1
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Charles T, Moss DL, Bhat P, Moore PW, Kummer NA, Bhattacharya A, Landry SJ, Mettu RR. CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry 2022; 61:1585-1599. [PMID: 35834502 PMCID: PMC9352311 DOI: 10.1021/acs.biochem.2c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antigen processing in the class II MHC pathway depends
on conventional
proteolytic enzymes, potentially acting on antigens in native-like
conformational states. CD4+ epitope dominance arises from a competition
among antigen folding, proteolysis, and MHCII binding. Protease-sensitive
sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped
in plague vaccine candidate F1-V to evaluate the various contributions
to CD4+ epitope dominance. Using X-ray crystal structures, antigen
processing likelihood (APL) predicts CD4+ epitopes with significant
accuracy for F1-V without considering peptide-MHCII binding affinity.
We also show that APL achieves excellent performance over two benchmark
antigen sets. The profiles of conformational flexibility derived from
the X-ray crystal structures of the F1-V proteins, Caf1 and LcrV,
were similar to the biochemical profiles of linear antibody epitope
reactivity and protease sensitivity, suggesting that the role of structure
in proteolysis was captured by the analysis of the crystal structures.
The patterns of CD4+ T-cell epitope dominance in C57BL/6, CBA, and
BALB/c mice were compared to epitope predictions based on APL, MHCII
binding, or both. For a sample of 13 diverse antigens, the accuracy
of epitope prediction by the combination of APL and I-Ab-MHCII-peptide affinity reached 36%. When MHCII allele specificity
was also diverse, such as in human immunity, prediction of dominant
epitopes by APL alone reached 42% when using a stringent scoring threshold.
Because dominant CD4+ epitopes tend to occur in conformationally stable
antigen domains, crystal structures typically are available for analysis
by APL, and thus, the requirement for a crystal structure is not a
severe limitation.
Collapse
Affiliation(s)
- Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Pawan Bhat
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peyton W Moore
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas A Kummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Avik Bhattacharya
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
4
|
Pupina N, Avarlaid A, Sadam H, Pihlak A, Jaago M, Tuvikene J, Rähni A, Planken A, Planken M, Kalso E, Tienari PJ, Nieminen JK, Seppänen MRJ, Vaheri A, Lindholm D, Sinisalo J, Pussinen P, Timmusk T, Palm K. Immune response to a conserved enteroviral epitope of the major capsid VP1 protein is associated with lower risk of cardiovascular disease. EBioMedicine 2022; 76:103835. [PMID: 35091341 PMCID: PMC8801986 DOI: 10.1016/j.ebiom.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Major cardiac events including myocardial infarction (MI) are associated with viral infections. However, how specific infections contribute to the cardiovascular insults has remained largely unclear. METHODS We employed next generation phage display mimotope-variation analysis (MVA) to explore the link between antibody-based immune response and severe cardiovascular conditions. Here, we used a case-control design, including the first-stage discovery cohort (n = 100), along with cohorts for second-stage discovery (n = 329) and validation (n = 466). FINDINGS We observed strong antibody response to the peptide antigens with Gly-Ile-X-Asp (G-I-X-D) core structure in healthy individuals but not in patients with MI. Analysis of the origin of this epitope linked it with the N-terminus of the VP1 protein of poliovirus 3 (PV3), but also other species of picornaviruses. Consistently, we found low levels of antibody response to the G-I-X-D epitope in individuals with severe cardiac disease complications. INTERPRETATION Our findings imply that antibody response to the G-I-X-D epitope is associated with polio vaccinations and that high antibody levels to this epitope could discriminate healthy individuals from prospective MI patients as a blood-derived biomarker. Together, these findings highlight the importance of epitope-specific antibody response and suggest that protective immunity against the polio- and non-polio enteroviral infections support improved cardiovascular health. FUNDING Estonian Ministry of Education (5.1-4/20/170), Estonian Research Council (PRG573, PRG805), H2020-MSCA-RISE-2016 (EU734791), H2020 PANBioRA (EU760921), European Union through the European Regional Development Fund (Project no. 2014-2020.4.01.15-0012), Helsinki University Hospital grants, Mary and Georg C. Ehrnrooth Foundation, Finnish Eye Foundation, Finska Läkaresällskapet, The Finnish Society of Sciences and Letters, Magnus Ehrnrooth Foundation and Sigrid Jusélius Foundation.
Collapse
Affiliation(s)
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Helle Sadam
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Arno Pihlak
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Mariliis Jaago
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Jürgen Tuvikene
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia; dxlabs LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Annika Rähni
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Anu Planken
- The North Estonia Medical Center, Tallinn, Estonia
| | | | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and Department of Pharmacology and SleepWell Research Programme, University of Helsinki, Finland
| | - Pentti J Tienari
- Department of Neurology, Neurocenter, Helsinki University Hospital, and Translational Immunology Research Program, University of Helsinki, Finland
| | - Janne K Nieminen
- Department of Neurology, Neurocenter, Helsinki University Hospital, and Translational Immunology Research Program, University of Helsinki, Finland
| | - Mikko R J Seppänen
- Department of Neurology, Neurocenter, Helsinki University Hospital, and Translational Immunology Research Program, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Tõnis Timmusk
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia.
| |
Collapse
|
5
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Mandary MB, Masomian M, Ong SK, Poh CL. Characterization of Plaque Variants and the Involvement of Quasi-Species in a Population of EV-A71. Viruses 2020; 12:E651. [PMID: 32560288 PMCID: PMC7354493 DOI: 10.3390/v12060651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Malihe Masomian
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Seng-Kai Ong
- Department of Biological Science, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| |
Collapse
|
7
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
8
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Baj A, Colombo M, Headley JL, McFarlane JR, Liethof MA, Toniolo A. Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 2015; 35:107-16. [PMID: 25939306 DOI: 10.1016/j.ijid.2015.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
This review summarizes current concepts on post-polio syndrome (PPS), a condition that may arise in polio survivors after partial or complete functional recovery followed by a prolonged interval of stable neurological function. PPS affects 15-20 million people worldwide. Epidemiological data are reported, together with the pathogenic pathways that possibly lead to the progressive degeneration and loss of neuromuscular motor units. As a consequence of PPS, polio survivors experience new weakness, generalized fatigue, atrophy of previously unaffected muscles, and a physical decline that may culminate in the loss of independent life. Emphasis is given to the possible pathogenic role of persistent poliovirus infection and chronic inflammation. These factors could contribute to the neurological and physical decline in polio survivors. A perspective is then given on novel anti-poliovirus compounds and monoclonal antibodies that have been developed to contribute to the final phases of polio eradication. These agents could also be useful for the treatment or prevention of PPS. Some of these compounds/antibodies are in early clinical development. Finally, current clinical trials for PPS are reported. In this area, the intravenous infusion of normal human immunoglobulins appears both feasible and promising.
Collapse
Affiliation(s)
- Andreina Baj
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Martina Colombo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Joan L Headley
- Post-Polio Health International, Saint Louis, Missouri, USA
| | | | - Mary-Ann Liethof
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy; Polio Australia Incorporated, Kew, Victoria, Australia
| | - Antonio Toniolo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy.
| |
Collapse
|
10
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
11
|
Dang S, Gao N, Li Y, Li M, Wang X, Jia X, Zhai S, Zhang X, Liu J, Deng H, Dong T. Dominant CD4-dependent RNA-dependent RNA polymerase-specific T-cell responses in children acutely infected with human enterovirus 71 and healthy adult controls. Immunology 2014; 142:89-100. [PMID: 24329688 PMCID: PMC3992051 DOI: 10.1111/imm.12235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major causes of hand, foot and mouth disease (HFMD), which leads to significant mortality in infected children. A prophylactic vaccine is urgently needed. However, little is known about the protective T-cell immunity in individuals infected with the EV71 virus. In this study, we performed a comprehensive ex vivo interferon-γ ELISPOT analysis in 31 children infected with EV71 as well as in 40 healthy adult controls of the CD4(+) and CD8(+) T-cell responses to overlapping peptides spanning the VP1 structural protein and RNA-dependent RNA polymerase (RdRp) non-structural protein. EV71-specific CD4 T-cell responses were detected in most of the acute patients and were mostly CD4-dependent RdRp-specific responses. CD8-dependent VP1 and RdRp-specific responses were also detected in a small proportion of recently infected children. There was no significant association between the strength of the T-cell responses and disease severity observed during the acute EV71 infection phase. Interestingly, an RdRp-specific, but no VP1-specific, CD4-dependent T-cell response was detected in 30% of the adult controls, and no T-cell responses were detected in healthy children. In addition, 24 individual peptides containing potential T-cell epitope regions were identified. The data suggest that CD4-dependent RdRp-specific T-cell responses may play an important role in protective immunity, and the epitopes identified in this study should provide valuable information for future therapeutic and prophylactic vaccine design as well as basic research.
Collapse
Affiliation(s)
- Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Mei Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Xiufang Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Jingkun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
- Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Huiling Deng
- Department of Infectious Diseases, Xi'an Children's Hospital of Medical School of Xi'an Jiaotong UniversityXi'an, Shaanxi, China
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford UniversityOxford, UK
| |
Collapse
|
12
|
Kondrashova A, Hyöty H. Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol 2014; 33:284-95. [PMID: 24611784 DOI: 10.3109/08830185.2014.889130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes is caused by an immune-mediated destruction of insulin producing beta-cells in the pancreas. The risk of the disease is determined by interactions between more than 40 different susceptibility genes and yet unidentified environmental factors. The rapidly increasing incidence indicates that these environmental agents have a significant role in the pathogenesis. Microbes have associated with both increased and decreased risk reflecting their possible role as risk or protective factors. Two main hypotheses have been proposed to explain these effects: the hygiene hypothesis suggests that microbial exposures in early childhood stimulate immunoregulatory mechanisms which control autoimmune reactions (analogy with allergy), while the triggering hypothesis suggests that specific microbes damage insulin producing cells. Certain viruses, particularly enteroviruses, are currently the main candidates for such risk microbes. Enteroviruses cause diabetes in animals and have associated with increased risk of type 1 diabetes in epidemiological studies. They have also been detected in the pancreas of diabetic patients. Possible protective effect of microbes has been studied in animal models and in epidemiological studies, where certain enteral microbes (e.g. hepatitis A virus and Helicobacter pylori) and patterns of gut microbiome have associated with low risk of type 1 diabetes. In conclusion, these microbial effects offer attractive possibilities for the development of preventive interventions for type 1 diabetes based on the elimination of triggering agents (e.g. enterovirus vaccines) or use of protective microbes as probiotics.
Collapse
|
13
|
Nurminen N, Oikarinen S, Hyöty H. Virus infections as potential targets of preventive treatments for type 1 diabetes. Rev Diabet Stud 2012; 9:260-71. [PMID: 23804265 PMCID: PMC3740695 DOI: 10.1900/rds.2012.9.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022] Open
Abstract
Environmental factors play an important role in the pathogenesis of type 1 diabetes, and are attractive targets for preventive interventions. Several studies have shown that viruses can cause diabetes in animals, indicating their potential as candidates for environmental triggering agents. However, human studies have been hampered by the complex nature of the disease pathogenesis, leaving the question of viral etiology unanswered. Significant progress has recently been made in this field by searching for viruses within pancreatic tissue samples, and by carrying out prospective studies. Consequently, there is increasing evidence for a group of enteroviruses acting as possible environmental key triggers. In past studies, these viruses have been linked to type 1 diabetes. Recent studies have shown that they exert tropism to pancreatic islets, and that they are associated with the start of the beta-cell damaging process. Also, polymorphisms of the gene coding for the innate immune system sensor for enteroviruses (IFIH1) were found to modulate the risk of diabetes. Based on these findings, interest in the possible development of vaccines against these viruses has increased. However, even if enterovirus vaccines (polio vaccines) are effective and safe, we currently lack necessary information for the development of a vaccine against diabetogenic enteroviruses, e.g. regarding the identification of their specific serotypes and the causal relationship between these viruses and diabetes initiation. Ongoing research projects are currently addressing these questions, and will hopefully increase the consensus in this field. Also, new sequencing technologies will provide additional information about the whole virome, which could enable the discovery of new candidate viruses.
Collapse
Affiliation(s)
- Noora Nurminen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | | | | |
Collapse
|
14
|
Cordey S, Petty TJ, Schibler M, Martinez Y, Gerlach D, van Belle S, Turin L, Zdobnov E, Kaiser L, Tapparel C. Identification of site-specific adaptations conferring increased neural cell tropism during human enterovirus 71 infection. PLoS Pathog 2012; 8:e1002826. [PMID: 22910880 PMCID: PMC3406088 DOI: 10.1371/journal.ppat.1002826] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/16/2012] [Indexed: 01/04/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP1₉₇ Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
Collapse
Affiliation(s)
- Samuel Cordey
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dotzauer A, Kraemer L. Innate and adaptive immune responses against picornaviruses and their counteractions: An overview. World J Virol 2012; 1:91-107. [PMID: 24175214 PMCID: PMC3782268 DOI: 10.5501/wjv.v1.i3.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
Picornaviruses, small positive-stranded RNA viruses, cause a wide range of diseases which is based on their differential tissue and cell type tropisms. This diversity is reflected by the immune responses, both innate and adaptive, induced after infection, and the subsequent interactions of the viruses with the immune system. The defense mechanisms of the host and the countermeasures of the virus significantly contribute to the pathogenesis of the infections. Important human pathogens are poliovirus, coxsackievirus, human rhinovirus and hepatitis A virus. These viruses are the best-studied members of the family, and in this review we want to present the major aspects of the reciprocal effects between the immune system and these viruses.
Collapse
Affiliation(s)
- Andreas Dotzauer
- Andreas Dotzauer, Leena Kraemer, Department of Virology, University of Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
16
|
Foo DGW, Macary PA, Alonso S, Poh CL. Identification of human CD4 T-cell epitopes on the VP1 capsid protein of enterovirus 71. Viral Immunol 2008; 21:215-24. [PMID: 18419256 DOI: 10.1089/vim.2007.0089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The identification of human CD4 T-cell epitopes within a protein vaccine candidate is of great interest,as it provides a better understanding of the mechanisms involved in protective immunity and may therefore help in the design of effective vaccines and diagnostic tools. The entire amino acid sequence of the VP1 capsid protein from enterovirus 71 (EV 71) strain 41 was submitted to analysis by the ProPred algorithm for the identification of potential promiscuous human CD4 T-cellepitopes. Three regions spanning amino acids 66-77, 145-159, and 247-261 of VP1 were predicted to bind more than 25 HLA-DR alleles. The corresponding synthetic peptides (SP1 to SP3) were then tested for their abilities to induce proliferation of CD4 T cells isolated from five human volunteers screened positive for previous EV 71 exposure and one EV 71-negative volunteer. Upon stimulation with either peptide, CD4 T-cell proliferative responses were observed for all EV 71-positive volunteers,indicating the presence of EV 71-specific memory CD4 T cells. The amplitude of the proliferative responses was peptide- and HLA-DR-dependent, and correlated well with the ProPredpredicted binding efficiencies. Moreover, CD4 T cells from EV 71-positive volunteers produced significant levels of IL-2 and IFN- upon stimulation, indicative of a T-cell differentiation into Th-1-type subset. Among the three peptides, SP2 induced the highest proliferative response and cytokine production. Moreover, SP2-induced proliferative response could be inhibited with anti-major histocompatibility complex (MHC) class II antibody, indicating that SP2 represents a MHC class II-restricted CD4 T-cell epitope. This study demonstrates that the ProPred algorithm can accurately predict the presence of human CD4 T-cell epitopes within the VP1 capsid protein of EV 71, and therefore represents a useful tool for the design of subunit vaccines against EV 71.
Collapse
Affiliation(s)
- Damian Guang Wei Foo
- Department of Microbiology and Immunology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
17
|
Sospedra M, Zhao Y, zur Hausen H, Muraro PA, Hamashin C, de Villiers EM, Pinilla C, Martin R. Recognition of conserved amino acid motifs of common viruses and its role in autoimmunity. PLoS Pathog 2005; 1:e41. [PMID: 16362076 PMCID: PMC1315278 DOI: 10.1371/journal.ppat.0010041] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/03/2005] [Indexed: 11/19/2022] Open
Abstract
The triggers of autoimmune diseases such as multiple sclerosis (MS) remain elusive. Epidemiological studies suggest that common pathogens can exacerbate and also induce MS, but it has been difficult to pinpoint individual organisms. Here we demonstrate that in vivo clonally expanded CD4+ T cells isolated from the cerebrospinal fluid of a MS patient during disease exacerbation respond to a poly-arginine motif of the nonpathogenic and ubiquitous Torque Teno virus. These T cell clones also can be stimulated by arginine-enriched protein domains from other common viruses and recognize multiple autoantigens. Our data suggest that repeated infections with common pathogenic and even nonpathogenic viruses could expand T cells specific for conserved protein domains that are able to cross-react with tissue-derived and ubiquitous autoantigens.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yingdong Zhao
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Computational and System Biology Group, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harald zur Hausen
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Paolo A Muraro
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christa Hamashin
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Mixture Sciences, San Diego, California, United States of America
| | - Ethel-Michele de Villiers
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Clemencia Pinilla
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Mixture Sciences, San Diego, California, United States of America
- Torrey Pines Institute for Molecular Studies and Mixture Sciences, San Diego, California, United States of America
| | - Roland Martin
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: ,
| |
Collapse
|
18
|
Wahid R, Cannon MJ, Chow M. Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 2005; 79:5988-95. [PMID: 15857985 PMCID: PMC1091702 DOI: 10.1128/jvi.79.10.5988-5995.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of poliovirus (PV)-specific CD4(+) T cells in individuals vaccinated against polio has been shown, but CD8(+) T-cell responses have not been described. Here, we functionally characterize the CD4(+) T-cell response and show for the first time that dendritic cells and macrophages can stimulate PV-specific CD8(+) T-cell responses in vitro from vaccinees. Both CD4(+) T and CD8(+) T cells secrete gamma interferon in response to PV antigens and are cytotoxic via the perforin/granzyme B-mediated pathway. Furthermore, the T cells also recognize and kill Sabin 1 vaccine-infected targets. The macrophage-stimulated CD4(+) T and CD8(+) T cells most likely represent memory T cells that persist for long periods in vaccinated individuals. Thus, immunity to PV vaccination involves not only an effective neutralizing antibody titer but also long-term CD4(+) and CD8(+) cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Rahnuma Wahid
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 511, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
19
|
Abstract
Expression of the poliovirus receptor (PVR) on cells is a major host determinant of infection by poliovirus. Previously, the only immune cell type known to express PVR was the blood-derived monocyte, which is susceptible to infection at very low frequency. We demonstrate that professional antigen-presenting cells-macrophages and dendritic cells, generated upon differentiation of monocytes-retain expression of PVR and are highly susceptible to infection by type 1 Mahoney strain of poliovirus. Maximal cell-associated titers of virus are obtained within 6 to 8 h postinfection, and cell death and lysis occurs within 24 h postinfection. Similar kinetics are observed in cells infected with the Sabin 1 vaccine strain. Although protein synthesis and receptor-mediated endocytosis are inhibited upon poliovirus infection of these critical antigen-presenting cells, we demonstrate for the first time that functional presentation of antigen occurs in these infected cells via the HLA class II pathway.
Collapse
Affiliation(s)
- Rahnuma Wahid
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
20
|
Abstract
To study humoral and cellular immunity against human parechovirus type 1 (HPEV1), the viral capsid proteins VP0, VP1, and VP3 were expressed and purified as glutathione S-transferase (GST)-tagged recombinant proteins. The fusion proteins were used to raise antisera in rabbits. VP0 and VP1 antisera specifically detected HPEV1-infected cells in culture by immunoperoxidase staining and immunofluorescence. Furthermore, antisera against the VP0 and VP1 proteins had neutralizing effects against HPEV1 infection. When the HPEV1 antibody titers of 20 adults and 55 children were determined by a microneutralization test, the prevalence of HPEV1 antibodies in the adult population was 96%, while 50% of children were seropositive. Selected sera were used to evaluate HPEV1 fusion proteins as antigens in an enzyme immunoassay. The VP3 capsid protein appeared to be suitable for the purpose, with specificity of 100% and sensitivity of 96% compared to the neutralization test. Furthermore, T-cell responses to the purified HPEV1 and HPEV1 capsid fusion proteins were studied in 20 adults. Sixty percent of the subjects had T-cell proliferation responses to purified HPEV1, and 90% of the subjects also had positive T-cell responses to at least one of the GST capsid proteins.
Collapse
Affiliation(s)
- Annu Alho
- Department of Virology, Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
21
|
Varela-Calvino R, Ellis R, Sgarbi G, Dayan CM, Peakman M. Characterization of the T-cell response to coxsackievirus B4: evidence that effector memory cells predominate in patients with type 1 diabetes. Diabetes 2002; 51:1745-53. [PMID: 12031961 DOI: 10.2337/diabetes.51.6.1745] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most of the evidence linking enterovirus (EV) infection with the development and/or acceleration of type 1 diabetes is indirect. Few studies have examined T-cell responses to these viruses, and therefore the nature of the viral targets and the immune cells involved in antiviral responses remain unclear. In the present study, we examined the characteristics of the T-cell response to the EV Coxsackievirus B4 (CVB4) in patients with type 1 diabetes and healthy control subjects. We find that CVB4-specific T-cells preferentially target the envelope proteins VP1, VP2, and VP3, and that the response to these and other CVB4 proteins differs markedly in type 1 diabetic patients compared with nondiabetic control subjects. The frequency of T-cell proliferative responses against VP2 was significantly reduced in type 1 diabetic patients compared with control subjects, especially in patients tested near to diagnosis (P < 0.001). In contrast, median levels of gamma-interferon (IFN-gamma) production by T-cells in response to the CVB4 antigens tested were generally high in new-onset type 1 diabetic patients, who produced significantly higher levels in response to VP3 compared with healthy subjects (P < 0.05) and patients with long-standing disease (P < 0.05). New-onset type 1 diabetic patients also had higher levels in response to P2C compared with healthy subjects (P < 0.005) and to VP2 compared with patients with long-standing disease (P < 0.05). These results suggest that the quality of the immune response to CVB4 antigens differs significantly between type 1 diabetic patients and control subjects, with a predominance of primed effector (IFN-gamma-producing) memory cells near to disease diagnosis. The data are consistent with the notion that the diagnosis of type 1 diabetes is associated with recent or persistent exposure to EV antigens.
Collapse
Affiliation(s)
- Ruben Varela-Calvino
- Department of Immunology, Guy's, King's and St. Thomas' School of Medicine, London, UK
| | | | | | | | | |
Collapse
|
22
|
Vekemans J, Ota MOC, Wang ECY, Kidd M, Borysiewicz LK, Whittle H, McAdam KPWJ, Morgan G, Marchant A. T cell responses to vaccines in infants: defective IFNgamma production after oral polio vaccination. Clin Exp Immunol 2002; 127:495-8. [PMID: 11966766 PMCID: PMC1906307 DOI: 10.1046/j.1365-2249.2002.01788.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immaturity of the neonatal immune system is associated with an increased susceptibility to infections. Studies in mice indicate that neonatal immune responses are biased towards the T helper 2 type, but little is known about helper T cell responses in human newborns. In this study, the oral polio vaccine was used as a model of early immunization to investigate the capacity of young infants to develop cellular immune responses. We show that neonatal immunization with oral polio vaccine induces the production of high titres of neutralizing antibodies but reduced proliferative and IFNgamma responses to polio antigens compared to immune adults. These data suggest that specific strategies will be required to immunize newborns against pathogens controlled by Th1 type immune responses.
Collapse
Affiliation(s)
- J Vekemans
- Medical Research Council Laboratories, Fajara, The Gambia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marttila J, Hyöty H, Vilja P, Härkönen T, Alho A, Roivainen M, Hyypiä T, Ilonen J. T cell epitopes in coxsackievirus B4 structural proteins concentrate in regions conserved between enteroviruses. Virology 2002; 293:217-24. [PMID: 11886241 DOI: 10.1006/viro.2001.1259] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study aimed to characterize systematically the target epitopes of T cell responses in CBV4 structural proteins. These were studied by synthesizing 86 overlapping 20-aa-long peptides covering the known sequence of CBV4 structural proteins and analyzing the proliferation responses of 18 CBV4-specific T cell lines against these peptides. Recognized peptides differed depending on the HLA-DR genotype of the T cell donor. They were concentrated to the VP4 and VP2 regions as six of seven common peptide epitopes located in this region, whereas there was only one in the VP3 region and none in the VP1 region. Peptides from conserved areas were recognized more often (on average, 15% of them stimulated each T cell line) than those derived from variable areas (3%) (P < 0.0001, Fisher's exact test). Some conserved peptides inducing T cell responsiveness in most subjects were identified, a knowledge which can be useful in the development of new synthetic vaccines.
Collapse
Affiliation(s)
- Jane Marttila
- JDRF Center for Prevention of Type 1 Diabetes in Finland, Department of Virology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Type 1 (insulin-dependent) diabetes is a typical organ-specific autoimmune disease where insulin-producing beta cells are destroyed by immune mediated mechanisms. The risk of the disease is modulated by genetic factors, mainly genes coding for human leukocyte antigens (HLA), but environmental factors are needed to trigger the process in genetically susceptible individuals. Possible viral triggers of the disease have been sought for years but their identification has been very difficult. Recently, considerable progress has been made by employing new research methods which have supported the idea that the group of enteroviruses may be particularly important in the pathogenesis. An association between enterovirus infections and type 1 diabetes was first reported 30 years ago and since then evaluated in several studies. Recent molecular studies have considerably strengthened this hypothesis by showing that enterovirus genome is present in the blood of diabetic patients. In addition, the first prospective studies have suggested that enterovirus infections may initiate the beta-cell damaging process several years before clinical diabetes is diagnosed. Ecological studies have also indicated similarities in the epidemiology of type 1 diabetes and poliomyelitis - a well-known enterovirus disease. Experimental models, like enterovirus-infected mice or in vitro-cultured beta cells, have provided important information about possible mechanisms, but still it is not known how beta cells are destroyed in human beings. The ongoing prospective studies will answer many open questions, and should the association still hold true, intervention trials will be needed to confirm causality. Even if enterovirus infections were not associated with all diabetes cases but rather with a subgroup of them, this would offer attractive possibilities to prevent the disease or part of it, for example, by an enterovirus vaccine.
Collapse
Affiliation(s)
- Heikki Hyöty
- JDRF Center for Prevention of Type 1 Diabetes, Tampere, Finland.
| |
Collapse
|
25
|
Marttila J, Juhela S, Vaarala O, Hyöty H, Roivainen M, Hinkkanen A, Vilja P, Simell O, Ilonen J. Responses of Coxsackievirus B4-Specific T-Cell Lines to 2C Protein—Characterization of Epitopes with Special Reference to the GAD65 Homology Region. Virology 2001; 284:131-41. [PMID: 11352674 DOI: 10.1006/viro.2001.0917] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coxsackie B viruses (CBV) have been indicated as environmental triggers initiating autoimmune destruction of insulin-producing pancreatic beta-cells, and molecular mimicry might be the mechanism. A prime candidate for inducing cross-reactive immune responses is a homology sequence, PEVKEK, found both in CBV4 2C protein and in GAD65. To characterize the CBV4-specific T-cell epitopes, overlapping peptides covering the 2C protein were synthesized and CBV4-specific T-cell lines were established from healthy and diabetic subjects. The T-cell epitopes were dependent on the HLA-DR genotype of the T-cell donor, but no difference between diabetic and healthy subjects could be detected. Peptide p4, which included the PEVKEK sequence, contained an HLA-DR1-restricted T-cell epitope. Three randomly selected CBV4-specific T-cell lines, which responded to peptide p4, failed to recognize GAD65 protein or GAD65 peptides containing the PEVKEK sequence. We conclude that the CBV4 2C protein is strongly immunogenic for T-cells and PEVKEK is included in a T-cell epitope. However, presentation of this epitope in the context of neutral HLA-DR1 allele does not support its role in pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- J Marttila
- JDFI Centre for Diabetes Prevention in Finland, University of Turku, Turku, FIN-20520, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fogg MH, Parsons KR, Thomas LH, Taylor G. Identification of CD4+ T cell epitopes on the fusion (F) and attachment (G) proteins of bovine respiratory syncytial virus (BRSV). Vaccine 2001; 19:3226-40. [PMID: 11312019 DOI: 10.1016/s0264-410x(01)00030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To gain insight into the antigenic structure of the F and G proteins of BRSV, we have mapped CD4+ T cell epitopes on these proteins using synthetic peptides and lymphocytes from vaccinated, naturally infected or experimentally infected calves, in proliferation assays. Bovine CD4+ T cells recognised epitopes that were distributed predominantly within the F1 subunit of the F protein, some of which were adjacent to previously identified B cell epitopes. Bovine CD4+ T cell epitopes within the G protein were mainly located within the cytoplasmic tail. Several immunodominant bovine T cell epitopes within the F protein, that were recognised by calves with different haplotypes, are also recognised by human T cells. Thus, cattle and humans appear to recognise similar T cell epitopes on the F protein. Studies using antibodies to bovine MHC class II and BoLA DR-transfected CHO cells as antigen-presenting cells indicated that immunodominant regions of the F and G proteins contained both DR- and DQ-restricted epitopes. The finding that there was little recognition of the extracellular domain of the G protein by T cells has important implications for vaccine design based on the soluble form of this protein.
Collapse
Affiliation(s)
- M H Fogg
- Institute for Animal Health, Compton, Berkshire, RG20 7NN, Newbury, UK
| | | | | | | |
Collapse
|
27
|
Corcoran A, Doyle S, Waldron D, Nicholson A, Mahon BP. Impaired gamma interferon responses against parvovirus B19 by recently infected children. J Virol 2000; 74:9903-10. [PMID: 11024117 PMCID: PMC102027 DOI: 10.1128/jvi.74.21.9903-9910.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvovirus B19 is the causative agent of "fifth disease" of childhood. It has been implicated in a variety of conditions, including unsuccessful pregnancy and rheumatoid arthritis, and is a potential contaminant of blood products. There has been little study of immunity to parvovirus B19, and the exact nature of the protective humoral and cell-mediated immune response is unclear. Immune responses to purified virus capsid proteins, VP1 and VP2, were examined from a cohort of recently infected children and compared with responses from long-term convalescent volunteers. The results demonstrate that antibody reactivity is primarily maintained against conformational epitopes in VP1 and VP2. The unique region of VP1 appears to be a major target for cell-mediated immune responses, particularly in recently infected individuals. We confirm that antibody reactivity against linear epitopes of VP2 is lost shortly after infection but find no evidence of the proposed phenotypic switch in either the subclass of parvovirus B19-specific antibody or the pattern of cytokine production by antigen-specific T cells. The dominant subclass of specific antibody detected from both children and adults was immunoglobulin G1. No evidence was found for interleukin 4 (IL-4) or IL-5 production by isolated lymphocytes from children or adults. In contrast, lymphocytes from convalescent adults produced a typical type 1 response associated with high levels of IL-2 and gamma interferon (IFN-gamma). However, we observed a significant (P<0.001) deficit in the production of IFN-gamma in response to VP1 or VP2 from lymphocytes isolated from children. Taken together, these results imply that future parvovirus B19 vaccines designed for children will require the use of conformationally preserved capsid proteins incorporating Th1 driving adjuvants. Furthermore, these data suggest novel mechanisms whereby parvovirus B19 infection may contribute to rheumatoid arthritis and unsuccessful pregnancy.
Collapse
Affiliation(s)
- A Corcoran
- Mucosal Immunology Laboratory, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
28
|
Varela-Calvino R, Sgarbi G, Arif S, Peakman M. T-Cell reactivity to the P2C nonstructural protein of a diabetogenic strain of coxsackievirus B4. Virology 2000; 274:56-64. [PMID: 10936088 DOI: 10.1006/viro.2000.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enteroviruses are proposed as initiating factors in the etiology of Type 1 diabetes mellitus (Type 1 DM). Molecular mimicry between the autoantigen glutamic acid decarboxylase 65 (GAD65) and the coxsackievirus B4 (CVB4) nonstructural protein P2C is frequently cited as a mechanism by which this virus triggers the disease, but little is known about the immunogenicity of this viral protein in humans, mainly due to the problem of obtaining highly pure preparations of P2C. We generated large amounts of highly pure, soluble P2C protein, coupled to the fusion partner maltose binding protein (MBP-P2C) using the PMAL-c2 bacterial expression plasmid and a two-step purification system comprising amylose resin and ion exchange. Using purified viral protein we show that specific T-cell responses against P2C are detected in the blood of healthy donors and Type 1 DM patients. Proliferation responses to P2C were detected only in subjects also demonstrating T-cell proliferation to CVB4 Vero cell lysates. However, in additional cases T-cell responses to P2C were detectable through the release of interferon-gamma or interleukin-4 in individuals who did not make proliferative responses. Taken together, our data show that the P2C nonstructural protein of CVB4 is targeted by T cells during the antiviral immune response and may trigger the production of T helper 1 and T helper 2 cytokines. The availability of pure, immunogenic P2C should allow the putative role of antiviral responses in the development of autoimmune diabetes to be investigated.
Collapse
Affiliation(s)
- R Varela-Calvino
- Department of Immunology, Guy's, King's, and St. Thomas' School of Medicine, Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|
29
|
Crotty S, Lohman BL, Lü FX, Tang S, Miller CJ, Andino R. Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J Virol 1999; 73:9485-95. [PMID: 10516057 PMCID: PMC112983 DOI: 10.1128/jvi.73.11.9485-9495.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus live virus vectors are a candidate recombinant vaccine system. Previous studies using this system showed that a live poliovirus vector expressing a foreign antigen between the structural and nonstructural proteins generates both antibody and cytotoxic T-lymphocyte responses in mice. Here we describe a novel in vitro method of cloning recombinant polioviruses involving a hybrid-PCR approach. We report the construction of recombinant vectors of two different serotypes of poliovirus-expressing simian immunodeficiency virus (SIV) antigens and the intranasal and intravenous inoculations of four adult cynomolgus macaques with these poliovirus vectors expressing the SIV proteins p17(gag) and gp41(env). All macaques generated a mucosal anti-SIV immunoglobulin A (IgA) response in rectal secretions. Two of the four macaques generated mucosal antibody responses detectable in vaginal lavages. Strong serum IgG responses lasting for at least 1 year were detected in two of the four monkeys. SIV-specific T-cell lymphoproliferative responses were detected in three of the four monkeys. SIV-specific cytotoxic T lymphocytes were detected in two of the four monkeys. This is the first report of poliovirus-elicited vaginal IgA or cytotoxic T lymphocytes in any naturally infectable primate, including humans. These findings support the concept that a live poliovirus vector is a potentially useful delivery system that elicits humoral, mucosal, and cellular immune responses against exogenous antigens.
Collapse
Affiliation(s)
- S Crotty
- Department of Microbiology, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
30
|
Vreugdenhil GR, Batstra MR, Aanstoot HJ, Melchers WJ, Galama JM. Analysis of antibody responses against coxsackie virus B4 Protein 2C and the diabetes autoantigen GAD65. J Med Virol 1999. [DOI: 10.1002/(sici)1096-9071(199910)59:2<256::aid-jmv21>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Juhela S, Hyöty H, Uibo R, Meriste SH, Uibo O, Lönnrot M, Halminen M, Simell O, Ilonen J. Comparison of enterovirus-specific cellular immunity in two populations of young children vaccinated with inactivated or live poliovirus vaccines. Clin Exp Immunol 1999; 117:100-5. [PMID: 10403922 PMCID: PMC1905481 DOI: 10.1046/j.1365-2249.1999.00954.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/1999] [Indexed: 02/04/2023] Open
Abstract
Enterovirus-specific cellular immunity was studied in Estonian and in Finnish children at the age of 9 months. The aim was to evaluate the level of responsiveness in two neighbouring countries with different poliovirus immunization practices and striking differences in the incidence of insulin-dependent diabetes mellitus (IDDM), a disease in which early enterovirus infections are an aetiological risk factor. The Estonian children immunized with live attenuated polio vaccine had stronger T cell responses to coxsackievirus B4 and poliovirus type 1 when compared with Finnish children immunized with inactivated polio vaccine (median stimulation indices 10.4 and 6.3 in Estonian children and 1.9 and 2.9 in Finnish children, respectively; P < 0.05). Lymphocytes stimulated by poliovirus type 1 antigen expressed interferon-gamma (IFN-gamma) mRNAs, which strongly correlated with the level of proliferation responses. Lymphocytes of Estonian children had a tendency towards stronger expression of IFN-gamma upon poliovirus challenge when compared with Finnish children. The number of children who had experienced coxsackievirus B infections, as determined by the presence of neutralizing antibodies, did not differ between Estonian and Finnish children. The results show that Finnish children have weaker cellular immunity against enteroviruses at the age of 9 months compared with Estonian children at the same age. This is most probably due to the difference in polio vaccination schedules; in Estonia live poliovirus vaccine is used and given at earlier ages than the inactivated vaccines in Finland. This leads to stronger T cell immunity which cross-reacts with other enterovirus serotypes. This may explain the lower incidence of IDDM in Estonia by providing effective protection against diabetogenic enterovirus strains in Estonian children.
Collapse
Affiliation(s)
- S Juhela
- Turku Immunology Centre, Department of Virology, University of Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Juhela S, Hyöty H, Hinkkanen A, Elliott JF, Elliott J, Roivainen M, Kulmala P, Rahko J, Knip M, Ilonen J. T cell responses to enterovirus antigens and to beta-cell autoantigens in unaffected children positive for IDDM-associated autoantibodies. J Autoimmun 1999; 12:269-78. [PMID: 10330298 DOI: 10.1006/jaut.1999.0276] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterovirus infections have been implicated in the pathogenesis of IDDM in a number of studies. The aim of the present study was to evaluate whether the cellular immune response to enterovirus antigens is abnormal in children who test positive for IDDM-associated autoantibodies. Lymphocyte proliferation responses were analysed to enterovirus antigens and to a panel of beta-cell autoantigen preparations in 31 non-diabetic ICA and/or GAD65 antibody-positive children and in 19 ICA/GAD65-negative control children. The responses to highly purified enteroviruses did not differ between autoantibody (AA)-positive and -negative subjects. However, proliferation responses to coxsackievirus-infected cell lysate, which also included non-structural proteins of the virus, were higher in AA-positive than in AA-negative subjects (P<0.05). This difference was most marked in children carrying the HLA-DQB1*02 allele (P=0.01). AA-positive subjects also had higher responses to one of the three GAD65 antigen preparations compared to AA-negative subjects (P<0.05). Proliferation responses to the adenovirus hexon protein did not differ between the groups. These results show that the increased responses to virus infected cell lysates are associated with early phases of beta-cell autoimmunity.
Collapse
Affiliation(s)
- S Juhela
- Turku Immunology Centre and Department of Virology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Morrow CD, Novak MJ, Ansardi DC, Porter DC, Moldoveanu Z. Recombinant viruses as vectors for mucosal immunity. Curr Top Microbiol Immunol 1999; 236:255-73. [PMID: 9893364 DOI: 10.1007/978-3-642-59951-4_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development and characterization of viral based vaccine vectors is extremely active research field. Much of this work has been facilitated by developments in molecular biology that allow work with large plasmid-based vectors, as well as the use of PCR. Several different vector systems are now available using RNA viruses and DNA viruses. Each vector system has its own strengths and weaknesses. Due to the differences and diversity between the viruses used as vectors, it is doubtful that a single system will be useful for all desired vaccines. However, the further development of existing, as well as potentially new systems, will provide a repertoire for vaccinologists to design the recombinant vaccine which will generate an optimal humoral and immune response for protection against infection or disease caused by pathogens that infect via mucosal surfaces.
Collapse
Affiliation(s)
- C D Morrow
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
34
|
Juhela S, Hyöty H, Lönnrot M, Roivainen M, Simell O, Ilonen J. Enterovirus infections and enterovirus specific T-cell responses in infancy. J Med Virol 1998; 54:226-32. [PMID: 9515773 DOI: 10.1002/(sici)1096-9071(199803)54:3<226::aid-jmv14>3.0.co;2-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of enterovirus specific T-cell and antibody responses were examined in a cohort of 60 healthy infants at the ages of 3, 6, 9, and 12 months. By the age of 6 months, 68% of the infants had developed T-cell responses against enterovirus antigens by lymphocyte proliferation test, whereas only 30% had serological evidence of an enterovirus infection. By this age, only 7% of the infants had adenovirus specific T-cell responses and 3% had serologically verified adenovirus infection. Enterovirus specific T-cell responses correlated with the lack of enterovirus antibodies in cord blood and the number of sibs reflecting protection by maternal antibodies and the rate of exposures, respectively. T-cell responses cross-reacted between different enterovirus serotypes. The results show that enterovirus infections occur frequently in infancy and induce T-cell immunity. Cellular immunity may be a more sensitive indicator of neonatal enterovirus infections than antibodies.
Collapse
Affiliation(s)
- S Juhela
- Turku Immunology Centre and Department of Virology, University of Turku, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Vedhara K, Llewelyn MB, Fox JD, Jones M, Jones R, Clements GB, Wang EC, Smith AP, Borysiewicz LK. Consequences of live poliovirus vaccine administration in chronic fatigue syndrome. J Neuroimmunol 1997; 75:183-95. [PMID: 9143253 DOI: 10.1016/s0165-5728(97)00032-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of live oral polio virus vaccination on chronic fatigue syndrome (CFS) patients was examined in a double-blind study. CFS patients were allocated randomly to placebo (N = 7) or vaccine (N = 7) conditions. All controls subjects received the vaccine (9). Vaccine administration was not associated with clinical exacerbation of CFS. However, objective responses to the vaccine revealed differences between patients and controls: increased poliovirus isolation, earlier peak proliferative responses, lower T-cell subsets on certain days post vaccination and a trend for reduced gamma-interferon in the CFS-vaccine group. Polio vaccination was not found to be clinically contraindicated in CFS patients, however, there was evidence of altered immune reactivity and virus clearance.
Collapse
Affiliation(s)
- K Vedhara
- Department of Medicine, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Porter DC, Wang J, Moldoveanu Z, McPherson S, Morrow CD. Immunization of mice with poliovirus replicons expressing the C-fragment of tetanus toxin protects against lethal challenge with tetanus toxin. Vaccine 1997; 15:257-64. [PMID: 9139483 DOI: 10.1016/s0264-410x(96)00187-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we describe the construction of poliovirus genomes or "replicons" which contain the C fragment gene of tetanus toxin substituted for the poliovirus P1 capsid. Upon transfection of replicon RNA into cells, we immunoprecipitated a protein corresponding to the C-fragment of tetanus toxin using tetanus-specific antibodies. Using a recombinant vaccinia virus expressing poliovirus P1 capsid protein (VV-P1) to provide P1 protein, the replicon RNA was encapsidated; stocks of the replicons were generated by passage with VV-P1. The immunogenicity of the replicons was determined by immunization of transgenic mice which are susceptible to poliovirus. A serum antibody response to poliovirus and tetanus toxoid was detected in all of the immunized mice. Protection against a lethal dose of tetanus toxin generally correlated with the levels of serum anti-tetanus antibodies. To address whether pre-existing antibodies to poliovirus limit the effectiveness of the replicon as a vaccine vector, mice were first immunized with the inactivated poliovirus vaccine followed by immunization with the replicons expressing C-fragment protein. Anti-tetanus antibodies were detected in these mice after a single administration of the replicon; these antibodies conferred protection upon challenge with tetanus toxin. These results demonstrate the potential use of poliovirus replicons encoding foreign proteins to induce a protective antibody response, even in the presence of pre-existing antibodies to poliovirus.
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
37
|
Garcia M, Pujol M, Reig F, Alsina MA, Haro I. Synthesis, lipophilic derivatization and interaction with liposomes of HAV-VP3 (102-121) sequence by using spectroscopic techniques. Analyst 1996; 121:1583-8. [PMID: 8952449 DOI: 10.1039/an9962101583] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatitis A virus (HAV) is composed mainly of three structural capsid proteins: VP1, VP2 and VP3. Our group has reported the synthesis and the immunogenic evaluation of VP3 (110-121) peptide sequence. In the present work, in order to stimulate a T-cell immune response, we have selected the HAV-VP3 (102-121) peptide which has maximum amphipathicity. Its synthesis was carried out manually in the solid phase and semipreparative HPLC was used for purification of the crude peptide. Finally the purified peptide was characterized by analytical HPLC, amino acid analysis and MS. A palmitoyl derivative of VP3 (102-121) was synthesized to modify the hydrophobicity of the peptide. Both free and lipophilically derivatized peptides were incorporated into multilamelar liposomes. Physicochemical studies of the HAV-related peptides described above were carried out using monolayers as membrane models. Compression isotherms, surface activity and penetration kinetics into dipalmitoylphosphatidylcholine monolayers were determined. Moreover, changes in the fluidity of bilayers induced by these peptides were determined by means of polarizable probes such as 8-anilino-1-naphthalenesulfonic acid and 1,6-diphenyl-1,3,5-hexatriene. The integrity of the membranes has also been ascertained with the carboxyfluorescein.
Collapse
Affiliation(s)
- M Garcia
- Department of Peptide and Protein Chemistry, CID, CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
von Poblotzki A, Gerdes C, Reischl U, Wolf H, Modrow S. Lymphoproliferative responses after infection with human parvovirus B19. J Virol 1996; 70:7327-30. [PMID: 8794392 PMCID: PMC190798 DOI: 10.1128/jvi.70.10.7327-7330.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immunity after infection with the parvovirus B19 is assumed to be conferred by a humoral immune response with development of neutralizing antibody. In contrast, little is known about the nature of T-cell-mediated responses to parvovirus B19 infection in humans. We used recombinant proteins VP1, VP2, and NS1, as well as a recombinant VP1-specific amino-terminal sequence, to test the proliferative responses of peripheral blood mononuclear cells after infection of otherwise healthy individuals with parvovirus B19. These proteins were used as antigens for the stimulation of freshly isolated cells. The results show that a B19 virus-specific cellular immunity develops that is directed against the capsid proteins VP1 and VP2. We also demonstrate that viral determinants are presented to CD4+ T cells by HLA class II molecules.
Collapse
Affiliation(s)
- A von Poblotzki
- Institut für Medizinische Mikrobiologie und Hygiene der Universität Regensburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Yauch RL, Kerekes K, Saujani K, Kim BS. Identification of a major T-cell epitope within VP3 amino acid residues 24 to 37 of Theiler's virus in demyelination-susceptible SJL/J mice. J Virol 1995; 69:7315-8. [PMID: 7474161 PMCID: PMC189661 DOI: 10.1128/jvi.69.11.7315-7318.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.
Collapse
Affiliation(s)
- R L Yauch
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
40
|
Similar Peptides from Two β Cell Autoantigens, Proinsulin and Glutamic Acid Decarboxylase, Stimulate T Cells of Individuals at Risk for Insulin-Dependent Diabetes. Mol Med 1995. [DOI: 10.1007/bf03401603] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
41
|
Rudy G, Stone N, Harrison LC, Colman PG, McNair P, Brusic V, French MB, Honeyman MC, Tait B, Lew AM. Similar peptides from two beta cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol Med 1995; 1:625-33. [PMID: 8529129 PMCID: PMC2229979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Insulin (1) and glutamic acid decarboxylase (GAD) (2) are both autoantigens in insulin-dependent diabetes mellitus (IDDM), but no molecular mechanism has been proposed for their association. We have identified a 13 amino acid peptide of proinsulin (amino acids 24-36) that bears marked similarity to a peptide of GAD65 (amino acids 506-518) (G. Rudy, unpublished). In order to test the hypothesis that this region of similarity is implicated in the pathogenesis of IDDM, we assayed T cell reactivity to these two peptides in subjects at risk for IDDM. MATERIALS AND METHODS Subjects at risk for IDDM were islet cell antibody (ICA)-positive, first degree relatives of people with insulin-dependent diabetes. Peripheral blood mononuclear cells from 10 pairs of at-risk and HLA-DR matched control subjects were tested in an in vitro proliferation assay. RESULTS Reactivity to both proinsulin and GAD peptides was significantly greater among at-risk subjects than controls (proinsulin; p < 0.008; GAD; p < 0.018). In contrast to reactivity to the GAD peptide, reactivity to the proinsulin peptide was almost entirely confined to the at-risk subjects. CONCLUSIONS This is the first demonstration of T cell reactivity to a proinsulin-specific peptide. In addition, it is the first example of reactivity to a minimal peptide region shared between two human autoimmune disease-associated self antigens. Mimicry between these similar peptides may provide a molecular basis for the conjoint autoantigenicity of proinsulin and GAD in IDDM.
Collapse
Affiliation(s)
- G Rudy
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neal ZC, Splitter GA. Picornavirus-specific CD4+ T lymphocytes possessing cytolytic activity confer protection in the absence of prophylactic antibodies. J Virol 1995; 69:4914-23. [PMID: 7609060 PMCID: PMC189306 DOI: 10.1128/jvi.69.8.4914-4923.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Picornaviruses are a family of positive-strand RNA viruses that are responsible for a variety of devastating human and animal diseases. An attenuated strain of mengovirus (vMC24) is serologically indistinguishable from the lethal murine wild-type mengovirus and encephalomyocarditis virus (EMCV). Immunogen-specific stimulation of vMC24-immune splenocytes in vitro demonstrates preferential activation of CD4+ lymphocytes. vMC24-immune splenocytes adoptively transferred to naive recipients conferred protection against lethal EMCV challenge. Immune splenocytes, expanded in vitro, were > 92% CD4+ T lymphocytes. Interestingly, adoptive transfer of these expanded cells engendered protection against lethal challenge. In vivo depletion of CD4+ T lymphocytes prior to lethal challenge abrogated survival of transfer recipients, confirming that CD4+ T lymphocytes were essential for protection. Subsequent rechallenge of vMC24-immune splenocyte recipients with a greater EMCV dose elicited serum neutralizing antibody titers paralleling the high titers observed in vMC24-immunized mice. Unexpectedly, an augmented humoral response was absent in vMC24-specific CD4+ T-cell recipients after the secondary challenge. Moreover, comparably low serum neutralizing antibody titers failed to protect passive transfer recipients when correspondingly challenged. vMC24-immune splenocytes expanded in vitro (> 94% CD4+) lysed vMC24-infected A20.J target cells. The ability to transfer protection with primed CD4+ T cells, in the absence of primed B lymphocytes or immune sera, is novel for picornaviral infections. Consequently, mechanisms such as CD4+ cytolytic T-lymphocyte activity are implicated in mediating protection.
Collapse
Affiliation(s)
- Z C Neal
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
43
|
Usherwood EJ, Johnston IC, Lovelidge LJ, Tonks P, Nash AA. Lymphocyte recognition elements on the VP1 protein of Theiler's virus. Immunol Suppl 1995; 85:190-7. [PMID: 7543873 PMCID: PMC1383880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Theiler's virus is a murine picornavirus that persists in the central nervous system in susceptible mouse strains, and gives rise to immune mediated demyelinating disease. Antiviral CD4 T cells are necessary to protect from overwhelming virus replication in the acute phase of the disease, and are thought to act by stimulating the antibody response. The present study used overlapping synthetic peptides to map the location of epitopes recognized by CD4 T cells. One T-cell epitope was identified between amino acids 33-47 of VP1, which was recognized by virus-reactive T cells. 'Cryptic' epitopes were also present within VP1 at positions 153-167, 166-180, 225-239 and 233-247. A linear B-cell epitope was identified in the C-terminal region 225-276. Immunization of CBA mice with inactivated virus, but not peptides containing VP1 B- or T-cell epitopes, reduced the virus titre in the CNS in the acute phase of the disease.
Collapse
Affiliation(s)
- E J Usherwood
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
44
|
Zhang H, Blake NW, Ouyang X, Pandolfino YA, Morgan-Capner P, Archard LC. A single amino acid substitution in the capsid protein VP1 of coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch Virol 1995; 140:959-66. [PMID: 7605207 DOI: 10.1007/bf01314972] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously described a large plaque attenuant (p14V-1) derived from a cardiovirulent Coxsackievirus B3 (CVB3) and showed that there were no major determinants of either attenuation or plaque phenotype in the 5' nontranslated region (5'NTR). Part of the region encoding the last 124 amino acids of VP3 and the first 106 amino acids of VP1 of the attenuant was then sequenced and compared to the wild-type. Three nucleotide changes were found in the VP1 coding region: a silent single base change at nucleotide position 2467 (C to U) and a double-base change at position 2690-1 (AA to GT), which leads to a change from lysine to serine at amino acid position 80. This mutation maps to the begining of B-C loop of the three-dimensional structure of VP1 of CVB3, where a distinct surface projection is formed. Two infectious chimeric cDNA clones were constructed, based on a cardiovirulent cDNA construct. In one construct, the 5'NTR and the VP3-VP1 region were from p14V-1 and in the other, only the VP3-VP1 region was from this attenuant. Both chimeric viruses produced large plaques on Vero cell monolayers, similar to p14V-1 but larger than the prototypic cardiovirulent virus. In vivo experiments showed that both chimeric viruses induced myocarditis in a murine model, similar to wild-type virus. We conclude that mutation serine-80 in capsid protein VP1 of p14V-1 is a determinant of the large plaque phenotype but is not responsible for attenuation.
Collapse
Affiliation(s)
- H Zhang
- Department of Biochemistry, Charing Cross and Westminster Medical School, London, U.K
| | | | | | | | | | | |
Collapse
|
45
|
Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 1995; 181:1835-45. [PMID: 7536796 PMCID: PMC2191998 DOI: 10.1084/jem.181.5.1835] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We established six T cell clones specific for pyruvate dehydrogenase complex (PDC)-E2 peptides from four different patients with primary biliary cirrhosis using 33 different peptides of 17-20 amino acid residues corresponding to human PDC-E2 as stimulating antigens. The minimal T cell epitopes of these six T cell clones were all mapped to the same region of the PDC-E2 peptide 163-176 (GDLLAEIETDKATI), which corresponds to the inner lipoyl domain of PDC-E2. The HLA restriction molecules for this epitope were all identified as HLA DRB4 0101. The common essential amino acids of this epitope for these T cell clones were E, D, and K at positions 170, 172, and 173, respectively; other crucial amino acids for this epitope differed in each T cell clone. In addition, the alanine-substituted peptides at positions 170 and 173, but not 172, inhibited the proliferation of all T cell clones induced by the original peptide of human PDC-E2 163-176, indicating that amino acid D at position 172 is a critical MHC-binding site for all T cell clones tested. Interestingly, all T cell clones reacted to PDC-E2 peptide 36-49 (GDLIAEVETDKATV), which corresponds to the outer lipoyl domain of human PDC-E2. Furthermore, one T cell clone cross-reacted with exogenous antigens such as Escherichia coli PDC-E2 peptide 31-44/134-147/235-248 (EQSLITVEGDKASM), which has an EXDK sequence. This is a definite demonstration of the presence of molecular mimicry at the T cell clonal level in human autoimmune diseases. It is also considered possible to design peptide-specific immunotherapy based on the findings of T cell autoepitopes in primary biliary cirrhosis.
Collapse
Affiliation(s)
- S Shimoda
- First Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
46
|
Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, Mills KH. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med 1995; 181:1285-92. [PMID: 7699320 PMCID: PMC2191967 DOI: 10.1084/jem.181.4.1285] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The current understanding of the function of CD4+ T helper (Th) cells in immunity to infectious diseases is that Th1 cells, which secrete interleukin (IL)-2 and interferon-gamma, induce cellular immune responses, whereas Th2 cells, which secrete IL-4, IL-5, IL-6, and IL-10, provide helper function for humoral immunity. We have used a panel of poliovirus-specific murine CD4+ T cell clones and mice transgenic for the human poliovirus receptor to evaluate the role of Th cell subpopulations in protective immunity to poliovirus. The majority of T cell clones, as well as polyclonal T cells generated from mice infected or immunized with poliovirus, secreted IL-2 and interferon-gamma, but not IL-4, IL-5, or IL-10, a profile typical of Th1 cells. The Th1 clones displayed major histocompatibility complex class II-restricted cytotoxic T lymphocyte activity against specific poliovirus peptide-pulsed target cells, but also provided help for antipoliovirus neutralizing antibody production. To examine the mechanism of immunity in vivo, we have used poliovirus receptor-transgenic mice on a BALB/c (H-2d) background. These animals developed a poliomyelitis-like disease when challenged intravenously with a virulent wild-type strain of poliovirus, but not with an attenuated vaccine strain. Furthermore, mice immunized with the vaccine strain were protected against a subsequent challenge with wild-type virus. Using an adoptive transfer technique, we demonstrated that it was possible to confer protection with primed B cells in the presence of polyclonal poliovirus-specific T cells, but not when transgenic mice received either B cells or T cells alone. Furthermore, protection was observed when mice received primed B cells in the presence of a VP4-specific Th1 clone. The findings demonstrate that Th1 cells can mediate a protective immune response against poliovirus infection in vivo through helper activity for humoral immunity and that CD4+ T cells, specific for the internal poliovirus capsid protein, VP4, can provide effective help for a protective antibody response directed against surface capsid proteins.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antibody Formation
- B-Lymphocytes/transplantation
- CD4 Antigens/analysis
- Capsid/immunology
- Capsid Proteins
- H-2 Antigens/immunology
- Histocompatibility Antigens Class II/immunology
- Immunotherapy, Adoptive
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Mice, Inbred ICR
- Mice, Transgenic
- Poliomyelitis/prevention & control
- Poliovirus/immunology
- Poliovirus/pathogenicity
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Recombinant Proteins/biosynthesis
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- Th1 Cells/immunology
- Virulence
Collapse
Affiliation(s)
- B P Mahon
- Department of Biology, St. Patrick's College, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Handschuh G, Caselmann WH. Bacterial expression and purification of hepatitis C virus capsid proteins of different size. J Hepatol 1995; 22:143-50. [PMID: 7790702 DOI: 10.1016/0168-8278(95)80421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two capsid sequences of the hepatitis C virus were cloned and expressed in an E. coli system. One sequence (c190) comprised the complete capsid region with 573 nucleotides. The other sequence (c125) spanned 375 5'-nucleotides lacking the hydrophobic 3'-part of the hepatitis C virus capsid gene. A full-length and a truncated construct were chosen, since it is not known whether there is 3'-truncation of the hepatitis C virus capsid during protein maturation similar to the situation in some flaviviridae. The corresponding expression clones 190/4 and 125/4 were constructed by polymerase chain reaction cloning into pQE-vectors. The protein expressed, pc125, which is lacking the hydrophobic carboxyterminus of the full-length capsid protein pc190, showed a stronger signal in western blots using anti-hepatitis C virus/EIAII-positive patient's serum. This could be due to better expression and/or better solubilization of pc125. The truncated protein pc125 displayed the predicted molecular weight of 19 kD, whereas the full-length protein pc190 migrated faster than expected. This could be due to intracellular proteolytic processing, giving rise to a truncated protein or to an atypical mobility in SDS-PAGE gels caused by the hydrophobic nature of the full-length protein. Both proteins were synthesized with an aminoterminal tag of six histidines that could be used for purification by Nickel chelate affinity chromatography. The elution fractions of the two proteins showed additional bands in western blots. Most of these proteins had a mass between 2 and 16 kD and are likely to be degradation products. Protein pc125 could be purified in larger quantities than pc190.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Handschuh
- Department of Virus Research, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
48
|
Isaguliants M, Rudén U, Gilljam G, Wahren B. Immunogenic combinations of HIV-1 B- and heterologous T-cell epitopes. Immunol Lett 1994; 42:173-8. [PMID: 7534271 DOI: 10.1016/0165-2478(94)90082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peptides were synthesized which combined HIV-1 B-epitopes from gp41, p34pol and heterologous T-cell epitopes from hepatitis B virus (HBV) core or tetanus toxoid. Mixtures of these composite peptides and peptides representing single HIV-1 B-epitopes were used to immunize rabbits in an adjuvant-free immunization regimen. Fusion to T-cell epitopes made the HIV-1 B-epitopes immunogenic and high titers of anti-HIV-1 antibodies were reached. Efficient antibody response against an immunorecessive HIV-1 B-epitope from p34 pol introduced as a B+T-composite also developed in rabbits pre-immunized by composites of the same T-cell epitopes but with a B-epitope from gp41. Fusion changed the fine antigenicity of the epitopes, but at least part of the antibodies against gp41-containing B+T composites recognized whole viral gp160. Composite peptides stimulated T-cells in the majority of the immunized animals.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Virology, Swedish Institute for Infectious Disease Control, Stockholm
| | | | | | | |
Collapse
|
49
|
Isaguliants MG, Sukhanova LL, Levi M, Bobkov AP, Kalinina TI, Rudén U, Smirnov VD, Wahren B. Linear epitopes of HIV-1, presented as hybrids with Escherichia coli beta-galactosidase or synthetic peptides. AIDS Res Hum Retroviruses 1994; 10:655-64. [PMID: 7521191 DOI: 10.1089/aid.1994.10.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HIV-1 B cell epitopes from gp41, the T cell epitope of p34pol, and a cluster of B and T epitopes from p17gag were selected. The epitopes were presented as synthetic peptides and as either N- or C-terminal insertions into beta-galactosidase. Hybrids were efficiently expressed in E. coli and easily purified when epitopes were inserted at the beta-galactosidase C terminus. Sera from HIV-1-infected individuals reacted in peptide- and hybrid protein-based enzyme-linked immunosorbent assays (ELISAs) mostly with the immunodominant site of gp41. The second site of gp41 and also sites from p17 and p34 appeared to be immunorecessive. A few of the HIV-1-positive sera exhibited several immunorecessive reactivities. HIV-1-positive sera from the former Soviet Union and Cuba had reactivities similar to those of American, African, and west European sera. Some sera could not be evaluated as specifically HIV-1 seropositive because of their broad reactivities with a multitude of peptides and proteins, unrelated to HIV-1. Extensive tests were performed to define unspecific reactivities by absorption, blocking, and sandwich ELISAs. The application of the hybrid protein assay substantially improved the specificity of the ELISA tests. Thus, hybrid protein-based ELISAs appeared to be more suitable than peptide-based ELISAs, especially for the evaluation of immunorecessive reactivities.
Collapse
Affiliation(s)
- M G Isaguliants
- D.I. Ivanovsky Institute of Virology, Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|