of
Medicine, Northwestern University,
Chicago, Illinois, USA
| | - Bruce Walker
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
| | - Dan H. Barouch
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
- Center for Virology
and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston,
Massachusetts, USA
- Harvard Medical
School, Boston,
Massachusetts, USA
| | - Daniel Stieh
- Janssen Vaccines
& Prevention,
Leiden, the Netherlands
| | - Mary Carrington
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
| |
Collapse
|
6
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. Front Immunol 2024; 15:1429909. [PMID: 39081315 PMCID: PMC11286471 DOI: 10.3389/fimmu.2024.1429909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noemí A. Saavedra-Ávila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher T. Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Hyrien O, Yanev NM. A branching stochastic evolutionary model of the B-cell repertoire. J Math Biol 2024; 89:10. [PMID: 38847854 PMCID: PMC11161549 DOI: 10.1007/s00285-024-02102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 03/13/2024] [Indexed: 06/10/2024]
Abstract
We propose a stochastic framework to describe the evolution of the B-cell repertoire during germinal center (GC) reactions. Our model is formulated as a multitype age-dependent branching process with time-varying immigration. The immigration process captures the mechanism by which founder B cells initiate clones by gradually seeding GC over time, while the branching process describes the temporal evolution of the composition of these clones. The model assigns a type to each cell to represent attributes of interest. Examples of attributes include the binding affinity class of the B cells, their clonal family, or the nucleotide sequence of the heavy and light chains of their receptors. The process is generally non-Markovian. We present its properties, including as t → ∞ when the process is supercritical, the most relevant case to study expansion of GC B cells. We introduce temporal alpha and beta diversity indices for multitype branching processes. We focus on the dynamics of clonal dominance, highlighting its non-stationarity, and the accumulation of somatic hypermutations in the context of sequential immunization. We evaluate the impact of the ongoing seeding of GC by founder B cells on the dynamics of the B-cell repertoire, and quantify the effect of precursor frequency and antigen availability on the timing of GC entry. An application of the model illustrates how it may help with interpretation of BCR sequencing data.
Collapse
Affiliation(s)
- Ollivier Hyrien
- Biostatistics, Bioinformatics, Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Nikolay M Yanev
- Department of Operations Research, Probability and Statistics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
8
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
9
|
Awan SF, Pegu A, Strom L, Carter CA, Hendel CS, Holman LA, Costner PJ, Trofymenko O, Dyer R, Gordon IJ, Rothwell RSS, Hickman SP, Conan-Cibotti M, Doria-Rose NA, Lin BC, O’Connell S, Narpala SR, Almasri CG, Liu C, Ko S, Kwon YD, Namboodiri AM, Pandey JP, Arnold FJ, Carlton K, Gall JG, Kwong PD, Capparelli EV, Bailer RT, McDermott AB, Chen GL, Koup RA, Mascola JR, Coates EE, Ledgerwood JE, Gaudinski MR. Phase 1 trial evaluating safety and pharmacokinetics of HIV-1 broadly neutralizing mAbs 10E8VLS and VRC07-523LS. JCI Insight 2024; 9:e175375. [PMID: 38587079 PMCID: PMC11128198 DOI: 10.1172/jci.insight.175375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Seemal F. Awan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina A. Carter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela J. Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga Trofymenko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Renunda Dyer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ro Shauna S. Rothwell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Somia P. Hickman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungyoul Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Young D. Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aryan M. Namboodiri
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Frank J. Arnold
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason G. Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edmund V. Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin R. Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Govender K, King J, Nyamaruze P, Quinlan T. The role of the social sciences and humanities in pandemic preparedness responses: insights gained from COVID-19, HIV and AIDS and related epidemics. AFRICAN JOURNAL OF AIDS RESEARCH : AJAR 2023; 22:269-275. [PMID: 38117747 DOI: 10.2989/16085906.2023.2262977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 12/22/2023]
Abstract
The COVID-19 pandemic, particularly from 2020 to mid-2022, debilitated the management of the HIV epidemic in Africa. The multiple effects included well-documented HIV service interruptions, curtailment of HIV prevention programmes, the associated marked increase in both the risk for HIV infection among key populations and vulnerability of sub-populations (e.g. adolescent girls and young women) who are the focus of these programmes and - as importantly but less well-documented - the diverse negative socio-economic effects that accentuate HIV risk and vulnerability generally (e.g. loss of earnings, gender-based violence, stigma, police harassment of people during "lockdowns"). The global biomedical response to COVID-19 was necessary and remarkable for mitigating the bio-physical impacts of the pandemic (e.g. wide-spread surveillance coupled with rapid updates on the epidemiology of infections, rapid development of vaccines and revisions of treatment). However, drawing upon the widespread criticisms of state responses to the socio-economic effects of the COVID-19 pandemic and of "lockdowns" themselves, this article elaborates a core argument within those criticisms, namely that key lessons learnt during the HIV and AIDS and other pandemics were ignored, at least during the early stages of COVID-19. Our critique is that better integration of the social sciences and humanities in responses to pandemics can counter the reflex tendency to uncritically adopt a biomedical paradigm and, more importantly, to enable consideration of the social determinants of health in pandemic responses. At root, we re-assert a key value of 'integrated' interventions, namely the accommodation of context-sensitive considerations in the formulation of strategies, policies, plans and programme designs.
Collapse
Affiliation(s)
- Kaymarlin Govender
- Health Economics and HIV and AIDS Research Division (HEARD), University of KwaZulu-Natal, Durban, South Africa
| | | | - Patrick Nyamaruze
- Health Economics and HIV and AIDS Research Division (HEARD), University of KwaZulu-Natal, Durban, South Africa
| | - Tim Quinlan
- Health Economics and HIV and AIDS Research Division (HEARD), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Perdiguero B, Hauser A, Gómez CE, Peterhoff D, Sideris E, Sorzano CÓS, Wilmschen S, Schaber M, Stengel L, Asbach B, Ding S, Von Laer D, Levy Y, Pantaleo G, Kimpel J, Esteban M, Wagner R. Potency and durability of T and B cell immune responses after homologous and heterologous vector delivery of a trimer-stabilized, membrane-displayed HIV-1 clade ConC Env protein. Front Immunol 2023; 14:1270908. [PMID: 38045703 PMCID: PMC10690772 DOI: 10.3389/fimmu.2023.1270908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction The generation of an HIV-1 vaccine able to induce long-lasting protective immunity remains a main challenge. Here, we aimed to modify next-generation soluble, prefusion-stabilized, close-to-native, glycan-engineered clade C gp140 envelope (Env) trimers (sC23v4 KIKO and ConCv5 KIKO) for optimal display on the cell surface following homologous or heterologous vector delivery. Methods A combination of the following modifications scored best regarding the preservation of closed, native-like Env trimer conformation and antigenicity when using a panel of selected broadly neutralizing (bnAb) and non-neutralizing (nnAb) monoclonal antibodies for flow cytometry: i) replacing the natural cleavage site with a native flexible linker and introducing a single amino acid substitution to prevent CD4 binding (*), ii) fusing a heterologous VSV-G-derived transmembrane moiety to the gp140 C-terminus, and iii) deleting six residues proximal to the membrane. Results When delivering membrane-tethered sC23v4 KIKO* and ConCv5 KIKO* via DNA, VSV-GP, and NYVAC vectors, the two native-like Env trimers provide differential antigenicity profiles. Whereas such patterns were largely consistent among the different vectors for either Env trimer, the membrane-tethered ConCv5 KIKO* trimer adopted a more closed and native-like structure than sC23v4 KIKO*. In immunized mice, VSV-GP and NYVAC vectors expressing the membrane-tethered ConCv5 KIKO* administered in prime/boost combination were the most effective regimens for the priming of Env-specific CD4 T cells among all tested combinations. The subsequent booster administration of trimeric ConCv5 KIKO* Env protein preserved the T cell activation levels between groups. The evaluation of the HIV-1-specific humoral responses induced in the different immunization groups after protein boosts showed that the various prime/boost protocols elicited broad and potent antibody responses, preferentially of a Th1-associated IgG2a subclass, and that the obtained antibody levels remained high at the memory phase. Discussion In summary, we provide a feasible strategy to display multiple copies of native-like Env trimers on the cell surface, which translates into efficient priming of sustained CD4+ T cell responses after vector delivery as well as broad, potent, and sustained antibody responses following booster immunizations with the homologous, prefusion-stabilized, close-to-native ConCv5 KIKO* gp140 Env trimer.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Elefthéria Sideris
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sarah Wilmschen
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Schaber
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Stengel
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Dorothee Von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Levy
- Vaccine Research Institute (VRI), Université Paris-Est Créteil, Faculté de Médicine, Institut national de la santé et de la recherche médicale (INSERM) U955, Créteil, France
- Institut national de la santé et de la recherche médicale (INSERM) U955, Equipe 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
14
|
Zhou P, Song G, Liu H, Yuan M, He WT, Beutler N, Zhu X, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Safonova Y, Briney B, Rogers TF, Wilson IA, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity 2023; 56:669-686.e7. [PMID: 36889306 PMCID: PMC9933850 DOI: 10.1016/j.immuni.2023.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Tas JMJ, Koo JH, Lin YC, Xie Z, Steichen JM, Jackson AM, Hauser BM, Wang X, Cottrell CA, Torres JL, Warner JE, Kirsch KH, Weldon SR, Groschel B, Nogal B, Ozorowski G, Bangaru S, Phelps N, Adachi Y, Eskandarzadeh S, Kubitz M, Burton DR, Lingwood D, Schmidt AG, Nair U, Ward AB, Schief WR, Batista FD. Antibodies from primary humoral responses modulate the recruitment of naive B cells during secondary responses. Immunity 2022; 55:1856-1871.e6. [PMID: 35987201 PMCID: PMC9350677 DOI: 10.1016/j.immuni.2022.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023]
Abstract
Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.
Collapse
Affiliation(s)
- Jeroen M J Tas
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ja-Hyun Koo
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Abigail M Jackson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Blake M Hauser
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jonathan L Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - John E Warner
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Kathrin H Kirsch
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Stephanie R Weldon
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bartek Nogal
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Sandhya Bangaru
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Dennis R Burton
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Daniel Lingwood
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Hossain MA, Anasti K, Watts B, Cronin K, Derking R, Groschel B, Kane AP, Edwards R, Easterhoff D, Zhang J, Rountree W, Ortiz Y, Saunders K, Schief WR, Sanders RW, Verkoczy L, Reth M, Alam SM. B cells expressing IgM B cell receptors of HIV-1 neutralizing antibodies discriminate antigen affinities by sensing binding association rates. Cell Rep 2022; 39:111021. [PMID: 35767950 PMCID: PMC9837990 DOI: 10.1016/j.celrep.2022.111021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023] Open
Abstract
HIV-1 envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant [KD]) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding KD and whether B cells discriminate among proteins of similar affinities that bind with different kinetic rates. Here, we use a panel of Env proteins and Ramos B cell lines expressing immunoglobulin M (IgM) B cell receptors (BCRs) with specificity for CD4-binding-site broadly neutralizing antibodies to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation. Our results support a kinetic model for B cell activation in which Env protein affinity discrimination is based not on overall KD but on sensing of association rate and a threshold antigen-BCR half-life.
Collapse
Affiliation(s)
- Md. Alamgir Hossain
- Human Vaccine Institute, Duke University, Durham, NC, USA,These authors contributed equally
| | - Kara Anasti
- Human Vaccine Institute, Duke University, Durham, NC, USA,These authors contributed equally
| | - Brian Watts
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kenneth Cronin
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Ronald Derking
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Bettina Groschel
- Department of Immunology & Microbiology and Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | | | - R.J. Edwards
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - David Easterhoff
- Human Vaccine Institute, Duke University, Durham, NC, USA,Present address: Moderna, Inc., Cambridge, MA, USA
| | - Jinsong Zhang
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Wes Rountree
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Yaneth Ortiz
- Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kevin Saunders
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - William R. Schief
- Department of Immunology & Microbiology and Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | | | - Michael Reth
- Signaling Research Centers BIOSS and CIBSS, Freiburg, Germany,Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - S. Munir Alam
- Human Vaccine Institute, Duke University, Durham, NC, USA,Department of Medicine & Pathology, Duke University, Durham, NC, USA,Lead contact,Correspondence:
| |
Collapse
|
17
|
Moran JA, Turner SR, Marsden MD. Contribution of Sex Differences to HIV Immunology, Pathogenesis, and Cure Approaches. Front Immunol 2022; 13:905773. [PMID: 35693831 PMCID: PMC9174895 DOI: 10.3389/fimmu.2022.905773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
Approximately 38 million people were living with human immunodeficiency virus (HIV) in 2020 and 53% of those infected were female. A variety of virological and immunological sex-associated differences (sexual dimorphism) in HIV infection have been recognized in males versus females. Social, behavioral, and societal influences play an important role in how the HIV pandemic has affected men and women differently. However, biological factors including anatomical, physiologic, hormonal, and genetic differences in sex chromosomes can each contribute to the distinct characteristics of HIV infection observed in males versus females. One striking example of this is the tendency for women to have lower HIV plasma viral loads than their male counterparts early in infection, though both progress to AIDS at similar rates. Sex differences in acquisition of HIV, innate and adaptive anti-HIV immune responses, efficacy/suitability of specific antiretroviral drugs, and viral pathogenesis have all been identified. Sex differences also have the potential to affect viral persistence, latency, and cure approaches. In this brief review, we summarize the major biological male/female sex differences in HIV infection and their importance to viral acquisition, pathogenesis, treatment, and cure efforts.
Collapse
Affiliation(s)
- Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Shireen R. Turner
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California, Irvine, CA, United States
| |
Collapse
|
18
|
Xu Y, Jiang X, Zhou Z, Ferguson T, Obliosca J, Luo CC, Chan KW, Kong XP, Tison CK. Mucosal Delivery of HIV-1 Glycoprotein Vaccine Candidate Enabled by Short Carbon Nanotubes. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2200011. [PMID: 36186663 PMCID: PMC9523582 DOI: 10.1002/ppsc.202200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The HIV-1 envelope glycoprotein spike is the target of antibodies, and therefore represents the main viral antigen for antibody-based vaccine design. One of the challenges in HIV-1 vaccine development is finding efficient ways for the immune system to recognize and respond to HIV-1 without establishing an infection. Since HIV-1 enters the body at mucosal surfaces, induction of immune response at these sites is a preferred preventive approach. Nasal administration is a very effective route for mucosal immunization since it can stimulate mucosal immune responses both locally and distantly. In this paper, Luna develops a safe, short carbon nanotube (CNT)-based, needle-free delivery platform known as "CNTVac". The size of short CNT was controlled to possess HIV-1 particle-like morphology (100-200 nm) capable of efficiently delivering a broad range of antigens intranasally. PEG-Lipid served as the antigen conformation protector and mucosal barrier penetration enhancer (Schematic Figure) was localized between V1V2 antigens, which caused highly enhanced local IgA and systemic antibody IgG responses in mice and rabbits. The short CNT incorporated with PEG-Lipid could not only serve as efficient delivery system but also reduce the amount of lipid usage in order to balance the vaccine dosage in order to eliminate the potential adverse effect. These data suggest a promising platform technology for vaccine delivery.
Collapse
Affiliation(s)
- Yang Xu
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Ziyou Zhou
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Tammy Ferguson
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Judy Obliosca
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Christopher K Tison
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| |
Collapse
|
19
|
Whitley J, Zwolinski C, Denis C, Maughan M, Hayles L, Clarke D, Snare M, Liao H, Chiou S, Marmura T, Zoeller H, Hudson B, Peart J, Johnson M, Karlsson A, Wang Y, Nagle C, Harris C, Tonkin D, Fraser S, Capiz L, Zeno CL, Meli Y, Martik D, Ozaki DA, Caparoni A, Dickens JE, Weissman D, Saunders KO, Haynes BF, Sempowski GD, Denny TN, Johnson MR. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl Res 2022; 242:38-55. [PMID: 34871810 PMCID: PMC8641981 DOI: 10.1016/j.trsl.2021.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
The remarkable success of SARS CoV-2 mRNA-based vaccines and the ensuing interest in mRNA vaccines and therapeutics have highlighted the need for a scalable clinical-enabling manufacturing process to produce such products, and robust analytical methods to demonstrate safety, potency, and purity. To date, production processes have either not been disclosed or are bench-scale in nature and cannot be readily adapted to clinical and commercial scale production. To address these needs, we have advanced an aqueous-based scalable process that is readily adaptable to GMP-compliant manufacturing, and developed the required analytical methods for product characterization, quality control release, and stability testing. We also have demonstrated the products produced at manufacturing scale under such approaches display good potency and protection in relevant animal models with mRNA products encoding both vaccine immunogens and antibodies. Finally, we discuss continued challenges in raw material identification, sourcing and supply, and the cold chain requirements for mRNA therapeutic and vaccine products. While ultimate solutions have yet to be elucidated, we discuss approaches that can be taken that are aligned with regulatory guidance.
Collapse
Affiliation(s)
- Jill Whitley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Christopher Zwolinski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Christian Denis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Maureen Maughan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Leonie Hayles
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - David Clarke
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Meghan Snare
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Hong Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Sean Chiou
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Tina Marmura
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Holly Zoeller
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Ben Hudson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - John Peart
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Monica Johnson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Amelia Karlsson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Cynthia Nagle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Cherell Harris
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Daniel Tonkin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Stephanie Fraser
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Lieza Capiz
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Christina L Zeno
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Yvonne Meli
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Diana Martik
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Daniel A Ozaki
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Amy Caparoni
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Jason E Dickens
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Matthew R Johnson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
20
|
Jiang S, Tuzikov A, Andrianov A. Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chem Biol 2022; 29:757-773. [PMID: 35353988 DOI: 10.1016/j.chembiol.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Highly active antiretroviral therapy currently used for HIV/AIDS has significantly increased the life expectancy of HIV-infected individuals. It has also improved the quality of life, reduced mortality, and decreased the incidence of AIDS and HIV-related conditions. Currently, however, affected individuals are typically on a lifetime course of several therapeutic drugs, all with the potential for associated toxicity and emergence of resistance. This calls for development of novel, potent, and broad anti-HIV agents able to stop the spread of HIV/AIDS. Significant progress has been made toward identification of anti-HIV-1 broadly neutralizing antibodies (bNAbs). However, antibody-based drugs are costly to produce and store. Administration (by injection only) and other obstacles limit clinical use. In recent years, several highly promising small-molecule HIV-1 entry inhibitors targeting the epitopes of bNAbs have been developed. These newly developed compounds are the focus of the present article.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Republic of Belarus
| | - Alexander Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
21
|
Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.04.479488. [PMID: 35291291 PMCID: PMC8923106 DOI: 10.1101/2022.03.04.479488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Yang Z, Dam KMA, Bridges MD, Hoffmann MAG, DeLaitsch AT, Gristick HB, Escolano A, Gautam R, Martin MA, Nussenzweig MC, Hubbell WL, Bjorkman PJ. Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer. Nat Commun 2022; 13:732. [PMID: 35136084 PMCID: PMC8826976 DOI: 10.1038/s41467-022-28424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterize Ab1303 and Ab1573, heterologously-neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding is observed only when Env trimers are not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures show that both antibodies recognize the CD4bs on Env trimer with an 'occluded-open' conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation includes outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, does not exhibit V1V2 displacement, 4-stranded gp120 bridging sheet, or co-receptor binding site exposure. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggest an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.
Collapse
Affiliation(s)
- Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kim-Marie A Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Magnus A G Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew T DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Sangesland M, Lingwood D. Public Immunity: Evolutionary Spandrels for Pathway-Amplifying Protective Antibodies. Front Immunol 2021; 12:708882. [PMID: 34956170 PMCID: PMC8696009 DOI: 10.3389/fimmu.2021.708882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Humoral immunity is seeded by affinity between the B cell receptor (BCR) and cognate antigen. While the BCR is a chimeric display of diverse antigen engagement solutions, we discuss its functional activity as an ‘innate-like’ immune receptor, wherein genetically hardwired antigen complementarity can serve as reproducible templates for pathway-amplifying otherwise immunologically recessive antibody responses. We propose that the capacity for germline reactivity to new antigen emerged as a set of evolutionary spandrels or coupled traits, which can now be exploited by rational vaccine design to focus humoral immunity upon conventionally immune-subdominant antibody targets. Accordingly, we suggest that evolutionary spandrels account for the necessary but unanticipated antigen reactivity of the germline antibody repertoire.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
24
|
Escolano A, Gristick HB, Gautam R, DeLaitsch AT, Abernathy ME, Yang Z, Wang H, Hoffmann MA, Nishimura Y, Wang Z, Koranda N, Kakutani LM, Gao H, Gnanapragasam PNP, Raina H, Gazumyan A, Cipolla M, Oliveira TY, Ramos V, Irvine DJ, Silva M, West AP, Keeffe JR, Barnes CO, Seaman MS, Nussenzweig MC, Martin MA, Bjorkman PJ. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Sci Transl Med 2021; 13:eabk1533. [PMID: 34818054 PMCID: PMC8932345 DOI: 10.1126/scitranslmed.abk1533] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 develop after prolonged virus and antibody coevolution. Previous studies showed that sequential immunization with a V3-glycan patch germline-targeting HIV-1 envelope trimer (Env) followed by variant Envs can reproduce this process in mice carrying V3-glycan bNAb precursor B cells. However, eliciting bNAbs in animals with polyclonal antibody repertoires is more difficult. We used a V3-glycan immunogen multimerized on virus-like particles (VLPs), followed by boosting with increasingly native-like Env-VLPs, to elicit heterologous neutralizing antibodies in nonhuman primates (NHPs). Structures of antibody/Env complexes after prime and boost vaccinations demonstrated target epitope recognition with apparent maturation to accommodate glycans. However, we also observed increasing off-target antibodies with boosting. Eight vaccinated NHPs were subsequently challenged with simian-human immunodeficiency virus (SHIV), and seven of eight animals became infected. The single NHP that remained uninfected after viral challenge exhibited one of the lowest neutralization titers against the challenge virus. These results demonstrate that more potent heterologous neutralization resulting from sequential immunization is necessary for protection in this animal model. Thus, improved prime-boost regimens to increase bNAb potency and stimulate other immune protection mechanisms are essential for developing anti–HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Virology Branch, Basic Research Section, NIAID, NIH. 5601 Fisher’s Lane. Rockville, MD 20892, USA
| | - Andrew T. DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Darrell J. Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
25
|
Ronsard L, Yousif AS, Peabody J, Okonkwo V, Devant P, Mogus AT, Barnes RM, Rohrer D, Lonberg N, Peabody D, Chackerian B, Lingwood D. Engineering an Antibody V Gene-Selective Vaccine. Front Immunol 2021; 12:730471. [PMID: 34566992 PMCID: PMC8459710 DOI: 10.3389/fimmu.2021.730471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or ‘public’ antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site. As proof of concept, we deployed a library of RNA bacteriophage VLPs displaying random peptides to identify a multivalent antigen that selectively triggered germline BCRs using the human VH gene IGVH1-2*02. This VLP selectively primed IGHV1-2*02 BCRs that were present within a highly diversified germline antibody repertoire within humanized mice. Our approach thus provides methodology to generate antigens that engage specific BCR configurations of interest, in the absence of structure-based information.
Collapse
Affiliation(s)
- Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Julianne Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Vintus Okonkwo
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Pascal Devant
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Alemu Tekewe Mogus
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | | | - Daniel Rohrer
- Bristol-Myers Squibb, Redwood City, CA, United States
| | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA, United States
| | - David Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| |
Collapse
|
26
|
Felber BK, Lu Z, Hu X, Valentin A, Rosati M, Remmel CAL, Weiner JA, Carpenter MC, Faircloth K, Stanfield-Oakley S, Williams WB, Shen X, Tomaras GD, LaBranche CC, Montefiori D, Trinh HV, Rao M, Alam MS, Vandergrift NA, Saunders KO, Wang Y, Rountree W, Das J, Alter G, Reed SG, Aye PP, Schiro F, Pahar B, Dufour JP, Veazey RS, Marx PA, Venzon DJ, Shaw GM, Ferrari G, Ackerman ME, Haynes BF, Pavlakis GN. Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Rep 2021; 31:107624. [PMID: 32402293 DOI: 10.1016/j.celrep.2020.107624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
We compare immunogenicity and protective efficacy of an HIV vaccine comprised of env and gag DNA and Env (Envelope) proteins by co-administration of the vaccine components in the same muscles or by separate administration of DNA + protein in contralateral sites in female rhesus macaques. The 6-valent vaccine includes gp145 Env DNAs, representing six sequentially isolated Envs from the HIV-infected individual CH505, and matching GLA-SE-adjuvanted gp120 Env proteins. Interestingly, only macaques in the co-administration vaccine group are protected against SHIV CH505 acquisition after repeated low-dose intravaginal challenge and show 67% risk reduction per exposure. Macaques in the co-administration group develop higher Env-specific humoral and cellular immune responses. Non-neutralizing Env antibodies, ADCC, and antibodies binding to FcγRIIIa are associated with decreased transmission risk. These data suggest that simultaneous recognition, processing, and presentation of DNA + Env protein in the same draining lymph nodes play a critical role in the development of protective immunity.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Zhongyan Lu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Katelyn Faircloth
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Sherry Stanfield-Oakley
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Hung V Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Munir S Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Pyone P Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jason P Dufour
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Preston A Marx
- Tulane National Primate Research Center, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
He L, Chaudhary A, Lin X, Sou C, Alkutkar T, Kumar S, Ngo T, Kosviner E, Ozorowski G, Stanfield RL, Ward AB, Wilson IA, Zhu J. Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nat Commun 2021; 12:2633. [PMID: 33976149 DOI: 10.1101/2020.08.22.262634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 05/27/2023] Open
Abstract
Ebola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1C) regions to GP metastability. Specific stalk and HR1C modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1C exert a more complex effect on thermostability. Crystal structures are determined to validate two rationally designed GPΔmuc trimers in their unliganded state. We then display a modified GPΔmuc trimer on reengineered protein nanoparticles that encapsulate a layer of locking domains (LD) and a cluster of helper T-cell epitopes. In mice and rabbits, GP trimers and nanoparticles elicit cross-ebolavirus NAbs, as well as non-NAbs that enhance pseudovirus infection. Repertoire sequencing reveals quantitative profiles of vaccine-induced B-cell responses. This study demonstrates a promising vaccine strategy for filoviruses, such as EBOV, based on GP stabilization and nanoparticle display.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- B-Lymphocytes/immunology
- Crystallography, X-Ray
- Disease Models, Animal
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Ebolavirus/genetics
- Ebolavirus/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/ultrastructure
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/ultrastructure
- Hemorrhagic Fever, Ebola/blood
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/therapy
- Hemorrhagic Fever, Ebola/virology
- Humans
- Mice
- Nanoparticles/chemistry
- Protein Domains/genetics
- Protein Domains/immunology
- Protein Engineering
- Protein Multimerization/genetics
- Protein Multimerization/immunology
- Protein Stability
- Rabbits
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anshul Chaudhary
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanwee Alkutkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ezra Kosviner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
He L, Chaudhary A, Lin X, Sou C, Alkutkar T, Kumar S, Ngo T, Kosviner E, Ozorowski G, Stanfield RL, Ward AB, Wilson IA, Zhu J. Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nat Commun 2021; 12:2633. [PMID: 33976149 PMCID: PMC8113551 DOI: 10.1038/s41467-021-22867-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1C) regions to GP metastability. Specific stalk and HR1C modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1C exert a more complex effect on thermostability. Crystal structures are determined to validate two rationally designed GPΔmuc trimers in their unliganded state. We then display a modified GPΔmuc trimer on reengineered protein nanoparticles that encapsulate a layer of locking domains (LD) and a cluster of helper T-cell epitopes. In mice and rabbits, GP trimers and nanoparticles elicit cross-ebolavirus NAbs, as well as non-NAbs that enhance pseudovirus infection. Repertoire sequencing reveals quantitative profiles of vaccine-induced B-cell responses. This study demonstrates a promising vaccine strategy for filoviruses, such as EBOV, based on GP stabilization and nanoparticle display. Ebola virus glycoprotein (GP) is a major target for vaccine design. Here, the authors identify mutations to improve GP stability and yield, design two multilayered nanoparticle carriers, and demonstrate good immunogenicity of the modified GP on nanoparticles in mice and rabbits.
Collapse
Affiliation(s)
- Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anshul Chaudhary
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanwee Alkutkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ezra Kosviner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. .,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
29
|
Cowton VM, Owsianka AM, Fadda V, Ortega-Prieto AM, Cole SJ, Potter JA, Skelton JK, Jeffrey N, Di Lorenzo C, Dorner M, Taylor GL, Patel AH. Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. NPJ Vaccines 2021; 6:7. [PMID: 33420102 PMCID: PMC7794244 DOI: 10.1038/s41541-020-00269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions—such as the epitopes of broadly neutralizing antibodies (bNAbs)—and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.
Collapse
Affiliation(s)
- Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Ania M Owsianka
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Valeria Fadda
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | | | - Sarah J Cole
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Jane A Potter
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Jessica K Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Nathan Jeffrey
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Caterina Di Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Garry L Taylor
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK.
| |
Collapse
|
30
|
Wang X, Ray R, Kratochvil S, Melzi E, Lin YC, Giguere S, Xu L, Warner J, Cheon D, Liguori A, Groschel B, Phelps N, Adachi Y, Tingle R, Wu L, Crotty S, Kirsch KH, Nair U, Schief WR, Batista FD. Multiplexed CRISPR/CAS9-mediated engineering of pre-clinical mouse models bearing native human B cell receptors. EMBO J 2020; 40:e105926. [PMID: 33258500 PMCID: PMC7809789 DOI: 10.15252/embj.2020105926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
B‐cell receptor (BCR) knock‐in (KI) mouse models play an important role in vaccine development and fundamental immunological studies. However, the time required to generate them poses a bottleneck. Here we report a one‐step CRISPR/Cas9 KI methodology to combine the insertion of human germline immunoglobulin heavy and light chains at their endogenous loci in mice. We validate this technology with the rapid generation of three BCR KI lines expressing native human precursors, instead of computationally inferred germline sequences, to HIV broadly neutralizing antibodies. We demonstrate that B cells from these mice are fully functional: upon transfer to congenic, wild type mice at controlled frequencies, such B cells can be primed by eOD‐GT8 60mer, a germline‐targeting immunogen currently in clinical trials, recruited to germinal centers, secrete class‐switched antibodies, undergo somatic hypermutation, and differentiate into memory B cells. KI mice expressing functional human BCRs promise to accelerate the development of vaccines for HIV and other infectious diseases.
Collapse
Affiliation(s)
- Xuesong Wang
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Rashmi Ray
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Sven Kratochvil
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Eleonora Melzi
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Sophie Giguere
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Liling Xu
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - John Warner
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Diane Cheon
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Lin Wu
- Genome Modification Facility, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - William R Schief
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Facundo D Batista
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Zhang C, Zhou L, Liu H, Zhang S, Tian Y, Huo J, Li F, Zhang Y, Wei B, Xu D, Hu J, Wang J, Cheng Y, Shi W, Xu X, Zhou J, Sang P, Tan X, Wang W, Zhang M, Wang B, Zhou Y, Zhang K, He K. Establishing a high sensitivity detection method for SARS-CoV-2 IgM/IgG and developing a clinical application of this method. Emerg Microbes Infect 2020; 9:2020-2029. [PMID: 32799618 PMCID: PMC7534335 DOI: 10.1080/22221751.2020.1811161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
COVID-19 is caused by SARS-CoV-2 infection and was initially discovered in Wuhan. This outbreak quickly spread all over China and then to more than 20 other countries. SARS-CoV-2 fluorescent microsphere immunochromatographic test strips were prepared by the combination of time-resolved fluorescence immunoassay with a lateral flow assay. The analytical performance and clinical evaluation of this testing method was done and the clinical significance of the testing method was verified. The LLOD of SARS-CoV-2 antibody IgG and IgM was 0.121U/L and 0.366U/L. The specificity of IgM and IgG strips in healthy people and in patients with non-COVID-19 disease was 94%, 96.72% and 95.50%, 99.49%, respectively; and sensitivity of IgM and IgG strips for patients during treatment and follow-up was 63.02%, 37.61% and 87.28%, 90.17%, respectively. The SARS-CoV-2 antibody test strip can provide rapid, flexible and accurate testing, and is able to meet the clinical requirement for rapid on-site testing of virus. The ability to detect IgM and IgG provided a significant benefit for the detection and prediction of clinical course with COVID-19 patients.
Collapse
Affiliation(s)
- Chunyan Zhang
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhou
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Hao Liu
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Sibing Zhang
- Chinese PLA General Hospital, Beijing, People's Republic of China
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
| | - Yaping Tian
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Junli Huo
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Fei Li
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Yao Zhang
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Bo Wei
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- The Second Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Dan Xu
- First Hospital of Changsha, Changsha, People's Republic of China
| | - Jinwei Hu
- First Hospital of Changsha, Changsha, People's Republic of China
| | - Jiayi Wang
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Yuxuan Cheng
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wenjie Shi
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiuli Xu
- Beijing Diagreat Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Jianping Zhou
- Beijing Diagreat Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Peipei Sang
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xudong Tan
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weiwei Wang
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Minjie Zhang
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Bin Wang
- First Hospital of Changsha, Changsha, People's Republic of China
| | - Yujun Zhou
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Kan Zhang
- Wuhan Huoshenshan Hospital, Wuhan, People's Republic of China
- Xijing Hospital of Air Force Medical University of PLA, Xi'an, People's Republic of China
| | - Kunlun He
- Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
32
|
Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. J Virol 2020; 94:JVI.00958-20. [PMID: 32817216 DOI: 10.1128/jvi.00958-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule viral entry inhibitors, such as BMS-626529 (BMS-529), allosterically block CD4 binding to HIV-1 envelope (Env) and inhibit CD4-induced structural changes in Env trimers. Here, we show that the binding of BMS-529 to clade C soluble chimeric gp140 SOSIP (ch.SOSIP) and membrane-bound trimers with intact transmembrane domain (gp150) prevented trimer conformational transitions and enhanced their immunogenicity. When complexed to BMS-529, ch.SOSIP trimers retained their binding to broadly neutralizing antibodies (bNAbs) and to their unmutated common ancestor (UCA) antibodies, while exposure of CD4-induced (CD4i) non-bNAb epitopes was inhibited. BMS-529-complexed gp150 trimers in detergent micelles, which were isolated from CHO cells, bound to bNAbs, including UCA and intermediates of the CD4 binding site (bs) CH103 bNAb lineage, and showed limited exposure of CD4i epitopes and a glycosylation pattern with a preponderance of high-mannose glycans. In rabbits, BMS-529-complexed V3 glycan-targeting ch.SOSIP immunogen induced in the majority of immunized animals higher neutralization titers against both autologous and select high mannose-bearing heterologous tier 2 pseudoviruses than those immunized with the noncomplexed ch.SOSIP. In rhesus macaques, BMS-529 complexed to CD4 bs-targeting ch.SOSIP immunogen induced stronger neutralization against tier 2 pseudoviruses bearing high-mannose glycans than noncomplexed ch.SOSIP trimer immunogen. When immunized with gp150 complexed to BMS-529, rhesus macaques showed neutralization against tier 2 pseudoviruses with targeted glycan deletion and high-mannose glycan enrichment. These results demonstrated that stabilization of Env trimer conformation with BMS-529 improved the immunogenicity of select chimeric SOSIP trimers and elicited tier 2 neutralizing antibodies of higher potency than noncomplexed trimers.IMPORTANCE Soluble forms of HIV-1 envelope trimers exhibit conformational heterogeneity and undergo CD4-induced (CD4i) exposure of epitopes of non-neutralizing antibodies that can potentially hinder induction of broad neutralizing antibody responses. These limitations have been mitigated through recent structure-guided approaches and include trimer-stabilizing mutations that resist trimer conformational transition and exposure of CD4i epitopes. The use of small-molecule viral inhibitors that allosterically block CD4 binding represents an alternative strategy for stabilizing Env trimer in the pre-CD4-triggered state of both soluble and membrane-bound trimers. In this study, we report that the viral entry inhibitor BMS-626529 restricts trimer conformational transition and improves the immunogenicity of select Env trimer immunogens.
Collapse
|
33
|
Ahmed S, Shrivastava T, Kumar R, Kumar M, Banerjee M, Kumar N, Bansal M, Das S, Samal S. Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochim Biophys Acta Gen Subj 2020; 1865:129733. [PMID: 32949621 DOI: 10.1016/j.bbagen.2020.129733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) is the primary target for broadly neutralizing antibodies (bNAbs) which can block infection. The current design strategy of soluble forms of Env in native-like trimeric conformation induces neutralizing antibodies with minimal breadth and potency. Extensive shielding by N-glycans on the surface of the HIV-1 Env acts as an immune evasion mechanism by restricting B cell recognition of conserved neutralizing determinants. An alternate approach is to design Env protein with glycan deletion to expose the protein surface. METHODS A stable native-like trimeric Env with glycan holes at potentially immunogenic locations is expected to elicit better induction of germ-line B-cells due to exposure of the immunogenic regions. However, the extent and consequences of glycan removal from the trimer apex that form an important epitope is not explored. In this work, we have designed a construct with glycans deleted from the trimer apex of an Indian clade C origin Env that has previously been characterized for immunogenicity, to understand the impact of deglycosylation on the structural and functional integrity as well as on the antibody binding properties. RESULTS The V1V2 glycan-deleted protein maintains native-like trimeric conformation with improved accessibility of the V1V2-directed germ-line antibodies. Furthermore, we showed that the protein binds specifically to quaternary conformation-dependent bnAbs but minimally to non-neutralizing antibodies. CONCLUSIONS This study provide an important design aspect of HIV-1 Env-based immunogens with glycan holes in the apex region that could be useful in eliciting apex directed antibodies in immunization studies.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Tripti Shrivastava
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Naresh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manish Bansal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
34
|
Affiliation(s)
- Cesar J. Lopez Angel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Hessell AJ, Powell R, Jiang X, Luo C, Weiss S, Dussupt V, Itri V, Fox A, Shapiro MB, Pandey S, Cheever T, Fuller DH, Park B, Krebs SJ, Totrov M, Haigwood NL, Kong XP, Zolla-Pazner S. Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Rep 2020; 28:877-895.e6. [PMID: 31340151 DOI: 10.1016/j.celrep.2019.06.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
The V1V2 region of the HIV-1 envelope is the target of several broadly neutralizing antibodies (bNAbs). Antibodies to V1V2 elicited in the RV144 clinical trial correlated with a reduced risk of HIV infection, but these antibodies were without broad neutralizing activity. Antibodies targeting V1V2 also correlated with a reduced viral load in immunized macaques challenged with simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV). To focus immune responses on V1V2, we engrafted the native, glycosylated V1V2 domain onto five different multimeric scaffold proteins and conducted comparative immunogenicity studies in macaques. Vaccinated macaques developed high titers of plasma and mucosal antibodies that targeted structurally distinct V1V2 epitopes. Plasma antibodies displayed limited neutralizing activity but were functionally active for ADCC and phagocytosis, which was detectable 1-2 years after immunizations ended. This study demonstrates that multivalent, glycosylated V1V2-scaffold protein immunogens focus the antibody response on V1V2 and are differentially effective at inducing polyfunctional antibodies with characteristics associated with protection.
Collapse
Affiliation(s)
- Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Rebecca Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Christina Luo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Svenja Weiss
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alisa Fox
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariya B Shapiro
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tracy Cheever
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Byung Park
- Primate Genetics Program, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR 97239.
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Powell AB, Ren Y, Korom M, Saunders D, Hanley PJ, Goldstein H, Nixon DF, Bollard CM, Lynch RM, Jones RB, Cruz CRY. Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:78-88. [PMID: 33005704 PMCID: PMC7508916 DOI: 10.1016/j.omtm.2020.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023]
Abstract
While antiretroviral therapy (ART) can completely suppress viremia, it is not a cure for HIV. HIV persists as a latent reservoir of infected cells, able to evade host immunity and re-seed infection following cessation of ART. Two promising immunotherapeutic strategies to eliminate both productively infected cells and reactivated cells of the reservoir are the adoptive transfer of potent HIV-specific T cells and the passive administration of HIV-specific broadly neutralizing antibodies also capable of mediating antibody-dependent cellular cytotoxicity (ADCC). The simultaneous use of both as the basis of a single therapeutic has never been explored. We therefore sought to modify HIV-specific T cells from HIV-naive donors (to allow their use in the context of allotransplant, a promising platform for sterilizing cures) so they are able to secrete a broadly neutralizing antibody (bNAb) directed against the HIV envelope to elicit ADCC. We designed an antibody construct comprising bNAb 10-1074 heavy and light chains, fused to IgG3 Fc to elicit ADCC, with truncated cluster of differentiation 19 (CD19) as a selectable marker. HIV-specific T cells were expanded from HIV-naive donors by priming with antigen-presenting cells expressing overlapping HIV antigens in the presence of cytokines. T cells retained specificity against Gag, Nef, and Pol peptides (218.55 ± 300.14 interferon γ [IFNγ] spot-forming cells [SFC]/1 × 105) following transduction (38.92 ± 25.30) with the 10-1074 antibody constructs. These cells secreted 10-1074 antibodies (139.04 ± 114.42 ng/mL). The HIV-specific T cells maintained T cell function following transduction, and the secreted 10-1074 antibody bound HIV envelope (28.13% ± 19.42%) and displayed ADCC activity (10.47% ± 4.11%). Most critically, the 10-1074 antibody-secreting HIV-specific T cells displayed superior in vitro suppression of HIV replication. In summary, HIV-specific T cells can be engineered to produce antibodies mediating ADCC against HIV envelope-expressing cells. This combined innate/adaptive approach allows for synergy between the two immune arms, broadens the target range of the immune therapy, and provides further insight into what defines an effective anti-HIV response.
Collapse
Affiliation(s)
- Allison B. Powell
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Yanqin Ren
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Maria Korom
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Patrick J. Hanley
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Harris Goldstein
- Department of Pediatrics and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Catherine M. Bollard
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Conrad Russell Y. Cruz
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
- Corresponding author: Conrad Russell Y. Cruz, 111 Michigan Ave NW, Washington, DC 20010, USA.
| |
Collapse
|
37
|
RhCMV serostatus and vaccine adjuvant impact immunogenicity of RhCMV/SIV vaccines. Sci Rep 2020; 10:14056. [PMID: 32820216 PMCID: PMC7441386 DOI: 10.1038/s41598-020-71075-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV) strain 68-1-vectored simian immunodeficiency virus (RhCMV/SIV) vaccines are associated with complete clearance of pathogenic SIV challenge virus, non-canonical major histocompatibility complex restriction, and absent antibody responses in recipients previously infected with wild-type RhCMV. This report presents the first investigation of RhCMV/SIV vaccines in RhCMV-seronegative macaques lacking anti-vector immunity. Fifty percent of rhesus macaques (RM) vaccinated with a combined RhCMV-Gag, -Env, and -Retanef (RTN) vaccine controlled pathogenic SIV challenge despite high peak viremia. However, kinetics of viral load control by vaccinated RM were considerably delayed compared to previous reports. Impact of a TLR5 agonist (flagellin; FliC) on vaccine efficacy and immunogenicity was also examined. An altered vaccine regimen containing an SIV Gag-FliC fusion antigen instead of Gag was significantly less immunogenic and resulted in reduced protection. Notably, RhCMV-Gag and RhCMV-Env vaccines elicited anti-Gag and anti-Env antibodies in RhCMV-seronegative RM, an unexpected contrast to vaccination of RhCMV-seropositive RM. These findings confirm that RhCMV-vectored SIV vaccines significantly protect against SIV pathogenesis. However, pre-existing vector immunity and a pro-inflammatory vaccine adjuvant may influence RhCMV/SIV vaccine immunogenicity and efficacy. Future investigation of the impact of pre-existing anti-vector immune responses on protective immunity conferred by this vaccine platform is warranted.
Collapse
|
38
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Andrabi R, Pallesen J, Allen JD, Song G, Zhang J, de Val N, Gegg G, Porter K, Su CY, Pauthner M, Newman A, Bouton-Verville H, Garces F, Wilson IA, Crispin M, Hahn BH, Haynes BF, Verkoczy L, Ward AB, Burton DR. The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Rep 2020; 27:2426-2441.e6. [PMID: 31116986 PMCID: PMC6533203 DOI: 10.1016/j.celrep.2019.04.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 12/03/2022] Open
Abstract
Epitope-targeted HIV vaccine design seeks to focus antibody responses to broadly neutralizing antibody (bnAb) sites by sequential immunization. A chimpanzee simian immunodeficiency virus (SIV) envelope (Env) shares a single bnAb site, the variable loop 2 (V2)-apex, with HIV, suggesting its possible utility in an HIV immunization strategy. Here, we generate a chimpanzee SIV Env trimer, MT145K, which displays selective binding to HIV V2-apex bnAbs and precursor versions, but no binding to other HIV specificities. We determine the structure of the MT145K trimer by cryo-EM and show that its architecture is remarkably similar to HIV Env. Immunization of an HIV V2-apex bnAb precursor Ab-expressing knockin mouse with the chimpanzee MT145K trimer induces HIV V2-specific neutralizing responses. Subsequent boosting with an HIV trimer cocktail induces responses that exhibit some virus cross-neutralization. Overall, the chimpanzee MT145K trimer behaves as expected from design both in vitro and in vivo and is an attractive potential component of a sequential immunization regimen to induce V2-apex bnAbs. A designed chimpanzee SIV Env trimer binds HIV V2-apex bnAbs specifically The trimer (MT145K) is engineered to bind inferred unmutated versions of HIV V2-apex bnAbs The cryo-EM structure of the SIV MT145K trimer closely resembles that of HIV trimers The MT145K SIV trimer induces HIV-specific nAb responses in a favorable animal model
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D Allen
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinsong Zhang
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Natalia de Val
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gavin Gegg
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ching-Yao Su
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Newman
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hilary Bouton-Verville
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fernando Garces
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute and Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02114, USA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW We will discuss recent advances in the development of nanoparticle vaccines presenting HIV-1 envelope trimer vaccines and the immunological mechanisms by which they act. RECENT FINDINGS The multivalent presentation of Env trimers on nanoparticles is a promising strategy to increase Env immunogenicity. Recent studies have shed light on how Env nanoparticles increase lymph node trafficking and germinal center formation by using the lectin-mediated complement pathway and enhancing the interaction with naïve B cells. Meanwhile, research on different nanoparticle platforms has resulted in improved designs, such as liposomes with improved stability, and the emergence of novel platforms such as protein nanoparticles that self-assemble in vitro. Immmunogenicity studies with these nanoparticles delineate the advantages and expose the limitations of the different nanoparticle platforms. SUMMARY It is becoming increasingly clear that HIV-1 vaccine research might benefit greatly from using nanoparticles presenting Env trimers, particularly during the priming stage of immunization. Among the different nanoparticles that are being pursued, in vitro-assembling nanoparticles allow for greater control of Env quality making them a promising nanoparticle platform.
Collapse
|
41
|
Rantalainen K, Berndsen ZT, Antanasijevic A, Schiffner T, Zhang X, Lee WH, Torres JL, Zhang L, Irimia A, Copps J, Zhou KH, Kwon YD, Law WH, Schramm CA, Verardi R, Krebs SJ, Kwong PD, Doria-Rose NA, Wilson IA, Zwick MB, Yates JR, Schief WR, Ward AB. HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Rep 2020; 31:107583. [PMID: 32348769 PMCID: PMC7196886 DOI: 10.1016/j.celrep.2020.107583] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.
Collapse
Affiliation(s)
- Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xi Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriana Irimia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth H Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - William H Law
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets 2020; 24:499-509. [PMID: 32340497 DOI: 10.1080/14728222.2020.1752183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite.Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed.Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Thandeka Moyo
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dale Kitchin
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
43
|
Conditional antibody expression to avoid central B cell deletion in humanized HIV-1 vaccine mouse models. Proc Natl Acad Sci U S A 2020; 117:7929-7940. [PMID: 32209668 DOI: 10.1073/pnas.1921996117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 vaccine development aims to elicit broadly neutralizing antibodies (bnAbs) against diverse viral strains. In some HIV-1-infected individuals, bnAbs evolved from precursor antibodies through affinity maturation. To induce bnAbs, a vaccine must mediate a similar antibody maturation process. One way to test a vaccine is to immunize mouse models that express human bnAb precursors and assess whether the vaccine can convert precursor antibodies into bnAbs. A major problem with such mouse models is that bnAb expression often hinders B cell development. Such developmental blocks may be attributed to the unusual properties of bnAb variable regions, such as poly-reactivity and long antigen-binding loops, which are usually under negative selection during primary B cell development. To address this problem, we devised a method to circumvent such B cell developmental blocks by expressing bnAbs conditionally in mature B cells. We validated this method by expressing the unmutated common ancestor (UCA) of the human VRC26 bnAb in transgenic mice. Constitutive expression of the VRC26UCA led to developmental arrest of B cell progenitors in bone marrow; poly-reactivity of the VRC26UCA and poor pairing of the VRC26UCA heavy chain with the mouse surrogate light chain may contribute to this phenotype. The conditional expression strategy bypassed the impediment to VRC26UCA B cell development, enabling the expression of VRC26UCA in mature B cells. This approach should be generally applicable for expressing other bnAbs that are under negative selection during B cell development.
Collapse
|
44
|
Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother 2020; 16:713-722. [PMID: 31584318 PMCID: PMC7227724 DOI: 10.1080/21645515.2019.1666957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Despite 30 years of effort, we do not have an effective HIV-1 vaccine. Over the past decade, the HIV-1 vaccine field has shifted emphasis toward antibody-based vaccine strategies, following a lack of efficacy in CD8+ T-cell-based vaccine trials. Several lines of evidence, however, suggest that improved CD8+ T-cell-directed strategies could benefit an HIV-1 vaccine. First, T-cell responses often correlate with good outcomes in non-human primate (NHP) challenge models. Second, subgroup studies of two no-efficacy human clinical vaccine trials found associations between CD8+ T-cell responses and protective effects. Finally, improved strategies can increase the breadth and potency of CD8+ T-cell responses, direct them toward preferred epitopes (that are highly conserved and/or associated with viral control), or both. Optimized CD8+ T-cell vaccine strategies are promising in both prophylactic and therapeutic settings. This commentary briefly outlines some encouraging findings from T-cell vaccine studies, and then directly compares key features of some T-cell vaccine candidates currently in the clinical pipeline.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
45
|
Sharma VK, Sharma I, Glick J. The expanding role of mass spectrometry in the field of vaccine development. MASS SPECTROMETRY REVIEWS 2020; 39:83-104. [PMID: 29852530 PMCID: PMC7027533 DOI: 10.1002/mas.21571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 05/09/2023]
Abstract
Biological mass spectrometry has evolved as a core analytical technology in the last decade mainly because of its unparalleled ability to perform qualitative as well as quantitative profiling of enormously complex biological samples with high mass accuracy, sensitivity, selectivity and specificity. Mass spectrometry-based techniques are also routinely used to assess glycosylation and other post-translational modifications, disulfide bond linkage, and scrambling as well as for the detection of host cell protein contaminants in the field of biopharmaceuticals. The role of mass spectrometry in vaccine development has been very limited but is now expanding as the landscape of global vaccine development is shifting towards the development of recombinant vaccines. In this review, the role of mass spectrometry in vaccine development is presented, some of the ongoing efforts to develop vaccines for diseases with global unmet medical need are discussed and the regulatory challenges of implementing mass spectrometry techniques in a quality control laboratory setting are highlighted.
Collapse
Affiliation(s)
| | - Ity Sharma
- Independent CMC ConsultantParamusNew Jersey
| | - James Glick
- Novartis Institutes for BioMedical ResearchEast HanoverNew Jersey
| |
Collapse
|
46
|
Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. J Virol 2020; 94:JVI.01883-19. [PMID: 31852794 PMCID: PMC7158715 DOI: 10.1128/jvi.01883-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023] Open
Abstract
We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins.IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.
Collapse
|
47
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
48
|
Bradley T, Kuraoka M, Yeh CH, Tian M, Chen H, Cain DW, Chen X, Cheng C, Ellebedy AH, Parks R, Barr M, Sutherland LL, Scearce RM, Bowman CM, Bouton-Verville H, Santra S, Wiehe K, Lewis MG, Ogbe A, Borrow P, Montefiori D, Bonsignori M, Anthony Moody M, Verkoczy L, Saunders KO, Ahmed R, Mascola JR, Kelsoe G, Alt FW, Haynes BF. Immune checkpoint modulation enhances HIV-1 antibody induction. Nat Commun 2020; 11:948. [PMID: 32075963 PMCID: PMC7031230 DOI: 10.1038/s41467-020-14670-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Eliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses. Elucidation of broadly neutralizing antibodies (bnAb) is a goal in HIV vaccine development. Here, Bradley et al. show that administration of CTLA-4 blocking antibody with vaccine antigens increases HIV-1 envelope antibody responses in macaques and a bnAb precursor mouse model.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
| | - Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Ali H Ellebedy
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hilary Bouton-Verville
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Ane Ogbe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
49
|
Ajayi AI, Mudefi E, Adeniyi OV, Goon DT. Achieving the first of the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets: understanding the influence of HIV risk perceptions, knowing one's partner's status and discussion of HIV/sexually transmitted infections with a sexual partner on uptake of HIV testing. Int Health 2020; 11:425-431. [PMID: 31365082 DOI: 10.1093/inthealth/ihz056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
This study assessed how HIV risk perceptions, knowledge of one's partner's status and discussion of HIV/sexually transmitted infections (STIs) with one's sexual partner influence the uptake of HIV testing. Data were obtained from 833 young adults, selected using stratified random sampling in a South African university in 2018. Adjusted and unadjusted logistic regression models were employed to examine determinants of HIV testing uptake. The majority of students (69.9%) had previously tested for HIV, but only 58.4% tested for HIV in the last year. Being highly concerned about contracting HIV/STIs was positively associated with having tested for HIV (adjusted OR [AOR]: 4.28; CI: 2.50 to 7.34) and getting an HIV test in the past year (AOR: 1.83; CI: 1.20 to 2.80). Knowing one's partner's status was associated with a higher probability of ever having been tested for HIV (AOR: 3.07; CI: 1.89 to 4.97) or having received an HIV test in the previous year (AOR: 2.66; CI: 1.77 to 3.99). Discussion of HIV/STIs was associated with higher odds of having ever been tested for HIV (AOR: 3.81; CI: 2.44 to 5.96) and recent HIV testing (AOR: 3.22; CI: 2.17 to 4.77). HIV testing was below the Joint United Nations Programme on HIV/AIDS UNAIDS 90-90-90 target. Being concerned about contracting HIV, discussion of HIV/STIs with a sexual partner and knowing one's partner's HIV status were associated with the uptake of HIV testing.
Collapse
Affiliation(s)
- A I Ajayi
- Population Dynamics and Sexual and Reproductive Health, African Population and Health Research Centre, APHRC Campus, Manga Close, Nairobi, Kenya
| | - E Mudefi
- Department of Sociology, Faculty of Social Sciences & Humanities, University of Fort Hare, East London, South Africa
| | - O V Adeniyi
- Department of Family Medicine & Rural Health, Faculty of Health Sciences, Walter Sisulu University, Mthatha/East London Hospital Complex, Cecilia Makiwane Hospital, East London, South Africa
| | - D T Goon
- Department of Nursing Sciences, Faculty of Health Sciences, University of Fort Hare, East London, South Africa
| |
Collapse
|
50
|
Ringe RP, Colin P, Torres JL, Yasmeen A, Lee WH, Cupo A, Ward AB, Klasse PJ, Moore JP. SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. J Virol 2019; 94:e01521-19. [PMID: 31619555 PMCID: PMC6912111 DOI: 10.1128/jvi.01521-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble recombinant native-like (NL) envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design, designated BG505 SOSIP.664, incorporates an intersubunit disulfide bond (SOS) to covalently link the gp120 and gp41 ectodomain (gp41ECTO) subunits and a point substitution, I559P (IP), to further stabilize the gp41ECTO components. Without the SOS and IP changes, proteolytically cleaved trimers tend to disintegrate into their constituent gp120 and gp41ECTO subunits. We show, however, that NL trimers lacking the SOS and/or IP change can be affinity purified in amounts sufficient for analyses of their antigenicity and thermal stability. In general, these trimer variants have properties highly comparable to those of the fully stabilized SOSIP.664 version. We conclude that the major effect of the SOS and IP changes is to substantially increase trimer stability during and after the expression process, thereby allowing useful amounts to be produced. However, once the trimers have been purified, the SOS and IP changes have only subtle impacts on thermostability and the antigenicity of bNAb and other epitopes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. One vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. A commonly used design is designated SOSIP.664, a term reflecting the sequence changes that are used to stabilize the trimers and allow their production in practically useful amounts. Here, we show that these stabilizing changes act to increase trimer yield during the biosynthesis process within the producer cell but have little impact on the properties of purified trimers.
Collapse
Affiliation(s)
- Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|