1
|
Tang X, Zhang C, Geng Q, Chen D, Ma W. Antibody-dependent enhancement of ORFV uptake into host cells. Virulence 2025; 16:2466503. [PMID: 39954287 PMCID: PMC11834454 DOI: 10.1080/21505594.2025.2466503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/28/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Orf virus (ORFV) has been demonstrated to infect both goat non-immune cells, specifically goat epithelial cells, and goat blood immune cells. Our previous studies have indicated that ORFV gains entry into goat epithelial cells via clathrin-mediated endocytosis and macropinocytosis pathways. However, the pathway by which ORFV enters goat blood immune cells has not yet been elucidated. Our findings revealed a differential viral internalization pathway in ORFV-infects goat immune cells contrasting the internalization pathways in goat epithelial cells, potentially involving an antibody-related mechanism. Therefore, our hypothesis posits that ORFV gains entry into goat immune cells via the antibody-dependent enhancement (ADE) pathway. Our experimental findings confirm the presence of the ADE effect in ORFV-infected goat immune cells, mediated by Fc receptors (FcRs) as demonstrated in antibody-blocking experiments. Furthermore, the ADE effect was also observed in goat epithelial cells. Nevertheless, the ADE effect observed in goat epithelial cells was not found to be dependent on the interaction between the virus-antibody complex and Fc receptors, as demonstrated by antibody-blocking experiments. Instead, it is suggested that an alternative mechanism involving the complement factor and complement receptors (CRs) may be responsible. Overall, this research offers insights into the unique ADE pathway of ORFV infection in different cell types, offering a novel perspective on the infection and pathogenic mechanisms of ORFV.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan Province, China
| | - Chenyibo Zhang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Qingru Geng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| |
Collapse
|
2
|
Zhai H, Gao Y, Zhu Y, Hou Q, Wan N, Wang T, Li S, Zhao D, Qiu HJ, Li Y. Anti-pA137R antibodies exacerbate the pathogenicity of African swine fever virus in pigs. J Virol 2025; 99:e0017225. [PMID: 40439408 DOI: 10.1128/jvi.00172-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/01/2025] [Indexed: 06/18/2025] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease with a mortality of up to 100% in pigs. Currently, no safe and effective vaccines are available globally, except for two licensed vaccines in Vietnam. One of the factors impeding the development of vaccines is antibody-dependent enhancement (ADE). Our previous study showed that the antibodies against the ASFV protein A137R (pA137R) could promote ADE of ASFV infection in primary porcine alveolar macrophages. However, direct evidence of ADE in target animals remains limited. Here, we investigated whether anti-pA137R antibodies exacerbate ASFV pathogenicity in pigs. The immunization-challenge experiment showed that the pigs immunized with pA137R exhibited more severe clinical signs and died earlier than the unimmunized ones. Meanwhile, the examination of viral replication in the blood and various tissues revealed that the anti-pA137R antibodies promoted the infectivity of ASFV. Notably, the production of interferon alpha was significantly upregulated in the blood of the immunized piglets, while the level of interferon beta, tumor necrosis factor alpha, and interleukin 1beta remained unchanged. Mechanistically, the Fc gamma receptor (FcγR) II and FcγRIII facilitated ADE of ASFV infection in the PK-15 cells overexpressing the receptors. Taken together, our study demonstrates for the first time that the anti-pA137R antibodies enhance ASFV pathogenicity in pigs, providing novel insights into the role of anti-ASFV antibodies in the pathogenesis of ASFV and the rational design of innovative ASF vaccines.IMPORTANCEThe antibody-dependent enhancement (ADE) effect can augment viral replication or elicit aberrant immune responses, ultimately aggravating the disease progression. Recently, we have shown that the antibodies against A137R protein (pA137R) of African swine fever virus (ASFV) can drive ADE in vitro. The present study shows that the anti-pA137R antibodies can enhance viral infection and exacerbate clinical signs in pigs. Importantly, the aberration in interferon alpha production might be related to the pathogenicity of ASFV mediated by ADE. Mechanistically, Fc gamma receptor (FcγR) II and FcγRIII are shown to facilitate ASFV infection. This study is the first to demonstrate that the anti-pA137R antibodies enhance the pathogenicity of ASFV in pigs, offering novel insights into the pathophysiology of ASFV and the development of African swine fever vaccines.
Collapse
Affiliation(s)
- Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuxuan Gao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Qinghe Hou
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Nian Wan
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
3
|
Côrtes N, Lira A, Silva JDQ, Carvalho E, Prates-Syed WA, Hamaguchi B, Durães-Carvalho R, Balan A, Câmara NOS, Cabral-Marques O, Pardi N, Sabino EC, Krieger JE, Cabral-Miranda G. A VLPs based vaccine protects against Zika virus infection and prevents cerebral and testicular damage. NPJ Vaccines 2025; 10:107. [PMID: 40425591 PMCID: PMC12116995 DOI: 10.1038/s41541-025-01163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Still, Zika virus (ZIKV) infection poses a substantial public health risk, especially for pregnant women and their fetuses, as it can result in congenital abnormalities and fetal mortality during pregnancy. Despite significant advances in understanding and combating ZIKV, considerable challenges remain in the fight against this flavivirus. A crucial component of this effort is the development of vaccines, none of which have yet been licensed for human use. Here, we present a comprehensive study of a novel ZIKV vaccine candidate based on virus-like particles (VLPs), designed to provide broad immunological protection against viral infection combined with safety, without the need for additional adjuvants. A self-adjuvanted VLPs-based vaccine displaying the envelope protein domain III (EDIII) of ZIKV was built. The EDIII protein was expressed in E. coli and chemically conjugated to QβVLPs. Immunization of C57BL/6 mice with two doses of the EDIII-QβVLPs vaccine elicited strong EDIII-specific Th1-based immune response. Notably, the vaccine induced neutralizing antibodies and conferred protection in type I IFN receptor-deficient (G129) mice against ZIKV challenge. Furthermore, vaccinated male mice were protected from ZIKV-induced cerebral and testicular damage, critical concerns for ZIKV pathogenesis. These findings suggest that the EDIII-QβVLP vaccine is a promising candidate for preventing ZIKV infection, with potential applications in combatting this and other emerging flaviviruses.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jaqueline D Q Silva
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Evelyn Carvalho
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Wasim A Prates-Syed
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara Hamaguchi
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
- Interunit Bioinformatics Graduate Program, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrea Balan
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- DO'R Institute for Research, São Paulo, Brazil
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ester C Sabino
- Department of Pathology, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Heart Institute, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Infectious Diseases and Tropical Medicine, Laboratory of Medical Investigation 46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Flores HE, Pinzon Burgos EF, Camacho Ortega S, Heredia A, Chua JV. From Antibodies to Immunity: Assessing Correlates of Flavivirus Protection and Cross-Reactivity. Vaccines (Basel) 2025; 13:449. [PMID: 40432061 PMCID: PMC12115660 DOI: 10.3390/vaccines13050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses that can cause a wide range of human diseases, from mild symptoms to severe illness with multiorgan failure and death. Effective prevention of these diseases relies on identifying reliable vaccine targets, typically measured by correlates of protection (CoPs), which help indicate host immunity after vaccination. Current vaccines primarily focus on neutralizing antibodies (nAbs) against the viral envelope E protein, though emerging evidence suggests other potential targets may also be effective in disease prevention. Additionally, there is growing evidence of cross-protection between different flaviviruses when immunity to one virus is achieved, although this can be limited by antibody-dependent enhancement. This review examines the current understanding of flavivirus immunity, CoPs, and the potential for cross-protection in the context of existing vaccine strategies.
Collapse
Affiliation(s)
| | | | | | | | - Joel V. Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.E.F.); (E.F.P.B.); (S.C.O.); (A.H.)
| |
Collapse
|
5
|
Peng X, Han Y, Xue S, Zhou Y, Jiang W, Xia A, Wu W, Gao Y, Wu F, Wang Q. Low Antibody-Dependent Enhancement of Viral Entry Activity Supports the Safety of Inactivated SARS-CoV-2 Vaccines. Vaccines (Basel) 2025; 13:425. [PMID: 40333308 PMCID: PMC12031465 DOI: 10.3390/vaccines13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND/OBJECTIVES The antibody-dependent enhancement (ADE) of viral entry has been documented for SARS-CoV-2 infection both in vitro and in vivo. However, the potential for the SARS-CoV-2 vaccination to elicit similar ADE effects remains unclear. METHODS In this study, we assessed the in vitro ADE potential of monoclonal antibodies (mAbs) derived from individuals vaccinated with the inactivated SARS-CoV-2 vaccine and compared them to those from one convalescent donor. RESULTS Our analysis revealed no significant difference in binding affinity or neutralizing capacity between the vaccinated and convalescent mAbs. However, the inactivated SARS-CoV-2 vaccination induced fewer ADE-inducing mAbs, particularly those targeting the Class III epitope on the receptor-binding domain (RBD) compared to those from the convalescent individual. Moreover, no significant in vitro ADE was detected in either vaccinated or convalescent sera, indicating low levels of ADE-inducing antibodies in the sera. CONCLUSIONS An inactivated SARS-CoV-2 vaccination induces fewer ADE-inducing antibodies compared to natural infection, further emphasizing the safety of inactivated SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaofang Peng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China;
| | - Weiyu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| |
Collapse
|
6
|
Hardy CSC, Wegman AD, Waldran MJ, Chan GC, Waickman AT. Conventional and antibody-enhanced DENV infection of human macrophages induces differential immunotranscriptomic profiles. J Virol 2025; 99:e0196224. [PMID: 39902963 PMCID: PMC11915858 DOI: 10.1128/jvi.01962-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus which coexists as four genetically and immunologically distinct serotypes (DENV-1 to -4). In secondary heterologous DENV infection, pre-existing immunity is believed to contribute to severe disease through antibody-dependent enhancement (ADE). Although the elevated pathology observed in ADE conditions has been described, the cell-intrinsic mechanisms governing this process remain unclear. Using single-cell RNA sequencing (scRNAseq), we investigated the transcriptomic profiles of human monocyte-derived macrophages infected by DENV-2 in ADE compared to conventional infection conditions. Unsupervised analysis of scRNAseq data enabled the identification of two distinct cell populations in a heterogeneous cell culture, likely representing infected and bystander/uninfected cells. Differential gene expression and ingenuity pathway analyses revealed a number of significantly upregulated and downregulated genes and gene networks between cells infected by ADE compared to conventional infection. Specifically, these pathways indicated mechanisms such as suppressed interferon signaling and inflammatory chemokine transcription in cells infected via ADE. Further analysis revealed that transcriptomic changes were independent of viral RNA within infected cells, suggesting that the observed changes are reflective of cell-intrinsic responses and not simply a function of per-cell viral burden. The interpreted "bystander" cell population also demonstrated distinct profiles in ADE conditions, indicating an immunologically activated phenotype enriched for the expression of gene networks involved with protein translation, cytokine production, and antigen presentation. Together, these findings support the concept that DENV infection via ADE induces a qualitatively different transcriptomic response in infected cells, contributing to our understanding of ADE as a mechanistic driver of disease and pathogenesis.IMPORTANCEDengue virus (DENV) is a mosquito-borne human pathogen with a significant and growing global health burden. Although correlates of severe dengue disease are poorly understood, pre-existing immunity to DENV has been associated with severe disease risk and known to contribute to an alternative route of viral entry termed antibody-dependent enhancement (ADE). Using single-cell RNA sequencing, we identified distinct transcriptomic processes involved in antibody-mediated DENV entry compared to conventional receptor-mediated entry. These data provide meaningful insight into the discrete processes contributing to DENV pathogenesis in ADE conditions.
Collapse
Affiliation(s)
- Céline S. C. Hardy
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Adam D. Wegman
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Mitchell J. Waldran
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
7
|
Tao T, Tian L, Ke J, Zhang C, Li M, Xu X, Fan J, Tong Y, Fan H. Antibody-dependent enhancement of coronaviruses. Int J Biol Sci 2025; 21:1686-1704. [PMID: 39990674 PMCID: PMC11844293 DOI: 10.7150/ijbs.96112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
The COVID-19 pandemic presents a significant challenge to the global health and the world economy, with humanity engaged in an extended struggle against the virus. Notable advancements have been achieved in the development of vaccines and therapeutic interventions, including the application of neutralizing antibodies (NAbs) and convalescent plasma (CP). While antibody-dependent enhancement (ADE) has not been observed in human clinical studies related to SARS-CoV-2, the potential for ADE remains a critical concern and challenge in addressing SARS-CoV-2 infections. Moreover, the causal relationship between ADE and viral characteristics remains to be clearly elucidated. Viruses that present with severe clinical manifestations of ADE have demonstrated the capacity to replicate in macrophages or other immune cells, or to alter the immunological status of these cells, which induces abortive infections characterized by systemic inflammation. In this review, we summarize experimental observations and clinical evidence concerning the ADE effect associated with coronaviruses. We critically examine the potential mechanisms through which coronaviruses mediate ADE, and propose strategies to mitigate this phenomenon in the context of viral infection treatment. Our aim is to offer informed recommendations for the containment of the COVID-19 pandemic and to strengthen the response to SARS-CoV-2, as well as to prepare for potential future coronavirus threats.
Collapse
Affiliation(s)
- Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuxie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Colognese BA, Argollo N. Zika virus infection and acute transverse myelitis: a comprehensive systematic review. Rev Inst Med Trop Sao Paulo 2024; 66:e66. [PMID: 39699422 DOI: 10.1590/s1678-9946202466066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/01/2024] [Indexed: 12/20/2024] Open
Abstract
The Zika virus (ZIKV) has been associated with several complications, including acute transverse myelitis (ATM), an acute inflammation of the spinal cord, with rapid development of motor, sensory and dysautonomic symptoms. It is a rare disease, and its clinical features, as well as differences in relation to idiopathic ATMs, are still not completely known. The objective of this paper is to review the literature in search of clinical features and complementary exams of ATM post-ZIKV infection, alone or in association with other neurological conditions (mixed diseases), as well as its treatments and prognoses. The search was made on 5 databases, using the PRISMA methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Nine articles were selected (total of 20 subjects), which were divided between isolated ATM and mixed neurological syndromes with ATM. The study found a predominance of individuals aged 20 to 30. Among the six subjects in the mixed group, three were over 50 years old. The median prodromal period was 2 days for the mixed diseases group and 7 days for the isolated ATM group. Some individuals in the isolated ATM group exhibited signs of dysautonomia, such as syncope, postural lability, and arrhythmia. The mixed group had a higher incidence of coinfections, with 4 cases compared to 1 case in the isolated ATM group. Over 50% of the individuals had moderate to moderately severe disability. These findings suggest that severe conditions may progress to significant sequelae, highlighting the need for prompt diagnosis and treatment, particularly during endemic periods.
Collapse
Affiliation(s)
| | - Nayara Argollo
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Salvador, Bahia, Brazil
| |
Collapse
|
10
|
Caldwell JM, Lambrechts L, Rose NH. The role of vector population variation and climate in Zika virus transmission patterns in Africa: a modelling study. Lancet Planet Health 2024; 8:e1020-e1029. [PMID: 39674192 DOI: 10.1016/s2542-5196(24)00276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Zika virus (ZIKV) outbreaks have raised major global health concerns recently, yet reported outbreaks are rare in Africa, where ZIKV was first discovered. Recent studies on Aedes aegypti, the mosquito that transmits ZIKV, might explain this phenomenon. The Ae aegypti subspecies present in Africa shows lower preference for biting humans and reduced susceptibility to ZIKV infection compared with the subspecies distributed outside Africa. Alternatively, climate might strongly limit transmission as it affects multiple traits of ZIKV and the mosquito vector. METHODS We used a modelling approach informed by empirical data to assess ZIKV transmission risk across Africa. We fitted the model using data from laboratory experiments, and validated the model by comparing predicted transmission suitability with seroprevalence surveys conducted across Africa. Additionally, we used mosquito genetic and climate-based projections to map future ZIKV outbreak risk at 59 urban centres in Africa. FINDINGS The model predictions partially and significantly explain historical patterns of ZIKV circulation in Africa (accounting for 46% of the variation in seroprevalence surveys). Mosquito population genetics influence transmission more strongly than climate through two mechanisms: vector-host contact and vector competence. If climate and mosquito genetic population projections are accurate and there are no other changes to drivers of Zika virus transmission in Africa, we predict that approximately three-quarters of the most populous African cities will be suitable for ZIKV outbreaks by the end of the century. INTERPRETATION Both population-level genomic variation in mosquitoes and climate contribute to the lack of ZIKV outbreaks in Africa. Given the importance of mosquito genetics in driving this pattern, local genomic surveillance of mosquito populations would help predict outbreaks in vulnerable communities. This will become increasingly important with population growth, urbanisation, and climate change. FUNDING Princeton University, French Government's Investissement d'Avenir and France 2030 programmes, MSDAVENIR, and US National Institutes of Health.
Collapse
Affiliation(s)
- Jamie M Caldwell
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Noah H Rose
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Zhu J, He C, Liu Y, Chen M, Zhang J, Chen D, Ni H, Wen J. An engineered Japanese encephalitis virus mRNA-lipid nanoparticle immunization induces protective immunity in mice. Front Microbiol 2024; 15:1472824. [PMID: 39588106 PMCID: PMC11586386 DOI: 10.3389/fmicb.2024.1472824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Japanese encephalitis virus (JEV) and Zika virus (ZIKV) pose a severe threat to human health. Our previous research results, as well as those of other research groups, indicated that antibodies (Abs) induced by JEV infection or JEV vaccine vaccination could enhance ZIKV infection in vitro and exacerbate the mortality of ZIKV-infected mice, vice versa, which is known as antibody-dependent enhancement (ADE). Although studies on other flaviviruses revealed that altering the amino acid residues located in the fusion loop (FL) of envelope (E) protein can reduce the level of flavivirus-cross-reactive Abs, thereby abating the ADE of heterologous flavivirus infection, it is unclear whether this strategy is equally applicable to JEV. Methods In this study, we constructed recombinant adenoviruses and nucleotide-modified mRNA-lipid nanoparticle (LNP) encoding JEV wild-type E protein or E protein mutant (designated as Ad5-JEV-EWT and Ad5-JEV-Emut; JEV-EWT mRNA-LNP, and JEV-Emut mRNA-LNP). We evaluated the immunogenicity of these vaccine candidates in mice and the capacity of vaccine-immune mouse sera to neutralize JEV infection or mediate ADE of ZIKV infection in vitro and in vivo. Results Ad5-JEV-Emut or JEV-Emut mRNA-LNP immunization induced ZIKV-cross-reactive Ab response which is dramatically lower than that induced by Ad5-JEV-EWT and JEV-EWT mRNA-LNP, respectively. The levels of JEV-neutralizing Abs induced by Ad5-JEV-Emut or JEV-Emut mRNA-LNP are comparable to that induced by Ad5-JEV-EWT and JEV-EWT mRNA-LNP, respectively. The ability of Abs induced by Ad5-JEV-Emut to enhance ZIKV infection in vitro is attenuated as compared with that induced by Ad5-JEV-EWT. Moreover, JEV-Emut mRNA-LNP immunization elicited potent T cell response similar to JEV-EWT mRNA-LNP in mice. Mice immunized with each mRNA-LNP exhibited lower level of serum viral load than the mock-immunized mice post JEV challenge. Mice receiving JEV-EWT mRNA-LNP-immune mouse sera exhibited ADE post ZIKV challenge whereas passively transferred JEV-Emut mRNA-LNP-immune mouse sera did not lead to obvious ADE of ZIKV infection in recipient mice. Most importantly, maternally acquired Abs did not enhance the mortality of 1-day-old neonates born to JEV-Emut mRNA-LNP-immunized mice post ZIKV challenge. Discussion These results suggest that optimizing the FL sequence of JEV could significantly reduce the level of JEV/ZIKV-cross-reactive Abs and abrogate the ADE of ZIKV infection, providing a promising strategy to develop effective and safety JEV vaccine.
Collapse
Affiliation(s)
- Jiayang Zhu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Caiying He
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yusha Liu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Min Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jiayi Zhang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Wenzhou Central Blood Station, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Wenzhou Central Blood Station, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongxia Ni
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
13
|
Acosta CJ, Nordio F, Kpamegan E, Moss KJ, Kumar P, Hirata K. Immunological and Safety Considerations When Selecting the Dose Formulation of a Purified Inactivated Zika Virus Vaccine (PIZV). Microorganisms 2024; 12:1492. [PMID: 39065260 PMCID: PMC11279315 DOI: 10.3390/microorganisms12071492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
We previously reported the first-in-human assessment of three doses (2, 5, and 10 µg) of purified inactivated Zika virus vaccine (PIZV or TAK-426) in the Phase 1 ZIK-101 study (NCT03343626). Here, we report dose selection based on extended safety and immunogenicity data (6 months post-vaccination) and discuss considerations (e.g., immunological, historic, flavivirus immunological cross-reactions) for selecting a Zika virus (ZIKV) vaccine dose formulation. TAK-426 dose selection was conducted at the first interim analysis, and was based on cumulative safety data from both flavivirus-naïve (up to ≥28 days post-dose PD2) and flavivirus-primed participants (up to ≥28 days PD1), and on immunogenicity data from flavivirus-naïve participants only (at 28 days PD1 and 28 days PD2). The safety profile from TAK-426 recipients was compared to placebo recipients. Immunogenicity was assessed by geometric mean titer ratios of neutralizing anti-ZIKV antibodies and differences in seroconversion rates. There was no significant difference in safety between the three TAK-426 doses. The 10 μg dose provided the earliest and strongest immune response (with close to 100% seroconversion and higher antibody titers PD1 in flavivirus-naïve participants), and was well tolerated with acceptable safety profiles in both flavivirus-naïve and flavivirus-primed participants; this dose was selected for further development.
Collapse
Affiliation(s)
- Camilo J. Acosta
- Takeda Vaccines Inc., Cambridge, MA 02139, USA; (F.N.); (E.K.); (K.J.M.)
| | - Francesco Nordio
- Takeda Vaccines Inc., Cambridge, MA 02139, USA; (F.N.); (E.K.); (K.J.M.)
| | - Eloi Kpamegan
- Takeda Vaccines Inc., Cambridge, MA 02139, USA; (F.N.); (E.K.); (K.J.M.)
| | - Kelley J. Moss
- Takeda Vaccines Inc., Cambridge, MA 02139, USA; (F.N.); (E.K.); (K.J.M.)
| | - Pradeep Kumar
- Takeda Pharmaceuticals International AG, 8152 Zürich, Switzerland;
| | - Kazuhiro Hirata
- Takeda Pharmaceutical Company Limited, Osaka 541-0045, Japan;
| |
Collapse
|
14
|
Rakebrandt N, Yassini N, Kolz A, Schorer M, Lambert K, Goljat E, Estrada Brull A, Rauld C, Balazs Z, Krauthammer M, Carballido JM, Peters A, Joller N. Innate acting memory Th1 cells modulate heterologous diseases. Proc Natl Acad Sci U S A 2024; 121:e2312837121. [PMID: 38838013 PMCID: PMC11181110 DOI: 10.1073/pnas.2312837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.
Collapse
Affiliation(s)
- Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Nima Yassini
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Anna Kolz
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
| | - Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Eva Goljat
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Anna Estrada Brull
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Celine Rauld
- Novartis Biomedical Research, 4002Basel, Switzerland
| | - Zsolt Balazs
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | | | - Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| |
Collapse
|
15
|
He Y, Zhong L, Yan H, Virata ML, Deng L, Mishra AK, Struble E, Scott D, Zhang P. In vitro enhancement of Zika virus infection by preexisting West Nile virus antibodies in human plasma-derived immunoglobulins revealed after P2 binding site-specific enrichment. Microbiol Spectr 2024; 12:e0075824. [PMID: 38687079 PMCID: PMC11237622 DOI: 10.1128/spectrum.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Human immunoglobulin preparations contain a diverse range of polyclonal antibodies that reflect past immune responses against pathogens encountered by the blood donor population. In this study, we examined a panel of intravenous immunoglobulins (IGIVs) manufactured over the past two decades (1998-2020) for their capacity to neutralize or enhance Zika virus (ZIKV) infection in vitro. These IGIVs were selected specifically based on their production dates in relation to the occurrences of two flavivirus outbreaks in the U.S.: the West Nile virus (WNV) outbreak in 1999 and the ZIKV outbreak in 2015. As demonstrated by enzyme-linked immunosorbent assay (ELISA) experiments, IGIVs made before the ZIKV outbreak already harbored antibodies that bind to various peptides across the envelope protein of ZIKV because of the WNV outbreak. Using phage display, the most dominant binding site was mapped precisely to the P2 peptide between residues 211 and 230 within domain II, where BF1176-56, an anti-ZIKV monoclonal antibody, also binds. When tested in permissive Vero E6 cells for ZIKV neutralization, the IGIVs, even after undergoing rigorous enrichment for P2 binding specificity, failed, as did BF1176-56. Meanwhile, BF1176-56 enhanced ZIKV infection in both FcγRII-expressing K562 cells and human peripheral blood mononuclear cells. However, for enhancement by the IGIVs to be detected in these cells, a substantial increase in their P2 binding specificity was required, thus linking the P2 site with ZIKV enhancement in vitro. Our findings warrant further study of the significance of elevated levels of anti-WNV antibodies in IGIVs, considering that various mechanisms operating in vivo may modulate ZIKV infection outcomes.IMPORTANCEWe investigated the capacity of intravenous immunoglobulins manufactured previously over two decades (1998-2020) to neutralize or enhance Zika virus infection in vitro. West Nile virus antibodies in IGIVs could not neutralize Zika virus initially; however, once the IGIVs were concentrated further, they enhanced its infection. These findings lay the groundwork for exploring how preexisting WNV antibodies in IGIVs could impact Zika infection, both in vitro and in vivo. Our observations are historically significant, since we tested a panel of IGIV lots that were carefully selected based on their production dates which covered two major flavivirus outbreaks in the U.S.: the WNV outbreak in 1999 and the ZIKV outbreak in 2015. These findings will facilitate our understanding of the interplay among closely related viral pathogens, particularly from a historical perspective regarding large blood donor populations. They should remain relevant for future outbreaks of emerging flaviviruses that may potentially affect vulnerable populations.
Collapse
Affiliation(s)
- Yong He
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lilin Zhong
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hailing Yan
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maria Luisa Virata
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lu Deng
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ashish K. Mishra
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Evi Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Pei Zhang
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis 2024; 18:e0012053. [PMID: 38557981 PMCID: PMC10984552 DOI: 10.1371/journal.pntd.0012053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.
Collapse
Affiliation(s)
- Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Gang Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Huang J, Wang W, Yu T, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Mao S, Tian B, Sun D, He Y, Wu Z, Jia R, Cheng A. NS1: a promising novel target antigen with strong immunogenicity and protective efficacy for avian flavivirus vaccine development. Poult Sci 2024; 103:103469. [PMID: 38335667 PMCID: PMC10864804 DOI: 10.1016/j.psj.2024.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Tembusu virus (TMUV), an avian pathogenic flavivirus, has emerged as a significant threat to the duck industry in Southeast Asia, causing substantial economic losses. Due to the antibody-dependent enhancement (ADE) effect of TMUV subneutralizing antibodies, there is a pressing need to further develop new TMUV vaccine target antigens that ensure both safety and efficacy. Here, the TMUV non-structural protein 1 (NS1) as a target for development of effective anti-TMUV vaccines was unveiled. The amino acid sequences of TMUV NS1 exhibit a high degree of conservation across different strains (92.63-100%). To investigate the potential of TMUV NS1 as a vaccine target, the TMUV NS1-based plasmids were constructed and identified the C-terminal 30 amino acids residues of TMUV E (EC30) as an effective signal peptide for promoting NS1 expression and secretion. Subsequently, the plasmid pVAX1-EC30-NS1 was employed to immunize ducks, resulting in specific anti-NS1 IgG responses being stimulated, while without inducing anti-TMUV neutralizing antibodies. Furthermore, the cellular immune responses triggered by the TMUV NS1 were evaluated, observing a notable increase in lymphocyte proliferation at 4 wk and 6 wk postinjection with the pVAX1-EC30-NS1. Additionally, there was a significant up-regulation of NS1-specific Il-4 and Ifnγ levels at these time points. Following this, ducks from different groups were challenged with TMUV, and remarkably, those immunized with the NS1 vaccine displayed significantly lower viral copies both at 3 d postinfection (dpi) and 7 dpi (P < 0.05) compared to ducks immunized with the control vector. Notably, the NS1 demonstrated remarkable protection against TMUV challenge without causing severe gross lesions. Collectively, these findings highlighted the impressive immunogenicity and protectivity of the TMUV NS1. Consequently, NS1 holds great promise as a novel antigen target for the development of efficient and safe TMUV vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Wanfa Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tingting Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
18
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
19
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
20
|
Xu Q, Ma F, Yang D, Li Q, Yan L, Ou J, Zhang L, Liu Y, Zhan Q, Li R, Wei Q, Hu H, Wang Y, Li X, Zhang S, Yang J, Chai S, Du Y, Wang L, Zhang E, Zhang G. Rice-produced classical swine fever virus glycoprotein E2 with herringbone-dimer design to enhance immune responses. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2546-2559. [PMID: 37572354 PMCID: PMC10651154 DOI: 10.1111/pbi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Pestiviruses, including classical swine fever virus, remain a concern for global animal health and are responsible for major economic losses of livestock worldwide. Despite high levels of vaccination, currently available commercial vaccines are limited by safety concerns, moderate efficacy, and required high doses. The development of new vaccines is therefore essential. Vaccine efforts should focus on optimizing antigen presentation to enhance immune responses. Here, we describe a simple herringbone-dimer strategy for efficient vaccine design, using the classical swine fever virus E2 expressed in a rice endosperm as an example. The expression of rE2 protein was identified, with the rE2 antigen accumulating to 480 mg/kg. Immunological assays in mice, rabbits, and pigs showed high antigenicity of rE2. Two immunizations with 284 ng of the rE2 vaccine or one shot with 5.12 μg provided effective protection in pigs without interference from pre-existing antibodies. Crystal structure and small-angle X-ray scattering results confirmed the stable herringbone dimeric conformation, which had two fully exposed duplex receptor binding domains. Our results demonstrated that rice endosperm is a promising platform for precise vaccine design, and this strategy can be universally applied to other Flaviviridae virus vaccines.
Collapse
Affiliation(s)
- Qianru Xu
- School of Basic Medical SciencesHenan UniversityKaifengChina
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- CAS Key Laboratory of Nano‐Bio Interface, Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhouChina
| | - Daichang Yang
- College of Life ScienceWuhan UniversityWuhanChina
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Qingmei Li
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Liming Yan
- Laboratory of Structural Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Longhu LaboratoryZhengzhouChina
| | - Yunchao Liu
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Quan Zhan
- Wuhan Healthgen Biotechnology Corp.WuhanChina
| | - Rui Li
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Qiang Wei
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hui Hu
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Yanan Wang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Jifei Yang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Shujun Chai
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
| | - Li Wang
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Longhu LaboratoryZhengzhouChina
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary MedicineHenan Agriculture UniversityZhengzhouChina
- Key Laboratory of Animal ImmunologyHenan Academy of Agricultural SciencesZhengzhouChina
- Longhu LaboratoryZhengzhouChina
- School of Advanced Agricultural SciencesPeking UniversityBeijingChina
| |
Collapse
|
21
|
Tabata K, Itakura Y, Ariizumi T, Igarashi M, Kobayashi H, Intaruck K, Kishimoto M, Kobayashi S, Hall WW, Sasaki M, Sawa H, Orba Y. Development of flavivirus subviral particles with low cross-reactivity by mutations of a distinct antigenic domain. Appl Microbiol Biotechnol 2023; 107:7515-7529. [PMID: 37831184 PMCID: PMC10656323 DOI: 10.1007/s00253-023-12817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.
Collapse
Affiliation(s)
- Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Laboratory of Veterinary Microbiology, Osaka Metropolitan University, Izumisano, 598-8531, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060‑0818, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan.
| |
Collapse
|
22
|
Weiß R, Issmail L, Rockstroh A, Grunwald T, Fertey J, Ulbert S. Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Front Cell Infect Microbiol 2023; 13:1279147. [PMID: 38035335 PMCID: PMC10684968 DOI: 10.3389/fcimb.2023.1279147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Vaccines and Infection Models, Leipzig, Germany
| |
Collapse
|
23
|
Su H, Liu J, Yu J, Qiu Z, Liang W, Wu W, Mo H, Li H, Zhao W, Gu W. EDIII-Fc induces protective immune responses against the Zika virus in mice and rhesus macaque. PLoS Negl Trop Dis 2023; 17:e0011770. [PMID: 37983259 PMCID: PMC10695381 DOI: 10.1371/journal.pntd.0011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Zika virus can infect the fetus through the placental barrier, causing ZIKV congenital syndrome and even miscarriage, which can cause great harm to pregnant women and infants. Currently, there is no vaccine and drug available to combat the Zika virus. In this study, we designed a fusion protein named EDIII-Fc, including the EDIII region of Zika E protein and human IgG Fc fragment, and obtained 293T cells that stably secreted EDIII-Fc protein using the lentiviral expression system. Mice were immunized with the EDIII-Fc protein, and it was observed that viral replication was significantly inhibited in the immunized mice compared to non-immunized mice. In rhesus macaques, we found that EDIII-Fc effectively induce the secretion of neutralizing antibodies and T cell immunity. These experimental data provide valid data for further use of Zika virus E protein to prepare an effective, safe, affordable Zika vaccine.
Collapse
Affiliation(s)
- Hailong Su
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenzhen Qiu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Haifeng Mo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Li Y, Merbah M, Wollen-Roberts S, Beckman B, Mdluli T, Curtis DJ, Currier JR, Mendez-Rivera L, Dussupt V, Krebs SJ, De La Barrera R, Michael NL, Paquin-Proulx D, Eller MA, Koren MA, Modjarrad K, Rolland M. Priming with Japanese encephalitis virus or yellow fever virus vaccination led to the recognition of multiple flaviviruses without boosting antibody responses induced by an inactivated Zika virus vaccine. EBioMedicine 2023; 97:104815. [PMID: 37793212 PMCID: PMC10562857 DOI: 10.1016/j.ebiom.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Complex patterns of cross-reactivity exist between flaviviruses, yet there is no precise understanding of how sequential exposures due to flavivirus infections or vaccinations impact subsequent antibody responses. METHODS We investigated whether B cell priming from Japanese encephalitis virus (JEV) or yellow fever virus (YFV) vaccination impacted binding and functional antibody responses to flaviviruses following vaccination with a Zika virus (ZIKV) purified inactivated virus (ZPIV) vaccine. Binding antibody responses and Fc gamma receptor engagement against 23 flavivirus antigens were characterized along with neutralization titres and Fc effector responses in 75 participants at six time points. FINDINGS We found no evidence that priming with JEV or YFV vaccines improved the magnitude of ZPIV induced antibody responses to ZIKV. Binding antibodies and Fc gamma receptor engagement to ZIKV antigens did not differ significantly across groups, while antibody-dependent cellular phagocytosis (ADCP) and neutralizing responses were higher in the naïve group than in the JEV and YFV primed groups following the second ZPIV immunization (p ≤ 0.02). After a third dose of ZPIV, ADCP responses remained higher in the naïve group than in the primed groups. However, priming affected the quality of the response following ZPIV vaccination, as primed individuals recognized a broader array of flavivirus antigens than individuals in the naïve group. INTERPRETATION While a priming vaccination to either JEV or YFV did not boost ZIKV-specific responses upon ZIKV vaccination, the qualitatively different responses elicited in the primed groups highlight the complexity in the cross-reactive antibody responses to flaviviruses. FUNDING This work was supported by a cooperative agreement between The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of the Army [W81XWH-18-2-0040]. The work was also funded in part by the National Institute of Allergy and Infectious Diseases (NIAID) R01AI155983 to SJK and KM.
Collapse
Affiliation(s)
- Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Suzanne Wollen-Roberts
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Bradley Beckman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Thembi Mdluli
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Daniel J Curtis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rafael De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael A Koren
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| |
Collapse
|
25
|
Estofolete CF, Versiani AF, Dourado FS, Milhim BHGA, Pacca CC, Silva GCD, Zini N, dos Santos BF, Gandolfi FA, Mistrão NFB, Garcia PHC, Rocha RS, Gehrke L, Bosch I, Marques RE, Teixeira MM, da Fonseca FG, Vasilakis N, Nogueira ML. Influence of previous Zika virus infection on acute dengue episode. PLoS Negl Trop Dis 2023; 17:e0011710. [PMID: 37943879 PMCID: PMC10662752 DOI: 10.1371/journal.pntd.0011710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.
Collapse
Affiliation(s)
- Cassia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Alice F. Versiani
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Fernanda S. Dourado
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Carolina C. Pacca
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Gislaine C. D. Silva
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Barbara F. dos Santos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Flora A. Gandolfi
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Natalia F. B. Mistrão
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Pedro H. C. Garcia
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Rodrigo S. Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM); Campinas, Sao Paulo, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Flavio G. da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnoogia em Vacinas da UFMG, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
26
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
27
|
Saron WAA, Shanmugam K, Tung CC, Patmanathan RK, Rathore APS, Anderson DE, St John AL. Exacerbated Zika virus-induced neuropathology and microcephaly in fetuses of dengue-immune nonhuman primates. Sci Transl Med 2023; 15:eadd2420. [PMID: 37878671 DOI: 10.1126/scitranslmed.add2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that can vertically transmit from mother to fetus, potentially causing congenital defects, including microcephaly. It is not fully understood why some fetuses experience severe complications after in utero exposure to ZIKV, whereas others do not. Given the antigenic similarity between ZIKV and the closely related virus dengue (DENV) and the potential of DENV-specific antibodies to enhance ZIKV disease severity in mice, we questioned whether maternal DENV immunity could influence fetal outcomes in a nonhuman primate model of ZIKV vertical transmission. We found significantly increased severity of congenital Zika syndrome (CZS) in fetuses of DENV-immune cynomolgus macaques infected with ZIKV in early pregnancy compared with naïve controls, which occurred despite no effect on maternal ZIKV infection or antibody responses. Ultrasound measurements of head circumference and biparietal diameter measurements taken sequentially throughout pregnancy demonstrated CZS in fetuses of DENV-immune pregnant macaques. Furthermore, severe CZS enhanced by DENV immunity was typified by reduced cortical thickness and increased frequency of neuronal death, hemorrhaging, cellular infiltrations, calcifications, and lissencephaly in fetal brains. This study shows that maternal immunity to DENV can worsen ZIKV neurological outcomes in fetal primates, and it provides an animal model of vertical transmission closely approximating human developmental timelines that could be used to investigate severe ZIKV disease outcomes and interventions in fetuses.
Collapse
Affiliation(s)
- Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Keerthana Shanmugam
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | | | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Danielle E Anderson
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria 3000, Australia
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| |
Collapse
|
28
|
Valdes I, Gil L, Lazo L, Cobas K, Romero Y, Bruno A, Suzarte E, Pérez Y, Cabrales A, Ramos Y, Hermida L, Guillén G. Recombinant protein based on domain III and capsid regions of zika virus induces humoral and cellular immune response in immunocompetent BALB/c mice. Vaccine 2023; 41:5892-5900. [PMID: 37599141 DOI: 10.1016/j.vaccine.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Zika virus infection continues to be a global concern for human health due to the high-risk association of the disease with neurological disorders and microcephaly in newborn. Nowadays, no vaccine or specific antiviral treatment is available, and the development of safe and effective vaccines is yet a challenge. In this study, we obtained a novel subunit vaccine that combines two regions of zika genome, domain III of the envelope and the capsid, in a chimeric protein in E. coli bacteria. The recombinant protein was characterized with polyclonal anti-ZIKV and anti-DENV antibodies that corroborate the specificity of the molecule. In addition, the PBMC from zika-immune donors stimulated with the ZEC recombinant antigen showed the capacity to recall the memory T cell response previously generated by the natural infection. The chimeric protein ZEC was able to self-assemble after combination with an immunomodulatory specific oligonucleotide to form aggregates. The inoculation of BALB/c mice with ZEC aggregated and not aggregated form of the protein showed a similar humoral immune response, although the aggregated variant induced more cell-mediated immunity evaluated by in vitro IFNγ secretion. In this study, we propose a novel vaccine candidate against the zika disease based on a recombinant protein that can stimulate both arms of the immune system.
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba.
| | - Lázaro Gil
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Andy Bruno
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
29
|
Cuevas-Juárez E, Liñan-Torres A, Hernández C, Kopylov M, Potter CS, Carragher B, Ramírez OT, Palomares LA. Mimotope discovery as a tool to design a vaccine against Zika and dengue viruses. Biotechnol Bioeng 2023; 120:2658-2671. [PMID: 37058415 DOI: 10.1002/bit.28392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.
Collapse
Affiliation(s)
- Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Arturo Liñan-Torres
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Carolina Hernández
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Clint S Potter
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| |
Collapse
|
30
|
Sankhala RS, Dussupt V, Donofrio G, Gromowski GD, De La Barrera RA, Larocca RA, Mendez-Rivera L, Lee A, Choe M, Zaky W, Mantus G, Jensen JL, Chen WH, Gohain N, Bai H, McCracken MK, Mason RD, Leggat D, Slike BM, Tran U, Jian N, Abbink P, Peterson R, Mendes EA, Freitas de Oliveira Franca R, Calvet GA, Bispo de Filippis AM, McDermott A, Roederer M, Hernandez M, Albertus A, Davidson E, Doranz BJ, Rolland M, Robb ML, Lynch RM, Barouch DH, Jarman RG, Thomas SJ, Modjarrad K, Michael NL, Krebs SJ, Joyce MG. Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Rep 2023; 42:112942. [PMID: 37561630 PMCID: PMC10775418 DOI: 10.1016/j.celrep.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anna Lee
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Weam Zaky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Grace Mantus
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jaime L Jensen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Neelakshi Gohain
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Hongjun Bai
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - David Leggat
- Vaccine Research Center, NIH, Bethesda, MD 20852, USA
| | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica Araujo Mendes
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Guilherme Amaral Calvet
- Oswaldo Cruz Foundation, Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | | | | | | | | | | | - Morgane Rolland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rebecca M Lynch
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - M Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
31
|
Yamin R, Kao KS, MacDonald MR, Cantaert T, Rice CM, Ravetch JV, Bournazos S. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat Microbiol 2023; 8:1468-1479. [PMID: 37429907 PMCID: PMC10753935 DOI: 10.1038/s41564-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Although dengue virus (DENV) infection typically causes asymptomatic disease, DENV-infected patients can experience severe complications. A risk factor for symptomatic disease is pre-existing anti-DENV IgG antibodies. Cellular assays suggested that these antibodies can enhance viral infection of Fcγ receptor (FcγR)-expressing myeloid cells. Recent studies, however, revealed more complex interactions between anti-DENV antibodies and specific FcγRs by demonstrating that modulation of the IgG Fc glycan correlates with disease severity. To investigate the in vivo mechanisms of antibody-mediated dengue pathogenesis, we developed a mouse model for dengue disease that recapitulates the unique complexity of human FcγRs. In in vivo mouse models of dengue disease, we discovered that the pathogenic activity of anti-DENV antibodies is exclusively mediated through engagement of FcγRIIIa on splenic macrophages, resulting in inflammatory sequelae and mortality. These findings highlight the importance of IgG-FcγRIIIa interactions in dengue, with important implications for the design of safer vaccination approaches and effective therapeutic strategies.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
32
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
33
|
Yen LC, Chen HW, Ho CL, Lin CC, Lin YL, Yang QW, Chiu KC, Lien SP, Lin RJ, Liao CL. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci 2023; 30:41. [PMID: 37316861 DOI: 10.1186/s12929-023-00938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.
Collapse
Affiliation(s)
- Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Lo Ho
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wen Yang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
34
|
Kim IJ, Tighe MP, Clark MJ, Gromowski GD, Lanthier PA, Travis KL, Bernacki DT, Cookenham TS, Lanzer KG, Szaba FM, Tamhankar MA, Ross CN, Tardif SD, Layne-Colon D, Dick EJ, Gonzalez O, Giraldo Giraldo MI, Patterson JL, Blackman MA. Impact of prior dengue virus infection on Zika virus infection during pregnancy in marmosets. Sci Transl Med 2023; 15:eabq6517. [PMID: 37285402 DOI: 10.1126/scitranslmed.abq6517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy. In this study, we investigated the impact of prior DENV infection or no DENV infection on ZIKV pathogenesis during pregnancy in a total of four female common marmosets with five or six fetuses per group. The results showed that negative-sense viral RNA copies increased in the placental and fetal tissues of DENV-immune dams but not in DENV-naïve dams. In addition, viral proteins were prevalent in endothelial cells, macrophages, and neonatal Fc receptor-expressing cells in the placental trabeculae and in neuronal cells in the brains of fetuses from DENV-immune dams. DENV-immune marmosets maintained high titers of cross-reactive ZIKV-binding antibodies that were poorly neutralizing, raising the possibility that these antibodies might be involved in the exacerbation of ZIKV infection. These findings need to be verified in a larger study, and the mechanism involved in the exacerbation of ZIKV infection in DENV-immune marmosets needs further investigation. However, the results suggest a potential negative impact of preexisting DENV immunity on subsequent ZIKV infection during pregnancy in vivo.
Collapse
Affiliation(s)
- In-Jeong Kim
- Trudeau Institute Inc., Saranac Lake, NY 12983, USA
| | | | | | - Gregory D Gromowski
- Viral Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | - Manasi A Tamhankar
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Corrina N Ross
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Suzette D Tardif
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Donna Layne-Colon
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Edward J Dick
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Olga Gonzalez
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria I Giraldo Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jean L Patterson
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | |
Collapse
|
35
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
36
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
37
|
Matveev A, Khlusevich Y, Kozlova I, Matveev L, Emelyanova L, Tikunov A, Baykov I, Tikunova N. New Neutralizing Epitope Exposed on the Domain II of Tick-Borne Encephalitis Virus Envelope Glycoprotein E. Viruses 2023; 15:1256. [PMID: 37376556 DOI: 10.3390/v15061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Orthoflavivirus encephalitidis, formerly tick-borne encephalitis virus (TBEV), belongs to the Orthoflavivirus genus. TBEV is transmitted by tick bites and infection with TBEV can lead to serious disorders of the central nervous system. In this study, a new protective monoclonal mouse antibody (mAb) FVN-32, with high binding activity to glycoprotein E of TBEV, was selected and examined in post exposure prophylaxis in a mouse model of TBEV infection. BALB/c mice were injected mAb FVN-32 at doses of 200 μg, 50 μg, and 12.5 μg per mouse one day after a TBEV challenge. mAb FVN-32 showed 37.5% protective efficacy when administered at doses of 200 μg and 50 μg per mouse. The epitope for protective mAb FVN-32 was localized in TBEV glycoprotein E domain I+II, using a set of truncated fragments of glycoprotein E. Additionally, the target site recognized by mAb FVN-32 was defined using combinatorial libraries of peptides. Three-dimensional modeling revealed that the site is dspatially close to the fusion loop, but does not come into contact with it, and is localized in a region between 247 and 254 amino acid residues on the envelope protein. This region is conserved among TBEV-like orthoflaviviruses.
Collapse
Affiliation(s)
- Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yana Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Kozlova
- Federal State Public Scientific Institution "Scientific Centre for Family Health and Human Reproduction Problems", Siberian Branch of Russian Academy of Sciences, 664003 Irkutsk, Russia
| | - Leonid Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyudmila Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
38
|
Lin DCD, Weng SC, Tsao PN, Chu JJH, Shiao SH. Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti. Parasit Vectors 2023; 16:160. [PMID: 37165438 PMCID: PMC10172068 DOI: 10.1186/s13071-023-05778-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. METHODS C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. RESULTS We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. CONCLUSIONS Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.
Collapse
Affiliation(s)
- Daniel Chieh-Ding Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Pattnaik A, Sahoo BR, Struble LR, Borgstahl GEO, Zhou Y, Franco R, Barletta RG, Osorio FA, Petro TM, Pattnaik AK. A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines (Basel) 2023; 11:821. [PMID: 37112733 PMCID: PMC10143468 DOI: 10.3390/vaccines11040821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Lucas R. Struble
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando A. Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Thomas M. Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
40
|
Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. Evolutionary dynamics of dengue virus in India. PLoS Pathog 2023; 19:e1010862. [PMID: 37011104 PMCID: PMC10101646 DOI: 10.1371/journal.ppat.1010862] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.
Collapse
Affiliation(s)
- Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
41
|
Salgado BB, Maués FCDJ, Jordão M, Pereira RL, Toledo-Teixeira DA, Parise PL, Granja F, Souza HFS, Yamamoto MM, Chiang JO, Martins LC, Boscardin SB, Lalwani JDB, Vasconcelos PFC, Proença-Modena JL, Lalwani P. Antibody cross-reactivity and evidence of susceptibility to emerging Flaviviruses in the dengue-endemic Brazilian Amazon. Int J Infect Dis 2023; 129:142-151. [PMID: 36736575 DOI: 10.1016/j.ijid.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Several Flaviviruses can co-circulate. Pre-existing immunity to one virus can modulate the response to a heterologous virus; however, the serological cross-reaction between these emerging viruses in dengue virus (DENV)-endemic regions are poorly understood. METHODS A cross-sectional study was performed among the residents of Manaus city in the state of Amazonas, Brazil. The serological response was assessed by hemagglutination inhibition assay (HIA), enzyme-linked immunosorbent assay, and neutralization assay. RESULTS A total of 74.52% of the participants were immunoglobulin G-positive (310/416), as estimated by lateral flow tests. Overall, 93.7% of the participants were seropositive (419/447) for at least one DENV serotype, and the DENV seropositivity ranged between 84.8% and 91.0%, as determined by HIA. About 93% had antiyellow fever virus 17D-reactive antibodies, whereas 80.5% reacted to wild-type yellow fever virus. Zika virus (ZIKV) had the lowest seropositivity percentage (52.6%) compared with other Flaviviruses. Individuals who were DENV-positive with high antibody titers by HIA or envelope protein domain III enzyme-linked immunosorbent assay reacted strongly with ZIKV, whereas individuals with low anti-DENV antibody titers reacted poorly toward ZIKV. Live virus neutralization assay with ZIKV confirmed that dengue serogroup and ZIKV-spondweni serogroup are far apart; hence, individuals who are DENV-positive do not cross-neutralize ZIKV efficiently. CONCLUSION Taken together, we observed a high prevalence of DENV in the Manaus-Amazon region and a varying degree of cross-reactivity against emerging and endemic Flaviviruses. Epidemiological and exposure conditions in Manaus make its population susceptible to emerging and endemic arboviruses.
Collapse
Affiliation(s)
- Barbara Batista Salgado
- Leônidas e Maria Deane Institute (ILMD), Fiocruz Amazônia, Manaus, Amazonas, Brazil; Laboratory of infectious diseases and immunology, ILMD/Fiocruz Amazônia and PPGIBA/ICB-UFAM, Manaus, Brazil
| | - Fábio Carmona de Jesus Maués
- Leônidas e Maria Deane Institute (ILMD), Fiocruz Amazônia, Manaus, Amazonas, Brazil; Laboratory of infectious diseases and immunology, ILMD/Fiocruz Amazônia and PPGIBA/ICB-UFAM, Manaus, Brazil
| | - Maele Jordão
- Leônidas e Maria Deane Institute (ILMD), Fiocruz Amazônia, Manaus, Amazonas, Brazil; Laboratory of infectious diseases and immunology, ILMD/Fiocruz Amazônia and PPGIBA/ICB-UFAM, Manaus, Brazil
| | - Renato Lemos Pereira
- Leônidas e Maria Deane Institute (ILMD), Fiocruz Amazônia, Manaus, Amazonas, Brazil; Laboratory of infectious diseases and immunology, ILMD/Fiocruz Amazônia and PPGIBA/ICB-UFAM, Manaus, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Pierina L Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Biodiversity Research Center, Federal University of Roraima, Roraima, Brazil
| | | | | | - Jannifer Oliveira Chiang
- Evandro Chagas Institute (IEC), Arbovirology and Hemorrhagic Fever Sector, Ananindeua, Pará, Brazil
| | - Livia Caricio Martins
- Evandro Chagas Institute (IEC), Arbovirology and Hemorrhagic Fever Sector, Ananindeua, Pará, Brazil
| | | | - Jaila Dias Borges Lalwani
- Pharmaceutical Science College (FCF), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | | | - José Luiz Proença-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Pritesh Lalwani
- Leônidas e Maria Deane Institute (ILMD), Fiocruz Amazônia, Manaus, Amazonas, Brazil; Laboratory of infectious diseases and immunology, ILMD/Fiocruz Amazônia and PPGIBA/ICB-UFAM, Manaus, Brazil.
| |
Collapse
|
42
|
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement. EMBO J 2023; 42:e112096. [PMID: 36734074 PMCID: PMC10015360 DOI: 10.15252/embj.2022112096] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions.
Collapse
Affiliation(s)
- Fanfan Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Na Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
| | - Dawei Lv
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Yujie Chen
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Mingbing Xiao
- Department of Gastroenterology and Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- German Center for Infectious Diseases, Heidelberg Partner SiteHeidelbergGermany
| | - Gang Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 LaboratoryShanghai Institute of Infectious Disease and Biosecurity, Fudan UniversityShanghaiChina
- CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
43
|
Marín-López A, Raduwan H, Chen TY, Utrilla-Trigo S, Wolfhard DP, Fikrig E. Mosquito Salivary Proteins and Arbovirus Infection: From Viral Enhancers to Potential Targets for Vaccines. Pathogens 2023; 12:371. [PMID: 36986293 PMCID: PMC10054260 DOI: 10.3390/pathogens12030371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Arthropod-borne viruses present important public health challenges worldwide. Viruses such as DENV, ZIKV, and WNV are of current concern due to an increasing incidence and an expanding geographic range, generating explosive outbreaks even in non-endemic areas. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or nonspecific, but occasionally develop into serious complications marked by rapid onset, tremors, paralysis, hemorrhagic fever, neurological alterations, or death. They are predominately transmitted to humans through mosquito bite, during which saliva is inoculated into the skin to facilitate blood feeding. A new approach to prevent arboviral diseases has been proposed by the observation that arthropod saliva facilitates transmission of pathogens. Viruses released within mosquito saliva may more easily initiate host invasion by taking advantage of the host's innate and adaptive immune responses to saliva. This provides a rationale for creating vaccines against mosquito salivary proteins, especially because of the lack of licensed vaccines against most of these viruses. This review aims to provide an overview of the effects on the host immune response by the mosquito salivary proteins and how these phenomena alter the infection outcome for different arboviruses, recent attempts to generate mosquito salivary-based vaccines against flavivirus including DENV, ZIKV, and WNV, and the potential benefits and pitfalls that this strategy involves.
Collapse
Affiliation(s)
- Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sergio Utrilla-Trigo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
- Center for Animal Health Research (CISA-INIA/CSIC), 28130 Madrid, Spain
| | - David P. Wolfhard
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
- Faculty of Engineering Sciences, Institute of Pharmacy and Molecular Biotechnology, 69120 Heidelberg, Germany
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
44
|
Li QH, Kim K, Shresta S. Mouse models of Zika virus transplacental transmission. Antiviral Res 2023; 210:105500. [PMID: 36567026 PMCID: PMC9852097 DOI: 10.1016/j.antiviral.2022.105500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Seven years after the onset of the Zika virus (ZIKV) epidemic in the Americas, longitudinal studies are beginning to demonstrate that children infected in utero and born without severe birth defects exhibit motor skill deficits at up to 3 years of age. Long term health and socioeconomic impacts of fetal ZIKV infection appear imminent. ZIKV continues to circulate in low levels much as the virus did for decades prior to the 2015 epidemic, and the timing of the ZIKV outbreak is unknown. Thus, in the continued absence of ZIKV vaccines or antivirals, small animal models of ZIKV transplacental transmission have never been more necessary to test antiviral strategies for both mother and fetuses, and to elucidate mechanisms of immunity at the maternal-fetal interface. Here we review the state of ZIKV transplacental transmission models, highlight key unanswered questions, and set goals for the next generation of mouse models.
Collapse
Affiliation(s)
- Qin Hui Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Sun H, Acharya D, Paul AM, Lai H, He J, Bai F, Chen Q. Antibody-Dependent Enhancement Activity of a Plant-Made Vaccine against West Nile Virus. Vaccines (Basel) 2023; 11:197. [PMID: 36851075 PMCID: PMC9966755 DOI: 10.3390/vaccines11020197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
West Nile virus (WNV) causes annual outbreaks globally and is the leading cause of mosquito-borne disease in Unite States. In the absence of licensed therapeutics, there is an urgent need to develop effective and safe human vaccines against WNV. One of the major safety concerns for WNV vaccine development is the risk of increasing infection by related flaviviruses in vaccinated subjects via antibody-dependent enhancement of infection (ADE). Herein, we report the development of a plant-based vaccine candidate that provides protective immunity against a lethal WNV challenge mice, while minimizes the risk of ADE for infection by Zika (ZIKV) and dengue (DENV) virus. Specifically, a plant-produced virus-like particle (VLP) that displays the WNV Envelope protein domain III (wDIII) elicited both high neutralizing antibody titers and antigen-specific cellular immune responses in mice. Passive transfer of serum from VLP-vaccinated mice protected recipient mice from a lethal challenge of WNV infection. Notably, VLP-induced antibodies did not enhance the infection of Fc gamma receptor-expressing K562 cells by ZIKV or DENV through ADE. Thus, a plant-made wDIII-displaying VLP presents a promising WNV vaccine candidate that induces protective immunity and minimizes the concern of inducing ADE-prone antibodies to predispose vaccinees to severe infection by DENV or ZIKV.
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Dhiraj Acharya
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Amber M. Paul
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Junyun He
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
46
|
Grant R, Flechelles O, Elenga N, Tressières B, Gaete S, Hebert JC, Schaub B, Djossou F, Mallard A, Delver L, Ryan C, Funk AL, Cabié A, Fontanet A, Hoen B. Consequences of In Utero Zika Virus Exposure and Adverse Pregnancy and Early Childhood Outcomes: A Prospective Cohort Study. Viruses 2022; 14:2755. [PMID: 36560760 PMCID: PMC9788325 DOI: 10.3390/v14122755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
We aimed to describe adverse pregnancy outcomes among women who had symptomatic, RT-PCR-confirmed ZIKV infection and early childhood outcomes among their infants. We enrolled pregnant women with symptomatic, RT-PCR-confirmed ZIKV infection in a prospective cohort study, and their infants in a prospective pediatric cohort study. We defined adverse pregnancy and early childhood outcomes based on selected neurologic, ophthalmologic, auditory, musculoskeletal, and anthropometric abnormalities. We used RT-PCR and serologic tests to determine the ZIKV infection status of the child. Between 10 March and 24 November 2016, we enrolled 546 pregnant women with RT-PCR-confirmed ZIKV infection. The overall risk of adverse pregnancy and early childhood outcomes possibly related to in utero ZIKV exposure was 15.7% (95% CI: 12.8-19.0), distributed as follows: 3.6% (95% CI: 2.3-5.6) severe sequelae or fatality; 2.7% (95% CI: 1.6-4.5) major abnormalities; 9.4% (95% CI:7.1-12.2) mild abnormalities. The risk of severe sequelae or fatality was higher when ZIKV infection occurred during the first trimester (7.0%), compared to the second (2.7%) or third trimester (1.4%) (p = 0.02). Among the infants for whom ZIKV infection status could be determined, the vertical transmission rate was 3.0% (5/167) (95% CI: 1.1-7.2). Among pregnant women with symptomatic, RT-PCR-confirmed ZIKV infection, severe or major pregnancy or early childhood outcomes were present in 6.3% of fetuses and infants. Severe outcomes occurred more frequently in fetuses and infants whose mothers had been infected in the first trimester.
Collapse
Affiliation(s)
- Rebecca Grant
- Emerging Disease Epidemiology Unit, Institut Pasteur, 75015 Paris, France
- Sorbonne Université, 75006 Paris, France
| | - Olivier Flechelles
- Centre Hospitalier Universitaire de la Martinique, 97261 Fort-de-France, France
| | | | - Benoît Tressières
- Centre d’Investigation Clinique Antilles—Guyane, 97142 Pointe-à-Pitre, France
| | - Stanie Gaete
- Karubiotec™, Centre Hospitalier Universitaire de la Guadeloupe, 97142 Pointe-à-Pitre, France
| | | | - Bruno Schaub
- Centre Hospitalier Universitaire de la Martinique, 97261 Fort-de-France, France
| | - Felix Djossou
- Centre Hospitalier de Cayenne, Cayenne 97306, French Guiana
| | - Adeline Mallard
- Centre Hospitalier Universitaire de la Guadeloupe, 97142 Pointe-à-Pitre, France
| | - Lucetta Delver
- Centre Hospitalier de Basse-Terre, 97109 Basse-Terre, France
| | - Catherine Ryan
- Centre Hospitalier Universitaire de la Guadeloupe, 97142 Pointe-à-Pitre, France
| | - Anna L. Funk
- Emerging Disease Epidemiology Unit, Institut Pasteur, 75015 Paris, France
| | - André Cabié
- Centre Hospitalier Universitaire de la Martinique, 97261 Fort-de-France, France
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Université des Antilles, INSERM, EFS, 34394 Montpellier, France
- Centre d′Investigation Clinique 1424, INSERM, 97261 Fort-de-France, France
| | - Arnaud Fontanet
- Emerging Disease Epidemiology Unit, Institut Pasteur, 75015 Paris, France
- Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Bruno Hoen
- Centre d’Investigation Clinique Antilles—Guyane, 97142 Pointe-à-Pitre, France
| |
Collapse
|
47
|
Gong HR, Hu YF, Li X, Yau T, Zhang BZ, Huang JD. Non-Neutralizing Epitopes Shade Neutralizing Epitopes against Omicron in a Multiple Epitope-Based Vaccine. ACS Infect Dis 2022; 8:2586-2593. [PMID: 36357959 PMCID: PMC9662650 DOI: 10.1021/acsinfecdis.2c00488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/13/2022]
Abstract
The ongoing coronavirus disease 2019 pandemic has raised concerns about the risk of re-infection. Non-neutralizing epitopes are one of the major reasons for antibody-dependent enhancement. Past studies on the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed an infectivity-enhancing site on the ancestral SARS-CoV-2 spike protein. However, infection enhancement associated with the SARS-CoV-2 Omicron strain remains elusive. In this study, we examined the antibodies induced by a multiple epitope-based vaccine, which showed infection enhancement for the Omicron strain but not for the ancestral SARS-CoV-2 or Delta strain. By examining the antibodies induced by single epitope-based vaccines, we identified a conserved epitope, IDf (450-469), with neutralizing activity against ancestral SARS-CoV-2, Delta, and Omicron. Although neutralizing epitopes are present in the multiple epitope-based vaccine, other immunodominant non-neutralizing epitopes such as IDg (480-499) can shade their neutralizing activity, leading to infection enhancement of Omicron. Our study provides up-to-date epitope information on SARS-CoV-2 variants to help design better vaccines or antibody-based therapeutics against future variants.
Collapse
Affiliation(s)
- Hua-Rui Gong
- School of Biomedical Sciences, Li Ka Shing Faculty of
Medicine, University of Hong Kong, 3/F, Laboratory Block, 21
Sassoon Road, Hong kong999077, China
| | - Ye-fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of
Medicine, University of Hong Kong, 3/F, Laboratory Block, 21
Sassoon Road, Hong kong999077, China
- Department of Medicine, School of Clinical Medicine,
University of Hong Kong, 4/F Professional Block, Queen Mary
Hospital, 102 Pokfulam Road, Hong Kong999077, China
| | - Xuechen Li
- Department of Chemistry, University of Hong
Kong, Pokfulam Road, Hong Kong999077, China
| | - Thomas Yau
- Department of Medicine, School of Clinical Medicine,
University of Hong Kong, 4/F Professional Block, Queen Mary
Hospital, 102 Pokfulam Road, Hong Kong999077, China
| | - Bao-Zhong Zhang
- Chinese Academy of Sciences (CAS) Key
Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen518055, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of
Medicine, University of Hong Kong, 3/F, Laboratory Block, 21
Sassoon Road, Hong kong999077, China
- Chinese Academy of Sciences (CAS) Key
Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen518055, China
- Department of Clinical Oncology, Shenzhen Key Laboratory
for Cancer Metastasis and Personalized Therapy, The University of Hong
Kong-Shenzhen Hospital, Shenzhen518055, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine,
Sun Yat-Sen University, Guangzhou510120,
China
| |
Collapse
|
48
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
49
|
Zhou W, Tang B, Bai Y, Shao Y, Xiao Y, Tang S. The resurgence risk of COVID-19 in China in the presence of immunity waning and ADE: A mathematical modelling study. Vaccine 2022; 40:7141-7150. [PMID: 36328883 PMCID: PMC9597525 DOI: 10.1016/j.vaccine.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/27/2023]
Abstract
The mass vaccination program has been actively promoted since the end of 2020. However, waning immunity, antibody-dependent enhancement (ADE), and increased transmissibility of variants make the herd immunity untenable and the implementation of dynamic zero-COVID policy challenging in China. To explore how long the vaccination program can prevent China at low resurgence risk, and how these factors affect the long-term trajectory of the COVID-19 epidemics, we developed a dynamic transmission model of COVID-19 incorporating vaccination and waning immunity, calibrated using the data of accumulative vaccine doses administered and the COVID-19 epidemic in 2020 in mainland China. The prediction suggests that the vaccination coverage with at least one dose reach 95.87%, and two doses reach 77.92% on 31 August 2021. However, despite the mass vaccination, randomly introducing infected cases in the post-vaccination period causes large outbreaks quickly with waning immunity, particularly for SARS-CoV-2 variants with higher transmissibility. The results showed that with the current vaccination program and 50% of the population wearing masks, mainland China can be protected at low resurgence risk until 8 January 2023. However, ADE and higher transmissibility for variants would significantly shorten the low-risk period by over 1 year. Furthermore, intermittent outbreaks can occur while the peak values of the subsequent outbreaks decrease, indicating that subsequent outbreaks boosted immunity in the population level, further indicating that follow-up vaccination programs can help mitigate or avoid the possible outbreaks. The findings revealed that the integrated effects of multiple factors: waning immunity, ADE, relaxed interventions, and higher variant transmissibility, make controlling COVID-19 challenging. We should prepare for a long struggle with COVID-19, and not entirely rely on the COVID-19 vaccine.
Collapse
Affiliation(s)
- Weike Zhou
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, PR China
| | - Biao Tang
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Yao Bai
- Department of Infection Disease Control and Prevention, Xi’an Center for Disease Prevention and Control, Xi’an, 710043, PR China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China,Corresponding author
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, PR China,Corresponding author
| |
Collapse
|
50
|
Hanrath AT, Hatton CF, Gothe F, Browne C, Vowles J, Leary P, Cockell SJ, Cowley SA, James WS, Hambleton S, Duncan CJA. Type I interferon receptor ( IFNAR2) deficiency reveals Zika virus cytopathicity in human macrophages and microglia. Front Immunol 2022; 13:1035532. [PMID: 36439115 PMCID: PMC9691778 DOI: 10.3389/fimmu.2022.1035532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.
Collapse
Affiliation(s)
- Aidan T. Hanrath
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Catherine F. Hatton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Florian Gothe
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter Leary
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| | - Simon J. Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle, United Kingdom
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sophie Hambleton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Christopher J. A. Duncan
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|