1
|
Uemura I, Takahashi-Suzuki N, Satoh T. Impact of afatinib on intestinal and salivary IgA: Immune response alterations linked to gastrointestinal side effects. Immunol Lett 2025; 275:107024. [PMID: 40228698 DOI: 10.1016/j.imlet.2025.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Afatinib, an oral molecular-targeted anticancer agent, is effective but causes significant gastrointestinal side effects. These effects are associated with EGFR inhibition in intestinal cells and changes in the microbiota. OBJECTIVE To investigate the effects of afatinib on intestinal mucosal immunity in rats, focusing on IgA levels in the intestine and saliva, and to understand the innate and acquired immune responses to these side effects. METHODS Male Wistar rats received afatinib (5.2 mg/kg) daily for 24 h (Day 1) and for 2 weeks (Day 14). Gene expression in the intestine was analyzed using quantitative polymerase chain reaction. IgA levels in the intestine and saliva were measured using enzyme-linked immunosorbent assay. RESULTS Afatinib suppressed α-defensin 5 and pIgR in the jejunum and ileum, indicating reduced innate immunity. It increased IgA levels in the intestine and saliva, suggesting altered acquired immunity. Salivary IgA levels significantly correlated with intestinal IgA levels. CONCLUSIONS Afatinib affects gastrointestinal mucosal immunity, suppresses innate defense, and alters IgA production. Salivary IgA could serve as a marker for monitoring these effects, aiding cancer therapy management.
Collapse
Affiliation(s)
- Ippei Uemura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan.
| | - Natsuko Takahashi-Suzuki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan.
| | - Takashi Satoh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan.
| |
Collapse
|
2
|
Rose AE, Fansler RT, Zhu W. Commensal resilience: ancient ecological lessons for the modern microbiota. Infect Immun 2025:e0050224. [PMID: 40387449 DOI: 10.1128/iai.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The gut microbiota constitutes a complex ecosystem essential for host health, offering metabolic support, modulating the immune system, and protecting against pathogens. However, this community faces constant destabilizing challenges, including dietary changes, antibiotics, and enteric infection. Prolonged microbiota imbalance or dysbiosis can exacerbate intestinal disease states, including inflammatory bowel disease and colorectal cancer. Understanding the mechanisms that sustain microbiota resilience in the face of these imbalances is crucial for maintaining host health and developing effective therapeutics. This review explores microbiota resilience through the lens of an ecological model, emphasizing the interplay between microbial communities and host-driven environmental controls. We highlight two critical factors shaping microbiota resilience: oxygen tension and iron availability-challenges encountered by ancient anaerobic organisms during early evolutionary history, from which the predominant members of the microbiota have descended. Disruptions in intestinal anaerobiosis during inflammation increase luminal oxygen levels, favoring pro-inflammatory facultative anaerobes and depleting obligately anaerobic commensals. Simultaneously, host nutritional immunity restricts iron availability, further challenging commensal survival. This dual environmental challenge of rising oxygen tension and reduced iron availability is a convergent outcome of a diverse array of perturbations, from pathogen invasion to antibiotic treatment. By highlighting these conserved downstream environmental challenges rather than the specific upstream perturbations, this ecological view offers a focused framework for understanding microbiota resilience. This perspective not only enhances our understanding of host-microbiota interactions but also informs therapeutic strategies to foster resilience and support host health.
Collapse
Affiliation(s)
- Abigail E Rose
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Matsumoto K, Noguchi A, Miyamoto F, Inoue R, Hirai H, Miwa T, Nakagawa Y, Higashimura Y. Intestinal D-amino acids content is highly related to intestinal IgA production upon soluble dietary fiber ingestion in mice. Food Chem 2025; 487:144719. [PMID: 40373723 DOI: 10.1016/j.foodchem.2025.144719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Soluble dietary fiber (SDF) induces intestinal IgA production. Mechanistically, this has primarily been explained by intestinal bacteria producing short-chain fatty acids (SCFAs) as metabolites from the SDF. Here, we aimed to identify factors other than SCFAs that contribute to SDF-induced intestinal IgA production. SDF ingestion (3 % of the diet) for 9-12 weeks induced a four-fold increase in fecal IgA production in BALB/cA mice. The total SCFA concentration in the cecum tends to show a positive correlation with fecal IgA content (ρ = 0.5734, P = 0.0513), while the content of D-amino acids (D-AAs), inducers of IgA, in the cecum and colon exhibited a strongly positive correlation with the IgA content (ρ = 0.7805, P < 0.001). Bacterial flora analysis of fecal samples revealed that certain bacterial species were highly correlated with IgA production. These findings suggest that D-AAs play an important role in SDF-induced intestinal IgA production.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Ayaka Noguchi
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Funa Miyamoto
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Ryo Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotouge, Hirakata, Osaka 573-0101, Japan
| | - Hirokazu Hirai
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Tomohiro Miwa
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yoshinori Nakagawa
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
4
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Gill T. Exploring the Mucosal Immune Response in Axial Spondyloarthritis Through Immunoglobulin A-Coated Microbiota. Rheum Dis Clin North Am 2025; 51:283-293. [PMID: 40246441 DOI: 10.1016/j.rdc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In this review, we focus on the mucosal immune response through Immunoglobulin A (IgA)-coated microbes and their role in gut dysbiosis in axial spondyloarthritis (axSpA) and associated inflammatory bowel disease. IgA-coated microbes contribute significantly to the microbial dysbiosis observed in axSpA, potentially driving gut inflammation and translocating outside of the gut and initiating systemic immune activation, thus contributing to disease pathogenesis. These insights will provide new avenues for understanding and treating axSpA and other immune-mediated inflammatory disorders by targeting specific host immune-microbe interactions.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Casey Eye Insitute, Oregon Science & Health University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA.
| |
Collapse
|
6
|
Westfall S, Gentile ME, Olsen TM, Karo-Atar D, Bogza A, Röstel F, Pardy RD, Mandato G, Fontes G, Herbert D, Melichar HJ, Abadie V, Richer MJ, Vinh DC, Koenig JFE, Harrison OJ, Divangahi M, Weis S, Gregorieff A, King IL. A type 1 immune-stromal cell network mediates disease tolerance against intestinal infection. Cell 2025:S0092-8674(25)00395-2. [PMID: 40267906 DOI: 10.1016/j.cell.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/03/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Type 1 immunity mediates host defense through pathogen elimination, but whether this pathway also impacts tissue function is unknown. Here, we demonstrate that rapid induction of interferon γ (IFNγ) signaling coordinates a multicellular response that is critical to limit tissue damage and maintain gut motility following infection of mice with a tissue-invasive helminth. IFNγ production is initiated by antigen-independent activation of lamina propria CD8+ T cells following MyD88-dependent recognition of the microbiota during helminth-induced barrier invasion. IFNγ acted directly on intestinal stromal cells to recruit neutrophils that limited parasite-induced tissue injury. IFNγ sensing also limited the expansion of smooth muscle actin-expressing cells to prevent pathological gut dysmotility. Importantly, this tissue-protective response did not impact parasite burden, indicating that IFNγ supports a disease tolerance defense strategy. Our results have important implications for managing the pathophysiological sequelae of post-infectious gut dysfunction and chronic inflammatory diseases associated with stromal remodeling.
Collapse
Affiliation(s)
- Susan Westfall
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Maria E Gentile
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Danielle Karo-Atar
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrei Bogza
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Franziska Röstel
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Ryan D Pardy
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Laval, QC, Canada
| | - Giordano Mandato
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Ghislaine Fontes
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - De'Broski Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather J Melichar
- Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada
| | - Valerie Abadie
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donald C Vinh
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Joshua F E Koenig
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Maziar Divangahi
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Regenerative Medicine Network, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada; McGill Regenerative Medicine Network, Montreal, QC, Canada; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| |
Collapse
|
7
|
Cabezas-Cruz A, Piloto-Sardiñas E, Tonnerre P, Lucas-Torres C, Obregon D. Cross-species immune activation and immunobiotics: a new frontier in vector-borne pathogen control. Trends Parasitol 2025; 41:290-300. [PMID: 40055101 DOI: 10.1016/j.pt.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025]
Abstract
The persistent global burden of vector-borne diseases (VBDs) needs innovative control strategies, as traditional methods are compromised by acaricides and drug resistance and variable vaccine efficacy. We propose a dual-action strategy using cross-species immune activation: human microbiota triggers the production of natural antibodies that directly target pathogens in the host and modulate vector immunity by interacting with vector microbiota. The human microbiota also modulates cytokine responses, enhancing immune defenses in both host and vector. These mechanisms can be further optimized by identifying immunobiotics - specific gut microbes that stimulate protective immune responses against VBDs. This approach offers a sustainable framework to bridge the gap between host and vector immunity, introducing a novel method to combat VBDs.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| | - Elianne Piloto-Sardiñas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France; Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Pierre Tonnerre
- Institut de Recherche Saint-Louis, Université Paris-Cité, Inserm U976, Team ATIP-Avenir, Paris, France
| | - Covadonga Lucas-Torres
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Route de Saclay, 91120 Palaiseau, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1H 2W1, Canada
| |
Collapse
|
8
|
Ameline C, Seixas E, Barreto HC, Frazão N, Rodrigues MV, Ventura MR, Lourenço M, Gordo I. Evolution of Escherichia coli strains under competent or compromised adaptive immunity. PLoS Pathog 2025; 21:e1012442. [PMID: 40273038 PMCID: PMC12021133 DOI: 10.1371/journal.ppat.1012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 04/26/2025] Open
Abstract
Escherichia coli is a commensal of the intestine of most mammals, but also an important human pathogen. Within a healthy human its population structure is highly dynamic, where typically a dominant E. coli strain is accompanied by several low abundance satellite strains. However, the factors underlying E. coli strain dynamics and evolution within hosts are still poorly understood. Here, we colonised germ-free immune-competent (wild-type) or immune-compromised (Rag2KO) mice, with two phylogenetically distinct strains of E. coli, to determine if strain co-existence and within-strain evolution are shaped by the adaptive immune system. Irrespectively of the immune status of the mice one strain reaches a 100-fold larger abundance than the other. However, the abundance of the dominant strain is significantly higher in Rag2KO mice. Strains co-exist for thousands of generations and accumulate beneficial mutations in genes coding for different resource preferences. A higher rate of mutation accumulation in immune-compromised vs. immune-competent mice is observed and adaptative mutations specific to immune-competent mice are identified. Importantly, the presence of the adaptive immune system selects for mutations that increase stress resistance and the dynamics of such evolutionary events associates with the onset of an antibody response.
Collapse
Affiliation(s)
- Camille Ameline
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Elsa Seixas
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Hugo C. Barreto
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Université Paris Cité, CNRS, Inserm U1016, Institut Cochin, Paris, France
| | - Nelson Frazão
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Universidade Católica Portuguesa, Faculdade de Medicina, Centro de Investigação Interdisciplinar em Saúde, Lisboa, Portugal
| | - Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Lourenço
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Isabel Gordo
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| |
Collapse
|
9
|
Philip V, Kraimi N, Zhang H, Lu J, Palma GD, Shimbori C, McCoy KD, Hapfelmeier S, Schären OP, Macpherson AJ, Chirdo F, Surette MG, Verdu EF, Liu F, Collins SM, Bercik P. Innate immune system signaling and intestinal dendritic cells migration to the brain underlie behavioral changes after microbial colonization in adult mice. Brain Behav Immun 2025; 127:238-250. [PMID: 40068794 DOI: 10.1016/j.bbi.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIMS Accumulating evidence suggests the microbiota is a key factor in Disorders of Gut-Brain Interaction (DGBI), by affecting host immune and neural systems. However, the underlying mechanisms remain elusive due to their complexity and clinical heterogeneity of patients with DGBIs. We aimed to identify neuroimmune pathways that are critical in microbiota-gut-brain communication during de novo gut colonization. METHODS We employed a combination of gnotobiotic and state-of-the-art microbial tools, behavioral analysis, immune and pharmacological approaches. Germ-free wild type, TLR signaling-deficient MyD88-/- Ticam1-/- and lymphocyte-deficient SCID mice were studied before and after colonization with specific pathogen-free microbiota, Altered Schaedler Flora, E. coli or S. typhimurium (permanent or transient colonizers). TLR agonists and antagonists, CCR7 antagonist or immunomodulators were used to study immune pathways. We assessed brain c-Fos, brain-derived neurotrophic factor, and dendritic and glial cells by immunofluorescence, expression of neuroimmune genes by NanoString and performed brain proteomics. RESULTS Bacterial monocolonization, conventionalization or administration of microbial products to germ-free mice altered mouse behavior similarly, acting through Toll-like receptor or nucleotide-binding oligomerization domain signaling. The process required CD11b+CD11c+CD103+ dendritic cell activation and migration into the brain. The change in behavior did not require the continued presence of bacteria and was associated with activation of multiple neuro-immune networks in the gut and the brain. CONCLUSIONS Changes in neural plasticity occur rapidly upon initial gut microbial colonization and involve innate immune signaling to the brain, mediated by CD11b+CD11c+CD103+ dendritic cell migration. The results identify a new target with therapeutic potential for DGBIs developing in context of increased gut and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Vivek Philip
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Kathy D McCoy
- Department of Biomedical Research, University Hospital, Bern, Switzerland; Dept. of Physiology and Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Olivier P Schären
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | | | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), La Plata, Argentina
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
10
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
12
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
13
|
Abdelqader EM, Mahmoud WS, Gebreel HM, Kamel MM, Abu-Elghait M. Correlation between gut microbiota dysbiosis, metabolic syndrome and breast cancer. Sci Rep 2025; 15:6652. [PMID: 39994329 PMCID: PMC11850770 DOI: 10.1038/s41598-025-89801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a widespread cancer with a high death rate globally. The incidence of breast cancer is expected to increase, particularly in low and middle-income countries due to environmental factors and lifestyle changes. Several risk factors, such as age, family history, hormonal and reproductive factors, have been identified to influence breast cancer development. Metabolic syndrome, is a metabolic disorder that has also been linked to breast cancer risk. The gut microbiome has been suggested as one of the environmental factors leading to breast cancer. The human microbiome is mainly colonized in the intestine by various bacterial species, including Lactobacillus, Bifidobacterium, and Streptococcus and protect the host against pathogenic microorganisms and regulate the immune system. This study included 50 female breast cancer patients and 50 healthy controls with matched ages. Stool fresh samples were taken from test and control groups and stored at - 20 °C until further investigations. DNA of the bacteria in stool samples was extracted using reverse transcription-quantitative polymerase chain reaction to check for the bacterial 16s rRNA gene. The exclusion criteria included other malignancies, recent intestinal surgery, infectious diarrhea, prolonged use of antibiotics, substance addiction, and pregnancy or lactation. Our findings exhibited that breast cancer patients had a higher incidence of metabolic syndrome (60%) compared to cancer-free controls (40%). Furthermore, breast cancer patients had significantly lower Bifidobacterium and Lactobacillus counts than the controls. No significant difference was found in Streptococcus counts between groups. These findings support the relationship between breast cancer and metabolic syndrome and suggest the potential involvement of Lactobacillus and Bifidobacterium in breast cancer pathophysiology. Our study supports the relation between breast cancer and disorder of metabolic syndrome and suggests the potential involvement of Lactobacillus and Bifidobacterium in breast cancer pathophysiology. Further research is necessary to investigate the complex interactions between genes, the environment, and the gut microbiome in breast cancer development. Understanding these interactions could lead to the progress of novel strategies for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Eslam M Abdelqader
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Walaa S Mahmoud
- Biological Anthropology Department National Research Centre, Dokki, Giza, Egypt
| | - Hassan M Gebreel
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Development, National Cancer Institute Cairo University, Cairo, Egypt
- Laboratory Development Bahyea Centre for Early Detection and Cancer Treatment, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
14
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
15
|
Xie C, Cheng J, Chen P, Yan X, Luo C, Qu H, Shu D, Ji J. Integrating gut and IgA-coated microbiota to identify Blautia as a probiotic for enhancing feed efficiency in chickens. IMETA 2025; 4:e264. [PMID: 40027490 PMCID: PMC11865324 DOI: 10.1002/imt2.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025]
Abstract
This study explores the role of IgA-coated bacteria in improving feed efficiency in chickens, offering a novel perspective for probiotic screening. Chickens with high feed efficiency were found to have a greater abundance of Gram-positive bacteria, while low feed efficiency chickens exhibited higher levels of Gram-negative bacteria and potential pathogens. Through fecal microbiota transplantation (FMT) and integrating analysis of cecal and IgA-coated microbiota, we precisely identified Blautia as a key genus linked to improved feed efficiency. Further validation demonstrated that Blautia coccoides, a representative species of this genus, enhances feed efficiency and activates B cells to produce Immunoglobulin A (IgA), both in vivo and in vitro. Our findings provide new insights into the potential of IgA-coated bacteria as functional probiotics, offering a promising strategy for enhancing feed efficiency in animal production.
Collapse
Affiliation(s)
- Chunlin Xie
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jiaheng Cheng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xia Yan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
16
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
17
|
Krasik SV, Bryushkova EA, Sharonov GV, Myalik DS, Shurganova EV, Komarov DV, Shagina IA, Shpudeiko PS, Turchaninova MA, Vakhitova MT, Samoylenko IV, Marinov DT, Demidov LV, Zagaynov VE, Chudakov DM, Serebrovskaya EO. Systematic evaluation of intratumoral and peripheral BCR repertoires in three cancers. eLife 2025; 13:RP89506. [PMID: 39831798 PMCID: PMC11745494 DOI: 10.7554/elife.89506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.
Collapse
Affiliation(s)
- Sofia V Krasik
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
| | - Ekaterina A Bryushkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Department of Molecular Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - George V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Daria S Myalik
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Nizhny Novgorod Regional Clinical Cancer HospitalNizhny NovgorodRussian Federation
| | | | - Dmitry V Komarov
- Volga Regional Medical Centre Under Federal Medical and Biological AgencyNizhny NovgorodRussian Federation
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Polina S Shpudeiko
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Maria T Vakhitova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Igor V Samoylenko
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Dimitr T Marinov
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Lev V Demidov
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Vladimir E Zagaynov
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Nizhny Novgorod Regional Clinical Cancer HospitalNizhny NovgorodRussian Federation
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Ekaterina O Serebrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| |
Collapse
|
18
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
19
|
Pietrasanta C, Carlosama C, Lizier M, Fornasa G, Jost TR, Carloni S, Giugliano S, Silvestri A, Brescia P, De Ponte Conti B, Braga D, Mihula M, Morosi L, Bernardinello A, Ronchi A, Martano G, Mosca F, Penna G, Grassi F, Pugni L, Rescigno M. Prenatal antibiotics reduce breast milk IgA and induce dysbiosis in mouse offspring, increasing neonatal susceptibility to bacterial sepsis. Cell Host Microbe 2024; 32:2178-2194.e6. [PMID: 39603245 DOI: 10.1016/j.chom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Antibiotics (Abx) are administered to 20%-30% of pregnant women, but their effects on neonatal immune development are poorly understood. We show that newborn mice born to Abx-treated dams are more susceptible to late-onset sepsis. This susceptibility is linked to lower maternal breast milk immunoglobulin A (IgA), neonatal fecal IgA, and IgA coating of intestinal bacteria, thus causing the translocation of intestinal pathobionts. Weaned young adults born to Abx-treated mothers had reduced IgA+ plasma cells in the ileum and colon, fecal secretory IgA (SIgA), colonic CD4+ T regulatory lymphocytes and T helper 17-like lymphocytes, and a less diverse fecal microbiome. However, treatment with apyrase, which restores SIgA secretion, prompted IgA production in breast milk and protected pups from sepsis. Additionally, breast milk from untreated mothers rescued the phenotypes of pups born to Abx-treated mothers. Our data highlight the impact of prenatal Abx on breast milk IgA and their long-term influence on intestinal mucosal immune function mediated by breastfeeding.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy.
| | - Carolina Carlosama
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Silvia Giugliano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | | | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Martin Mihula
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Medical Biotechnology, Università di Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Lavinia Morosi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro Bernardinello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy
| | - Andrea Ronchi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Martano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, Rozzano, Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Via della Commenda 19, Milan, Italy; NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenza Pugni
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Milan 20072, Italy.
| |
Collapse
|
20
|
Cao EY, Burrows K, Chiaranunt P, Popovic A, Zhou X, Xie C, Thakur A, Britton G, Spindler M, Ngai L, Tai SL, Dasoveanu DC, Nguyen A, Faith JJ, Parkinson J, Gommerman JL, Mortha A. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J Exp Med 2024; 221:e20221727. [PMID: 39535524 PMCID: PMC11561467 DOI: 10.1084/jem.20221727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Immunoglobulin (Ig) A supports mucosal immune homeostasis and host-microbiota interactions. While commensal bacteria are known for their ability to promote IgA, the role of non-bacterial commensal microbes in the induction of IgA remains elusive. Here, we demonstrate that permanent colonization with the protozoan commensal Tritrichomonas musculis (T.mu) promotes T cell-dependent, IgA class-switch recombination, and intestinal accumulation of IgA-secreting plasma cells (PC). T.mu colonization specifically drives the expansion of T follicular helper cells and a unique ICOS+ non-Tfh cell population, accompanied by an increase in germinal center B cells. Blockade of ICOS:ICOSL co-stimulation or MHCII-expression on B cells is central for the induction of IgA following colonization by T.mu, implicating a previously underappreciated mode of IgA induction following protozoan commensal colonization. Finally, T.mu further improves the induction of IgA-secreting PC specific to orally ingested antigens and their peripheral dissemination, identifying T.mu as a "natural adjuvant" for IgA. Collectively, these findings propose a protozoa-driven mode of IgA induction to support intestinal immune homeostasis.
Collapse
Affiliation(s)
- Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Xueyang Zhou
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Cong Xie
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Ayushi Thakur
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Graham Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
22
|
Jin X, Wu Z, Chen H, Liu W, Gu F, Li J. Extraction and Identification of Polysaccharide from Lentinus edodes and Its Effect on Immunosuppression and Intestinal Barrier Injury Induced by Cyclophosphamide. Int J Mol Sci 2024; 25:12432. [PMID: 39596497 PMCID: PMC11594469 DOI: 10.3390/ijms252212432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lentinus edodes serves as a significant source of both medicine and food, with its key component, lentinan (LNT), recognized as an effective immunomodulator. However, the mechanisms by which it regulates immune and intestinal functions under conditions of immunosuppression remain unclear. This study aims to investigate the components of lentinan and examine its potential effects on countering cyclophosphamide (CP)-induced immunosuppression, intestinal barrier damage, and dysregulation of gut microbiota. In this study, the effects of LNT were evaluated by serological indicators, histopathological changes in ileum, tight-junction-related protein expression, cytokine expression levels, and gut microbiota 16S rRNA gene sequencing. We found that LNT was effective in mitigating the abnormalities in body weight, immune organ index, and serum levels of IL-6, IL-2, IFN-γ, and IgG in mice induced by CP (p < 0.05). Furthermore, LNT demonstrated the ability to alleviate intestinal barrier damage induced by CP by increasing the mRNA levels of TNF-α, IL-1β, IFN-γ, Occludin, and ZO-1 (p < 0.05). Additionally, 16S rRNA gene sequencing revealed that LNT also normalized the disrupted abundance of Firmicutes, Proteobacteria, and Bacteroidets caused by CP. This restoration brought the gut microbiota back to normal levels and increased the abundance of certain tumor-inhibiting bacteria, such as Alistipes. Overall, lentinan demonstrated the ability to reverse the immunosuppressive effects induced by cyclophosphamide and modulate gut microbiota to restore a healthy microbial balance.
Collapse
Affiliation(s)
- Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150030, China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| |
Collapse
|
23
|
Liu R, Pollock J, Huibner S, Udayakumar S, Irungu E, Ngurukiri P, Muthoga P, Adhiambo W, Kimani J, Beattie T, Coburn B, Kaul R. Microbe-binding Antibodies in the Female Genital Tract: Associations with the Vaginal Microbiome and Genital Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1516-1527. [PMID: 39345194 DOI: 10.4049/jimmunol.2400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Bacteria-Ig interactions maintain homeostasis in the gut through the clearance of pathogenic bacteria and the development of immune tolerance to inflammatory bacteria; whether similar interactions modulate inflammation and bacterial colonization in the female genital tract is uncertain. In this study, we used a flow cytometry-based assay to quantify microbe-binding IgA and IgG in the cervicovaginal secretions of 200 HIV-uninfected women from Nairobi, Kenya that were enriched for bacterial vaginosis. Total IgA and IgG were abundant and frequently demonstrated ex vivo binding to the key vaginal bacteria species Gardnerella vaginalis, Prevotella bivia, Lactobacillus iners, and Lactobacillus crispatus, which are largely microbe-specific. Microbe-binding Abs were generally not associated with the presence or abundance of their corresponding bacteria. Total and microbe-binding IgA and IgG were inversely correlated with total bacterial abundance and positively correlated with several proinflammatory cytokines (IL-6, TNF) and chemotactic chemokines (IP-10, MIG, MIP-1α, MIP-1β, MIP-3α, MCP-1, IL-8), independent of total bacterial abundance. Flow cytometry-based quantification of microbe-binding Abs provides a platform to investigate host-microbiota interactions in the female genital tract of human observational and interventional studies. In contrast to the gut, cervicovaginal microbe-binding IgA and IgG do not appear to be immunoregulatory but may indirectly mitigate bacteria-induced inflammation by reducing total bacterial abundance.
Collapse
Affiliation(s)
- Rachel Liu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Pollock
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suji Udayakumar
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erastus Irungu
- Partners for Health and Development in Africa, UNITID, College of Health Sciences, Nairobi, Kenya
| | - Pauline Ngurukiri
- Partners for Health and Development in Africa, UNITID, College of Health Sciences, Nairobi, Kenya
| | - Peter Muthoga
- Partners for Health and Development in Africa, UNITID, College of Health Sciences, Nairobi, Kenya
| | - Wendy Adhiambo
- Partners for Health and Development in Africa, UNITID, College of Health Sciences, Nairobi, Kenya
| | - Joshua Kimani
- Partners for Health and Development in Africa, UNITID, College of Health Sciences, Nairobi, Kenya
| | - Tara Beattie
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Volf J, Faldynova M, Matiasovicova J, Sebkova A, Karasova D, Prikrylova H, Havlickova H, Rychlik I. Probiotic Mixtures Consisting of Representatives of Bacteroidetes and Selenomonadales Increase Resistance of Newly Hatched Chicks to Salmonella Enteritidis Infection. Microorganisms 2024; 12:2145. [PMID: 39597533 PMCID: PMC11596081 DOI: 10.3390/microorganisms12112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this study, we tested whether strains from genera Bacteroides, Megamonas, or Megasphaera can increase chicken resistance to Salmonella and Campylobacter jejuni when defined microbial mixtures consisting of these bacterial genera are administered. Mixtures consisting of different species and strains from the above-mentioned genera efficiently colonised the chicken caecum and increased chicken resistance to Salmonella by a factor of 50. The tested mixtures were even more effective in protecting chickens from Salmonella in a seeder model of infection (3-5 log reduction). The tested mixtures partially protected chickens from C. jejuni infection, though the effect was lower than that against Salmonella. The obtained data represent a first step for the development of a new type of probiotics for poultry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (J.V.); (M.F.); (J.M.); (A.S.); (D.K.); (H.P.); (H.H.)
| |
Collapse
|
25
|
Volf J, Kaspers B, Schusser B, Crhanova M, Karasova D, Stepanova H, Babak V, Rychlik I. Immunoglobulin secretion influences the composition of chicken caecal microbiota. Sci Rep 2024; 14:25410. [PMID: 39455845 PMCID: PMC11512033 DOI: 10.1038/s41598-024-76856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
Collapse
Affiliation(s)
- Jiri Volf
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Bernd Kaspers
- Veterinary Faculty, Department for Veterinary Sciences, Ludwig Maximilians University Munich, Planegg, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Center for Infection Prevention (ZIP), Technical University of Munich, Freising, Germany
| | | | - Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Hana Stepanova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
26
|
Coppinger M, Yang L, Popham DL, Ruby E, Stabb EV. Transient infection of Euprymna scolopes with an engineered D-alanine auxotroph of Vibrio fischeri. Appl Environ Microbiol 2024; 90:e0129824. [PMID: 39235243 PMCID: PMC11497789 DOI: 10.1128/aem.01298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024] Open
Abstract
The symbiosis between Vibrio fischeri and the Hawaiian bobtail squid, Euprymna scolopes, is a tractable and well-studied model of bacteria-animal mutualism. Here, we developed a method to transiently colonize E. scolopes using D-alanine (D-ala) auxotrophy of the symbiont, controlling the persistence of viable infection by supplying or withholding D-ala. We generated alanine racemase (alr) mutants of V. fischeri that lack avenues for mutational suppression of auxotrophy or reversion to prototrophy. Surprisingly, an ∆alr mutant did not require D-ala to grow in a minimal medium, a phenomenon requiring metC, which encodes cystathionine β-lyase. Likewise, overexpression of metC suppressed D-ala auxotrophy in a rich medium. To block potential mechanisms of suppression, we combined the ∆alr mutation with deletions of metC and/or bsrF, which encodes a broad-spectrum racemase and investigated the suppression rates of four D-ala auxotrophic strains. We then focused on ∆alr ∆bsrF mutant MC13, which has a suppression rate of <10-9. When D-ala was removed from a growing culture of MC13, cells rounded and lysed within 40 minutes. Transient colonization of E. scolopes was achieved by inoculating squid in seawater containing MC13 and D-ala, and then transferring the squid into water lacking D-ala, which resulted in loss of viable symbionts within hours. Interestingly, the symbionts within crypt 3 persisted longer than those of crypt 1, suggesting a difference in bacterial growth rate in distinct crypt environments. Our study highlights a new approach for inducing transient colonization and provides insight into the biogeography of the E. scolopes light organ.IMPORTANCEThe importance of this study is multi-faceted, providing a valuable methodological tool and insight into the biology of the symbiosis between Vibrio fischeri and Euprymna scolopes. First, the study sheds light on the critical role of D-ala for bacterial growth, and the underpinnings of D-ala synthesis. Our observations that metC obviates the need for D-ala supplementation of an alr mutant in minimal medium and that MetC-dependent growth correlates with D-ala in peptidoglycan, corroborate and extend previous findings in Escherichia coli regarding a role of MetC in D-ala production. Second, our isolation of robust D-ala auxotrophs led us to a novel method for studying the squid-Vibrio symbiosis, allowing for transient colonization without the use of antibiotics, and revealed intriguing differences in symbiont growth parameters in distinct light organ crypts. This work and the methodology developed will contribute to our understanding of the persistence and dynamics of V. fischeri within its host.
Collapse
Affiliation(s)
- Macey Coppinger
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liu Yang
- Division of Biosphere Sciences and Engineering, California Institute of Technology, Pasadena, California, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Edward Ruby
- Division of Biosphere Sciences and Engineering, California Institute of Technology, Pasadena, California, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Okolie MC, Edo GI, Ainyanbhor IE, Jikah AN, Akpoghelie PO, Yousif E, Zainulabdeen K, Isoje EF, Igbuku UA, Orogu JO, Owheruo JO, Essaghah AEA, Umar H. Gut microbiota and immunity in health and diseases: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2024. [DOI: 10.1007/s43538-024-00355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025]
|
28
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Wichmann C, Wirthgen E, Nowosad CR, Däbritz J. B cell academy of the gut: an update on gut associated germinal centre B cell dynamics. Mol Cell Pediatr 2024; 11:7. [PMID: 39147924 PMCID: PMC11327226 DOI: 10.1186/s40348-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The gut is an environment in which the immune system closely interacts with a vast number of foreign antigens, both inert such as food and alive, from the viral, bacterial, fungal and protozoal microbiota. Within this environment, germinal centres, which are microanatomical structures where B cells affinity-mature, are chronically present and active. MAIN BODY The functional mechanism by which gut-associated germinal centres contribute to gut homeostasis is not well understood. Additionally, the role of T cells in class switching to immunoglobulin A and the importance of B cell affinity maturation in homeostasis remains elusive. Here, we provide a brief overview of the dynamics of gut-associated germinal centres, T cell dependency in Immunoglobulin A class switching, and the current state of research regarding the role of B cell selection in germinal centres in the gut under steady-state conditions in gnotobiotic mouse models and complex microbiota, as well as in response to immunization and microbial colonization. Furthermore, we briefly link those processes to immune system maturation and relevant diseases. CONCLUSION B cell response at mucosal surfaces consists of a delicate interplay of many dynamic factors, including the microbiota and continuous B cell influx. The rapid turnover within gut-associated germinal centres and potential influences of an early-life window of immune system imprinting complicate B cell dynamics in the gut.
Collapse
Affiliation(s)
- Christopher Wichmann
- Department of Paediatrics, Greifswald University Medical Centre, Ferdinand-Sauerbruch-Str.1, Greifswald, MV, 17457, Germany
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Elisa Wirthgen
- Department of Paediatrics, Rostock University Medical Centre, Rostock, MV, Germany
| | - Carla R Nowosad
- Department of Pathology, NYU Langone Grossman School of Medicine, New York University, New York, NY, USA
| | - Jan Däbritz
- Department of Paediatrics, Greifswald University Medical Centre, Ferdinand-Sauerbruch-Str.1, Greifswald, MV, 17457, Germany.
- German Centre for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Greifswald, MV, Germany.
| |
Collapse
|
32
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
34
|
Song Y, Cui Y, Wang Y, Wang T, Zhong Y, Liu J, Zheng X. The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks. Sci Rep 2024; 14:16973. [PMID: 39043769 PMCID: PMC11266578 DOI: 10.1038/s41598-024-67881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Our previous research found that fecal microbiota transplantation (FMT) and inulin synergistically affected the intestinal barrier and immune system function in chicks. However, does it promote the early immunity of the poultry gut-associated lymphoid tissue (GALT)? How does it regulate the immunity? We evaluated immune-related indicators in the serum, cecal tonsil, and intestine to determine whether FMT synergistic inulin had a stronger impact on gut health and which gene expression regulation was affected. The results showed that FMT synergistic inulin increased TGF-β secretion and intestinal goblet cell number and MUC2 expression on day 14. Expression of BAFFR, PAX5, CXCL12, and IL-2 on day 7 and expression of CXCR4 and IL-2 on day 14 in the cecal tonsils significantly increased. The transcriptome indicated that CD28 and CTLA4 were important regulatory factors in intestinal immunity. Correlation analysis showed that differential genes were related to the immunity and development of the gut and cecal tonsil. FMT synergistic inulin promoted the development of GALT, which improved the early-stage immunity of the intestine by regulating CD28 and CTLA4. This provided new measures for replacing antibiotic use and reducing the use of therapeutic drugs while laying a technical foundation for achieving anti-antibiotic production of poultry products.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China.
| |
Collapse
|
35
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
37
|
Campo JJ, Seppo AE, Randall AZ, Pablo J, Hung C, Teng A, Shandling AD, Truong J, Oberai A, Miller J, Iqbal NT, Peñataro Yori P, Kukkonen AK, Kuitunen M, Guterman LB, Morris SK, Pell LG, Al Mahmud A, Ramakrishan G, Heinz E, Kirkpatrick BD, Faruque AS, Haque R, Looney RJ, Kosek MN, Savilahti E, Omer SB, Roth DE, Petri WA, Järvinen KM. Human milk antibodies to global pathogens reveal geographic and interindividual variations in IgA and IgG. J Clin Invest 2024; 134:e168789. [PMID: 39087469 PMCID: PMC11290967 DOI: 10.1172/jci168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUNDThe use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODSUsing multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTSThe antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli "EPEC", Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSIONThis comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDINGBill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).
Collapse
Affiliation(s)
| | - Antti E. Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | | | - Jozelyn Pablo
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Chris Hung
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Andy Teng
- Antigen Discovery Incorporated, Irvine, California, USA
| | | | | | - Amit Oberai
- Antigen Discovery Incorporated, Irvine, California, USA
| | - James Miller
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Kaarina Kukkonen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikael Kuitunen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - L. Beryl Guterman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Shaun K. Morris
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa G. Pell
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Girija Ramakrishan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Wellcome Sanger Institute, Parasites and Microbes, Cambridge, UK
| | - Beth D. Kirkpatrick
- Vaccine Testing Center and Department of Microbiology and Molecular Genetics, The University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Abu S.G. Faruque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Erkki Savilahti
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saad B. Omer
- Peter O’Donnell Jr. School of Public Health, Dallas, Texas, USA
| | - Daniel E. Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
38
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
39
|
Skinner OP, Asad S, Haque A. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol 2024; 88:102443. [PMID: 38968762 DOI: 10.1016/j.coi.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) and Variable, Diversity, Joining (VDJ) profiling have improved our understanding of B-cells. Recent scRNAseq-based approaches have led to the discovery of intermediate B-cell states, including preplasma cells and pregerminal centre B-cells, as well as unveiling protective roles for B-cells within tertiary lymphoid structures in respiratory infections and cancers. These studies have improved our understanding of transcriptional and epigenetic control of B-cell development and of atypical and memory B-cell differentiation. Advancements in temporal profiling in parallel with transcriptomic and VDJ sequencing have consolidated our understanding of the trajectory of B-cell clones over the course of infection and vaccination. Challenges remain in studying B-cell states across tissues in humans, in relating spatial location with B-cell phenotype and function, in examining antibody isotype switching events, and in unequivocal determination of clonal relationships. Nevertheless, ongoing multiomic assessments and studies of cellular interactions within tissues promise new avenues for improving humoral immunity and combatting autoimmune conditions.
Collapse
Affiliation(s)
- Oliver P Skinner
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| | - Saba Asad
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia
| | - Ashraful Haque
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
40
|
Harris JR, Zoccoli-Rodriguez V, Delaney MS, Cruz TN, Gaudette BT, Wilmore JR. Gut commensals require Peyer's patches to induce protective systemic IgA responses. RESEARCH SQUARE 2024:rs.3.rs-4220532. [PMID: 38798510 PMCID: PMC11118714 DOI: 10.21203/rs.3.rs-4220532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gut educated IgA secreting plasma cells that disseminate beyond the mucosa and into systemic tissues have been described as providing beneficial effects from disease in several contexts. Several bacteria have been implicated in the induction of systemic IgA, however the mechanisms that result in differential levels of induction by each bacterial species are still unknown. Here we show, the commensal bacteria, Bacteroides fragilis (Bf), is an efficient inducer of systemic IgA responses. The ability of Bf to induce the production of bone marrow IgA plasma cells and high levels of serum IgA relied on high levels of gut colonization in a dose-dependent manner. Colonization induced Bf-specific IgA responses were severely diminished in the absence of Peyer's patches, but not the murine cecal patch. Colonization of mice with Bf, a natural human commensal, resulted in few changes within the microbiome and the host transcriptional profile in the gut, suggesting a commensal relationship with the host. Bf colonization did benefit the mice by inducing systemic IgA that led to increased protection in a bowel perforation model resulting in lower peritoneal abscess formation. These findings demonstrate a critical role for bacterial colonization and Peyer's patches in the induction of robust systemic IgA responses that confer protection from bacterial dissemination outside of the gut.
Collapse
Affiliation(s)
- Joshua R. Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | | | - Mara S. Delaney
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Tania N. Cruz
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Brian T. Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
- Sepsis Interdisciplinary Research Center, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
41
|
Zhao M, Liang X, Meng Y, Lu H, Lin K, Gong P, Liu T, Yi H, Pan J, Zhang Y, Zhang Z, Zhang L. Probiotics induce intestinal IgA secretion in weanling mice potentially through promoting intestinal APRIL expression and modulating the gut microbiota composition. Food Funct 2024; 15:4862-4873. [PMID: 38587236 DOI: 10.1039/d4fo00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.
Collapse
Affiliation(s)
- Maozhen Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Xi Liang
- College of Public Health, Qingdao University, Qingdao, 266000, China
| | - Yang Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Haiyan Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Jiancun Pan
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihar, 161000, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihar, 161000, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
42
|
Hutchison ER, Yen MI, Peng HW, Davis CR, Vivas EI, Tallon MM, Bui TPN, de Vos WM, Yen CLE, Nieuwdorp M, Rey FE. The gut microbiome modulates the impact of Anaerobutyricum soehngenii supplementation on glucose homeostasis in mice. RESEARCH SQUARE 2024:rs.3.rs-4324489. [PMID: 38746233 PMCID: PMC11092834 DOI: 10.21203/rs.3.rs-4324489/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.
Collapse
|
43
|
Karole A, Dinakar YH, Sagar P, Mudavath SL. Self-assembled nanomicelles for oral delivery of luteolin utilizing the intestinal lymphatic pathway to target pancreatic cancer. NANOSCALE 2024; 16:7453-7466. [PMID: 38517408 DOI: 10.1039/d3nr06638j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Pancreatic cancer is one of the major cause of cancer-related deaths worldwide, and is mainly associated with carcinomas of the pancreatic tissue. Current therapies for treating pancreatic cancer have a major drawback related to their low bioavailability and non-specificity, which leads to low therapeutic efficacy and side effects. Luteolin (LUT) has been clinically used for treatment of various types of cancer, although its clinical use has declined owing to its low oral bioavailability. In this work, we prepared an effervescent-based nanocarrier (NG) that rapidly triggers an effervescent reaction and transforms into nanomicelles to modulate the oral bioavailability of the hydrophobic drug Luteolin (LUT). Furthermore, we performed tests to assess its in vitro epithelial cell permeability and cellular internalization on a Caco-2 monolayer. We also performed in vivo toxicity assessment using animal models. Further, we evaluated the nanocarrier system's in vivo efficacy in tumor xenograft pancreatic cancer models. We validated that being pH responsive, our effervescent carrier disassembles at intestinal pH and is absorbed through the intestinal lymphatic system (ILS) to further site-specifically invade the pancreatic cancer cells. Furthermore, the negative surface charge and particle size (450 ± 100 nm) of the nanomicelles helped to internalize LUT through the ILS. We observed that LUT-loaded nanomicelles have significant antipancreatic cancer efficacy by activating caspase-3 activity and downregulating VEGF-A, FAK, TNF-α, and Ki-67. Unlike other drug-delivery systems, we developed noninvasive nanocarrier system has the capability of transporting the hydrophobic drug LUT from the intestine to the tumor site by utilizing the ILS.
Collapse
Affiliation(s)
- Archana Karole
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India
| | - Yirivinti Hayagreeva Dinakar
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India
| | - Poonam Sagar
- Department of Food and Nutrition, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, Mohali, Punjab, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
44
|
Gurung M, Schlegel BT, Rajasundaram D, Fox R, Bode L, Yao T, Lindemann SR, LeRoith T, Read QD, Simecka C, Carroll L, Andres A, Yeruva L. Microbiota from human infants consuming secretors or non-secretors mothers' milk impacts the gut and immune system in mice. mSystems 2024; 9:e0029424. [PMID: 38530054 PMCID: PMC11019842 DOI: 10.1128/msystems.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renee Fox
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tianming Yao
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Stephen R. Lindemann
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Christy Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
45
|
Revankar NA, Negi PS. Biotics: An emerging food supplement for health improvement in the era of immune modulation. Nutr Clin Pract 2024; 39:311-329. [PMID: 37466413 DOI: 10.1002/ncp.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
The involvement of the commensal microbiota in immune function is a multifold process. Biotics, such as probiotics, prebiotics, synbiotics, and paraprobiotics, have been subjected to animal and human trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in overall health. In recent years, studies on human microbiome interaction have established the multifarious role of biotics in maintaining overall health. The consumption of biotics has been extensively reported to help in maintaining microbial diversity, enhancing gut-associated mucosal immune homeostasis, and providing protection against a wide range of lifestyle disorders. However, the establishment of biotics as an alternative therapy for a range of health conditions is yet to be ascertained. Despite the fact that scientific literature has demonstrated the correlation between biotics and immune modulation, most in vivo and in vitro reports are inconclusive on the dosage required. This review provides valuable insights into the immunomodulatory effects of biotics consumption based on evidence obtained from animal models and clinical trials. Furthermore, we highlight the optimal dosages of biotics that have been reported to deliver maximum health benefits. By identifying critical research gaps, we have suggested a roadmap for future investigations to advance our understanding of the intricate crosstalk between biotics and immune homeostasis.
Collapse
Affiliation(s)
- Neelam A Revankar
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep S Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
46
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
47
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
48
|
Pecha B, Martinez S, Milburn LJ, Rojas OL, Koch MA. Identification of Intestinal Lamina Propria Plasma Cells by Surface Transmembrane Activator and CAML Interactor Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1022-1028. [PMID: 38294253 PMCID: PMC10932850 DOI: 10.4049/jimmunol.2300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Plasma cells secrete an abundance of Abs and are a crucial component of our immune system. The intestinal lamina propria harbors the largest population of plasma cells, most of which produce IgA. These Abs can bind to beneficial gut bacteria to reinforce intestinal homeostasis and provide protection against enteric pathogens. Plasma cells downregulate many cell-surface proteins commonly used to identify B cells. In mice, expression of the surface marker CD138 has been widely used to identify plasma cells in lymph nodes, bone marrow, and spleen. Intestinal plasma cells require liberation via extensive tissue processing involving treatment with collagenase. We report that detection of CD138 surface expression is reduced following collagenase treatment. Using a mouse in which yellow fluorescent protein expression is controlled by the plasma cell requisite transcription factor Blimp-1, we show that surface detection of transmembrane activator and CAML interactor captures a significant proportion of Ab-secreting plasma cells in the intestinal lamina propria and gut-draining mesenteric lymph nodes. Additionally, we describe a flow cytometry panel based on the detection of surface markers to identify murine B cell subsets in the intestinal lamina propria and, as a proof of concept, combine it with a cutting-edge fate-tracking system to characterize the fate of germinal center B cells activated in early life. By identifying plasma cells and other key intestinal B subsets in a manner compatible with several downstream applications, including sorting and culturing and in vitro manipulations, this efficient and powerful approach can enhance studies of mucosal immunity.
Collapse
Affiliation(s)
- Bingjie Pecha
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Luke J Milburn
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olga L Rojas
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
49
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
50
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|