1
|
Hashimoto R, Watanabe Y, Keshta A, Sugiyama M, Kitai Y, Hirabayashi A, Yasuhara N, Morimoto S, Sakamoto A, Matsumura Y, Nishimura H, Noda T, Yamamoto T, Nagao M, Takeda M, Takayama K. Human iPS cell-derived respiratory organoids as a model for respiratory syncytial virus infection. Life Sci Alliance 2025; 8:e202402837. [PMID: 40262853 PMCID: PMC12015132 DOI: 10.26508/lsa.202402837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal respiratory pathogen that primarily affects young children, potentially causing severe lower respiratory tract disease. Despite the high disease burden, understanding of RSV pathophysiology remains limited. To address this, advanced RSV infection models are needed. Whereas HEp-2 cells are widely used because of their high susceptibility to RSV, they do not accurately reflect the host response of the human respiratory tract. In this study, we evaluated human-induced pluripotent stem cell-derived respiratory organoids, which contain respiratory epithelial cells, immune cells, fibroblasts, and vascular endothelial cells, for their potential to model RSV infection and support pharmaceutical research. RSV-infected organoids exhibited high viral genome and protein expression, epithelial layer destruction, and increased collagen accumulation. Pro-inflammatory cytokine levels in culture supernatants also increased post-infection. Furthermore, RSV infection was significantly inhibited by monoclonal antibodies (nirsevimab, palivizumab, suptavumab, or clesrovimab), although ribavirin showed limited efficacy. These findings highlight the utility of respiratory organoids for RSV research.
Collapse
Affiliation(s)
- Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Synthetic Human Body System, Medical Research Institute, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Abeer Keshta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Naoko Yasuhara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shiho Morimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Synthetic Human Body System, Medical Research Institute, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Pereira De Oliveira R, Droillard C, Devouassoux G, Rosa-Calatrava M. In vitro models to study viral-induced asthma exacerbation: a short review for a key issue. FRONTIERS IN ALLERGY 2025; 6:1530122. [PMID: 40224321 PMCID: PMC11987631 DOI: 10.3389/falgy.2025.1530122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Asthma is a heterogenous inflammatory bronchial disease involving complex mechanisms, several inflammatory pathways, and multiples cell-type networks. Bronchial inflammation associated to asthma is consecutive to multiple aggressions on epithelium, such as microbiologic, pollutant, and antigenic agents, which are responsible for both T2 and non-T2 inflammatory responses and further airway remodeling. Because asthma physiopathology involves multiple crosstalk between several cell types from different origins (epithelial, mesenchymal, and immune cells) and numerous cellular effectors, no single and/or representative in vitro model is suitable to study the overall of this disease. In this short review, we present and discuss the advantages and limitations of different in vitro models to decipher different aspects of virus-related asthma physiopathology and exacerbation.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Clément Droillard
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Devouassoux
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Respiratory Diseases, CIERA, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon et CRISALIS/F-CRIN INSERM Network, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec - Université Laval, Faculté de Médecine, Département de Pédiatrie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Stearns K, Lampe G, Hanan R, Marcink T, Niewiesk S, Sternberg SH, Greninger AL, Porotto M, Moscona A. Human parainfluenza virus 3 field strains undergo extracellular fusion protein cleavage to activate entry. mBio 2024; 15:e0232724. [PMID: 39382296 PMCID: PMC11559058 DOI: 10.1128/mbio.02327-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Human parainfluenza virus 3 (HPIV3) infection is driven by the coordinated action of viral surface glycoproteins hemagglutinin-neuraminidase (HN) and fusion protein (F). Receptor-engaged HN activates F to insert into the target cell membrane and drive virion-cell membrane fusion. For F to mediate entry, its precursor (F0) must first be cleaved by host proteases. F0 cleavage has been thought to be executed during viral glycoprotein transit through the trans-Golgi network by the ubiquitously expressed furin because F0 proteins of laboratory-adapted viruses contain a furin recognition dibasic cleavage motif RXKR around residue 108. Here, we show that the F proteins of field strains have a different cleavage motif from laboratory-adapted strains and are cleaved by unidentified proteases expressed in only a narrow subset of cell types. We demonstrate that extracellular serine protease inhibitors block HPIV3 F0 cleavage for field strains, suggesting F0 cleavage occurs at the cell surface facilitated by transmembrane proteases. Candidate proteases that may process HPIV3 F in vivo were identified by a genome-wide CRISPRa screen in HEK293/dCas9-VP64 + MPH cells. The lung-expressed extracellular serine proteases TMPRSS2 and TMPRSS13 are both sufficient to cleave HPIV3 F and enable infectious virus release by otherwise non-permissive cells. Our findings support an alternative mechanism of F activation in vivo, reliant on extracellular membrane-bound serine proteases expressed in a narrow subset of cells. The proportion of HPIV3 F proteins cleaved and infectious virus release is determined by host cell expression of requisite proteases, allowing just-in-time activation of F and positioning F cleavage as another key regulator of HPIV3 spread. IMPORTANCE Enveloped viruses cause a wide range of diseases in humans. At the first step of infection, these viruses must fuse their envelope with a cell membrane to initiate infection. This fusion is mediated by viral proteins that require a critical activating cleavage event. It was previously thought that for parainfluenza virus 3, an important cause of respiratory disease and a representative of a group of important pathogens, this cleavage event was mediated by furin in the cell secretory pathways prior to formation of the virions. We show that this is only true for laboratory strain viruses, and that clinical viruses that infect humans utilize extracellular proteases that are only made by a small subset of cells. These results highlight the importance of studying authentic clinical viruses that infect human tissues for understanding natural infection.
Collapse
Affiliation(s)
- Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - George Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Rachel Hanan
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Tara Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
5
|
Marcink TC, Zipursky G, Sobolik EB, Golub K, Herman E, Stearns K, Greninger AL, Porotto M, Moscona A. How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody. Nat Commun 2024; 15:8831. [PMID: 39396053 PMCID: PMC11470942 DOI: 10.1038/s41467-024-53082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Paramyxoviruses including measles, Nipah, and parainfluenza viruses are public health threats with pandemic potential. Human parainfluenza virus type 3 (HPIV3) is a leading cause of illness in pediatric, older, and immunocompromised populations. There are no approved vaccines or therapeutics for HPIV3. Neutralizing monoclonal antibodies (mAbs) that target viral fusion are a potential strategy for mitigating paramyxovirus infection, however their utility may be curtailed by viral evolution that leads to resistance. Paramyxoviruses enter cells by fusing with the cell membrane in a process mediated by a complex consisting of a receptor binding protein (HN) and a fusion protein (F). Existing atomic resolution structures fail to reveal physiologically relevant interactions during viral entry. We present cryo-ET structures of pre-fusion HN-F complexes in situ on surfaces of virions that evolved resistance to an anti-HPIV3 F neutralizing mAb. Single mutations in F abolish mAb binding and neutralization. In these complexes, the HN protein that normally restrains F triggering has shifted to uncap the F apex. These complexes are more readily triggered to fuse. These structures shed light on the adaptability of the pre-fusion HN-F complex and mechanisms of paramyxoviral resistance to mAbs, and help define potential barriers to resistance for the design of mAbs.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily Herman
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
6
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Sugimoto S, Kawase M, Suwa R, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Hanaki KI, Hosoya M, Hashimoto K, Shirato K. Comparison of mutations in human parainfluenza viruses during passage in primary human bronchial/tracheal epithelial air-liquid interface cultures and cell lines. Microbiol Spectr 2024; 12:e0116424. [PMID: 39078148 PMCID: PMC11370246 DOI: 10.1128/spectrum.01164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.
Collapse
Affiliation(s)
- Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ken-Ichi Hanaki
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Goh KJ, Lu H, Tan EK, Lee ZY, Wong A, Tran T, Dunn NR, Roy S. Differentiation of CD166-positive hPSC-derived lung progenitors into airway epithelial cells. Biol Open 2024; 13:bio061729. [PMID: 39387302 PMCID: PMC11554259 DOI: 10.1242/bio.061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Collapse
Affiliation(s)
- Kim Jee Goh
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zhao Yong Lee
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Amanda Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - N. Ray Dunn
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
9
|
Valenzuela AR, Turner M, Markarian N, Lachance-Brais C, Hanrahan J, Vali H, Vidal S, Mongeau L. Design, infectability, and transcriptomic analysis of transregionally differentiated and scalable lung organoids derived from adult bronchial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601655. [PMID: 39026877 PMCID: PMC11257428 DOI: 10.1101/2024.07.02.601655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The lung is a primary target for many lethal respiratory viruses, leading to significant global mortality. Current organoid models fail to completely mimic the cellular diversity and intricate tubular and branching structures of the human lung. Lung organoids derived from adult primary cells have so far only included cells from the input cell region, proximal or distal. Existing models are expensive. They often require cells from invasive deep lung tissue biopsies. The present study aimed to address these limitations. The lung organoids obtained using an original protocol exhibited transregional differentiation and were derived from relatively more accessible primary cells from the trachea/bronchi. Immortal bronchial cell lines were also used to simplify organoid fabrication and improve its scalability. The lung organoids are formed starting from bronchial cells with fibroblasts feeder cells in an alginate hydrogel coated with base membrane zone proteins. Characterizations were performed using bulk RNA sequencing and tandem mass tags. The resulting organoids express markers of different lung regions and mimic to some extent the tubular and branching morphology of the lung. The proteomic profile of organoid from primary cells and from cell lines was found to evolve towards that of mature lung tissue. Upregulated genes were mostly related to the respiratory system, tube development, and various aspects of respiratory viral infections. Infection with SARS-CoV-2 and influenza H1N1 was successful and did not require organoid disassembly. The organoids matured within 21 days and did not require complex or expensive culture methods. Transregionally differentiated lung organoid may find applications for the study of emerging or re-emerging viral infections and fostering the development of novel in-vitro therapeutic strategies.
Collapse
Affiliation(s)
- Alicia Reyes Valenzuela
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| | - Mark Turner
- Pharmaceutical Drugs Directorate, Bureau of Gastroenterology, Infection and Viral Diseases, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Nathan Markarian
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal. Montreal, Canada, J25 2MD
| | | | - John Hanrahan
- Department of Physiology, McGill University, Montreal, Canada. H3G 1Y6
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. H3A 0C7
| | - Silvia Vidal
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
| | - Luc Mongeau
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| |
Collapse
|
10
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
11
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
13
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Dobrovolny HM. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Results Probl Cell Differ 2024; 71:345-370. [PMID: 37996686 DOI: 10.1007/978-3-031-37936-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.
Collapse
Affiliation(s)
- Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
16
|
Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng 2024; 15:20417314241232502. [PMID: 38406820 PMCID: PMC10894554 DOI: 10.1177/20417314241232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
17
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
18
|
Xu YE, Ao DS, Sun X, Chen W, Luo X, Zhao C, Wang SY, Song H. A Novel Airway-Organoid Model Based on a Nano-Self-Assembling Peptide: Construction and Application in Adenovirus Infection Studies. Int J Nanomedicine 2023; 18:5225-5241. [PMID: 37727651 PMCID: PMC10505585 DOI: 10.2147/ijn.s413743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose Hydrogels containing the nano-self-assembling peptide RADA16-I (Nanogels) were utilized as scaffolds to establish airway organoids and an adenovirus-infected model. The results support in vitro adenovirus studies, including isolation and culture, pathogenesis research, and antiviral drug screening. Methods HSAEC1-KT, HuLEC-5a and HELF cells were cocultured in RADA16-I hydrogel scaffolds to construct an airway organoid model. Adenovirus was used to infect this model for adenovirus-related studies. The morphological characteristics and the proliferation and activity of airway organoids before and after adenovirus infection were evaluated. The expression of the airway organoid marker proteins CC10, KRT8, AQP5, SPC, VIM and CD31 was detected. TEM and qPCR were used to detect adenovirus proliferation in airway organoids. Results HSAEC1-KT, HuLEC-5a and HELF cells cocultured at 10:7:2 self-assembled into airway organoids and maintained long-term proliferation in a RADA16-I hydrogel 3D culture system. The organoids stably expressed the lumen-forming protein KRT8 and the terminal airway markers AQP5 and SPC. Adenoviruses maintained long-term proliferation in this model. Conclusion An airway-organoid model of adenovirus infection was constructed in vitro from three human lung-derived cell lines on RADA16-I hydrogels. The model has potential as a novel research tool for adenovirus isolation and culture, pathogenesis research, and antiviral drug screening.
Collapse
Affiliation(s)
- Yun-E Xu
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Di-Shu Ao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xin Sun
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Chen
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, 563000, People’s Republic of China
| | - Xue Luo
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Can Zhao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Sheng-Yu Wang
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Hong Song
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| |
Collapse
|
19
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
20
|
Kühl L, Graichen P, von Daacke N, Mende A, Wygrecka M, Potaczek DP, Miethe S, Garn H. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells 2023; 12:2067. [PMID: 37626876 PMCID: PMC10453737 DOI: 10.3390/cells12162067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent years, human lung organoids have been established as highly transferrable three-dimensional in vitro model systems for lung research. For acute infectious and chronic inflammatory diseases as well as lung cancer, human lung organoids have opened possibilities for precise in vitro research and a deeper understanding of mechanisms underlying lung injury and regeneration. Human lung organoids from induced pluripotent stem cells or from adult stem cells of patients' samples introduce tools for understanding developmental processes and personalized medicine approaches. When further state-of-the-art technologies and protocols come into use, the full potential of human lung organoids can be harnessed. High-throughput assays in drug development, gene therapy, and organoid transplantation are current applications of organoids in translational research. In this review, we emphasize novel approaches in translational and personalized medicine in lung research focusing on the use of human lung organoids.
Collapse
Affiliation(s)
- Laura Kühl
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Pauline Graichen
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Nele von Daacke
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Anne Mende
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Institute of Lung Health, German Center for Lung Research (DZL), 35392 Giessen, Germany
- CSL Behring Innovation GmbH, 35041 Marburg, Germany
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Bioscientia MVZ Labor Mittelhessen GmbH, 35394 Giessen, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| |
Collapse
|
21
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Matkovic Leko I, Schneider RT, Thimraj TA, Schrode N, Beitler D, Liu HY, Beaumont K, Chen YW, Snoeck HW. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc 2023; 18:2283-2312. [PMID: 37165073 PMCID: PMC11486529 DOI: 10.1038/s41596-023-00827-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 05/12/2023]
Abstract
Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Ivana Matkovic Leko
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remy T Schneider
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tania A Thimraj
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nadine Schrode
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Beitler
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Beaumont
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
De C, Pickles RJ, Yao W, Liao B, Boone A, Choi M, Battaglia DM, Askin FB, Whitmire JK, Silvestri G, Garcia JV, Wahl A. Human T cells efficiently control RSV infection. JCI Insight 2023; 8:e168110. [PMID: 37159271 PMCID: PMC10393221 DOI: 10.1172/jci.insight.168110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised individuals, and older individuals. There is an urgent need for effective antivirals and vaccines for high-risk individuals. We used 2 complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a proinflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines, which also elicit effective T cell responses to improve RSV vaccine efficacy.
Collapse
Affiliation(s)
- Chandrav De
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| | - Raymond J. Pickles
- Department of Microbiology and Immunology, and
- Marsico Lung Institute, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wenbo Yao
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| | - Baolin Liao
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
- Department of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Allison Boone
- Department of Microbiology and Immunology, and
- Marsico Lung Institute, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mingyu Choi
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| | - Diana M. Battaglia
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| | | | - Jason K. Whitmire
- Department of Microbiology and Immunology, and
- Department of Genetics, and
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| | - Angela Wahl
- International Center for the Advancement of Translational Science
- Division of Infectious Diseases, Department of Medicine
- Center for AIDS Research
| |
Collapse
|
24
|
Rezende W, Ye X, Angelo LS, Carisey AF, Avadhanula V, Piedra PA. The Efficiency of p27 Cleavage during In Vitro Respiratory Syncytial Virus (RSV) Infection Is Cell Line and RSV Subtype Dependent. J Virol 2023; 97:e0025423. [PMID: 37133390 PMCID: PMC10231215 DOI: 10.1128/jvi.00254-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) fusion protein (F) is highly conserved between subtypes A and B (RSV/A and RSV/B). To become fully active, F precursor undergoes enzymatic cleavage to yield F1 and F2 subunits and releases a 27-amino-acid peptide (p27). Virus-cell fusion occurs when RSV F undergoes a conformational change from pre-F to post-F. Previous data show that p27 is detected on RSV F, but questions remain regarding if and how p27 affects the conformation of mature RSV F. Monoclonal antibodies against p27, site Ø (pre-F specific), and site II were used to monitor RSV F conformation by enzyme-linked immunosorbent assay (ELISA) and imaging flow cytometry. Pre-F to post-F conformational change was induced by a temperature stress test. We found that p27 cleavage efficiency was lower on sucrose-purified RSV/A (spRSV/A) than on spRSV/B. In addition, cleavage of RSV F was cell line dependent: HEp-2 cells had higher retention of p27 than did A549 cells when infected with RSV. Higher levels of p27 were also found on RSV/A-infected cells than on RSV/B-infected cells. We observed that RSV/A F with higher p27 levels could better sustain the pre-F conformation during the temperature stress challenge in both spRSV- and RSV-infected cell lines. Our findings suggest that despite F sequence similarity, p27 of RSV subtypes was cleaved with different efficiencies, which were also dependent on the cell lines used for infection. Importantly, the presence of p27 was associated with greater stability of the pre-F conformation, supporting the possibility that RSV has more than one mechanism for fusion to the host cell. IMPORTANCE RSV fusion protein (F) plays an important role in entry and viral fusion to the host cell. The F undergoes proteolytic cleavages releasing a 27-amino-acid peptide (p27) to become fully functional. The role of p27 in viral entry and the function of the partially cleaved F containing p27 has been overlooked. p27 is thought to destabilize the F trimers, and thus, there is need for a fully cleaved F. In this study, we detected p27 on purified RSV virions and on the surface of virus-infected HEp-2 and A549 cells for circulating RSV strains of both subtypes. Higher levels of partially cleaved F containing p27 better sustained the pre-F conformation during the temperature stress challenge. Our findings highlight that the cleavage efficiency of p27 is different between RSV subtypes and among cell lines and that the presence of p27 contributes to the stability of the pre-F conformation.
Collapse
Affiliation(s)
- Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Avance Biosciences, Houston, Texas, USA
| | - Laura S. Angelo
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunology, Texas Children’s Hospital, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Zhao S, Wu X, Tan Z, Ren Y, Li L, Ou J, Lin Y, Song H, Feng L, Seto D, Wu J, Zhang Q, Rong Z. Generation of Human Embryonic Stem Cell-Derived Lung Organoids for Modeling Infection and Replication Differences between Human Adenovirus Types 3 and 55 and Evaluating Potential Antiviral Drugs. J Virol 2023; 97:e0020923. [PMID: 37120831 PMCID: PMC10231139 DOI: 10.1128/jvi.00209-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.
Collapse
Affiliation(s)
- Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xiaowei Wu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Yi Ren
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Junxian Ou
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jianguo Wu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Mitchell A, Yu C, Zhao X, Pearmain L, Shah R, Hanley KP, Felton T, Wang T. Rapid Generation of Pulmonary Organoids from Induced Pluripotent Stem Cells by Co-Culturing Endodermal and Mesodermal Progenitors for Pulmonary Disease Modelling. Biomedicines 2023; 11:1476. [PMID: 37239147 PMCID: PMC10216357 DOI: 10.3390/biomedicines11051476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Differentiation of induced pluripotent stem cells to a range of target cell types is ubiquitous in monolayer culture. To further improve the phenotype of the cells produced, 3D organoid culture is becoming increasingly prevalent. Mature organoids typically require the involvement of cells from multiple germ layers. The aim of this study was to produce pulmonary organoids from defined endodermal and mesodermal progenitors. Endodermal and mesodermal progenitors were differentiated from iPSCs and then combined in 3D Matrigel hydrogels and differentiated for a further 14 days to produce pulmonary organoids. The organoids expressed a range of pulmonary cell markers such as SPA, SPB, SPC, AQP5 and T1α. Furthermore, the organoids expressed ACE2 capable of binding SARS-CoV-2 spike proteins, demonstrating the physiological relevance of the organoids produced. This study presented a rapid production of pulmonary organoids using a multi-germ-layer approach that could be used for studying respiratory-related human conditions.
Collapse
Affiliation(s)
- Adam Mitchell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| | - Chaowen Yu
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
- Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| | - Laurence Pearmain
- Division of Diabetes, Endocrinology & Gastroenterology, Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (L.P.); (K.P.H.)
| | - Rajesh Shah
- Manchester University Hospital NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK;
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology & Gastroenterology, Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (L.P.); (K.P.H.)
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Tao Wang
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| |
Collapse
|
27
|
Hwang KS, Seo EU, Choi N, Kim J, Kim HN. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioact Mater 2023; 21:576-594. [PMID: 36204281 PMCID: PMC9519398 DOI: 10.1016/j.bioactmat.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell–cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented. 3D in vitro models are different from the traditional model in the infection process. Human-specific infection research requires a 3D microenvironment and human cells. 3D in vitro infectious models can be useful for basic research on infectious disease. 3D in vitro infectious models recapitulate the complex cell-virus-immune interaction.
Collapse
Affiliation(s)
- Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
28
|
Polymer film-based microwell array platform for long-term culture and research of human bronchial organoids. Mater Today Bio 2023; 19:100603. [PMID: 37009070 PMCID: PMC10060184 DOI: 10.1016/j.mtbio.2023.100603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
The culture of lung organoids relies on drops of basement membrane matrices. This comes with limitations, for example, concerning the microscopic monitoring and imaging of the organoids in the drops. Also, the culture technique is not easily compatible with micromanipulations of the organoids. In this study, we investigated the feasibility of the culture of human bronchial organoids in defined x-, y- and z-positions in a polymer film-based microwell array platform. The circular microwells have thin round/U-bottoms. For this, single cells are first precultured in drops of basement membrane extract (BME). After they form cell clusters or premature organoids, the preformed structures are then transferred into the microwells in a solution of 50% BME in medium. There, the structures can be cultured toward differentiated and mature organoids for several weeks. The organoids were characterized by bright-field microscopy for size growth and luminal fusion over time, by scanning electron microscopy for overall morphology, by transmission electron microscopy for the existence of microvilli and cilia, by video microscopy for beating cilia and swirling fluid, by live-cell imaging, by fluorescence microscopy for the expression of cell-specific markers and for proliferating and apoptotic cells, and by ATP measurement for extended cell viability. Finally, we demonstrated the eased micromanipulation of the organoids in the microwells by the example of their microinjection.
Collapse
|
29
|
Chamorro-Herrero I, Zambrano A. Modeling of Respiratory Diseases Evolving with Fibrosis from Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:ijms24054413. [PMID: 36901843 PMCID: PMC10002124 DOI: 10.3390/ijms24054413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory disease is one of the leading causes of morbidity and mortality worldwide. There is no cure for most diseases, which are treated symptomatically. Hence, new strategies are required to deepen the understanding of the disease and development of therapeutic strategies. The advent of stem cell and organoid technology has enabled the development of human pluripotent stem cell lines and adequate differentiation protocols for developing both airways and lung organoids in different formats. These novel human-pluripotent-stem-cell-derived organoids have enabled relatively accurate disease modeling. Idiopathic pulmonary fibrosis is a fatal and debilitating disease that exhibits prototypical fibrotic features that may be, to some extent, extrapolated to other conditions. Thus, respiratory diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or the one caused by SARS-CoV-2 may reflect some fibrotic aspects reminiscent of those present in idiopathic pulmonary fibrosis. Modeling of fibrosis of the airways and the lung is a real challenge due to the large number of epithelial cells involved and interaction with other cell types of mesenchymal origin. This review will focus on the status of respiratory disease modeling from human-pluripotent-stem-cell-derived organoids, which are being used to model several representative respiratory diseases, such as idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive pulmonary disease, and COVID-19.
Collapse
|
30
|
Xia JY, Zeng YF, Wu XJ, Xu F. Short-term ex vivo tissue culture models help study human lung infectionsA review. Medicine (Baltimore) 2023; 102:e32589. [PMID: 36607848 PMCID: PMC9829290 DOI: 10.1097/md.0000000000032589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most studies on human lung infection have been performed using animal models, formalin or other fixed tissues, and in vitro cultures of established cell lines. However, the experimental data and results obtained from these studies may not completely represent the complicated molecular events that take place in intact human lung tissue in vivo. The newly developed ex vivo short-term tissue culture model can mimic the in vivo microenvironment of humans and allow investigations of different cell types that closely interact with each other in intact human lung tissues. Therefore, this kind of model may be a promising tool for future studies of different human lung infections, owing to its special advantages in providing more realistic events that occur in vivo. In this review, we have summarized the preliminary applications of this novel short-term ex vivo tissue culture model, with a particular emphasis on its applications in some common human lung infections.
Collapse
Affiliation(s)
- Jing-Yan Xia
- Department of Radiation Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yi-Fei Zeng
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Xue-Jie Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
- * Correspondence: Feng Xu, Department of Infectious Diseases, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang 310009, PR China (e-mail: )
| |
Collapse
|
31
|
Chen J, Na F. Organoid technology and applications in lung diseases: Models, mechanism research and therapy opportunities. Front Bioeng Biotechnol 2022; 10:1066869. [PMID: 36568297 PMCID: PMC9772457 DOI: 10.3389/fbioe.2022.1066869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The prevalency of lung disease has increased worldwide, especially in the aging population. It is essential to develop novel disease models, that are superior to traditional models. Organoids are three-dimensional (3D) in vitro structures that produce from self-organizing and differentiating stem cells, including pluripotent stem cells (PSCs) or adult stem cells (ASCs). They can recapitulate the in vivo cellular heterogeneity, genetic characteristics, structure, and functionality of original tissues. Drug responses of patient-derived organoids (PDOs) are consistent with that of patients, and show correlations with genetic alterations. Thus, organoids have proven to be valuable in studying the biology of disease, testing preclinical drugs and developing novel therapies. In recent years, organoids have been successfully applied in studies of a variety of lung diseases, such as lung cancer, influenza, cystic fibrosis, idiopathic pulmonary fibrosis, and the recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. In this review, we provide an update on the generation of organoid models for these diseases and their applications in basic and translational research, highlighting these signs of progress in pathogenesis study, drug screening, personalized medicine and immunotherapy. We also discuss the current limitations and future perspectives in organoid models of lung diseases.
Collapse
Affiliation(s)
| | - Feifei Na
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Edwards CE, Tata A, Baric RS. Human lung organoids as a model for respiratory virus replication and countermeasure performance in human hosts. Transl Res 2022; 250:36-45. [PMID: 35850445 DOI: 10.1016/j.trsl.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022]
Abstract
Human respiratory viruses induce a wide breadth of disease phenotypes and outcomes of varying severity. Innovative models that recapitulate the human respiratory tract are needed to study such viruses, understand the virus-host interactions underlying replication and pathogenesis, and to develop effective countermeasures for prevention and treatment. Human organoid models provide a platform to study virus-host interactions in the proximal to distal lung in the absence of a human in vivo model. These cultures fill the niche of a suitable ex vivo model that represents the in vivo lung environment and encapsulates the structure and function of the native human lung.
Collapse
Affiliation(s)
- Caitlin E Edwards
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
33
|
Do T, Synan L, Ali G, Gappa-Fahlenkamp H. 3D tissue-engineered lung models to study immune responses following viral infections of the small airways. Stem Cell Res Ther 2022; 13:464. [PMID: 36071442 PMCID: PMC9449944 DOI: 10.1186/s13287-022-03134-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Small airway infections caused by respiratory viruses are some of the most prevalent causes of illness and death. With the recent worldwide pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is currently a push in developing models to better understand respiratory diseases. Recent advancements have made it possible to create three-dimensional (3D) tissue-engineered models of different organs. The 3D environment is crucial to study physiological, pathophysiological, and immunomodulatory responses against different respiratory conditions. A 3D human tissue-engineered lung model that exhibits a normal immunological response against infectious agents could elucidate viral and host determinants. To create 3D small airway lung models in vitro, resident epithelial cells at the air-liquid interface are co-cultured with fibroblasts, myeloid cells, and endothelial cells. The air-liquid interface is a key culture condition to develop and differentiate airway epithelial cells in vitro. Primary human epithelial and myeloid cells are considered the best 3D model for studying viral immune responses including migration, differentiation, and the release of cytokines. Future studies may focus on utilizing bioreactors to scale up the production of 3D human tissue-engineered lung models. This review outlines the use of various cell types, scaffolds, and culture conditions for creating 3D human tissue-engineered lung models. Further, several models used to study immune responses against respiratory viruses, such as the respiratory syncytial virus, are analyzed, showing how the microenvironment aids in understanding immune responses elicited after viral infections.
Collapse
Affiliation(s)
- Taylor Do
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Lilly Synan
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Gibran Ali
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
34
|
Seo HR, Han HJ, Lee Y, Noh YW, Cho SJ, Kim JH. Human Pluripotent Stem Cell-Derived Alveolar Organoid with Macrophages. Int J Mol Sci 2022; 23:ijms23169211. [PMID: 36012471 PMCID: PMC9409017 DOI: 10.3390/ijms23169211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Alveolar organoids (AOs), derived from human pluripotent stem cells (hPSCs) exhibit lung-specific functions. Therefore, the application of AOs in pulmonary disease modeling is a promising tool for understanding disease pathogenesis. However, the lack of immune cells in organoids limits the use of human AOs as models of inflammatory diseases. In this study, we generated AOs containing a functional macrophage derived from hPSCs based on human fetal lung development using biomimetic strategies. We optimized culture conditions to maintain the iMACs (induced hPSC-derived macrophages) AOs for up to 14 days. In lipopolysaccharide (LPS)-induced inflammatory conditions, IL-1β, MCP-1 and TNF-α levels were significantly increased in iMAC-AOs, which were not detected in AOs. In addition, chemotactic factor IL-8, which is produced by mononuclear phagocytic cells, was induced by LPS treatment in iMACs-AOs. iMACs-AOs can be used to understand pulmonary infectious diseases and is a useful tool in identifying the mechanism of action of therapeutic drugs in humans. Our study highlights the importance of immune cell presentation in AOs for modeling inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Ha-Rim Seo
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Hyeong-Jun Han
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Youngsun Lee
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Young-Woock Noh
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Seung-Ju Cho
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| |
Collapse
|
35
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
36
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
37
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
38
|
Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345. [PMID: 35847376 PMCID: PMC9283667 DOI: 10.1016/j.mtbio.2022.100345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The recent spike in the instances of complex physiological host-microbe interactions has raised the demand for developing in vitro models that recapitulate the microbial microenvironment in the human body. Organoids are steadily emerging as an in vitro culture system that closely mimics the structural, functional, and genetic features of complex human organs, particularly for better understanding host-microbe interactions. Recent advances in organoid culture technology have become new avenues for assessing the pathogenesis of symbiotic interactions, pathogen-induced infectious diseases, and various other diseases. The co-cultures of organoids with microbes have shown great promise in simulating host-microbe interactions with a high level of complexity for further advancement in related fields. In this review, we provide an overview of bioengineering approaches for microbe-co-cultured organoids. Latest developments in the applications of microbe-co-cultured organoids to study human physiology and pathophysiology are also highlighted. Further, an outlook on future research on bioengineered organoid co-cultures for various applications is presented.
Collapse
|
39
|
Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans 2022; 50:1045-1056. [PMID: 35411381 DOI: 10.1042/bst20190569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
Respiratory diseases are a major reason for death in both men and women worldwide. The development of therapies for these diseases has been slow and the lack of relevant human models to understand lung biology inhibits therapeutic discovery. The lungs are structurally and functionally complex with many different cell types which makes designing relevant lung models particularly challenging. The traditional two-dimensional (2D) cell line cultures are, therefore, not a very accurate representation of the in vivo lung tissue. The recent development of three-dimensional (3D) co-culture systems, popularly known as organoids/spheroids, aims to bridge the gap between 'in-dish' and 'in-tissue' cell behavior. These 3D cultures are modeling systems that are widely divergent in terms of culturing techniques (bottom-up/top-down) that can be developed from stem cells (adult/embryonic/pluripotent stem cells), primary cells or from two or more types of cells, to build a co-culture system. Lung 3D models have diverse applications including the understanding of lung development, lung regeneration, disease modeling, compound screening, and personalized medicine. In this review, we discuss the different techniques currently being used to generate 3D models and their associated cellular and biological materials. We further detail the potential applications of lung 3D cultures for disease modeling and advances in throughput for drug screening.
Collapse
|
40
|
Two Different Therapeutic Approaches for SARS-CoV-2 in hiPSCs-Derived Lung Organoids. Cells 2022; 11:cells11071235. [PMID: 35406799 PMCID: PMC8997767 DOI: 10.3390/cells11071235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment. The infection begins in the proximal airways, namely the alveolar type 2 (AT2) cells of the distal lung, which express both ACE2 and DPP4 receptors. Thus, to evaluate the efficacy of both approaches, we developed three-dimensional (3D) complex lung organoid structures (hLORGs) derived from human-induced pluripotent stem cells (iPSCs) and resembling the in vivo organ. Afterward, hLORGs were infected by different SARS-CoV-2 S pseudovirus variants and treated by the Ab15033-7 or DPP4 peptide. Using both approaches, we observed a significant reduction of viral entry and a modulation of the expression of genes implicated in innate immunity and inflammatory response. These data demonstrate the efficacy of such approaches in strongly reducing the infection efficiency in vitro and, importantly, provide proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.
Collapse
|
41
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
42
|
Generation of Human Lung Organoid Cultures from Healthy and Tumor Tissue to Study Infectious Diseases. J Virol 2022; 96:e0009822. [DOI: 10.1128/jvi.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) human lung organoids reflect the native cell composition of the lung as well as its physiological properties. Human 3D lung organoids offer ideal conditions, such as timely availability in large quantities and high physiological relevance for reassessment and prediction of disease outbreaks of respiratory pathogens and pathogens that use the lung as a primary entry portal.
Collapse
|
43
|
Price AM, Steinbock RT, Di C, Hayer K, Li Y, Herrmann C, Parenti N, Whelan J, Weiss S, Weitzman M. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res 2022; 50:1201-1220. [PMID: 34671803 PMCID: PMC8860579 DOI: 10.1093/nar/gkab896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert T Steinbock
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Di
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jillian N Whelan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen and is known to enter the host via the respiratory tract and disseminate to various organs. Current hypotheses speculate that CDV uses the homologous cellular receptors of measles virus (MeV), SLAM and nectin-4, to initiate the infection process. For validation, here, we established the well-differentiated air-liquid interface (ALI) culture model from primary canine tracheal airway epithelial cells. By applying the green fluorescent protein (GFP)-expressing CDV vaccine strain and recombinant wild-type viruses, we show that cell-free virus infects the airway epithelium mainly via the paracellular route and only after prior disruption of tight junctions by pretreatment with EGTA; this infection was related to nectin-4 but not to SLAM. Remarkably, when CDV-preinfected DH82 cells were cocultured on the basolateral side of canine ALI cultures grown on filter supports with a 1.0-μm pore size, cell-associated CDV could be transmitted via cell-to-cell contact from immunocytes to airway epithelial cultures. Finally, we observed that canine ALI cultures formed syncytia and started to release cell-free infectious viral particles from the apical surface following treatment with an inhibitor of the JAK/STAT signaling pathway (ruxolitinib). Our findings show that CDV can overcome the epithelial barrier through different strategies, including infection via immunocyte-mediated transmission and direct infection via the paracellular route when tight junctions are disrupted. Our established model can be adapted to other animals for studying the transmission routes and the pathogenicity of other morbilliviruses. IMPORTANCE Canine distemper virus (CDV) is not only an important pathogen of carnivores, but it also serves as a model virus for analyzing measles virus pathogenesis. To get a better picture of the different stages of infection, we used air-liquid interface cultures to analyze the infection of well-differentiated airway epithelial cells by CDV. Applying a coculture approach with DH82 cells, we demonstrated that cell-mediated infection from the basolateral side of well-differentiated epithelial cells is more efficient than infection via cell-free virus. In fact, free virus was unable to infect intact polarized cells. When tight junctions were interrupted by treatment with EGTA, cells became susceptible to infection, with nectin-4 serving as a receptor. Another interesting feature of CDV infection is that infection of well-differentiated airway epithelial cells does not result in virus egress. Cell-free virions are released from the cells only in the presence of an inhibitor of the JAK/STAT signaling pathway. Our results provide new insights into how CDV can overcome the barrier of the airway epithelium and reveal similarities and some dissimilarities compared to measles virus.
Collapse
|
45
|
Ngan SY, Quach HT, Laselva O, Huang EN, Mangos M, Xia S, Bear CE, Wong AP. Stage-Specific Generation of Human Pluripotent Stem Cell Derived Lung Models to Measure CFTR Function. Curr Protoc 2022; 2:e341. [PMID: 35025140 DOI: 10.1002/cpz1.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (ES) and induced pluripotent stem cells (iPSC) are powerful tools that have the potential to generate in vitro human lung epithelial cells. However, challenges in efficiency and reproducibility remain in utilizing the cells for therapy discovery platforms. Here, we optimize our previously published protocols to efficiently generate three developmental stages of the lung model (fetal lung epithelial progenitors, fLEP; immature airway epithelial spheroid, AES; air-liquid interface culture, ALI), and demonstrate its potential for cystic fibrosis (CF) drug discovery platforms. The stepwise approach directs differentiation from hPSC to definitive endoderm, anterior ventral foregut endoderm, and fetal lung progenitor cells. The article also describes the generation of immature airway epithelial spheroids in Matrigel with epithelial cells sorted by a magnetic-activated cell sorting system, and the generation of adult-like airway epithelia through air-liquid interface conditions. We demonstrate that this optimized procedure generates remarkably higher cystic fibrosis transmembrane conductance regulator (CFTR) expression and function than our previous method, and thus is uniquely suitable for CF research applications. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: hESC/hiPSC differentiation to fetal lung progenitors Basic Protocol 2: Formation of airway epithelial spheroids Alternate Protocol 1: Cryopreservation of airway epithelial spheroids Basic Protocol 3: Differentiation and maturation in air-liquid interface culture Alternate Protocol 2: Differentiation and maturation of epithelial progenitors from airway epithelial spheroids in ALI culture.
Collapse
Affiliation(s)
- Shuk Yee Ngan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Henry T Quach
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Onofrio Laselva
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical and Surgical Sciences, University of Foggia, Foggia, Puglia, Italy
| | - Elena N Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Mangos
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunny Xia
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Abstract
Pandemics caused by respiratory viruses have impacted millions of lives and caused massive destruction to global infrastructure. With their emergence, it has become a priority to develop platforms to rapidly dissect host/pathogen interactions, develop diagnostics, and evaluate therapeutics. Traditional viral culture methods do not faithfully recapitulate key aspects of infection. Tissue engineering as a discipline has developed techniques to produce three-dimensional human tissues which can serve as platforms to study respiratory viruses in vitro. In this chapter, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been used as a representative respiratory virus motivating the use of tissue engineering to generate in vitro culture models. SARS-CoV-2 pathophysiology, traditional cell culture, tissue engineering-based cell culture, and future directions for the field are highlighted.
Collapse
|
47
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Harb A, Fakhreddine M, Zaraket H, Saleh FA. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics (Basel) 2021; 7:3. [PMID: 35076456 PMCID: PMC8788432 DOI: 10.3390/biomimetics7010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are among the most common illnesses and a leading cause of morbidity and mortality worldwide. Due to the severe effects on health, the need of new tools to study the pathogenesis of respiratory viruses as well as to test for new antiviral drugs and vaccines is urgent. In vitro culture model systems, such as three-dimensional (3D) cultures, are emerging as a desirable approach to understand the virus host interactions and to identify novel therapeutic agents. In the first part of the article, we address the various scaffold-free and scaffold-based 3D culture models such as hydrogels, bioreactors, spheroids and 3D bioprinting as well as present their properties and advantages over conventional 2D methods. Then, we review the 3D models that have been used to study the most common respiratory viruses including influenza, parainfluenza, respiratory syncytial virus (RSV) and coronaviruses. Herein, we also explain how 3D models have been applied to understand the novel SARS-CoV-2 infectivity and to develop potential therapies.
Collapse
Affiliation(s)
- Aya Harb
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (A.H.); (H.Z.)
| | | | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (A.H.); (H.Z.)
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Fatima A. Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut 11-5020, Lebanon
| |
Collapse
|
49
|
Biological Models of the Lower Human Airways-Challenges and Special Requirements of Human 3D Barrier Models for Biomedical Research. Pharmaceutics 2021; 13:pharmaceutics13122115. [PMID: 34959396 PMCID: PMC8707984 DOI: 10.3390/pharmaceutics13122115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/27/2022] Open
Abstract
In our review, we want to summarize the current status of the development of airway models and their application in biomedical research. We start with the very well characterized models composed of cell lines and end with the use of organoids. An important aspect is the function of the mucus as a component of the barrier, especially for infection research. Finally, we will explain the need for a nondestructive characterization of the barrier models using TEER measurements and live cell imaging. Here, organ-on-a-chip technology offers a great opportunity for the culture of complex airway models.
Collapse
|
50
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|