1
|
Du Y, Gao J, He M, Yi M, Wu J, Feng L, Zeng B, Li Y, He R, Wang Y, Qin CF, Cui Z, Wang C. Simultaneous Blockade of CD209 and CD209L by Monoclonal Antibody Does Not Provide Sufficient Protection Against Multiple Viral Infections In Vivo. Immunology 2025; 174:411-422. [PMID: 39783143 DOI: 10.1111/imm.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1. We show that 7-H7-B1 effectively blocks multiple pseudotyped or live viral infections in vitro, including SARS-CoV, SARS-CoV-2, Ebola virus, Marburg virus, ZIKV and DENV infections. However, the 7-H7-B1 mAb does not provide favourable protection against Zaire Ebola virus or ZIKV infection in hCD209 knock-in mice in vivo. Thus, our findings indicate that although CD209 and CD209L are critical for multiple viral infections in vitro, they may play only a partial role in viral infections in vivo.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/antagonists & inhibitors
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/antagonists & inhibitors
- Lectins, C-Type/immunology
- Lectins, C-Type/antagonists & inhibitors
- Zika Virus/immunology
- SARS-CoV-2/immunology
- Ebolavirus/immunology
- Zika Virus Infection/immunology
- Antibodies, Blocking/pharmacology
- Antibodies, Blocking/immunology
- Dengue Virus
- Vero Cells
- Virus Diseases/immunology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
Collapse
Affiliation(s)
- Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiawang Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mengjiao He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiaqi Wu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Zeng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yangyang Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Baek H, Yang SW, Kim S, Lee Y, Park H, Park M, Jeon BJ, Park H, Hwang HS, Kim JY, Kim JH, Kang YS. Development of Anti-Inflammatory Agents Utilizing DC-SIGN Mediated IL-10 Secretion in Autoimmune and Immune-Mediated Disorders: Bridging Veterinary and Human Health. Int J Mol Sci 2025; 26:2329. [PMID: 40076949 PMCID: PMC11901132 DOI: 10.3390/ijms26052329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a C-type lectin receptor expressed on dendritic cells and M2 macrophages, playing a key role in immune regulation and pathogen recognition. Its ability to mediate anti-inflammatory effects by interacting with specific ligands triggers pathways that suppress pro-inflammatory responses and promote tissue repair, making it a potential therapeutic target for inflammatory and autoimmune diseases. DC-SIGN homologs in various animal species share structural similarities and perform comparable immune functions, offering valuable insights into its broader application across species. By recognizing carbohydrate ligands on pathogens, DC-SIGN facilitates immune modulation, which can be harnessed for developing therapies aimed at controlling inflammation. In veterinary medicine, autoimmune and inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease, represent significant challenges, and the anti-inflammatory properties of DC-SIGN could provide new therapeutic options to improve disease management and enhance animal health. Future investigations should focus on the structural and functional analysis of DC-SIGN homologs in various species, as well as the development of preclinical models to translate these findings into clinical interventions bridging veterinary and human health.
Collapse
Affiliation(s)
- Hayeon Baek
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
| | - Seung-Woo Yang
- Sanford Consortium for Regenerative Medicine, School of Medicine, University of California, San Diego, CA 92037, USA;
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Seulki Kim
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| | - Yunseok Lee
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| | - Hwi Park
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
| | - Byung-Ju Jeon
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Hanwool Park
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Joon-Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| |
Collapse
|
3
|
Bhaskar M, Satheesan A, Basu A. Low-density Lipoprotein Receptor is an important host factor in flaviviral entry and replication in neurons. Biochem Biophys Res Commun 2025; 743:151160. [PMID: 39689643 DOI: 10.1016/j.bbrc.2024.151160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Flaviviruses, which are transmitted by mosquitoes, are arthropod-borne infections that are pathogenic to both humans and animals, posing a significant global threat to public health. So far, various endocytic pathways have been reported for flaviviral entry; however, the role of cellular factors in viral replication and entry remains uncertain. Here in this study, we identified the role of Low-density lipoprotein receptor, which has long been established as a cholesterol carrier for neurons but remained unexplored as an essential host factor for JEV/WNV replication. To explore this, we utilized 10-day old BALB/c pups and two neuronal cell lines, NSC34 and HT22, both of different origin, as experimental models. Transient knockdown of LDLR gene in vitro using siRNA-mediated gene silencing drastically reduced viral specific transcripts and proteins upon viral incubation. Moreover, flaviviral binding and internalization were significantly compromised upon infection in LDLR-transfected cells when compared with non-specific eGFP-transfected cells. Antibody neutralization experiments using LDLR-specific polyclonal antibody significantly reduced viral entry in vitro, suggesting the role of LDLR as an important cell attachment factor for JEV and WNV uptake. Furthermore, ectopic expression of LDLR via plasmid transfection led to significant increase in virus replication in cells, indicating significant role of LDLR in flavivirus replication beside acting as an active attachment factor for JEV and WNV. Overall, our results indicate that LDLR act as novel host factor involved in both flaviviral entry and replication, thus serving as a suitable candidate for antiviral research.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
4
|
Strother C, Bouffard N, Smolynets O, Graham NR, Elko EA, Sabundayo B, Durbin AP, Whitehead SS, Taatjes DJ, Kirkpatrick BD, Greene L, Pierce KK, Diehl SA. Localized Inflammation in Dengue Vaccine-Induced Skin Rash Is Not Associated with Continuous Presence of Dengue Virus Genome. J Invest Dermatol 2024:S0022-202X(24)03037-9. [PMID: 39733933 DOI: 10.1016/j.jid.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024]
Abstract
Vaccination with the tetravalent live-attenuated dengue virus (DENV) vaccines TV003 and TV005 causes a mild, relatively localized erythematous maculopapular skin rash in most dengue-naïve vaccinees. Human challenge model DENV strains, DENV2Δ30 and DENV3Δ30, trigger a confluent skin rash over most of the body in most unvaccinated participants. To determine the etiology of these rashes, we performed in situ hybridization for DENV genome and assessed cellular infiltration by H&E staining in skin biopsies from humans infected with live-attenuated dengue vaccine DENV2Δ30 or DENV3Δ30 challenge strains. Sixty-three biopsies from 40 participants were included in the study, of which 43 biopsies from 32 patients contained intact RNA. Of these, 1 sample taken from a nonerythematous site from a DENV2Δ30-infected participant experiencing a rash was positive for DENV2 genome. Incidence and severity of lymphocytic infiltration were highest in rash biopsy samples than in those from noninvolved areas in participants experiencing a rash or from those taken from participants not experiencing a rash. These results indicate that the rash associated with infection with live-attenuated dengue vaccines or challenge strains is predominantly lymphocyte-driven perivascular dermal inflammation without local concomitant active viral replication.
Collapse
Affiliation(s)
- Camilla Strother
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Vaccine Testing Center, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Nicole Bouffard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Microscopy Imaging Center, Center for Biomedical Shared Resources, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Olha Smolynets
- Department of Medicine-Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Infectious Diseases, Jefferson Health, Abington, Pennsylvania, USA
| | - Nancy R Graham
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Vaccine Testing Center, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Beulah Sabundayo
- Center for Immunization Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Microscopy Imaging Center, Center for Biomedical Shared Resources, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Vaccine Testing Center, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Department of Medicine-Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Laura Greene
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Vaccine Testing Center, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Department of Medicine-Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA; Vaccine Testing Center, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
5
|
Liu J, Quan Y, Tong H, Zhu Y, Shi X, Liu Y, Cheng G. Insights into mosquito-borne arbovirus receptors. CELL INSIGHT 2024; 3:100196. [PMID: 39391003 PMCID: PMC11462183 DOI: 10.1016/j.cellin.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The increasing global prevalence of mosquito-borne viruses has emerged as a significant threat to human health and life. Identifying receptors for these viruses is crucial for improving our knowledge of viral pathogenesis and developing effective antiviral strategies. The widespread application of CRISPR-Cas9 screening have led to the discovery of many mosquito-borne virus receptors. The revealed structures of virus-receptor complexes also provide important information for understanding their interaction mechanisms. This review provides a comprehensive summary of both conventional and novel approaches for identifying new viral receptors and the putative entry factors of the most prevalent mosquito-borne viruses within the Flaviviridae, Togaviridae, and Bunyavirales. At the same time, we emphasize the common receptors utilized by these viruses for entry into both vertebrate hosts and mosquito vectors. We discuss promising avenues for developing anti-mosquito-borne viral strategies that target these receptors. Notably, targeting universal receptors of specific mosquito-borne viruses in both vertebrates and mosquitoes offers dual benefits for disease prevention. Additionally, the widespread use of AI-based machine learning and protein structure prediction will accelerate the identification of new viral receptors and provide new avenues for antiviral drug discovery.
Collapse
Affiliation(s)
- Jianying Liu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yixin Quan
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- School of Life Science, Southern University of Science and Technology, Shenzhen, 518052, China
| | - Hua Tong
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
6
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
7
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024; 98:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
8
|
Dowd KA, Schroeder M, Sanchez E, Brumbaugh B, Foreman BM, Burgomaster KE, Shi W, Wang L, Caputo N, Gordon DN, Schwartz CL, Hansen BT, Aleshnick M, Kong WP, Morabito KM, Hickman HD, Graham BS, Fischer ER, Pierson TC. pr-independent biogenesis of infectious mature Zika virus particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612520. [PMID: 39372759 PMCID: PMC11452192 DOI: 10.1101/2024.09.12.612520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Flavivirus assembly at the endoplasmic reticulum is driven by the structural proteins envelope (E) and premembrane (prM). Here, contrary to the established paradigm for flavivirus assembly, we demonstrate that the biogenesis of flavivirus particles does not require an intact prM nor proteolytic activation. The expression of E preceded by a truncated version of prM (M-E) was sufficient for the formation of non-infectious Zika virus subviral particles and pseudo-infectious reporter virions. Subviral particles encoded by a ZIKV M-E DNA vaccine elicited a neutralizing antibody response that was insensitive to the virion maturation state, a feature of flavivirus humoral immunity shown to correlate with protection. M-E vaccines that uniformly present structural features shared with mature virions offer a higher quality and broadly applicable approach to flavivirus vaccination.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Michelle Schroeder
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Egan Sanchez
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Beniah Brumbaugh
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryant M. Foreman
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | | | - Wei Shi
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Lingshu Wang
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Natalie Caputo
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - David N. Gordon
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Cindi L. Schwartz
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryan T. Hansen
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Maya Aleshnick
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH; Bethesda, 20892, USA
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Elizabeth R. Fischer
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Theodore C. Pierson
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| |
Collapse
|
9
|
Delaunay C, Pollastri S, Thépaut M, Cavazzoli G, Belvisi L, Bouchikri C, Labiod N, Lasala F, Gimeno A, Franconetti A, Jiménez-Barbero J, Ardá A, Delgado R, Bernardi A, Fieschi F. Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN. Chem Sci 2024:d4sc02980a. [PMID: 39246372 PMCID: PMC11376147 DOI: 10.1039/d4sc02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently. DC-SIGN, found in dendritic cells, shapes the immune response by recognizing pathogen-associated carbohydrate patterns. In contrast, L-SIGN, expressed in airway epithelial endothelial cells, is not directly involved in immunity. COVID-19's primary threat is the hyperactivation of the immune system, potentially reinforced if DC-SIGN engages with exogenous ligands. Therefore, L-SIGN, co-localized with ACE2-expressing cells in the respiratory tract, is a more suitable target for anti-adhesion therapy. However, designing a selective ligand for L-SIGN is challenging due to the high sequence identity of the Carbohydrate Recognition Domains (CRDs) of the two lectins. We here present Man84, a mannose ring modified with a methylene guanidine triazole at position 2. It binds L-SIGN with a K D of 12.7μM ± 1 μM (ITC) and is the first known L-SIGN selective ligand, showing 50-fold selectivity over DC-SIGN (SPR). The X-ray structure of the L-SIGN CRD/Man84 complex reveals the guanidinium group's role in achieving steric and electrostatic complementarity with L-SIGN. This allows us to trace the source of selectivity to a single amino acid difference between the two CRDs. NMR analysis confirms the binding mode in solution, highlighting Man84's conformational selection upon complex formation. Dimeric versions of Man84 achieve additional selectivity and avidity in the low nanomolar range. These compounds selectively inhibit L-SIGN dependent trans-infection by SARS-CoV-2 and Ebola virus. Man84 and its dimeric constructs display the best affinity and avidity reported to date for low-valency glycomimetics targeting CLRs. They are promising tools for competing with SARS-CoV-2 anchoring in the respiratory tract and have potential for other medical applications.
Collapse
Affiliation(s)
- Clara Delaunay
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Sara Pollastri
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Gianluca Cavazzoli
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Clémentine Bouchikri
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Nuria Labiod
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Fatima Lasala
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Ana Gimeno
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Antonio Franconetti
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias 28029 Madrid Spain
| | - Ana Ardá
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Rafael Delgado
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
- School of Medicine, Universidad Complutense Madrid Spain
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
- Institut Universitaire de France (IUF) Paris France
| |
Collapse
|
10
|
Tajima S, Ebihara H, Lim CK. Amino Acids at Positions 156 and 332 in the E Protein of the West Nile Virus Subtype Kunjin Virus Classical Strain OR393 Are Involved in Plaque Size, Growth, and Pathogenicity in Mice. Viruses 2024; 16:1237. [PMID: 39205211 PMCID: PMC11359920 DOI: 10.3390/v16081237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The West Nile virus (WNV) subtype Kunjin virus (WNVKUN) is endemic to Australia. Here, we characterized the classical WNVKUN strain, OR393. The original OR393 strain contained two types of viruses: small plaque-forming virus (SP) and large plaque-forming virus (LP). The amino acid residues at positions 156 and 332 in the E protein (E156 and E332) of SP were Ser and Lys (E156S/332K), respectively, whereas those in LP were Phe and Thr (E156F/332T). SP grew slightly faster than LP in vitro. The E protein of SP was N-glycosylated, whereas that of LP was not. Analysis using two recombinant single-mutant LP viruses, rKUNV-LP-EF156S and rKUNV-LP-ET332K, indicated that E156S enlarged plaques formed by LP, but E332K potently reduced them, regardless of the amino acid at E156. rKUNV-LP-EF156S showed significantly higher neuroinvasive ability than LP, SP, and rKUNV-LP-ET332K. Our results indicate that the low-pathogenic classical WNVKUN can easily change its pathogenicity through only a few amino acid substitutions in the E protein. It was also found that Phe at E156 of the rKUNV-LP-ET332K was easily changed to Ser during replication in vitro and in vivo, suggesting that E156S is advantageous for the propagation of WNVKUN in mammalian cells.
Collapse
Affiliation(s)
- Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
11
|
Basaran R, Budhadev D, Kempf A, Nehlmeier I, Hondow N, Pöhlmann S, Guo Y, Zhou D. Probing scaffold size effects on multivalent lectin-glycan binding affinity, thermodynamics and antiviral properties using polyvalent glycan-gold nanoparticles. NANOSCALE 2024; 16:13962-13978. [PMID: 38984502 DOI: 10.1039/d4nr00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are pivotal for viral infections and immune regulation. Their structural and biophysical data are thus highly valuable, not only for understanding their basic mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information for some important MGLIs remains poorly understood, greatly limiting research progress. We have recently developed densely glycosylated nanoparticles, e.g., ∼4 nm quantum dots (QDs) or ∼5 nm gold nanoparticles (GNPs), as mechanistic probes for MLGIs. Using two important model lectin viral receptors, DC-SIGN and DC-SIGNR, we have shown that these probes can not only offer sensitive fluorescence assays for quantifying MLGI affinities, but also reveal key structural information (e.g., binding site orientation and binding mode) useful for MLGI targeting. However, the small sizes of the previous scaffolds may not be optimal for maximising MLGI affinity and targeting specificity. Herein, using α-manno-α-1,2-biose (DiMan) functionalised GNP (GNP-DiMan) probes, we have systematically studied how GNP scaffold size (e.g., 5, 13, and 27 nm) and glycan density (e.g., 100, 75, 50 and 25%) determine their MLGI affinities, thermodynamics, and antiviral properties. We have developed a new GNP fluorescence quenching assay format to minimise the possible interference of GNP's strong inner filter effect in MLGI affinity quantification, revealing that increasing the GNP size is highly beneficial for enhancing MLGI affinity. We have further determined the MLGI thermodynamics by combining temperature-dependent affinity and Van't Hoff analyses, revealing that GNP-DiMan-DC-SIGN/R binding is enthalpy driven with favourable binding Gibbs free energy changes (ΔG°) being enhanced with increasing GNP size. Finally, we show that increasing the GNP size significantly enhances their antiviral potency. Notably, the DiMan coated 27 nm GNP potently and robustly blocks both DC-SIGN and DC-SIGNR mediated pseudo-Ebola virus cellular entry with an EC50 of ∼23 and ∼49 pM, respectively, making it the most potent glycoconjugate inhibitor against DC-SIGN/R-mediated Ebola cellular infections. Our results have established GNP-glycans as a new tool for quantifying MLGI biophysical parameters and revealed that increasing the GNP scaffold size significantly enhances their MLGI affinities and antiviral potencies.
Collapse
Affiliation(s)
- Rahman Basaran
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Amy Kempf
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School of Food Science and Nutrition, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Acklin JA, Patel AR, Kurland AP, Horiuchi S, Moss AS, DeGrace EJ, Ikegame S, Carmichael J, Kowdle S, Thibault PA, Imai N, Ueno H, Tweel B, Johnson JR, Rosenberg BR, Lee B, Lim JK. Immunological landscape of human lymphoid explants during measles virus infection. JCI Insight 2024; 9:e172261. [PMID: 39253971 PMCID: PMC11385098 DOI: 10.1172/jci.insight.172261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
In humans, lymph nodes are the primary site of measles virus (MeV) replication. To understand the immunological events that occur at this site, we infected human lymphoid tissue explants using a pathogenic strain of MeV that expresses GFP. We found that MeV infected 5%-15% of cells across donors. Using single-cell RNA-Seq and flow cytometry, we found that while most of the 29 cell populations identified in the lymphoid culture were susceptible to MeV, there was a broad preferential infection of B cells and reduced infection of T cells. Further subsetting of T cells revealed that this reduction may be driven by the decreased infection of naive T cells. Transcriptional changes in infected B cells were dominated by an interferon-stimulated gene (ISG) signature. To determine which of these ISGs were most substantial, we evaluated the proteome of MeV-infected Raji cells by mass spectrometry. We found that IFIT1, IFIT2, IFIT3, ISG15, CXCL10, MX2, and XAF1 proteins were the most highly induced and positively correlated with their expression in the transcriptome. These data provide insight into the immunological events that occur in lymph nodes during infection and may lead to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Joshua A Acklin
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | - Aum R Patel
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | - Emma J DeGrace
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | | | | | | | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | |
Collapse
|
13
|
Lingemann M, Amaro-Carambot E, Lamirande EW, Pierson TC, Whitehead SS. Simultaneous quantitation of neutralizing antibodies against all four dengue virus serotypes using optimized reporter virus particles. J Virol 2024; 98:e0068124. [PMID: 38953379 PMCID: PMC11265411 DOI: 10.1128/jvi.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Serum-neutralizing antibody titers are a critical measure of vaccine immunogenicity and are used to determine flavivirus seroprevalence in study populations. An effective dengue virus (DENV) vaccine must confer simultaneous protection against viruses grouped within four antigenic serotypes. Existing flavivirus neutralization assays, including the commonly used plaque/focus reduction neutralization titer (PRNT/FRNT) assay, require an individual assay for each virus, serotype, and strain and easily become a labor-intensive and time-consuming effort for large epidemiological studies or vaccine trials. Here, we describe a multiplex reporter virus particle neutralization titer (TetraPlex RVPNT) assay for DENV that allows simultaneous quantitative measures of antibody-mediated neutralization of infection against all four DENV serotypes in a single low-volume clinical sample and analyzed by flow cytometry. Comparative studies confirm that the neutralization titers of antibodies measured by the TetraPlex RVPNT assay are similar to FRNT/PRNT assay approaches performed separately for each viral strain. The use of this high-throughput approach enables the careful serological study in DENV endemic populations and vaccine recipients required to support the development of a safe and effective tetravalent DENV vaccine. IMPORTANCE As a mediator of protection against dengue disease and a serological indicator of prior infection, the detection and quantification of neutralizing antibodies against DENV is an important "gold standard" tool. However, execution of traditional neutralizing antibody assays is often cumbersome and requires repeated application for each virus or serotype. The optimized RVPNT assay described here is high-throughput, easily multiplexed across multiple serotypes, and targets reporter viral particles that can be robustly produced for all four DENV serotypes. The use of this transformative RVPNT assay will support the expansion of neutralizing antibody datasets to answer research and public health questions often limited by the more cumbersome neutralizing antibody assays and the need for greater quantities of test serum.
Collapse
Affiliation(s)
- Matthias Lingemann
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emérito Amaro-Carambot
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine W. Lamirande
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Arbovirus Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen S. Whitehead
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
15
|
Liu KS, Chen PM, Wang L, Lee IK, Yang KD, Chen RF. Relationship between the Number of Repeats in the Neck Regions of L-SIGN and Augmented Virus Replication and Immune Responses in Dengue Hemorrhagic Fever. Int J Mol Sci 2024; 25:5497. [PMID: 38791534 PMCID: PMC11122574 DOI: 10.3390/ijms25105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.
Collapse
Affiliation(s)
- Keh-Sen Liu
- Division of Infectious Diseases, Department of Internal Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Nursing, College of Health Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Lin Wang
- Department of Pediatrics, Pojen Hospital, Kaohsiung 813, Taiwan
| | - Ing-Kit Lee
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kuender D. Yang
- Departments of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
- Departments of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 252, Taiwan
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
17
|
Basaran R, Ning X, Budhadev D, Hondow N, Guo Y, Zhou D. Probing the pH-dependency of DC-SIGN/R multivalent lectin-glycan interactions using polyvalent glycan-gold nanoparticles. NANOSCALE ADVANCES 2024; 6:2198-2208. [PMID: 38633047 PMCID: PMC11019501 DOI: 10.1039/d3na01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The dendritic cell tetrameric lectin, DC-SIGN, and its closely related endothelial cell lectin, DC-SIGNR (collectively abbreviated as DC-SIGN/R) play a key role in the binding and transmission of deadly viruses, including Ebola, HIV, HCV, and SARS-CoV-2. Their virus binding/release processes involve a gradually acidifying environment following the natural intracellular trafficking pathways. Therefore, understanding DC-SIGN/R's pH-dependent binding properties with glycan ligands is of great importance. We have recently developed densely glycosylated gold nanoparticles (glycan-GNPs) as a powerful new tool for probing DC-SIGN/R multivalent lectin-glycan interaction (MLGI) mechanisms. They can provide not only quantitative MLGI affinities but also important structural information, such as binding site orientation and binding modes. Herein, we further employ the glycan-GNP probes to investigate the pH dependency of DC-SIGN/R MLGI properties. We find that DC-SIGN/R MLGIs exhibit distinct pH dependence over the normal physiological (7.4) to lysosomal (∼4.6) pH range. DC-SIGN binds glycan-GNPs strongly and stably from pH 7.4 to ∼5.8, but the binding is weakened significantly as pH decreases to ≤5.4 and may be fully dissociated at pH 4.6. This behaviour is fully consistent with DC-SIGN's role as an endocytic recycling receptor. In contrast, DC-SIGNR's affinity with glycan-GNPs is enhanced with the decreasing pH from 7.4 to 5.4, peaking at pH 5.4, and then reduced as pH is further lowered. Interestingly, both DC-SIGN/R binding with glycan-GNPs are found to be partially reversible in a pH-dependent manner.
Collapse
Affiliation(s)
- Rahman Basaran
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Xinyu Ning
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Darshita Budhadev
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| | - Yuan Guo
- School of Food Science and Nutrition, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Dejian Zhou
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
18
|
Contreras M, Stuart JB, Levoir LM, Belmont L, Goo L. Defining the impact of flavivirus envelope protein glycosylation site mutations on sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0304823. [PMID: 38193697 PMCID: PMC10865826 DOI: 10.1128/mbio.03048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Antibodies targeting an envelope dimer epitope (EDE) cross-neutralize Zika virus (ZIKV) and dengue virus (DENV) and have thus inspired an epitope-focused vaccine design. There are two EDE antibody subclasses (EDE1, EDE2) distinguished by their dependence on viral envelope protein N-linked glycosylation at position N153 (DENV) or N154 (ZIKV) for binding. Here, we determined how envelope glycosylation site mutations affect neutralization by EDE and other broadly neutralizing antibodies. Consistent with structural studies, mutations abolishing the N153/N154 glycosylation site increased DENV and ZIKV sensitivity to neutralization by EDE1 antibodies. Surprisingly, despite their location at predicted contact sites, these mutations also increased sensitivity to EDE2 antibodies. Moreover, despite preserving the glycosylation site motif (N-X-S/T), substituting the threonine at ZIKV envelope residue 156 with a serine resulted in loss of glycan occupancy accompanied with increased neutralization sensitivity to EDE antibodies. For DENV, the presence of a serine instead of a threonine at envelope residue 155 retained glycan occupancy, but nonetheless increased sensitivity to EDE antibodies, in some cases to a similar extent as mutation at N153, which abolishes glycosylation. Envelope glycosylation site mutations also increased ZIKV and DENV sensitivity to other non-EDE broadly neutralizing antibodies, but had limited effects on ZIKV- or DENV-specific antibodies. Thus, envelope protein glycosylation is context-dependent and modulates the potency of broadly neutralizing antibodies in a manner not predicted by existing structures. Manipulating envelope protein glycosylation could be a novel strategy for engineering vaccine antigens to elicit antibodies that broadly neutralize ZIKV and DENV.IMPORTANCEAntibodies that potently cross-neutralize Zika (ZIKV) and dengue (DENV) viruses are attractive to induce via vaccination to protect against these co-circulating flaviviruses. Structural studies have shown that viral envelope protein glycosylation is important for binding by one class of these so-called broadly neutralizing antibodies, but less is known about its effect on neutralization. Here, we investigated how envelope protein glycosylation site mutations impact the potency of broadly neutralizing antibodies against ZIKV and DENV. We found that glycan occupancy was not always predicted by an intact N-X-S/T sequence motif. Moreover, envelope protein glycosylation site mutations alter the potency of broadly neutralizing antibodies in a manner unexpected from their predicted binding mechanism as determined by existing structures. We therefore highlight the complex role and determinants of envelope protein glycosylation that should be considered in the design of vaccine antigens to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
19
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
20
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. J Virol 2023; 97:e0141423. [PMID: 37943046 PMCID: PMC10688354 DOI: 10.1128/jvi.01414-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The wide endemic range of mosquito-vectored flaviviruses-such as Zika virus and dengue virus serotypes 1-4-places hundreds of millions of people at risk of infection every year. Despite this, there are no widely available vaccines, and treatment of severe cases is limited to supportive care. An avenue toward development of more widely applicable vaccines and targeted therapies is the characterization of monoclonal antibodies that broadly neutralize all these viruses. Here, we measure how single amino acid mutations in viral envelope protein affect neutralizing antibodies with both broad and narrow specificities. We find that broadly neutralizing antibodies with potential as vaccine prototypes or biological therapeutics are quantifiably more difficult to escape than narrow, virus-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Basic Sciences, Fred Hutch Cancer Center, Seattle, Washington, USA
- Computational Biology, Fred Hutch Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| |
Collapse
|
21
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Duran V, Rebellon-Sanchez DE, Sanz AM, Rosso F, Doranz BJ, Einav S, Matsen IV FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. PLoS Pathog 2023; 19:e1011722. [PMID: 37812640 PMCID: PMC10586629 DOI: 10.1371/journal.ppat.1011722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Catiana H. Cartwright-Acar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caroline Kikawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Shruthi Kannan
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Ana M. Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Ishida K, Yagi H, Kato Y, Morita E. N-linked glycosylation of flavivirus E protein contributes to viral particle formation. PLoS Pathog 2023; 19:e1011681. [PMID: 37819933 PMCID: PMC10593244 DOI: 10.1371/journal.ppat.1011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.
Collapse
Affiliation(s)
- Kotaro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
23
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
24
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557606. [PMID: 37808848 PMCID: PMC10557620 DOI: 10.1101/2023.09.13.557606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Zika virus and dengue virus are co-circulating flaviviruses with a widespread endemic range. Eliciting broad and potent neutralizing antibodies is an attractive goal for developing a vaccine to simultaneously protect against these viruses. However, the capacity of viral mutations to confer escape from broadly neutralizing antibodies remains undescribed, due in part to limited throughput and scope of traditional approaches. Here, we use deep mutational scanning to map how all possible single amino acid mutations in Zika virus envelope protein affect neutralization by antibodies of varying breadth and potency. While all antibodies selected viral escape mutations, the mutations selected by broadly neutralizing antibodies conferred less escape relative to those selected by narrow, virus-specific antibodies. Surprisingly, even for broadly neutralizing antibodies with similar binding footprints, different single mutations led to escape, indicating distinct functional requirements for neutralization not captured by existing structures. Additionally, the antigenic effects of mutations selected by broadly neutralizing antibodies were conserved across divergent, albeit related, flaviviruses. Our approach identifies residues critical for antibody neutralization, thus comprehensively defining the as-yet-unknown functional epitopes of antibodies with clinical potential.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Basic Sciences and Computational Biology, Fred Hutch Cancer Center, Seattle Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| |
Collapse
|
25
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Doranz BJ, Duran V, Sanchez DE, Sanz AM, Rosso F, Einav S, Matsen FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536175. [PMID: 37090561 PMCID: PMC10120628 DOI: 10.1101/2023.04.09.536175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasure strategies that avoid infection enhancement associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following secondary DENV infection. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
|
26
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
27
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
28
|
A. Dowd K, Sirohi D, D. Speer S, VanBlargan LA, Chen RE, Mukherjee S, Whitener BM, Govero J, Aleshnick M, Larman B, Sukupolvi-Petty S, Sevvana M, Miller AS, Klose T, Zheng A, Koenig S, Kielian M, Kuhn RJ, Diamond MS, Pierson TC. prM-reactive antibodies reveal a role for partially mature virions in dengue virus pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2218899120. [PMID: 36638211 PMCID: PMC9933121 DOI: 10.1073/pnas.2218899120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023] Open
Abstract
Cleavage of the flavivirus premembrane (prM) structural protein during maturation can be inefficient. The contribution of partially mature flavivirus virions that retain uncleaved prM to pathogenesis during primary infection is unknown. To investigate this question, we characterized the functional properties of newly-generated dengue virus (DENV) prM-reactive monoclonal antibodies (mAbs) in vitro and using a mouse model of DENV disease. Anti-prM mAbs neutralized DENV infection in a virion maturation state-dependent manner. Alanine scanning mutagenesis and cryoelectron microscopy of anti-prM mAbs in complex with immature DENV defined two modes of attachment to a single antigenic site. In vivo, passive transfer of intact anti-prM mAbs resulted in an antibody-dependent enhancement of disease. However, protection against DENV-induced lethality was observed when the transferred mAbs were genetically modified to inhibit their ability to interact with Fcγ receptors. These data establish that in addition to mature forms of the virus, partially mature infectious prM+ virions can also contribute to pathogenesis during primary DENV infections.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| | - Devika Sirohi
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Scott D. Speer
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| | - Bradley M. Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Maya Aleshnick
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| | - Bridget Larman
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| | - Soila Sukupolvi-Petty
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Aihua Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | | | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
29
|
Plante JA, Plante KS, Popov VL, Shinde DP, Widen SG, Buenemann M, Nogueira ML, Vasilakis N. Morphologic and Genetic Characterization of Ilheus Virus, a Potential Emergent Flavivirus in the Americas. Viruses 2023; 15:195. [PMID: 36680235 PMCID: PMC9866216 DOI: 10.3390/v15010195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Ilheus virus (ILHV) is a mosquito-borne flavivirus circulating throughout Central and South America and the Caribbean. It has been detected in several mosquito genera including Aedes and Culex, and birds are thought to be its primary amplifying and reservoir host. Here, we describe the genomic and morphologic characterization of ten ILHV strains. Our analyses revealed a high conservation of both the 5'- and 3'-untranslated regions but considerable divergence within the open reading frame. We also showed that ILHV displays a typical flavivirus structural and genomic organization. Our work lays the foundation for subsequent ILHV studies to better understand its transmission cycles, pathogenicity, and emergence potential.
Collapse
Affiliation(s)
- Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Vsevolod L. Popov
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Divya P. Shinde
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0679, USA
| | - Michaela Buenemann
- Department of Geography and Environmental Studies, New Mexico State University, Las Cruces, NM 88003-8801, USA
| | - Mauricio L. Nogueira
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto 15090-000, SP, Brazil
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
30
|
Carbohydrates: Binding Sites and Potential Drug Targets for Neural-Affecting Pathogens. ADVANCES IN NEUROBIOLOGY 2023; 29:449-477. [DOI: 10.1007/978-3-031-12390-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Hooper J, Liu Y, Budhadev D, Ainaga DF, Hondow N, Zhou D, Guo Y. Polyvalent Glycan Quantum Dots as a Multifunctional Tool for Revealing Thermodynamic, Kinetic, and Structural Details of Multivalent Lectin-Glycan Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47385-47396. [PMID: 36194567 PMCID: PMC9614721 DOI: 10.1021/acsami.2c11111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology. Their binding biophysical and structural details are thus highly valuable, not only for the understanding of binding affinity and specificity mechanisms but also for guiding the design of multivalent therapeutics against specific MLGIs. However, effective techniques that can reveal all such details remain unavailable. We have recently developed polyvalent glycan quantum dots (glycan-QDs) as a new probe for MLGIs. Using a pair of closely related tetrameric viral-binding lectins, DC-SIGN and DC-SIGNR, as model examples, we have revealed and quantified their large affinity differences in glycan-QD binding are due to distinct binding modes: with simultaneous binding for DC-SIGN and cross-linking for DC-SIGNR. Herein, we further extend the capacity of the glycan-QD probes by investigating the correlation between binding mode and binding thermodynamics and kinetics and further probing a structural basis of their binding nature. We reveal that while both lectins' binding with glycan-QDs is enthalpy driven with similar binding enthalpy changes, DC-SIGN pays a lower binding entropy penalty, resulting in a higher affinity than DC-SIGNR. We then show that DC-SIGN binding gives a single second-order kon rate, whereas DC-SIGNR gives a rapid initial binding followed by a much slower secondary interaction. We further identify a structural element in DC-SIGN, absent in DC-SIGNR, that plays an important role in maintaining DC-SIGN's MLGI character. Its removal switches the binding from being enthalpically to entropically driven and gives mixed binding modes containing both simultaneous and cross-linking binding behavior, without markedly affecting the overall binding affinity and kinetics.
Collapse
Affiliation(s)
- James Hooper
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yuanyuan Liu
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Dario Fernandez Ainaga
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Marshall EM, Koopmans MPG, Rockx B. A Journey to the Central Nervous System: Routes of Flaviviral Neuroinvasion in Human Disease. Viruses 2022; 14:2096. [PMID: 36298652 PMCID: PMC9611789 DOI: 10.3390/v14102096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.
Collapse
Affiliation(s)
| | | | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs. J Virol 2022; 96:e0025622. [PMID: 36000847 PMCID: PMC9472623 DOI: 10.1128/jvi.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/04/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most severe pandemic in a century. The virus gains access to host cells when the viral spike protein (S-protein) binds to the host cell surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interactions with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often, these cells only transiently express ACE2 proteins, and the levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bicistronic vector with an easy-to-quantify reporter protein, Thy1.1. We found that both the binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus are proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of Thy1.1. We also compared different ACE2 orthologs, which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein, while human ACE2 had the highest level detected, and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variants' abilities to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here, we describe a method to generate cells stably expressing different orthologs of ACE2, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both the binding of the viral spike protein receptor-binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to the ACE2 levels at the cell surface. This method will allow the creation of a library of stably transfected cells expressing similar levels of different vertebrate ACE2 orthologs, which can be used repeatedly for identifying vertebrate species that may be susceptible to infection with SARS-CoV-2 and its many variants.
Collapse
Affiliation(s)
- Soheila Kazemi
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Alberto Domingo López-Muñoz
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaroslav Hollý
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
34
|
Wang J, Jiang B, Wang K, Dai J, Dong C, Wang Y, Zhang P, Li M, Xu W, Wei L. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor. J Biol Chem 2022; 298:102471. [PMID: 36089062 PMCID: PMC9530963 DOI: 10.1016/j.jbc.2022.102471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) is a re-emerging flavivirus that causes conditions such as microcephaly and testis damage. The spread of ZIKV has become a major public health concern. Recent studies indicated that antimicrobial peptides are an ideal source for screening antiviral candidates with broad-spectrum antiviral activities, including against ZIKV. We herein found that Hc-CATH, a cathelicidin antimicrobial peptide identified from the sea snake Hydrophis cyanocinctus in our previous work, conferred protection against ZIKV infection in host cells and showed preventative efficacy and therapeutic efficacy in C57BL/6J mice, Ifnar1−/− mice, and pregnant mice. Intriguingly, we revealed that Hc-CATH decreased the susceptibility of host cells to ZIKV by downregulating expression of AXL, a TAM (TYRO3, AXL and MERTK) family kinase receptor that mediates ZIKV infection, and subsequently reversed the negative regulation of AXL on host’s type I interferon response. Furthermore, we showed that the cyclo-oxygenase-2/prostaglandin E2/adenylyl cyclase/protein kinase A pathway was involved in Hc-CATH-mediated AXL downregulation, and Hc-CATH in addition directly inactivated ZIKV particles by disrupting viral membrane. Finally, while we found Hc-CATH did not act on the late stage of ZIKV infection, structure–function relationship studies revealed that α-helix and phenylalanine residues are key structural requirements for its protective efficacy against initial ZIKV infection. In summary, we demonstrate that Hc-CATH provides prophylactic and therapeutic efficacy against ZIKV infection via downregulation of AXL, as well as inactivating the virion. Our findings reveal a novel mechanism of cathelicidin against viral infection and highlight the potential of Hc-CATH to prevent and treat ZIKV infection.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Bingyan Jiang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianfeng Dai
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
35
|
Bhide K, Mochnáčová E, Tkáčová Z, Petroušková P, Kulkarni A, Bhide M. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells. Sci Rep 2022; 12:8863. [PMID: 35614140 PMCID: PMC9133079 DOI: 10.1038/s41598-022-13043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne encephalitis virus and West Nile virus can cross the blood–brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.
Collapse
Affiliation(s)
- Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
36
|
Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022; 13:801466. [PMID: 35432292 PMCID: PMC9012491 DOI: 10.3389/fmicb.2022.801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV’s envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297–S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299–K307 and DIII-2V371–R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299–K307 and DIII-2V371–R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV–like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371–R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV–induced neuropathogenesis.
Collapse
Affiliation(s)
- Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Čurlík
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Amod Kulkarni,
| |
Collapse
|
37
|
Martin MF, Maarifi G, Abiven H, Seffals M, Mouchet N, Beck C, Bodet C, Lévèque N, Arhel NJ, Blanchet FP, Simonin Y, Nisole S. Usutu virus escapes langerin-induced restriction to productively infect human Langerhans cells, unlike West Nile virus. Emerg Microbes Infect 2022; 11:761-774. [PMID: 35191820 PMCID: PMC8903762 DOI: 10.1080/22221751.2022.2045875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically close emerging arboviruses and constitute a global public health threat. Since USUV and WNV are transmitted by mosquitoes, the first immune cells they encounter are skin-resident dendritic cells, the most peripheral outpost of immune defense. This unique network is composed of Langerhans cells (LCs) and dermal DCs, which reside in the epidermis and the dermis, respectively. Using human skin explants, we show that while both viruses can replicate in keratinocytes, they can also infect resident DCs with distinct tropism: WNV preferentially infects DCs in the dermis, whereas USUV has a greater propensity to infect LCs. Using both purified human epidermal LCs (eLCs) and monocyte derived LCs (MoLCs), we confirm that LCs sustain a faster and more efficient replication of USUV than WNV and that this correlates with a more intense innate immune response to USUV compared with WNV. Next, we show that ectopic expression of the LC-specific C-type lectin receptor (CLR), langerin, in HEK293T cells allows WNV and USUV to bind and enter, but supports the subsequent replication of USUV only. Conversely, blocking or silencing langerin in MoLCs or eLCs made them resistant to USUV infection, thus demonstrating that USUV uses langerin to enter and replicate in LCs. Altogether, our results demonstrate that LCs constitute privileged target cells for USUV in human skin, because langerin favours its entry and replication. Intriguingly, this suggests that USUV efficiently escapes the antiviral functions of langerin, which normally safeguards LCs from most viral infections.
Collapse
Affiliation(s)
- Marie-France Martin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Hervé Abiven
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Marine Seffals
- Plateforme H2P2, Université de Rennes 1, Biosit, Rennes, France
| | - Nicolas Mouchet
- Plateforme H2P2, Université de Rennes 1, Biosit, Rennes, France
| | - Cécile Beck
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévèque
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
38
|
Abstract
Arboviruses are medically important arthropod-borne viruses that cause a range of diseases in humans from febrile illness to arthritis, encephalitis and hemorrhagic fever. Given their transmission cycles, these viruses face the challenge of replicating in evolutionarily divergent organisms that can include ticks, flies, mosquitoes, birds, rodents, reptiles and primates. Furthermore, their cell attachment receptor utilization may be affected by the opposing needs for generating high and sustained serum viremia in vertebrates such that virus particles are efficiently collected during a hematophagous arthropod blood meal but they must also bind sufficiently to cellular structures on divergent organisms such that productive infection can be initiated and viremia generated. Sulfated polysaccharides of the glycosaminoglycan (GAG) groups, primarily heparan sulfate (HS), have been identified as cell attachment moieties for many arboviruses. Original identification of GAG binding as a phenotype of arboviruses appeared to involve this attribute arising solely as a consequence of adaptation of virus isolates to growth in cell culture. However, more recently, naturally circulating strains of at least one arbovirus, eastern equine encephalitis, have been shown to bind HS efficiently and the GAG binding phenotype continues to be associated with arbovirus infection in published studies. If GAGs are attachment receptors for many naturally circulating arboviruses, this could lead to development of broad-spectrum antiviral therapies through blocking of the virus-GAG interaction. This review summarizes the available data for GAG/HS binding as a phenotype of naturally circulating arbovirus strains emphasizing the importance of avoiding tissue culture amplification and artifactual phenotypes during their isolation.
Collapse
Affiliation(s)
- Maria D H Alcorn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
39
|
Anwar MN, Akhtar R, Abid M, Khan SA, Rehman ZU, Tayyub M, Malik MI, Shahzad MK, Mubeen H, Qadir MS, Hameed M, Wahaab A, Li Z, Liu K, Li B, Qiu Y, Ma Z, Wei J. The interactions of flaviviruses with cellular receptors: Implications for virus entry. Virology 2022; 568:77-85. [PMID: 35149346 DOI: 10.1016/j.virol.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
40
|
dos Reis VP, Keller M, Schmidt K, Ulrich RG, Groschup MH. αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells. Viruses 2021; 14:v14010018. [PMID: 35062222 PMCID: PMC8780171 DOI: 10.3390/v14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.
Collapse
Affiliation(s)
- Vinicius Pinho dos Reis
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Institute for Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Hermann Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-71163
| |
Collapse
|
41
|
Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021; 29:1634-1648.e5. [PMID: 34610295 PMCID: PMC8595868 DOI: 10.1016/j.chom.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023]
Abstract
Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Chandni Desai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emerito Amaro-Carambot
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - M Jane Cardosa
- Institute of Health and Community Medicine, Universiti Sarawak Malaysia (UNIMAS), Kota Samarahan, Sarawak 94300, Malaysia; Integrated Research Associates, San Rafael, CA 94903, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Esper G Kallas
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Rafick-Pierre Sékaly
- Department of Microbiology and Immunology, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA.
| |
Collapse
|
42
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Wessel AW, Doyle MP, Engdahl TB, Rodriguez J, Crowe JE, Diamond MS. Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. mBio 2021; 12:e0244021. [PMID: 34634945 PMCID: PMC8510529 DOI: 10.1128/mbio.02440-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the β-ladder. One additional MAb mapped to the distal tip of the β-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael P. Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor B. Engdahl
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
44
|
Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in cell-surface ACE2 levels alter direct binding of SARS-CoV-2 Spike protein and viral infectivity: Implications for measuring Spike protein interactions with animal ACE2 orthologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.21.465386. [PMID: 34729559 PMCID: PMC8562541 DOI: 10.1101/2021.10.21.465386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, the most severe pandemic in a century. The virus gains access to host cells when the viral Spike protein (S-protein) binds to the host cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interaction with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often these cells only transiently express ACE2 proteins and levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bi-cistronic vector with an easy to quantify reporter protein to normalize ACE2 expression. We found that both binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus is proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of reporter protein, Thy1.1. We also compared different ACE2 orthologs which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein while human ACE2 was the highest level detected and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variant's ability to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here we describe a method to generate cells stably expressing equivalent levels of different ACE2 orthologs, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both binding of the viral Spike protein receptor binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to ACE2 levels at the cell surface. Adaptation of this method will allow for the creation of a library of stable transfected cells expressing equivalent levels of different vertebrate ACE2 orthologs which can be repeatedly used for identifying vertebrate species which may be susceptible to infection with SARS-CoV-2 and its many variants.
Collapse
Affiliation(s)
- Soheila Kazemi
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| | - Alberto Domingo López-Muñoz
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Jaroslav Hollý
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| |
Collapse
|
45
|
Wessel AW, Dowd KA, Biering SB, Zhang P, Edeling MA, Nelson CA, Funk KE, DeMaso CR, Klein RS, Smith JL, Cao TM, Kuhn RJ, Fremont DH, Harris E, Pierson TC, Diamond MS. Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. J Virol 2021; 95:e0084421. [PMID: 34346770 PMCID: PMC8475509 DOI: 10.1128/jvi.00844-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ping Zhang
- Department of Immunology, Key Laboratory of Tropical Diseases Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Melissa A. Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen E. Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina R. DeMaso
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robyn S. Klein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Thu Minh Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Liu D, Xiao X, Zhou P, Zheng H, Li Y, Jin H, Jongkaewwattana A, Luo R. Glycosylation on envelope glycoprotein of duck Tembusu virus affects virus replication in vitro and contributes to the neurovirulence and pathogenicity in vivo. Virulence 2021; 12:2400-2414. [PMID: 34506259 PMCID: PMC8437475 DOI: 10.1080/21505594.2021.1974329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Duck Tembusu virus (DTMUV), an emergent flavivirus, causes domestic waterfowls to suffer from severe egg-drop syndrome and fatal encephalitis, greatly threatens duck production globally. Like other mosquito-borne flaviviruses, the envelope (E) protein of all DTMUV strains was N-glycosylated at the amino acid position 154. Thus far, the biological roles of DTMUV E glycosylation have remained largely unexplored. Herein, we demonstrated the key roles of E glycosylation in the replication and pathogenicity of DTMUV in ducks by characterizing the reverse-genetics-derived DTMUV wild-type MC strain and MC bearing mutations (N154Q and N154I) that abolish the E glycosylation. Our data showed that the disruption of E glycosylation could substantially impair virus attachment, entry, and infectivity in DEFs and C6/36 cells. Notably, ducks inoculated intracerebrally with the wild-type virus exhibited severe disease onset. In contrast, those inoculated with mutant viruses were mildly affected as manifested by minimal weight loss, no mortality, lower viral loads in the various tissues, and reduced brain lesions. Attenuated phenotypes of the mutant viruses might be partly associated with lower inflammatory cytokines expression in the brains of infected ducks. Our study offers the first evidence that E glycosylation is vital for DTMUV replication, pathogenicity, and neurovirulence in vivo.
Collapse
Affiliation(s)
- Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xuyao Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (Biotec), National Science and Technology Development Agency (Nstda), Klong Nueng, Pathum Thani Thailand
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
47
|
Maciejewski S, Ruckwardt TJ, Morabito KM, Foreman BM, Burgomaster KE, Gordon DN, Pelc RS, DeMaso CR, Ko SY, Fisher BE, Yang ES, Nair D, Foulds KE, Todd JP, Kong WP, Roy V, Aleshnick M, Speer SD, Bourne N, Barrett AD, Nason MC, Roederer M, Gaudinski MR, Chen GL, Dowd KA, Ledgerwood JE, Alter G, Mascola JR, Graham BS, Pierson TC. Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Sci Transl Med 2021; 12:12/547/eaaw9066. [PMID: 32522807 DOI: 10.1126/scitranslmed.aaw9066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/29/2019] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.
Collapse
Affiliation(s)
| | | | | | - Bryant M Foreman
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - David N Gordon
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rebecca S Pelc
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Sung-Youl Ko
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Deepika Nair
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - John Paul Todd
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vicky Roy
- Ragon Institute, Cambridge, MA 02139, USA
| | - Maya Aleshnick
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Scott D Speer
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Nigel Bourne
- Department of Microbiology and Immunology, Department of Pathology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, Department of Pathology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Mario Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Grace L Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Cordero-Rivera CD, De Jesús-González LA, Osuna-Ramos JF, Palacios-Rápalo SN, Farfan-Morales CN, Reyes-Ruiz JM, Del Ángel RM. The importance of viral and cellular factors on flavivirus entry. Curr Opin Virol 2021; 49:164-175. [PMID: 34171540 DOI: 10.1016/j.coviro.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The flavivirus are emerging and re-emerging arthropod-borne pathogens responsible for significant mortality and morbidity worldwide. The genus comprises more than 70 viruses, and despite genomic and structural similarities, infections by different flaviviruses result in different clinical presentations. In the absence of a safe and effective vaccine against these infections, the search for new strategies to inhibit viral infection is necessary. The life cycle of arboviruses begins with the entry process composed of multiple steps: attachment, internalization, endosomal escape and capsid uncoating. This mini-review describes factors and mechanisms involved in the viral entry as events required to take over the cellular machinery and host factors and cellular pathways commonly used by flaviviruses as possible approaches for developing broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Carlos Daniel Cordero-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Luis Adrián De Jesús-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Juan Fidel Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Selvin Noé Palacios-Rápalo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Carlos Noe Farfan-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - José Manuel Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico.
| |
Collapse
|
49
|
Zhang JW, Wang H, Liu J, Ma L, Hua RH, Bu ZG. Generation of A Stable GFP-reporter Zika Virus System for High-throughput Screening of Zika Virus Inhibitors. Virol Sin 2021; 36:476-489. [PMID: 33231855 PMCID: PMC8257822 DOI: 10.1007/s12250-020-00316-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) is associated with severe birth defects and Guillain-Barré syndrome and no approved vaccines or specific therapies to combat ZIKV infection are currently available. To accelerate anti-ZIKV therapeutics research, we developed a stable ZIKV GFP-reporter virus system with considerably improved GFP visibility and stability. In this system a BHK-21 cell line expressing DC-SIGNR was established to facilitate the proliferation of GFP-reporter ZIKV. Using this reporter virus system, we established a high-throughput screening assay and screened a selected plant-sourced compounds library for their ability to block ZIKV infection. More than 31 out of 974 tested compounds effectively decreased ZIKV reporter infection. Four selected compounds, homoharringtonine (HHT), bruceine D (BD), dihydroartemisinin (DHA) and digitonin (DGT), were further validated to inhibit wild-type ZIKV infection in cells of BHK-21 and human cell line A549. The FDA-approved chronic myeloid leukemia treatment drug HHT and BD were identified as broad-spectrum flavivirus inhibitors. DHA, another FDA-approved antimalarial drug effectively inhibited ZIKV infection in BHK-21 cells. HHT, BD and DHA inhibited ZIKV infection at a post-entry stage. Digitonin was found to have inhibitory activity in the early stage of viral infection. Our research provides an efficient high-throughput screening assay for ZIKV inhibitors. The active compounds identified in this study represent potential therapies for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Jing-Wei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Han Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Le Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
50
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|