1
|
Folgosi VÂ, Komninakis SV, Lopes L, Monteiro MA, Assone T, Fonseca LAM, Domingues W, Leite PD, Victor JR, Casseb J. Unraveling clinical outcomes of long-term cART treatment in HIV-1 patients with or without the Brazilian GWGR motif in the V3 loop. Rev Inst Med Trop Sao Paulo 2024; 66:e38. [PMID: 39052025 PMCID: PMC11251515 DOI: 10.1590/s1678-9946202466038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
The presence of genetic mutations in HIV poses a significant challenge, potentially leading to antiretroviral resistance and hampering therapeutic development. The Brazilian population has presented variations in the HIV envelope V3 loop gene, especially the GWGR motif. This motif has been linked to reduced transmission potential and slower CD4+ T cell decline. This study aimed to assess clinical outcomes in patients with HIV-1 infected with strains containing the GWGR motif compared with those without it during long-term cART. A cohort of 295 patients with HIV was examined for the GWGR motif presence in the V3 loop. A total of 58 samples showed the GWGR signature, while 237 had other signatures. Multifactorial analyses showed no significant differences in demographic characteristics, CD4+ cell count, AIDS progression, or mortality between GWGR carriers and others. However, the mean interval between the first positive HIV test and the initial AIDS-defining event was more than two times longer for women carrying the GWGR signature (p = 0.0231). We emphasize the positive impact of cART on HIV/AIDS treatment, including viral suppression, CD4+ cell preservation, and immune function maintenance. Although no significant differences were found during cART, residual outcomes reflecting adherence challenges were observed between diagnosis and the first AIDS-defining event. The previously described outcomes, highlighting statistically significant differences between individuals carrying the GPGR motif compared with those with the Brazilian GWGR motif, may be directly linked to the natural progression of infection before advancements in cART. Presently, these physicochemical aspects may no longer hold the same relevance.
Collapse
Affiliation(s)
- Victor Ângelo Folgosi
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Shirley Vasconcelos Komninakis
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
- Universidade Federal de São Paulo, Laboratório de Retrovirologia,
São Paulo, São Paulo, Brazil
| | - Luciano Lopes
- Universidade Federal de São Paulo, Departamento de Informática em
Saúde, Divisão de Bioinformática e Ciência de Dados em Biologia, São Paulo, São
Paulo, Brazil
| | - Mariana Amélia Monteiro
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Tatiane Assone
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Luiz Augusto Marcondes Fonseca
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Wilson Domingues
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Pedro Domingos Leite
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
- Universidade Santo Amaro, Programa de Pós-Graduação em Ciências da
Saúde, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, Instituto de
Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM-56), São
Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
García-Machorro J, Gutiérrez-Sánchez M, Rojas-Ortega DA, Bello M, Andrade-Ochoa S, Díaz-Hernández S, Correa-Basurto J, Rojas-Hernández S. Identification of peptide epitopes of the gp120 protein of HIV-1 capable of inducing cellular and humoral immunity. RSC Adv 2023; 13:9078-9090. [PMID: 36950073 PMCID: PMC10025946 DOI: 10.1039/d2ra08160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Diego Alexander Rojas-Ortega
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Sergio Andrade-Ochoa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N 31125 Chihuahua México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N Colonia Santo Tomas 11340 Ciudad de México Mexico
| | - Sebastián Díaz-Hernández
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| |
Collapse
|
3
|
Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. J Virol 2015; 89:7478-93. [PMID: 25972551 DOI: 10.1128/jvi.00412-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.
Collapse
|
4
|
Nonneutralizing Antibodies Induced by the HIV-1 gp41 NHR Domain Gain Neutralizing Activity in the Presence of the HIV Fusion Inhibitor Enfuvirtide: a Potential Therapeutic Vaccine Strategy. J Virol 2015; 89:6960-4. [PMID: 25903343 DOI: 10.1128/jvi.00791-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
A key barrier against developing preventive and therapeutic human immunodeficiency virus (HIV) vaccines is the inability of viral envelope glycoproteins to elicit broad and potent neutralizing antibodies. However, in the presence of fusion inhibitor enfuvirtide, we show that the nonneutralizing antibodies induced by the HIV type 1 (HIV-1) gp41 N-terminal heptad repeat (NHR) domain (N63) exhibit potent and broad neutralizing activity against laboratory-adapted HIV-1 strains, including the drug-resistant variants, and primary HIV-1 isolates with different subtypes, suggesting the potential of developing gp41-targeted HIV therapeutic vaccines.
Collapse
|
5
|
Mayr LM, Powell RL, Ngai JN, Takang WA, Nádas A, Nyambi PN. Superinfection by discordant subtypes of HIV-1 does not enhance the neutralizing antibody response against autologous virus. PLoS One 2012; 7:e38989. [PMID: 22720009 PMCID: PMC3375243 DOI: 10.1371/journal.pone.0038989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that both the potency and breadth of the humoral anti-HIV-1 immune response in generating neutralizing antibodies (nAbs) against heterologous viruses are significantly enhanced after superinfection by discordant HIV-1 subtypes, suggesting that repeated exposure of the immune system to highly diverse HIV-1 antigens can significantly improve anti-HIV-1 immunity. Thus, we investigated whether sequential plasma from these subjects superinfected with discordant HIV-1 subtypes, who exhibit broad nAbs against heterologous viruses, also neutralize their discordant early autologous viruses with increasing potency. Comparing the neutralization capacities of sequential plasma obtained before and after superinfection of 4 subjects to those of matched plasma obtained from 4 singly infected control subjects, no difference in the increase in neutralization capacity was observed between the two groups (p = 0.328). Overall, a higher increase in neutralization over time was detected in the singly infected patients (mean change in IC50 titer from first to last plasma sample: 183.4) compared to the superinfected study subjects (mean change in IC50 titer from first to last plasma sample: 66.5). Analysis of the Breadth-Potency Scores confirmed that there was no significant difference in the increase in superinfected and singly infected study subjects (p = 0.234). These studies suggest that while superinfection by discordant subtypes induces antibodies with enhanced neutralizing breadth and potency against heterologous viruses, the potency to neutralize their autologous viruses is not better than those seen in singly infected patients.
Collapse
Affiliation(s)
- Luzia M. Mayr
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Rebecca L. Powell
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - William A. Takang
- Serology Unit, Medical Diagnostic Center, Yaounde, Cameroon
- Department of Obstetrics and Gynaecology, University of Yaounde Teaching Hospital, Yaounde, Cameroon
| | - Arthur Nádas
- Institute of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Phillipe N. Nyambi
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare Systems, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Raboni SM, Almeida SMD, Rotta I, Ribeiro CEL, Rosario D, Vidal LR, Nogueira MB, Riedel M, Winhescki MDG, Ferreira KA, Ellis R. Molecular epidemiology of HIV-1 clades in Southern Brazil. Mem Inst Oswaldo Cruz 2011; 105:1044-9. [PMID: 21225203 DOI: 10.1590/s0074-02762010000800015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) clades B and C account for more than 60% of the HIV-1 infections worldwide. In this paper, we describe the profiles of patients infected with subtypes of HIV-1 from the state of Paraná, Southern Brazil, and correlate them with demographic and epidemiological findings. A retrospective analysis of HIV cases reported from 1999-2007 was also performed. Data from 293 patients were reviewed and 245 were older than 13 (58% female). The distribution of clades was as follows: B 140 (57%), C 67 (23%), F 24 (10%) and mosaic or unique recombinant forms (URFs) 24 (10%). Of the 48 patients younger than 13 years of age (62.5% male), vertical transmission occurred in 46 and the distribution of clades was as follows: B 14 (29%), C 24 (50%), F 7 (15%) and URFs 6 (13%). There was no significant difference in mortality between HIV-1 subtypes. In both groups, patients infected with clade C tended to have higher rates of injection drug use exposure risk.
Collapse
Affiliation(s)
- Sonia Mara Raboni
- Laboratório de Virologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil, 80060-240
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gharu L, Ringe R, Bhattacharya J. HIV-1 clade C envelopes obtained from late stage symptomatic Indian patients varied in their ability towards relative CD4 usages and sensitivity to CCR5 antagonist TAK-779. Virus Res 2011; 158:216-24. [PMID: 21524671 DOI: 10.1016/j.virusres.2011.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
The mechanism by which strictly CCR5 using HIV-1 clade C variants exacerbate disease progression in absence of coreceptor switch is not clearly known. We previously reported HIV-1 clade C envelopes (Env) obtained from late stage Indian patients with expanded coreceptor tropism. Here we compared such Envs (having expanded coreceptor tropism) with strictly CCR5 using Envs also obtained from late stage in their capacity to utilize CD4 and CCR5 for productive entry. We found that while envelopes with low CD4 dependence tend to infect primary CD4(+) T cells better than those required optimum CD4 for entry, no significant association was found between low CD4 usage and infectivity of primary CD4(+) T cells by Env-pseudotyped viruses and their sensitivity to CCR5 antagonist TAK-779. Interestingly, Envs that readily infected HeLa cells expressing low CD4 showed relative resistance to T20 indicating that conformational intermediates of these envelopes remained for a shorter period of time than is required for efficient inhibition by T20.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune 411026, India
| | | | | |
Collapse
|
8
|
Gamble LJ, Matthews QL. Current progress in the development of a prophylactic vaccine for HIV-1. DRUG DESIGN DEVELOPMENT AND THERAPY 2010; 5:9-26. [PMID: 21267356 PMCID: PMC3023272 DOI: 10.2147/dddt.s6959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery and characterization in the early 1980s as a virus that attacks the immune system, there has been some success for the treatment of human immunodeficiency virus-1 (HIV-1) infection. However, due to the overwhelming public health impact of this virus, a vaccine is needed urgently. Despite the tireless efforts of scientist and clinicians, there is still no safe and effective vaccine that provides sterilizing immunity. A vaccine that provides sterilizing immunity against HIV infection remains elusive in part due to the following reasons: 1) degree of diversity of the virus, 2) ability of the virus to evade the hosts' immunity, and 3) lack of appropriate animal models in which to test vaccine candidates. There have been several attempts to stimulate the immune system to provide protection against HIV-infection. Here, we will discuss attempts that have been made to induce sterilizing immunity, including traditional vaccination attempts, induction of broadly neutralizing antibody production, DNA vaccines, and use of viral vectors. Some of these attempts show promise pending continued research efforts.
Collapse
Affiliation(s)
- Lena J Gamble
- Department of Medicine, The Gene Therapy Center, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
9
|
Ringe R, Thakar M, Bhattacharya J. Variations in autologous neutralization and CD4 dependence of b12 resistant HIV-1 clade C env clones obtained at different time points from antiretroviral naïve Indian patients with recent infection. Retrovirology 2010; 7:76. [PMID: 20860805 PMCID: PMC2955667 DOI: 10.1186/1742-4690-7-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/22/2010] [Indexed: 12/03/2022] Open
Abstract
Background Limited information is available on HIV-1 Indian clade C sensitivities to autologous antibodies during the course of natural infection. In the present study, a total of 37 complete envelope clones (Env) were amplified at different time points predominantly from the plasma of five Indian patients with recent HIV-1 infection and envelope-pseudotyped viruses were examined for their magnitude of sensitivity to autologous plasma antibodies during natural course of infection. Results Variable low levels of neutralization were consistently detected with contemporaneous autologous plasma. In contrast to clade B and African clade C HIV-1 envelopes, Env clones obtained from four patients were found to be resistant to IgG1b12. The majority of the Env clones were resistant to 2G12 and 2F5 due to the absence of the minimal motifs required for antibody recognition, but were sensitive to 4E10. Nonetheless, Env clones from one patient were found to be sensitive to 2G12, atypical for clade C, and one Env clone exhibited unusual sensitivity to 17b, suggesting spontaneous exposure of CD4i epitopes. Phylogenetic analysis revealed that Env clones were closely clustered within patients. Variation in the potential N-linked glycosylation pattern also appeared to be different in patients over the course of infection. Interestingly, we found that the sensitivity of Envs to contemporaneous autologous NAbs correlated positively with increased sensitivity to soluble CD4 and inversely with anti-CD4 antibody and Envs with increased NAb sensitivity were able to efficiently infect HeLa cells expressing low CD4. Conclusion Our data showed considerable variations in autologous neutralization of these early HIV-1 clade C Envs in each of these patients and indicate greater exposure to CD4 of Envs that showed increased autologous neutralization. Interestingly, Env clones obtained from a single patient at different time points were found to retain sensitivity to b12 antibody that binds to CD4 binding site in Env in contrast to Envs obtained from other patients. However, we did not find any association between increased b12 sensitivity of Envs obtained from this particular patient with their degree of exposure to CD4.
Collapse
Affiliation(s)
- Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, Indian Council of Medical Research, G-73 MIDC, Bhosari, Pune, India
| | | | | |
Collapse
|
10
|
|
11
|
The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility. Curr Opin HIV AIDS 2010; 4:408-17. [PMID: 20048705 DOI: 10.1097/coh.0b013e32832f129e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Designing an HIV vaccine capable of eliciting broadly cross-reactive neutralizing antibodies is an extraordinarily difficult challenge. Here we focus on the implications of HIV diversity for vaccine design, detailing the impact of levels of variation in epitopes of known potent neutralizing antibodies, and summarizing patterns of overall variation in regional domains within gp120. Strategies for rational vaccine design, to enhance coverage of HIV's natural diversity, are considered. RECENT FINDINGS Each amino acid in an envelope gp120 three-dimensional structure was grouped with its 10 nearest neighbors and classified by their natural sequence variability. Within-subtype variation is superimposed on patterns of subtype-specific variation. Regions under selection with moderate diversity are realistic vaccine targets; their variation reflects the value of escape in these regions, whereas the level of diversity is potentially approachable with a vaccine. SUMMARY HIV diversity is so extensive that vaccine design strategies may benefit by factoring in diversity from the earliest stages, even for vaccines that target relatively conserved regions.
Collapse
|
12
|
Peters BS. HIV vaccines. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Craigo JK, Barnes S, Zhang B, Cook SJ, Howe L, Issel CJ, Montelaro RC. An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family. Retrovirology 2009; 6:95. [PMID: 19843328 PMCID: PMC2770520 DOI: 10.1186/1742-4690-6-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/20/2009] [Indexed: 11/16/2022] Open
Abstract
Background Equine infectious anemia virus (EIAV), a lentivirus that infects horses, has been utilized as an animal model for the study of HIV. Furthermore, the disease associated with the equine lentivirus poses a significant challenge to veterinary medicine around the world. As with all lentiviruses, EIAV has been shown to have a high propensity for genomic sequence and antigenic variation, especially in its envelope (Env) proteins. Recent studies have demonstrated Env variation to be a major determinant of vaccine efficacy, emphasizing the importance of defining natural variation among field isolates of EIAV. To date, however, published EIAV sequences have been reported only for cell-adapted strains of virus, predominantly derived from a single primary virus isolate, EIAVWyoming (EIAVWY). Results We present here the first characterization of the Env protein of a natural primary isolate from Pennsylvania (EIAVPA) since the widely utilized and referenced EIAVWY strain. The data demonstrated that the level of EIAVPA Env amino acid sequence variation, approximately 40% as compared to EIAVWY, is much greater than current perceptions or published reports of natural EIAV variation between field isolates. This variation did not appear to give rise to changes in the predicted secondary structure of the proteins. While the EIAVPA Env was serologically cross reactive with the Env proteins of the cell-adapted reference strain, EIAVPV (derivative of EIAVWY), the two variant Envs were shown to lack any cross neutralization by immune serum from horses infected with the respective virus strains. Conclusion Taking into account the significance of serum neutralization to universal vaccine efficacy, these findings are crucial considerations towards successful EIAV vaccine development and the potential inclusion of field isolate Envs in vaccine candidates.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
van Gils MJ, Edo-Matas D, Schweighardt B, Wrin T, Schuitemaker H. High prevalence of neutralizing activity against multiple unrelated human immunodeficiency virus type 1 (HIV-1) subtype B variants in sera from HIV-1 subtype B-infected individuals: evidence for subtype-specific rather than strain-specific neutralizing activity. J Gen Virol 2009; 91:250-8. [PMID: 19793903 DOI: 10.1099/vir.0.015693-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is assumed that an effective human immunodeficiency virus type 1 (HIV-1) vaccine should be capable of eliciting neutralizing antibodies. However, even the best antibodies known to date lack neutralizing ability against a significant proportion of primary HIV-1 variants and, despite great efforts, still no immunogen is available that can elicit humoral immunity which is protective against infection or disease progression. We tested sera from 35 participants in the Amsterdam Cohort Studies on HIV-1 infection, who were all infected with HIV-1 subtype B and therapy-naïve at the time of sampling, for neutralizing activity against a panel of 23 tier 2-3 HIV-1 variants, with a minimum of five HIV-1 variants per subtype (A, B, C and D). Strong cross-clade neutralizing activity was detected in sera from seven individuals. Strikingly, sera from 22 of 35 individuals (63%) neutralized three or more of the six tier 2-3 HIV-1 subtype B viruses in the panel. There was a strong correlation between neutralization titre and breadth in serum. Indeed, the IC(50) of sera with strong cross-clade neutralizing activity was significantly higher than the IC(50) of sera with cross-subtype B activity, which, in turn, had a higher IC(50) than sera with the lowest neutralization breadth. These results imply that humoral immunity, at least in HIV-1 subtype B-infected individuals, is often subtype-specific rather than strain-specific and that the breadth of neutralization is correlated with the titre of neutralizing activity in serum. Considering the difficulties in designing a vaccine that is capable of eliciting cross-clade neutralizing activity, subtype-specific vaccines may be explored as an interesting alternative.
Collapse
Affiliation(s)
- Marit J van Gils
- Department of Experimental Immunology, Landsteiner Laboratory Sanquin Research, Academic Medical Center at the University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
16
|
Nishiyama Y, Planque S, Mitsuda Y, Nitti G, Taguchi H, Jin L, Symersky J, Boivin S, Sienczyk M, Salas M, Hanson CV, Paul S. Toward effective HIV vaccination: induction of binary epitope reactive antibodies with broad HIV neutralizing activity. J Biol Chem 2009; 284:30627-42. [PMID: 19726674 DOI: 10.1074/jbc.m109.032185] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (V(H)) domain framework (FR) residues. Substitution of the FR cavity V(H) Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and V(H) FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from V(H)1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Importance of the V1/V2 loop region of simian-human immunodeficiency virus envelope glycoprotein gp120 in determining the strain specificity of the neutralizing antibody response. J Virol 2008; 82:11054-65. [PMID: 18768967 DOI: 10.1128/jvi.01341-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.
Collapse
|
18
|
Du SX, Xu L, Viswanathan S, Whalen RG. Inhibition of V3-specific cleavage of recombinant HIV-1 gp120 produced in Chinese hamster ovary cells. Protein Expr Purif 2008; 59:223-31. [PMID: 18406166 DOI: 10.1016/j.pep.2008.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/06/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Specific proteolytic cleavage of the gp120 subunit of the HIV-1 envelope (Env) glycoprotein in the third variable domain (V3) has previously been reported to occur in several cell lines, including Chinese hamster ovary cells that have been used for production of Env-based HIV vaccine candidates. Here we report that this proteolytic activity on JRCSF gp120 is dependent on cell density, medium conditions, and supernatant concentration. The resulting cleaved polypeptides cannot be separated from intact gp120 by conventional or affinity chromatography under non-reducing conditions. Inhibitor studies reveal that Pefabloc and benzamidine, but not chymostatin, block gp120 cleavage in a dose-dependent fashion, suggesting the presence of a trypsin-like serine protease in CHO-K1 cells. The proteolytic activity is increased with certain types of cell culture growth media. A combination of serum-free OptiMEM media during expression and potent protease inhibitors post-expression can effectively prevent HIV gp120 degradation. The same strategy can be applied to the expression and purification of gp120 of other strains or other forms of envelope-based vaccine candidates containing V3 sequences.
Collapse
Affiliation(s)
- Sean X Du
- Maxygen, Inc., Infectious Diseases, 515 Galveston Drive, Redwood City, CA 94063, USA
| | | | | | | |
Collapse
|
19
|
Strizki J. Targeting HIV attachment and entry for therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:93-120. [PMID: 18086410 DOI: 10.1016/s1054-3589(07)56004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Julie Strizki
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| |
Collapse
|
20
|
Laird ME, Desrosiers RC. Infectivity and neutralization of simian immunodeficiency virus with FLAG epitope insertion in gp120 variable loops. J Virol 2007; 81:10838-48. [PMID: 17686865 PMCID: PMC2045528 DOI: 10.1128/jvi.00831-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A FLAG epitope tag was substituted within variable loop 1 (V1), 2 (V2), or 4 (V4) of the gp120 envelope glycoprotein of simian immunodeficiency virus strain 239 (SIV239) to evaluate the extent to which each variable loop may serve as a target for antibody-mediated neutralization. Two sites within each variable loop of SIV239 were chosen for individual epitope tag insertions. FLAG epitope substitutions were also made in the V1, V2, and V4 loops of a neutralization-sensitive derivative of SIV239, SIV316. Of the 10 FLAG-tagged recombinant viruses analyzed, three (SIV239FV1b, SIV239FV2b, and SIV239FV4a) replicated with kinetics similar to those of the parental strain, SIV239, in both CEMx174 cells and the immortalized rhesus monkey T-cell line 221. The SIV316FV1b and SIV316FV4a FLAG variants replicated with a substantial lag, and the five remaining recombinants did not replicate detectably. Both gp160 and gp120 from replication-competent FLAG variants could be immunoprecipitated from transfected 293T cells by the anti-gp120 rhesus monoclonal antibody (RhMAb) 3.11H, the anti-FLAG MAb M2, and CD4-immunoglobulin, whereas only unprocessed gp160 was detected in 293T cells transfected with replication-defective variants. Furthermore, gp120 was detectably incorporated only into virions that were infectious. SIV239FV1b was sensitive to neutralization by MAb M2, with a 50% inhibitory concentration of 1 mug/ml. Neither SIV239FV2b nor SIV239FV4a was sensitive to M2 neutralization. The ability of the M2 antibody to neutralize SIV239FV1b infectivity was associated with an increased ability of the M2 antibody to detect native, oligomeric SIV239FV1b envelope protein on the surfaces of cells relative to that for the other SIV FLAG variants. Furthermore, SIV239FV1b was globally more sensitive to antibody-mediated neutralization than was parental SIV239 when these strains were screened with a panel of anti-SIV MAbs of various specificities. These results indicate that the V1 loop can serve as an effective target for neutralization on SIV239FV1b. However, antibody-mediated neutralization of this variant, similar to that of other SIV239 variants that have been studied previously, was associated with a global increase in neutralization sensitivity. These results suggest that the variable loops on the neutralization-resistant SIV239 strain are difficult for antibodies to access effectively and that mutations that allow neutralization have global effects on the trimeric envelope glycoprotein structure and accessibility.
Collapse
Affiliation(s)
- Melissa E Laird
- New England Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102, USA
| | | |
Collapse
|
21
|
Cabral VP, Cunha CB, Magalhaes EFL, Pinto-Neto LF, Couto-Fernandez JC, Dietze R, Morgado MG, Ribeiro-Rodrigues R. Human immunodeficiency virus type-1 subtypes of infected patients in Espírito Santo, Brazil. Mem Inst Oswaldo Cruz 2007; 101:881-5. [PMID: 17293983 DOI: 10.1590/s0074-02762006000800010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 11/01/2006] [Indexed: 11/22/2022] Open
Abstract
Genetic variability of human immunodeficiency virus type-1(HIV-1) is a potential threat for both diagnosis and treatment of HIV/AIDS, as well as the development of effective vaccines. Up to now, HIV subtypes circulating among HIV-positive patients in the state of Espírito Santo were not known. In the present study, blood samples from 100 therapy-naïve HIV-1 infected patients were collected and the HIV subtype was determined through the Heteroduplex Mobility Assay (HMA). Ninety-seven out of 100 studied samples were subtyped by HMA, 73 samples (75.2%) were from subtype B, 9 (9.3%) from subtype F, 3 (3.1%) from subtype C, 6 (6.2%) Benv/Fgag, and another 6 (6.2%) Fenv/Bgag, what suggests that recombinant viruses were present in the studied samples. Twenty-eight percent of the subtype B samples were represented by the Brazilian B" subtype, which were identified by RFLP with Fok I. Data presented here demonstrate that the epidemiological characteristics of the HIV epidemic in the state of Espírito Santo are similar to those from the other Southeastern states and helped to better understand the genetic polymorphism of HIV in Brazil.
Collapse
Affiliation(s)
- Valéria P Cabral
- Laboratório de Imunologia Celular e Molecular, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, 29040-091 Vitória, ES, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Since feline immunodeficiency virus (FIV) was first isolated, international research efforts have been directed towards developing a protective vaccine, not least because it may provide a model for a candidate human immunodeficiency virus (HIV) vaccine. This article reviews the challenges facing vaccine development, the current state of knowledge and future prospects for FIV vaccination.
Collapse
Affiliation(s)
- M J Hosie
- Retrovirus Research Laboratory, Institute for Comparative Medicine, Faculty of Veterinary Medicine, The University of Glasgow
| | | |
Collapse
|
23
|
de Brito A, Komninakis SCV, Novoa P, de Oliveira RM, Fonseca LAM, Duarte AJS, Casseb J. Women infected with HIV type 1 Brazilian variant, subtype B (B'-GWGR motif) have slower progression to AIDS, compared with patients infected with subtype B (B-GPGR motif). Clin Infect Dis 2006; 43:1476-81. [PMID: 17083025 DOI: 10.1086/508875] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/07/2006] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION The Brazilian variant of human immunodeficiency virus (HIV) type 1 (HIV-1) subtype B (serotype B'-GWGR) has a tryptophan replacing a proline in position 328 of the HIV-1 envelope, a feature that may induce a different HIV disease progression. We aimed to evaluate the role of the B subtypes of HIV-1 (serotypes B-GPGR and B'-GWGR) on HIV disease progression. METHODS A total of 137 HIV-infected individuals who had been admitted to the hospital were tested with an anti-V3 serologic assay, using peptides representing 2 HIV-1 subtype B strains, MN and SF2, and 2 Brazilian variant B'-GWGR strains, BR1 and BR2. RESULTS Of 137 serum samples tested with the anti-V3 serologic assay, 4 (3%) yielded indeterminate results, 74 (54%; from 25 women and 49 men) were found to be B-GPGR, and 59 (43%; from 20 women and 39 men) were found to be the B'-GWGR variant. In general, a longer interval from the first known positive HIV test result to an AIDS-defining event was observed in the B'-GWGR group than in the B-GPGR group (21 vs. 7 months). The CD4+ T cell counts were higher in the B'-GWGR group (median CD4+ T cell count, 65 vs. 31 cells/mm3; P=.01), and women infected with the B'-GWGR variant were less likely to die than were men infected with the same variant (P=.01). The median viral load in the B'-GWGR group was 3.395 copies/mL, compared with 39.350 copies/mL in the B-GPGR group (P=.01). CONCLUSIONS Taken together, our results indicate that B'-GWGR-infected women may have more-favorable outcomes than B-GPGR-infected subjects.
Collapse
Affiliation(s)
- Adriana de Brito
- Laboratory of Allergy and Clinical and Experimental Immunology, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Rey-Cuillé MA, Svab J, Benferhat R, Krust B, Briand JP, Muller S, Hovanessian AG. HIV-1 neutralizing antibodies elicited by the candidate CBD1 epitope vaccine react with the conserved caveolin-1 binding motif of viral glycoprotein gp41. J Pharm Pharmacol 2006; 58:759-67. [PMID: 16734977 DOI: 10.1211/jpp.58.6.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
To date, candidate HIV-1 vaccines that have been tested in clinical trials have failed to induce broadly neutralizing activities and/or antibodies that inhibit infection by primary isolates of HIV-1. We recently identified a conserved caveolin-1 binding motif, WNNMTWMQW, in the ectodomain of HIV-1 transmembrane envelope glycoprotein gp41. We designed the synthetic CBD1 peptide SLEQIWNNMTWMQWDK, corresponding to the consensus caveolin-1 binding domain (CBD) in gp41, and showed that it elicits in rabbits the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Although a conserved and highly homologous caveolin-1 binding motif is present in the transmembrane envelope glycoprotein of different HIV-2 isolates, anti-CBD1 immune sera do not inhibit HIV-2 infection. Here we show that anti-CBD1 antibodies are directed against the conserved caveolin-1 binding motif WNNMTWMQW in the CBD1 epitope. In spite of this, anti-CBD1 antibodies do not react with the CBD2 peptide SLTPDWNNMTWQEWER, corresponding to the potential consensus caveolin-1 binding domain in HIV-2. The presence of a conserved proline residue upstream of the caveolin-1 binding motif in CBD2 might affect the presentation of this motif, and thus account for the lack of reactivity of the immune sera. Anti-CBD1 antibodies therefore appear to be directed against a conformational epitope mimicked by the synthetic CBD1 peptide. In accordance with this, anti-CBD1 immune sera react with the native but not denatured gp41. The reactivity of anti-CBD1 immune sera with a highly conserved conformational epitope could explain the broad inhibitory activity of such antipeptide antibodies against HIV-1 isolates of various clades.
Collapse
Affiliation(s)
- Marie-Anne Rey-Cuillé
- UFR Biomédicale, Université René Descartes, UPR 2228 CNRS, 45 rue des Saints Pères, 75270 Paris Cedex 6, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Neutralizing epitopes in the membrane-proximal region of HIV-1 gp41: genetic variability and co-variation. Immunol Lett 2006; 106:180-6. [PMID: 16859756 DOI: 10.1016/j.imlet.2006.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Recent investigations on the passive immunization have proved that neutralizing antibodies directed to the membrane-proximal region of HIV-1 gp41 are potent anti-viral components, so this region is thought to be an attractive target for AIDS vaccine. Three key neutralizing epitopes, ELDKWA (aa662-667), NWFDIT (aa671-676) and ERDRDR (aa739-744) have been mapped in this region. In this study, their genetic variability and co-variation was evaluated. There exists marked shift in the predominant sequence patterns on these three neutralizing epitopes over time. Compared with subtype B, non-B clades exhibit significant genetic variability and co-variation on these three epitopes. Among HIV-1 strains isolated in recent 5 years, about one third displays epitope variants simultaneously on three epitopes. The newly isolated strains with co-variations on several neutralizing epitopes ought to be of strict surveillance in clinical treatment, and those frequent epitope variants should also be considered in vaccine design.
Collapse
|
26
|
Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, Roberts J, Guimaraes-Walker A, Hayes P, Loughran K, Smith C, De Bont J, Verlinde C, Vooijs D, Schmidt C, Boaz M, Gilmour J, Fast P, Dorrell L, Hanke T, McMichael AJ. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 2006; 80:4717-28. [PMID: 16641265 PMCID: PMC1472051 DOI: 10.1128/jvi.80.10.4717-4728.2006] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Double-Blind Method
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Lymphocyte Activation/immunology
- Molecular Sequence Data
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Centre for Clinical Vaccinology and Tropical Medicine and MRC Human Immunology Unit, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Beddows S, Kirschner M, Campbell-Gardener L, Franti M, Dey AK, Iyer SPN, Maddon PJ, Paluch M, Master A, Overbaugh J, VanCott T, Olson WC, Moore JP. Construction and characterization of soluble, cleaved, and stabilized trimeric Env proteins based on HIV type 1 Env subtype A. AIDS Res Hum Retroviruses 2006; 22:569-79. [PMID: 16796532 DOI: 10.1089/aid.2006.22.569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The generation of an antibody response capable of neutralizing a broad range of clinical isolates remains an important goal of human immunodeficiency virus type 1 (HIV-1) vaccine development. Envelope glycoprotein (Env)-based vaccine candidates will also need to take into account the extensive genetic diversity of circulating HIV-1 strains. We describe here the generation of soluble, stabilized, proteolytically cleaved, trimeric forms of Env (SOSIP gp140 proteins) based on contemporary Env subtype A viruses from East Africa. We discuss issues associated with the construction, purification, and characterization of such complex proteins; not all env sequences allow the expression of trimeric proteins. However, stabilized trimers from one such protein, KNH1144 SOSIP gp140, were successfully made. These proteins are now being prepared for preclinical immunogenicity studies.
Collapse
Affiliation(s)
- Simon Beddows
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ye L, Sun Y, Lin J, Bu Z, Wu Q, Jiang S, Steinhauer DA, Compans RW, Yang C. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein. Virology 2006; 352:74-85. [PMID: 16725170 DOI: 10.1016/j.virol.2006.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/15/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV.
Collapse
Affiliation(s)
- Ling Ye
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Room 3086 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zipeto D, Matucci A, Ripamonti C, Scarlatti G, Rossolillo P, Turci M, Sartoris S, Tridente G, Bertazzoni U. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes. Microbes Infect 2006; 8:1424-33. [PMID: 16702010 DOI: 10.1016/j.micinf.2006.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Collapse
Affiliation(s)
- Donato Zipeto
- Laboratory of Molecular Virology, Department of Mother and Child, Biology and Genetics, Section of Biology and Genetics, University of Verona, Strada le Grazie n. 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Human immunodeficiency virus (HIV) is the worldwide disseminated causative agent of acquired immunodeficiency syndrome (AIDS). HIV is a member of the Lentivirus genus of Retroviridae family and is grouped in two types named HIV-1 and HIV-2. These viruses have a notable ability to mutate and adapt to the new conditions of human environment. A large incidence of errors at the transcriptional level results in changes on the genetic bases during the reproductive cycle. The elevated genomic variability of HIV has carried important implications for the diagnosis, treatment and prevention as well as epidemiologic investigations. The present review describes important definitions and geographical distribution of subtypes, circulating recombinant forms and other genomic variations of HIV. The present study aimed at leading students of Biomedical Sciences and public health laboratory staff guidance to general and specific knowledge about the genomic variability of the HIV.
Collapse
Affiliation(s)
- Henry I Z Requejo
- Seção de Imunologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-902 São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Jeffs SA, Goriup S, Stacey G, Yuen CT, Holmes H. Comparative analysis of HIV-1 recombinant envelope glycoproteins from different culture systems. Appl Microbiol Biotechnol 2006; 72:279-90. [PMID: 16447052 DOI: 10.1007/s00253-005-0256-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/04/2005] [Accepted: 11/05/2005] [Indexed: 10/25/2022]
Abstract
The productivity of stable Chinese hamster ovary cell lines secreting HIV-1 monomeric (IIIB gp120) and oligomeric (UG21 gp140) recombinant envelope glycoproteins was compared in serum-containing (S+), serum-free (S-) and protein-free (P-) culture media. UG21 gp140 expression was greatest in S+ medium, while IIIBgp120 production was lower than gp140 in all three media but highest in S-. UG21 gp140 production was highest in standard 850-cm2 roller bottle cultures in S+ media, peaking after 14 days of incubation, while expression levels in the three media were 0.5 (S+), 0.4 (S-) and 0.2 (P-) mg/l, from which 90, 80 and 12% of gp140, respectively, could be purified by immunoaffinity chromatography. Purified UG21 gp140 from S+ and S- media possessed biological functionality as evidenced by CD4 and monoclonal antibody (Mab) binding. In contrast, UG21 gp140 from P- medium appears to be misfolded and non-functional. Despite the possession of a different N-linked glycan profile, UG21 gp140 from S- media shows very similar CD4 and Mab binding characteristics to S+ UG21 gp140. The relevance of these findings to HIV vaccine development is discussed.
Collapse
Affiliation(s)
- S A Jeffs
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK.
| | | | | | | | | |
Collapse
|
32
|
Cham F, Zhang PF, Heyndrickx L, Bouma P, Zhong P, Katinger H, Robinson J, van der Groen G, Quinnan GV. Neutralization and infectivity characteristics of envelope glycoproteins from human immunodeficiency virus type 1 infected donors whose sera exhibit broadly cross-reactive neutralizing activity. Virology 2005; 347:36-51. [PMID: 16378633 DOI: 10.1016/j.virol.2005.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 10/12/2005] [Accepted: 11/08/2005] [Indexed: 11/30/2022]
Abstract
In this study, we tested the hypothesis that donors with broadly cross-reactive HIV-1 neutralizing (BCN) sera are infected with viruses encoding envelope glycoproteins (Envs) with unusual immunogenic properties. Cloned env genes were from samples of donors previously identified as having BCN antibodies (BCN donors) and from other donors not known to have such antibodies (non-BCN donors). Neutralization properties of viruses pseudotyped with BCN and non-BCN Envs were determined using BCN, non-BCN sera and broadly cross-neutralizing monoclonal antibodies (Mabs). BCN sera neutralized with higher frequency and geometric mean titers than non-BCN sera. Viruses pseudotyped with BCN Envs were mostly resistant to neutralization by anti-gp120 Mabs but tended to be more sensitive to the anti-gp41 Mabs, 2F5 and 4E10 than non-BCN Env-pseudotyped viruses. Sequence analysis of clones obtained from sequential samples of two BCN donors revealed respective 2F5 epitope mutations T662A and K665T. The K665T mutation evolved as the predominant genotype in the respective donor, consistent with an escape mutation event. The A662T mutation reduced sensitivity to 4E10, as well as 2F5 and homologous sera, consistent with neutralization escape mutation and targeting of the 2F5 epitope region by the serum. Our study suggests that viruses infecting these BCN donors encoded Envs that may have been unusually competent for induction of antibodies against the membrane proximal epitope region (MPER) of gp41, and these Envs may be useful vaccine components.
Collapse
Affiliation(s)
- Fatim Cham
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Puls RL, Emery S. Therapeutic vaccination against HIV: current progress and future possibilities. Clin Sci (Lond) 2005; 110:59-71. [PMID: 16336205 DOI: 10.1042/cs20050157] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although effective in reducing mortality, current antiretroviral therapy for HIV infection involves complex and expensive drug regimens that are toxic and difficult to take. Eradication of HIV reservoirs is not possible with existing therapies. The concept of therapeutic vaccination has been investigated to increase the potency and breadth of anti-HIV immune responses in order to delay or reduce antiretroviral therapy use. A variety of approaches targeted to both cell- and antibody-mediated immunity have been developed, including whole inactivated HIV-1, protein subunits and synthetic peptides, DNA vaccines and a number of viral vectors expressing HIV-1. These investigations have occurred in the absence of a clear understanding of disease pathogenesis or the correlates of protective immunity. At this time, there is no licensed therapeutic vaccine for any viral disease, including HIV; however, this review will consider recent progress in the field and summarize the challenges faced in the development of a therapeutic HIV vaccine.
Collapse
Affiliation(s)
- Rebekah L Puls
- National Centre in HIV Epidemiology and Clinical Research (NCHECR), University of New South Wales (UNSW), 376 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | | |
Collapse
|
34
|
Bråve A, Ljungberg K, Boberg A, Rollman E, Isaguliants M, Lundgren B, Blomberg P, Hinkula J, Wahren B. Multigene/Multisubtype HIV-1 Vaccine Induces Potent Cellular and Humoral Immune Responses by Needle-Free Intradermal Delivery. Mol Ther 2005; 12:1197-205. [PMID: 16112909 DOI: 10.1016/j.ymthe.2005.06.473] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/22/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022] Open
Abstract
Gene vaccination encounters problems different from those of gene therapy since both a short half-life of the gene and a strong immune response to the gene product are desirable. We have evaluated a DNA vaccine consisting of seven plasmids encoding nine HIV-1 proteins. Using a needle-free delivery device, the Biojector, together with recombinant mouse GM-CSF, this vaccine induced strong gp160 Env- and p24 Gag-specific cellular and humoral immune responses in mice. The rGM-CSF was crucial for inducing both antibodies and antigen-specific CD8(+) T cell responses against both gp160 and p24. A GMP-produced lot of this vaccine, intended for human use, was delivered intradermally or intramuscularly into BALB/c mice at a GLP-accredited animal facility. This vaccine induced strong cellular responses independent of the route of immunization; moreover, no signs of toxicity were detected after histopathological examination of various tissues. Overall, the results indicate that the intradermal delivery of multigene/multisubtype HIV DNA in combination with recombinant GM-CSF is a safe and efficacious strategy for inducing high levels of specific CD8(+) T cells and unusually high titers of antibodies. This vaccine has been approved by the Swedish Medicinal Products Agency and is currently in a Phase I clinical trial.
Collapse
Affiliation(s)
- Andreas Bråve
- Swedish Institute for Infectious Disease Control, 171 82 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stevens R, Lavoy A, Nordone S, Burkhard M, Dean GA. Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine 2005; 23:1479-90. [PMID: 15670884 DOI: 10.1016/j.vaccine.2004.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 11/21/2022]
Abstract
Listeria monocytogenes is an attractive biologic vaccine vector against HIV because it induces a strong cell mediated immune response, can be delivered by mucosal routes, can be readily manipulated to express viral antigens, and is easy and inexpensive to produce. Proof of concept studies have been performed using HIV Gag expressing recombinant L. monocytogenes in the mouse. Here we report the development and validation of recombinant L. monocytogenes to be evaluated in the FIV/cat model of HIV. Using a simplified approach to introduce individual and polyprotein FIV gag genes, we show that recombinant L. monocytogenes containing the entire gag expresses the full-length Gag polyprotein in a soluble secreted form. A DNA vaccine plasmid (pND14-Lc-env) that replicates in Gram positive bacteria and contains the FIV SU (gp100) and the ectodomain of TM (gp40) in a eukaryotic expression cassette was transfected into LM-gag to create LM-gag/pND14-Lc-env. After infection of target cells with LM-gag/pND14-Lc-env in vitro, both FIV Gag and Env proteins were detected in soluble cell lysates. Whether previous exposure to L. monocytogenes affects the immunogenicity of LM-gag/pND14-Lc-env was determined in cats infected with wild-type L. monocytogenes orally and/or subcutaneously. After a single oral dose of LM-gag/pND14-Lc-env, cats with existing anti-L. monocytogenes immune responses developed anti-FIV Gag IgA titers in vaginal secretions, saliva, and feces. Similarly, FIV Gag and Env specific IFN-gamma ELISPOT responses were measurable in spleen and lymph node but at a statistically higher frequency in cats exposed to a single subcutaneous dose of wild-type L. monocytogenes versus cats exposed both subcutaneously and orally. The FIV/cat model will provide a useful challenge system to determine whether recombinant L. monocytogenes can protect against a lentivirus in its natural host after challenge by the routes common to HIV transmission.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cats
- Disease Models, Animal
- Feces
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunoglobulin A/analysis
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Saliva/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vagina/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Rosemary Stevens
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
36
|
Lian Y, Srivastava I, Gómez-Román VR, Zur Megede J, Sun Y, Kan E, Hilt S, Engelbrecht S, Himathongkham S, Luciw PA, Otten G, Ulmer JB, Donnelly JJ, Rabussay D, Montefiori D, van Rensburg EJ, Barnett SW. Evaluation of envelope vaccines derived from the South African subtype C human immunodeficiency virus type 1 TV1 strain. J Virol 2005; 79:13338-49. [PMID: 16227256 PMCID: PMC1262580 DOI: 10.1128/jvi.79.21.13338-13349.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/27/2005] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.
Collapse
Affiliation(s)
- Ying Lian
- Chiron Corp., 4560 Horton St., 4.3, Emeryville, CA 94608.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lorin C, Combredet C, Labrousse V, Mollet L, Desprès P, Tangy F. A paediatric vaccination vector based on live attenuated measles vaccine. Therapie 2005; 60:227-33. [PMID: 16128264 DOI: 10.2515/therapie:2005029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and shown to be highly effective and safe. MV vaccine induces a life-long immunity after a single or two low-dose injections. It is easily produced on a large scale in most countries and can be distributed at low cost. Reversion to pathogenicity has never been observed with this vaccine. Because of all these characteristics, MV vaccine might be a very promising vector to immunise children against both measles and other infectious agents, such as HIV or flaviviruses, in the developing world. In this article, we describe recent data that we obtained showing the capacity of recombinant Schwarz MVs to express proteins from human immunodeficiency or West Nile viruses, and to induce specific immune responses able, in the case of West Nile virus, to protect from an experimental challenge.
Collapse
Affiliation(s)
- Clarisse Lorin
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Beddows S, Schülke N, Kirschner M, Barnes K, Franti M, Michael E, Ketas T, Sanders RW, Maddon PJ, Olson WC, Moore JP. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol 2005; 79:8812-27. [PMID: 15994775 PMCID: PMC1168742 DOI: 10.1128/jvi.79.14.8812-8827.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.
Collapse
Affiliation(s)
- Simon Beddows
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Ave., Room W-805, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lusso P, Earl PL, Sironi F, Santoro F, Ripamonti C, Scarlatti G, Longhi R, Berger EA, Burastero SE. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains. J Virol 2005; 79:6957-68. [PMID: 15890935 PMCID: PMC1112133 DOI: 10.1128/jvi.79.11.6957-6968.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on coreceptor usage phenotype. These results provide the first evidence of a correlation between HIV-1 biological phenotype and neutralization sensitivity, raising the possibility that the in vivo evolution of HIV-1 coreceptor usage may be influenced by the selective pressure of specific host antibodies.
Collapse
Affiliation(s)
- Paolo Lusso
- Unit of Human Virology, Department of Biological and Technological Research (DIBIT), San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The third variable region, V3, of the gp120 surface envelope glycoprotein is an approximately 35-residue-long, frequently glycosylated, highly variable, disulfide-bonded structure that has a major influence on HIV-1 tropism. Thus the sequence of V3, directly or indirectly, can determine which coreceptor (CCR5 or CXCR4) is used to trigger the fusion potential of the Env complex, and hence which cells the virus can infect. V3 also influences HIV-1's sensitivity to, and ability to escape from, entry inhibitors that are being developed as antiviral drugs. For some strains, V3 is a prominent target for HIV-1 neutralizing antibodies (NAbs); indeed, for many years it was considered to be the "principal neutralization determinant" (PND). Some efforts to use V3 as a vaccine target continue to this day, despite disappointing progress over more than a decade. Recent findings on the structure, function, antigenicity, and immunogenicity of V3 cast new doubts on the value of this vaccine approach. Here, we review recent advances in the understanding of V3 as a determinant of viral tropism, and discuss how this new knowledge may inform the development of HIV-1 drugs and vaccines.
Collapse
Affiliation(s)
- Oliver Hartley
- Department of Structural Biology and Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Development of a vaccine against human immunodeficiency virus type 1 (HIV-1) is the main hope for controlling the acquired immunodeficiency syndrome pandemic. An ideal HIV vaccine should induce neutralizing antibodies, CD4+ helper T cells, and CD8+ cytotoxic T cells. While the induction of broadly neutralizing antibodies remains a highly challenging goal, there are a number of technologies capable of inducing potent cell-mediated responses in animal models, which are now starting to be tested in humans. Naked DNA immunization is one of them. This review focuses on the stimulation of HIV-specific T cells and discusses in the context of the current 'state-of-art' of DNA vaccines, the areas where this technology might assist either alone or as a part of more complex vaccine formulations in the HIV vaccine development.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | | | | |
Collapse
|
43
|
Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H, Petropoulos CJ, Burton DR. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004; 78:13232-52. [PMID: 15542675 PMCID: PMC524984 DOI: 10.1128/jvi.78.23.13232-13252.2004] [Citation(s) in RCA: 591] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 07/09/2004] [Indexed: 12/20/2022] Open
Abstract
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (=7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV(+) plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.
Collapse
Affiliation(s)
- James M Binley
- IMM2, Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hovanessian AG, Briand JP, Said EA, Svab J, Ferris S, Dali H, Muller S, Desgranges C, Krust B. The Caveolin-1 Binding Domain of HIV-1 Glycoprotein gp41 Is an Efficient B Cell Epitope Vaccine Candidate against Virus Infection. Immunity 2004; 21:617-27. [PMID: 15539149 DOI: 10.1016/j.immuni.2004.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/25/2004] [Accepted: 08/25/2004] [Indexed: 11/25/2022]
Abstract
Caveolin-1 is a scaffolding protein that organizes and concentrates specific ligands within the caveolae membranes. We identified a conserved caveolin-1 binding motif in the HIV-1 transmembrane envelope glycoprotein gp41 and designed several synthetic peptides, referred to as CBD1, corresponding to the consensus caveolin-1 binding domain in gp41. In rabbits, these peptides elicit the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Interestingly, gp41 exists as a stable complex with caveolin-1 in HIV-infected cells. Anti-CBD1 peptide antibodies, therefore, might be functional by inhibiting the potential interaction of gp41 with caveolin-1. Because of their capacity to elicit antibodies that inhibit the different clades of HIV-1, CBD1-based peptides may represent a novel synthetic universal B cell epitope vaccine candidate for HIV/AIDS. Moreover, such peptides could also have an application as a therapeutic vaccine since CBD1-specific antibodies are rare in HIV-infected individuals from several geographic origins.
Collapse
Affiliation(s)
- Ara G Hovanessian
- Unité de Virologie et Immunologie Cellulaire, URA 1930 CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Recher M, Hunziker L, Ciurea A, Harris N, Lang KS. Public, private and non-specific antibodies induced by non-cytopathic viral infections. Curr Opin Microbiol 2004; 7:426-33. [PMID: 15358263 DOI: 10.1016/j.mib.2004.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) represents a useful experimental model of murine infection with a non-cytopathic virus, bearing resemblance to HIV and hepatitis C virus (HCV) infections in humans. Recent data from the LCMV model indicate that the humoral immune response that is induced by non-cytopathic viruses is far more complex than previously appreciated. LCMV-induced IgG production is largely polyclonal, with more than 90% of the antibody repertoire constituting non-relevant specificities. A delayed virus-neutralizing antibody response is induced, including specificities directed not only against the parental LCMV-strain present in the host but also cross-specifically against LCMV-variants isolated from other hosts. These findings provide novel insights to aid our understanding of clinically relevant observations that are recorded following human infection with HIV, HCV and dengue viruses.
Collapse
Affiliation(s)
- Mike Recher
- Institute for Experimental Immunology, University Hospital, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Rollman E, Hinkula J, Arteaga J, Zuber B, Kjerrström A, Liu M, Wahren B, Ljungberg K. Multi-subtype gp160 DNA immunization induces broadly neutralizing anti-HIV antibodies. Gene Ther 2004; 11:1146-54. [PMID: 15103320 DOI: 10.1038/sj.gt.3302275] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly desirable feature for an human immunodeficiency virus type 1 (HIV-1) vaccine is the ability to induce broadly reactive anti-envelope antibodies that can neutralize primary HIV-1 isolates. Two immunizations with an HIV-1 envelope-encoding plasmid together with recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) resulted in high antibody titers in mice. The antibody induction was further enhanced after immunization with genes encoding HIV-1 envelopes originating from subtypes A, B and C. The sera from these animals were able to neutralize A, B and C viral isolates, whereas the sera from animals immunized solely with subtype B DNA neutralized only subtype B virus. The combined DNA vaccine gave serum antibodies with broad recognition of HIV-1 envelope epitopes as determined by peptide mapping. Cell-mediated immunity was not compromised by the increased humoral immunity. This demonstrates the ability of multiple envelope genes to induce the desired antibody response against several subtypes. Moreover, it documents the ability of rGM-CSF to enhance the potency of such a vaccine when given simultaneously. The strategy may be useful for making an HIV vaccine more potent and broadly effective against strains of different clades.
Collapse
Affiliation(s)
- E Rollman
- Department of Virology, Swedish Institute for Infectious Disease Control and Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Research groups worldwide are trying to make immunogens intended to elicit neutralizing antibody responses as part of a prophylactic vaccine to counter the spread of HIV-1. The relative merits of different designs can only be gauged properly through comparative studies, and particularly by evaluating human or animal antisera under identical, or comparable, conditions. Hence there is a need for assay standardization and for the creation of a centralized testing facility that could distribute consensus protocols and reagents.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
48
|
Yuan X, Huang L, Ho P, Labranche C, Chen CH. Conformation of gp120 determines the sensitivity of HIV-1 DH012 to the entry inhibitor IC9564. Virology 2004; 324:525-30. [PMID: 15207637 DOI: 10.1016/j.virol.2004.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/09/2004] [Accepted: 04/05/2004] [Indexed: 11/17/2022]
Abstract
The HIV-1 envelope glycoprotein gp120 is the key determinant for the anti-HIV-1 entry activity of IC9564. A T198P mutation in the gp120 of the HIV-1 primary isolate, DH012, drastically increases IC9564 sensitivity, which can be reversed by growing the virus in the presence of IC9564. The reversed resistant variants contain a P198S mutation that fully confers the drug-resistant phenotype. Although the amino acid residue at position 198 of gp120 can alter IC9564 sensitivity, results from this study suggest that T198 is not the direct target of the compound. The mutation at position 198 appears to affect the conformation of gp120 and subsequently decreases the accessibility of the drug target. This conformational effect is evidenced by the fact that the T198P mutation significantly increases the neutralizing activity of the conformational antibodies, 1b12 and 48d. On the other hand, the IC9564 escape variant with the P198S mutation is resistant to these conformational antibodies and highly sensitive to the potent neutralizing antiserum, C1206, which recognizes a conformational epitope involving the sequences from V1, V2, and V3 regions in gp120. Thus, results from this study indicate that the conformation of gp120 can be exploited by HIV-1 to escape IC9564.
Collapse
Affiliation(s)
- Xiong Yuan
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
49
|
Kunert R, Wolbank S, Stiegler G, Weik R, Katinger H. Characterization of molecular features, antigen-binding, and in vitro properties of IgG and IgM variants of 4E10, an anti-HIV type 1 neutralizing monoclonal antibody. AIDS Res Hum Retroviruses 2004; 20:755-62. [PMID: 15307922 DOI: 10.1089/0889222041524571] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The human monoclonal antibody 4E10 has been generated previously by immortalization of peripheral blood cells from an HIV-1-infected individual. This antibody binds to the linear epitope NWFDIT on gp41 and exhibits exceptional neutralizing activity against a broad spectrum of primary HIV-1 isolates. In the present study, molecular features, immunoreactivity, and functional activity of 4E10 were studied. The original hybridoma-derived 4E10 was of subtype IgG(3). Analysis of the variable segment of the heavy chain (VH) demonstrated extensive somatic mutations compared to the closest homologous germline gene VH1-69. Most amino acid substitutions occurred in the complementarity-determining region (CDR) 2, characteristic for an antigen-driven somatic maturation. The heavy chain of the CDR3 (H3) is of unusual length and cannot be attributed with certainty to any specific D(H) locus. To enable mass production and to prolong the in vivo half-life, 4E10 was subsequently cloned as IgG(1) in Chinese hamster ovary (CHO) cells. In additional studies, 4E10 was class switched to the IgM isotype. Binding to the linear epitope NWFDIT was not significantly changed after the cloning procedures. However, in vitro studies revealed dramatic differences in the neutralizing potential. The antiviral activity could be greatly enhanced by change of IgG(3) to IgG(1). In contrast, the IgM isotype almost completely lost its neutralizing potential.
Collapse
Affiliation(s)
- Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
50
|
Troyer JL, Pecon-Slattery J, Roelke ME, Black L, Packer C, O'Brien SJ. Patterns of feline immunodeficiency virus multiple infection and genome divergence in a free-ranging population of African lions. J Virol 2004; 78:3777-91. [PMID: 15016897 PMCID: PMC371036 DOI: 10.1128/jvi.78.7.3777-3791.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS-like immunodeficiency disease in domestic cats. Free-ranging lions, Panthera leo, carry a chronic species-specific strain of FIV, FIV-Ple, which so far has not been convincingly connected with immune pathology or mortality. FIV-Ple, harboring the three distinct strains A, B, and C defined by pol gene sequence divergences, is endemic in the large outbred population of lions in the Serengeti ecosystem in Tanzania. Here we describe the pattern of variation in the three FIV genes gag, pol-RT, and pol-RNase among lions within 13 prides to assess the occurrence of FIV infection and coinfection. Genome diversity within and among FIV-Ple strains is shown to be large, with strain divergence for each gene approaching genetic distances observed for FIV between different species of cats. Multiple in fections with two or three strains were found in 43% of the FIV-positive individuals based on pol-RT sequence analysis, which may suggest that antiviral immunity or interference evoked by one strain is not consistently protective against infection by a second. This comprehensive study of FIV-Ple in a free-ranging population of lions reveals a dynamic transmission of virus in a social species that has historically adapted to render the virus benign.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick. IRSP Program, SAIC-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|