1
|
Motamedi S, Rashidian E, Jaydari A, Rahimi H, Khademi P. Epidemiological and molecular survey of Coxiella burnetii from the serum of patients suspected of brucellosis in west of Iran. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105743. [PMID: 40132740 DOI: 10.1016/j.meegid.2025.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Q fever is a global bacterial disease that affects both humans and animals. The etiological agent of the disease is Coxiella burnetii. The aim of the investigation was to detect the existence of C. burneti in the serum samples of patients with symptoms of fever and suspicion of brucellosis in the west of Iran. In the current survey, 150 Wright agglutination assay were collected from health centers in Lorestan, Hamadan, Ilam, Kermanshah, and Kurdistan provinces in 2023. DNA was extracted from all these samples, which were taken from individuals suspected of having brucellosis. Then, a nested PCR reaction was applied to diagnose C. burnetii for the transposon gene IS1111. The IS1111 gene replication assays, indicated that 3.3 % (95 % CI: 1.43 %-3.33 %) of the tested serum samples, were positive for C. burnetii. The highest prevalence of C. burnetii infection was found in the Kurdistan province at 6.67 % (95 % CI: 1.85 %-21.33 %). Additionally, a high affinity (ranging from 99 % to 100 %) was recognized among the IS1111 gene sequenced in the present study and those from different area around the world. These results provide strong evidence that individuals with brucellosis in west of Iran may also have C. burnetii co-infection with coxiellosis. Therefore, it is important to consider Q fever as a co-infection in patients suspected of brucellosis.
Collapse
Affiliation(s)
- Saeed Motamedi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Ehsan Rashidian
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Heidar Rahimi
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
2
|
García-Gasalla M, Pinecki Socias S, Fraile PA, Fernández-Baca V, Villoslada A, Adrover A, Gregorio S, González-Moreno M, Pinheiro Martins A, Zidouh A, Mut G, Gavaldà M, Riera M, Martín Pena L, Murillas Angoiti J. Acute Q fever in Majorca island 2017-2022. An underestimated problem. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025:S2529-993X(25)00110-8. [PMID: 40393906 DOI: 10.1016/j.eimce.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION Q fever (QF) is a zoonotic infection caused by Coxiella burnetii. Previous studies suggest that the incidence in the island of Majorca may be high. The objective was to know the epidemiological, clinical, diagnostic, and therapeutic characteristics of acute QF (AQF) on the island of Majorca during the years 2017-2022. METHODS Retrospective analysis of a series of cases of AQF diagnosed in 3 out 4 hospitals of the Health Service of the island of Majorca. AQF was considered if a clinically compatible syndrome was present with one of the following serological criteria: confirmed AQF if IgG seroconversion phase II, very possible if only IgG ≥1/128 is available in addition to a positive IgM, and AQF possible if IgG≥ 1/512 with negative IgM or if IgM positive with negative IgG in a single serological determination. RESULTS 223 cases of AQF were diagnosed, of which 102 (45.7%) were confirmed, 84 (37.7%) very probable and 37 (16.6%) probable AQF. Prolonged febrile syndrome was the most frequent clinical diagnosis (107, 48.0%), followed by pneumonia with/without pleural effusion (49, 21.9%), acute hepatitis (38, 17.0%), pericarditis and/or myocarditis (6, 2.6%). Three patients developed endocarditis (one in the acute phase, two others during follow-up). The median number of cases per year was 34 (p25-p75: 31.7-40.25). AQF-related mortality was 1.8% (4 patients). CONCLUSION AQF is a preventable and little recognized zoonosis, causing significant morbidity and mortality in Majorca.
Collapse
Affiliation(s)
- Mercedes García-Gasalla
- Servicio de Medicina Interna, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; Facultad de Medicina, Universidad de las Islas Baleares, Palma, Balearic Islands, Spain; CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain.
| | - Sophia Pinecki Socias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain
| | - Pablo A Fraile
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; Servicio de Microbiología, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain; CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| | - Victoria Fernández-Baca
- Servicio de Microbiología, Hospital Universitario Son Llàtzer, Palma, Balearic Islands, Spain
| | - Aroa Villoslada
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; Servicio de Medicina Interna, Hospital Universitario Son Llàtzer, Palma, Balearic Islands, Spain
| | - Antonio Adrover
- Servicio de Medicina Interna, Hospital Universitario Son Llàtzer, Palma, Balearic Islands, Spain
| | - Sandra Gregorio
- Servicio de Medicina Interna, Hospital Universitario Son Llàtzer, Palma, Balearic Islands, Spain
| | | | | | - Alexander Zidouh
- Servicio de Medicina Interna, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain
| | - Gemma Mut
- Hospital Quirón Palma Planas, Palma, Balearic Islands, Spain
| | | | - Melchor Riera
- Servicio de Medicina Interna, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; Facultad de Medicina, Universidad de las Islas Baleares, Palma, Balearic Islands, Spain; CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| | - Luisa Martín Pena
- Servicio de Medicina Interna, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| | - Javier Murillas Angoiti
- Servicio de Medicina Interna, Hospital Universitario Son Espases, Palma, Balearic Islands, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Balearic Islands, Spain; Facultad de Medicina, Universidad de las Islas Baleares, Palma, Balearic Islands, Spain; CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| |
Collapse
|
3
|
Elango A, Shriram AN, Raju HK, Padmaja S, Kumar A. Spatial and temporal prevalence, abundance and infestation intensity of the ixodid tick population on small domestic ruminants (goat and sheep) in different agro-climatic regions of Tamil Nadu. Vet Parasitol Reg Stud Reports 2025; 59:101235. [PMID: 40121049 DOI: 10.1016/j.vprsr.2025.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Tick borne diseases are emerging in various agro-climatic regions, affecting both humans and domestic animals such as small ruminants (goats and sheep). The distribution and abundance of tick vectors across agro-climatic regions are influenced by seasonal variations. A comprehensive tick survey was carried out on small ruminants in 220 villages across seven agro-climatic regions during the four seasons of Tamil Nadu. A total of 51,694 ticks were collected, with 36,522 (70.6 %) from goats and 15,712 (30.4 %) from sheep, representing 16 species from four genera. Haemaphysalis intermedia was the most prevalent tick species (89.7 %), while Rhipicephalus microplus was the most abundant (7.8) ticks in small domestic ruminants. Tick species diversity was higher in goats (14 species) compared to sheep (13 species). The highest species diversity in goats was recorded in the hilly agro-climatic regions (10 species) and during the summer season (11 species), while the highest species diversity in sheep was observed in the southern agro-climatic region (10 species) and during the winter season (12 species). H.intermedia was the most prevalent species in both goats (89.4 %) and sheep (97.0 %). The highest abundance was reported Rh.microplus in goats (8.14) and H.intermedia in sheep (7.4). Infestation intensity for H.intermedia was observed highest in both goats (5.6) and sheep (6.0), with an infestation rate of 42.5 % in both species. This study provides the first comprehensive report on tick species diversity in small ruminants in Tamil Nadu, revealing the highest species diversity and documenting several species not previously reported in this region.
Collapse
Affiliation(s)
- Ayyanar Elango
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India.
| | - Ananganallur Nagarajan Shriram
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India.
| | - Hari Kishan Raju
- Climate Change, GIS and VBD Stratification/ Mapping, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India
| | - Soundaramourthy Padmaja
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India
| | - Ashwani Kumar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 605102, India
| |
Collapse
|
4
|
Wambua L, Bett B, Abkallo HM, Muturi M, Nthiwa D, Nyamota R, Kiprono E, Kirwa L, Gakuya F, Bartlow AW, Middlebrook EA, Fair J, Njenga K, Gachohi J, Mwatondo A, Akoko JM. National serosurvey and risk mapping reveal widespread distribution of Coxiella burnetii in Kenya. Sci Rep 2025; 15:9706. [PMID: 40113846 PMCID: PMC11926080 DOI: 10.1038/s41598-025-94154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an emerging pathogen that has the potential to cause severe chronic infections in animals and humans worldwide. The detrimental impact on public health is projected to be higher in the low- and middle-income countries given their lower capacity to sustain effective surveillance and response measures. We implemented a national serosurvey of cattle in Kenya to map the spatial distribution of the pathogen. The study used serum samples that were collected from randomly selected cattle in different ago-ecological zones across the country. These samples were screened for the pathogen using PrioCHECK Ruminant Q Fever AB Plate ELISA kit. The laboratory findings were analyzed using INLA package to identify risk factors for C. burnetii exposure from herd- and animal-level factors, area, and bioclimatic datasets accessed from online databases. A total of 6,593 cattle were recruited for the study; of these, 7.9% (95% CI; 7.2-8.5) were seropositive. Outputs from the multivariable analysis revealed that the animal age and some of the geographical variables including wind speed, area under shrubs and "petric calcisols" type of soil were significantly associated with C. burnetii seropositivity. Being a calf, weaner or subadult was associated with lower odds of exposure compared to being an adult by 0.24 (credibility interval: 2.5% and 97.5%), 0.41 (0.30-0.55) and 0.51 (0.38-0.69), respectively. In addition, a unit increase in the wind speed increased the odds of C. burnetii seropositivity by 1.27 (1.05-1.52) while an increase on the land area under shrubs was associated with lower odds of exposure (0.67 [0.47-0.69]). The effect of petric calcisols was non-linear; an increase of the land area with this soil type was associated with an exponential increase in C. burnetii seropositivity. This study provides new data on C. burnetii seroprevalence, information of its risk factors and a prevalence map that can be used for C. burnetii risk surveillance and control. The identification of environmental risk factors for C. burnetii exposure, and the increasing awareness of the zoonotic potential of the pathogen, calls for the need to enhance the existing collaborations for the surveillance and control of C. burnetii in line with the One Health framework. The evidence generated on the potential role of environmental factors can also be used to design nature-based interventions, such as replacement of vegetation in denuded areas, to reduce potential for the aerosolization of the pathogen. Livestock vaccination in the hotspots would also reduce animal infections and hence the contamination of the environment.
Collapse
Affiliation(s)
- Lillian Wambua
- International Livestock Research Institute, Nairobi, Kenya.
- World Organisation for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya.
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Faculty of Veterinary Medicine, Dahlem Research School of Biomedical Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | | | - Enock Kiprono
- International Livestock Research Institute, Nairobi, Kenya
| | - Lynn Kirwa
- International Livestock Research Institute, Nairobi, Kenya
| | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | | | | | - Jeanne Fair
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kariuki Njenga
- Global Health Programme, Washington State University, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
| | - John Gachohi
- Global Health Programme, Washington State University, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Nairobi, Kenya
| | - James M Akoko
- International Livestock Research Institute, Nairobi, Kenya.
| |
Collapse
|
5
|
Ostach PKS, Dülsner A, Keil A, Nagel-Riedasch S. Management of zoonoses in research institutions - lessons learned from a Coxiella burnetii outbreak case. Lab Anim 2025; 59:93-103. [PMID: 39558728 PMCID: PMC11967106 DOI: 10.1177/00236772241271028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/23/2024] [Indexed: 11/20/2024]
Abstract
When biomedical research investigates the human surgical situation in the need of a chronic course, it is more often possible to do so using large animal models. The use of farm animals always poses special challenges for the institution conducting the research in terms of infection prevention and occupational safety. Especially for the zoonotic disease coxiellosis it is important to be aware of the constant risk of pathogen introduction by small ruminants and to take appropriate precautions. In this way, personal injury should be avoided or at least be kept to a minimum in the event of infection since then sustainable zoonosis control can be immediately initiated. Using the example of a Q fever outbreak at a research facility, we want to share with this extended case report the importance of central emergency structures, provisions and the inclusion of relevant experts and disciplines in a crisis team. Its primary purpose is to support the affected facility and coordinate the implementation of necessary cleaning, disinfection and decontamination measures in close contact with the responsible local authorities. The aim is to inactivate the pathogen in a systematic and controlled manner in few steps of action only and to keep the interruption of the facility's operations as short as possible.
Collapse
Affiliation(s)
- Pia KS Ostach
- Charité-Universitätsmedizin Berlin, Forschungseinrichtungen für Experimentelle Medizin, Germany
| | - André Dülsner
- Charité-Universitätsmedizin Berlin, Forschungseinrichtungen für Experimentelle Medizin, Germany
| | - Anne Keil
- Charité-Universitätsmedizin Berlin, Arbeitsmedizinisches Zentrum, Germany
| | - Stefan Nagel-Riedasch
- Charité-Universitätsmedizin Berlin, Forschungseinrichtungen für Experimentelle Medizin, Germany
| |
Collapse
|
6
|
Chen Q, Li Z, Kang M, Hu G, Cai J, Li J, Han X, Chen C, He S, Hu X, He Y, Li Z, Chen J, Geng P, Jiang S, Ma J, Zhang X, Tai X, Li Y. Molecular identification of tick (Acari: Ixodidae) and tick-borne pathogens from Przewalski's gazelle (Procapra Przewalskii) and Tibetan sheep (Ovis aries) in Qinghai Lake National Nature Reserve, China. Heliyon 2024; 10:e40205. [PMID: 39720001 PMCID: PMC11666992 DOI: 10.1016/j.heliyon.2024.e40205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 12/26/2024] Open
Abstract
The Qinghai Lake National Nature Reserve (QLNNR), renowned for its abundant natural resources and diverse ecological habitats, serves as an ideal environment for ticks, thereby increasing the risk of various tick-borne pathogens (TBPs) transmission. This study aimed to investigate the prevalence of TBPs in ticks collected from Przewalski's gazelle and Tibetan sheep within the QLNNR. A total of 313 tick samples were collected from the vicinity of Qinghai Lake. Tick species identification was conducted using both morphological and molecular biology techniques. Polymerase chain reaction (PCR) amplification was performed to detect the presence of spotted fever group (SFG) Rickettsia, Coxiella burnetii, Anaplasma phagocytophilum, Babesia microti, Theileria spp, Borrelia burgdorferi, Brucella spp, and Anaplasma ovis was performed using specific primers. Positive samples were sequenced and analyzed using BLASTn, followed by phylogenetic tree construction. The ticks collected from the Qinghai Lake area were identified as Dermacentor nuttalli. The overall prevalence rates of ticks carrying SFG Rickettsia and C. burnetii were 42.8 % (134/313) and 4.8 % (15/313), respectively. Three SFG Rickettsia species were detected, including R. raoultii 33.9 % (106/313), R. slovaca 3.8 % (12/113) and R. sibirica 7.7 % (24/113), with R. raoultii being the predominant species. The prevalence rates of SFG Rickettsia and C. burnetii in ticks from Tibetan sheep was 44.7 % (115/257) and 4.7 % (12/257), respectively,and in ticks from Przewalski's gazelle were 33.9 % (19/56) and 5.4 % (3/56). Furthermore, the study revealed a positive linear relationship between the abundance of Przewalski's gazelle and the number of ticks, as well as the prevalence of TBPs. The current study has identified Dermacentor nuttalli as the predominant tick vector species within the QLNNR region. The detection of SFG Rickettsia and C. burnetii has augmented our understanding of the epidemiological profile of ticks and TBPs in this area, thereby providing a robust theoretical foundation for the implementation of effective prevention and control strategies against TBPs.
Collapse
Affiliation(s)
- Qiang Chen
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Zengkui Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ming Kang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Guangwei Hu
- Qinghai Yak Breeding and Promotion Service Center, Datong, 810100, Qinghai, China
| | - Jinshan Cai
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, 810000, China
| | - Jing Li
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, 810000, China
| | - Xiaoling Han
- Qinghai National Park Research, Monitoring and Evaluation Center, Xining, 810008, Qinghai, China
| | - Changjiang Chen
- Huangyuan Animal Husbandry and Veterinary Station, Xining, 810016, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park, Xining, 810016, Qinghai, China
| | - Xiaoyu Hu
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yongcai He
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Zhongyu Li
- Qinghai Xunhua Salar Autonomous County Animal Husbandry and Veterinary Station, Haidong, 811100, Qinghai, China
| | - Jiyong Chen
- Yushu Animal Disease Prevention and Control Center, yushu, 815099, Qinghai, China
| | - Pengcheng Geng
- Golog Tibetan Autonomous Prefecture Animal Epidemic Disease Prevention Control Center, Golog, 814000, Qinghai, China
| | - Shuo Jiang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Jinghua Ma
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiao Zhang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ximei Tai
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ying Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, 810016, Qinghai, China
| |
Collapse
|
7
|
Khademi P, Tukmechi A, Ownagh A. Molecular detection and phylogeny analysis of Coxiella burnetii detected from cattle and buffalo milk based on plasmid cbhE gene in West Azerbaijan of Iran. New Microbes New Infect 2024; 62:101495. [PMID: 39497916 PMCID: PMC11533604 DOI: 10.1016/j.nmni.2024.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Humans and animals may get Q fever, which is caused by the Gram-negative coccobacillus Coxiella burnetii. The symptoms of Q fever may include a self-limiting febrile illness, pneumonia, endocarditis, or hepatitis. Infections are classified as either acute or persistent. Cattle, sheep, and goats are the most prevalent reservoir animals for this zoonosis. This research was conducted to identify C. burnetii using transposable and isocitrate dehydrogenase genes (IS1111, icd) and QpH1 plasmids. A total of 142 samples of raw buffalo and cow milk were collected from various locations within the West Azerbaijan region (see map). We used "nested" PCR techniques using primers based on the IS1111 and icd genes of C. burnetii, as well as conserved and variable portions of plasmid sequences, to identify C. burnetii and their plasmids in milk samples from buffalo and calves. Out of 142 milk samples that were positive for the chromosomal transposable genes (IS1111 and icd) at a rate of 16.9 percent (95 percent CI: 14.5 percent to 19.6 percent) and 7.1 % (95 percent CI: 5.59 percent to 9.08 percent), respectively, 86 samples were positive for the QpH1 plasmid at a rate of 60.5 percent (95 percent CI: 52.35 percent to 68.2 percent). Based on a phylogenetic study of the icd and QpH1 genes, the majority of the isolates had a similarity of 99.45-99.9 percent. Conclusion: It was determined that the buffalo population in West Azerbaijan province represents a significant epidemiological factor with respect to Q fever and consequently public health.
Collapse
Affiliation(s)
- Peyman Khademi
- Postdoc, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Daneshgah Blvd, Urmia, West Azerbaijan, Iran
| | - Amir Tukmechi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Daneshgah Blvd, Urmia, West Azerbaijan, Iran
| | - Abdulghaffar Ownagh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Daneshgah Blvd, Urmia, West Azerbaijan, Iran
| |
Collapse
|
8
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses report. EFSA J 2024; 22:e9106. [PMID: 39659847 PMCID: PMC11629028 DOI: 10.2903/j.efsa.2024.9106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring and surveillance activities carried out in 2023 in 27 Member States (MSs), the United Kingdom (Northern Ireland) and 10 non-MSs. Key statistics on zoonoses and zoonotic agents in humans, food, animals and feed are provided and interpreted historically. In 2023, the first and second most reported zoonoses in humans were campylobacteriosis and salmonellosis, respectively. For both agents, an increase in the absolute number of cases was observed in comparison with 2022. Fifteen MSs and the United Kingdom (Northern Ireland) reached all the established targets in poultry populations with regard to the reduction in Salmonella prevalence for the relevant serovars. Salmonella samples from carcases of various animal species, and samples for Campylobacter quantification from broiler carcases, were more frequently positive when performed by the competent authorities than when own-checks were conducted. Shiga toxin-producing Escherichia coli (STEC) was the third most reported zoonotic agent in humans, followed by Yersinia enterocolitica and Listeria monocytogenes. L. monocytogenes and West Nile virus infections were the most severe zoonotic diseases, with the highest percentage of hospitalisations among cases and the highest case fatality rates. Twenty-seven MSs and the United Kingdom (Northern Ireland) reported a slight decrease in food-borne outbreaks in 2023 overall in comparison with 2022, although the overall number of reported human cases and hospitalisations increased. Salmonella Enteritidis remained the most frequently reported causative agent for reported cases and food-borne outbreaks. Salmonella in 'eggs and egg products' was the agent/food pair of most concern. In 2023 this combination caused the largest number of outbreaks and cases among all agent/food combination and ranked second in number of hospitalisations. Salmonella was also the causative agent associated with the majority of multi-country outbreaks reported in the EU in 2023. This report also provides updates on brucellosis, echinococcosis, Q fever, rabies, toxoplasmosis, trichinellosis, tuberculosis due to Mycobacterium bovis or M. caprae, and tularaemia.
Collapse
|
9
|
Jiménez-Martín D, Caballero-Gómez J, Cano-Terriza D, Jiménez-Ruiz S, Paniagua J, Prieto-Yerro P, Castro-Scholten S, García-Bocanegra I. Seroepidemiology of Coxiella burnetii in Domestic and Wild Ruminant Species in Southern Spain. Animals (Basel) 2024; 14:3072. [PMID: 39518795 PMCID: PMC11545245 DOI: 10.3390/ani14213072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The European Food Safety Authority has recently listed Q fever as a priority for setting up a coordinated surveillance system. Although Spain is the country with the highest human incidence of the disease in the European Union, updated data on Coxiella burnetii in ruminants are still limited. A total of 780 serum samples from small ruminants and 605 sera from wild ruminants were collected in the Mediterranean ecosystems of southern Spain during the period 2015-2023. Anti-C. burnetii antibodies were detected using a commercial indirect ELISA. The overall individual seroprevalence in the small ruminants was 49.1% (383/780; 95% CI: 45.6-52.6). Antibodies against C. burnetii were identified in 40.0% (156/390) of sheep and in 58.2% (227/390) of goats. At least one seropositive animal was observed in all sheep (100%) and in 92.3% of goat flocks. The species (goat) and the existence of reproductive disorders in primiparous females were potential risk factors for C. burnetii exposure in small ruminant farms. In the wild ruminants, the overall seroprevalence against C. burnetii was 1.5% (9/605; 95% CI: 0.8-2.8). Anti-C. burnetii antibodies were found in 1.8% (2/110) of mouflon, 1.5% (6/390) of red deer, and 1.0% (1/105) of Iberian ibex. The high exposure of the small ruminants to C. burnetii, particularly in goats, detected in the present study is of animal and public health concern. Our results denote that wild ruminants only play a minor role in the epidemiology of this bacterium in southern Spain and suggest an independent epidemiological cycle of C. burnetii in domestic and wild ruminant species in the study area.
Collapse
Affiliation(s)
- Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
| | - Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14014 Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Saúl Jiménez-Ruiz
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
| | - Jorge Paniagua
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
| | - Paloma Prieto-Yerro
- Parque Natural Sierras de Cazorla, Segura y Las Villas, Junta de Andalucía, 23470 Cazorla, Spain;
| | - Sabrina Castro-Scholten
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14071 Córdoba, Spain; (D.J.-M.); (J.C.-G.); (S.J.-R.); (J.P.); (S.C.-S.); (I.G.-B.)
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Meles DK, Khairullah AR, Mustofa I, Wurlina W, Akintunde AO, Suwasanti N, Mustofa RI, Putra SW, Moses IB, Kusala MKJ, Raissa R, Fauzia KA, Aryaloka S, Fauziah I, Yanestria SM, Wibowo S. Navigating Q fever: Current perspectives and challenges in outbreak preparedness. Open Vet J 2024; 14:2509-2524. [PMID: 39545195 PMCID: PMC11560256 DOI: 10.5455/ovj.2024.v14.i10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 11/17/2024] Open
Abstract
Q fever, also known as query fever, is a zoonotic illness brought on by the Coxiella burnetii bacteria. This disease was first discovered in 1935 in Queensland, Australia. Worldwide, Q fever is a disease that requires notification, and certain nations classify it as a national health concern. A feature of C. burnetii is known as cell wall phase fluctuation. Serological testing is the main method used to diagnose Q fever illnesses. Inhalation is the primary method of C. burnetii transmission in both people and animals, with smaller amounts occurring through milk and milk product ingestion. The bacterial strain that is causing the infection determines how severe it is. Q fever is a significant zoonosis that can be dangerous for personnel working in veterinary laboratories, livestock breeding operations, and slaughterhouses due to its high human contagiousness. Coxiella burnetii is a biological weapon that can be sprayed on food, water, or even mail. It can also be employed as an aerosol. Antibiotics work well against this disease's acute form, but as the infection develops into a chronic form, treatment becomes more difficult and the illness frequently returns, which can result in a high death rate. Vaccination has been demonstrated to lower the incidence of animal infections, C. burnetii shedding, and abortion. Several hygienic precautions should be put in place during an outbreak to lessen the spread of disease to animals.
Collapse
Affiliation(s)
- Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
11
|
Gouvias I, Lysitsas M, Batsidis A, Malefaki S, Bitchava D, Tsara A, Nickovic E, Bouzalas I, Malissiova E, Guatteo R, Valiakos G. Molecular Investigation of Small Ruminant Abortions Using a 10-Plex HRM-qPCR Technique: A Novel Approach in Routine Diagnostics. Microorganisms 2024; 12:1675. [PMID: 39203517 PMCID: PMC11356958 DOI: 10.3390/microorganisms12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The objective of this study was to apply and preliminarily evaluate a High-Resolution Melting (HRM) analysis technique coupled with qPCR, that allows the simultaneous detection of 10 different ruminant abortogenic pathogens, for investigating abortions in sheep and goats throughout Greece. A total of 264 ovine and caprine vaginal swabs were obtained the week following the abortion from aborted females and analyzed using a commercially available kit (ID Gene™ Ruminant Abortion Multiplex HRM, Innovative Diagnostics). Results indicated a high prevalence of Coxiella burnetii and Chlamydophila spp., which were detected in 48.9% and 42.4% of the vaginal swabs, respectively. Results for these most commonly detected pathogens were compared with those of a well-established commercial qPCR kit, with near-perfect agreement. Toxoplasma gondii, Salmonella spp., Brucella spp., Anaplasma phagocytophilum, Campylobacter fetus, and Neospora caninum were also identified, the two latter reported for the first time in the country in small ruminants. Mixed infections occurred in 35.6% of the animals examined. This technique allows for the simultaneous detection of many abortogenic pathogens in an accurate and cost-effective assay. Detection of uncommon or not previously reported pathogens in various cases indicates that their role in ovine and caprine abortions may be underestimated.
Collapse
Affiliation(s)
- Ioannis Gouvias
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (M.L.); (E.N.)
| | - Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (M.L.); (E.N.)
| | - Apostolos Batsidis
- Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece;
| | - Sonia Malefaki
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26500 Rion-Patras, Greece;
| | - Dimitra Bitchava
- Vet in Progress Plus, Veterinary Laboratories, 15343 Athens, Greece; (D.B.); (A.T.)
| | - Anna Tsara
- Vet in Progress Plus, Veterinary Laboratories, 15343 Athens, Greece; (D.B.); (A.T.)
| | - Emilija Nickovic
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (M.L.); (E.N.)
- Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Ilias Bouzalas
- Veterinary Research Institute, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Campus Thermi, 57001 Thessaloniki, Greece;
| | - Eleni Malissiova
- Food of Animal Origin Laboratory, Animal Science Department, University of Thessaly, 41500 Larissa, Greece;
| | | | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (I.G.); (M.L.); (E.N.)
| |
Collapse
|
12
|
Wiedeman W, Glover AB, Steyl J, O'Dell J, Van Heerden H. Clinical Coxiella burnetii infection in sable and roan antelope in South Africa. Onderstepoort J Vet Res 2024; 91:e1-e6. [PMID: 39099298 PMCID: PMC11304184 DOI: 10.4102/ojvr.v91i1.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024] Open
Abstract
Various zoonotic microorganisms cause reproductive problems such as abortions and stillbirths, leading to economic losses on farms, particularly within livestock. In South Africa, bovine brucellosis is endemic in cattle, and from 2013-2018, outbreaks of Brucella melitensis occurred in sable. Coxiella burnetii, the agent responsible for the zoonotic disease known as Q-fever and/or coxiellosis, also causes reproductive problems and infects multiple domestic animal species worldwide, including humans. However, little is known of this disease in wildlife. With the expansion of the wildlife industry in South Africa, diseases like brucellosis and coxiellosis can significantly impact herd breeding success because of challenges in identifying, managing and treating diseases in wildlife populations. This study investigated samples obtained from aborted sable and roan antelope, initially suspected to be brucellosis, from game farms in South Africa using serology tests and ruminant VetMAX™ polymerase chain reaction (PCR) abortion kit. The presence of C. burnetii was confirmed with PCR in a sable abortion case, while samples from both sable and roan were seropositive for C. burnetii indirect enzyme-linked immunosorbent assay (iELISA). This study represents the initial report of C. burnetii infection in sable and roan antelope in South Africa. Epidemiological investigations are crucial to assess the risk of C. burnetii in sable and roan populations, as well as wildlife and livestock in general, across South Africa. This is important in intensive farming practices, particularly as Q-fever, being a zoonotic disease, poses a particular threat to the health of veterinarians and farm workers as well as domestic animals.Contribution: A report of clinical C. burnetii infection in the wildlife industry contributes towards the limited knowledge of this zoonotic disease in South Africa.
Collapse
Affiliation(s)
- Wikus Wiedeman
- aculty of Veterinary Science, University of Pretoria, Onderstepoort.
| | | | | | | | | |
Collapse
|
13
|
Xu Q, Han W, Cai Y, Yin Y, Guo Y, Chen H, Wang H. A case report of the metagenomic next-generation sequencing for timely diagnosis of a traveler with nonspecific febrile Q fever. Heliyon 2024; 10:e33649. [PMID: 39040390 PMCID: PMC11261070 DOI: 10.1016/j.heliyon.2024.e33649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Q fever is a worldwide distribution disease caused by Coxiella burnetii(C. burnetii), an obligate intracellular, Gram-negative acidophilic bacterium belonging to γ-proteobacterium. Most patients present with acute Q-fever accompanied by atypical flu-like symptoms, with only 1%-5% of cases may develop into persistent and focally infected foci, mainly manifest as endocarditis, osteomyelitis and prosthetic arthritis. In this case, the patient experienced an unexplained and uninterrupted fever up to 39.2 °C for a week, accompanied by chills and headaches, as well as abnormal liver function. The laboratory reported negative results for blood culture and respiratory-associated pathogens, however, the metagenomic next-generation sequencing (mNGS) reported that detection of 20 sequence reads of C. burnetii in the patient's peripheral blood. In addition, the patient had traveled to Sri Lanka, Iraq and Saudi Arabia before illness. In clinical, the treatment regimen was adjusted from empirically intravenous moxifloxacin 400 mg a day for 1 week to continuously oral minocyline 100 mg twice daily for 2 weeks. The patient was in good health without any adverse sequelae during outpatient visitation and the phone calls follow-up. In conclusion, the mNGS does provide an early and timely diagnostic basis for rare and difficult to culture pathogens, which contributes to the success of clinical anti-infection.
Collapse
Affiliation(s)
- Qiaoli Xu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, 363000, China
| | - Wenyan Han
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Clinical Laboratory of the Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010020, China
| | - Yihua Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Guangdong, 518001, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
14
|
Cifo D, Estévez-Reboredo RM, González-Barrio D, Jado I, Gómez-Barroso D. Epidemiology of Q fever in humans in four selected regions, Spain, 2016 to 2022. Euro Surveill 2024; 29:2300688. [PMID: 38967015 PMCID: PMC11225260 DOI: 10.2807/1560-7917.es.2024.29.27.2300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BackgroundQ fever is a bacterial zoonosis caused by Coxiella burnetii. Spain has the highest number of notified human cases in Europe. Small ruminants are a key reservoir for the pathogen, transmission from animals to humans is usually airborne.AimWe aimed at exploring temporal and spatial epidemiological patterns of sporadic and outbreak cases of Q fever in four Spanish regions with the highest number of notified cases.MethodsWe extracted data on Q fever cases in the Canary Islands, Basque Country, La Rioja and Navarre between 2016 and 2022 from the Spanish National Epidemiological Surveillance Network. We calculated standardised incidence ratios (SIR), spatial relative risks (sRR) and posterior probabilities (PP) utilising Besag-York-Mollié models.ResultsThere were 1,059 notifications, with a predominance of males aged 30-60 years. In Basque Country, La Rioja and Navarre area, 11 outbreaks were reported, while no in the Canary Islands. A seasonal increase in incidence rates was observed between March and June. In the Canary Islands, elevated sRR was seen in La Palma, Gran Canaria, Lanzarote and Fuerteventura. In Basque Country, La Rioja and Navarre area, the highest sRR was identified in the south of Biscay province.ConclusionGoats were the main source for humans in outbreaks reported in the literature. Seasonal increase may be related to the parturition season of small ruminants and specific environmental conditions. Local variations in sRR within these regions likely result from diverse environmental factors. Future One Health-oriented studies are essential to deepen our understanding of Q fever epidemiology.
Collapse
Affiliation(s)
- Daniel Cifo
- UNED - ENS Mixed Research Institute (IMIENS), Spain
- Carlos III Health Institute - National School of Public Health (ISCIII - ENS), Madrid, Spain
| | | | - David González-Barrio
- Carlos III Health Institute - National Microbiology Centre (ISCIII - CNM). Department of Bacteriology. Majadahonda, Madrid, Spain
| | - Isabel Jado
- Carlos III Health Institute - National Microbiology Centre (ISCIII - CNM). Department of Bacteriology. Majadahonda, Madrid, Spain
| | - Diana Gómez-Barroso
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Carlos III Health Institute - National Centre of Epidemiology (ISCIII - CNE), Madrid, Spain
| |
Collapse
|
15
|
Tan T, Heller J, Firestone S, Stevenson M, Wiethoelter A. A systematic review of global Q fever outbreaks. One Health 2024; 18:100667. [PMID: 39010957 PMCID: PMC11247264 DOI: 10.1016/j.onehlt.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 07/17/2024] Open
Abstract
Q fever is an important zoonotic disease with a worldwide distribution. Outbreaks of Q fever are unpredictable and can affect many people, resulting in a significant burden on public health. The epidemiology of the disease is complex and substantial efforts are required to understand and control Q fever outbreaks. The purpose of this study was to systematically review previous investigations of outbreaks and summarise important epidemiological features. This will improve knowledge of the factors driving the occurrence of Q fever outbreaks and assist decision makers in implementing mitigation strategies. A search of four electronic databases identified 94 eligible articles published in English between 1990 and 2022 that related to 81 unique human Q fever outbreaks. Outbreaks were reported across 27 countries and mostly in industrialised nations. Documented Q fever outbreaks varied in size (2 to 4107 cases) and duration (4 to 1722 days). Most outbreaks (43/81) occurred in communities outside of traditional at-risk occupational settings and were frequently associated with living in proximity to livestock holdings (21/43). Indirect transmission via environmental contamination, windborne spread or fomites was the most common route of infection, particularly for large community outbreaks. Exposure to ruminants and/or their products were confirmed as the principal risk factors for infection, with sheep (28/81) as the most common source followed by goats (12/81) and cattle (7/81). Cooperation and data sharing between human and animal health authorities is valuable for outbreak investigation and control using public health and veterinary measures, but this multisectoral approach was seldom applied (14/81). Increased awareness of Q fever among health professionals and the public may facilitate the early detection of emerging outbreaks that are due to non-occupational, environmental exposures in the community.
Collapse
Affiliation(s)
- Tabita Tan
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jane Heller
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Simon Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anke Wiethoelter
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Sundar B, Shinde SV, Dongre SA, Chaudhari SP, Khan WA, Patil AR, Kurkure NV, Rawool DB, Naik B, Barbuddhe S. Acute Q fever in individuals with acute febrile illness & exposure to farm animals: Clinical manifestations & diagnostic approaches. Indian J Med Res 2024; 159:681-688. [PMID: 39382476 PMCID: PMC11463860 DOI: 10.25259/ijmr_1549_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Q fever is an important zoonotic disease affecting humans as well as animals. The objective of this study was to assess the burden of Q fever in individuals with acute febrile illness, particularly those in close contact with animals. Various diagnostic methods were also evaluated in addition to clinical examination analysis and associated risk factors. Methods Individuals presenting with acute febrile illness who had animal exposure were enrolled (n=92) in this study. Serum samples were tested using IgG and IgM phase 2 enzyme linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA). The PCR targeting the com1 and IS1111 genes was performed on blood samples. PCR amplicons were sequenced and phylogenetically analysed. Demographic data, symptoms, and risk factors were collected through a structured questionnaire. Results Among individuals with acute febrile illness, 34.7 per cent (32 out of 92) were found to be infected with Coxiella burnetii. PCR exhibited the highest sensitivity among the diagnostic methods employed. The most common clinical manifestations included headache, chills, arthralgia, and fatigue. Individuals engaged in daily livestock-rearing activities were found to be at an increased risk of infection. Interpretation & conclusions Q fever is underdiagnosed due to its varied clinical presentations, diagnostic complexities, and lack of awareness. This study underscores the importance of regular screening for Q fever in individuals with acute febrile illness, particularly those with animal exposure. Early diagnosis and increased awareness among healthcare professionals are essential for the timely management and prevention of chronic complications associated with Q fever.
Collapse
Affiliation(s)
- Brindha Sundar
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Shilpshri V. Shinde
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Shreya A. Dongre
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Sandeep P. Chaudhari
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Wiqar A. Khan
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Archana R. Patil
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Nitin V. Kurkure
- Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Deepak B. Rawool
- ICAR-National Meat Research Institute, Hyderabad, Karnataka, India
| | - B.S. Naik
- Tushara Polyclinic, Chikkajogihalli, Vijayanagara, Karnataka, India
| | - S.B. Barbuddhe
- ICAR-National Meat Research Institute, Hyderabad, Karnataka, India
| |
Collapse
|
17
|
Tolpinrud A, Tadepalli M, Stenos J, Lignereux L, Chaber AL, Devlin JM, Caraguel C, Stevenson MA. Tissue distribution of Coxiella burnetii and antibody responses in macropods co-grazing with livestock in Queensland, Australia. PLoS One 2024; 19:e0303877. [PMID: 38771828 PMCID: PMC11108133 DOI: 10.1371/journal.pone.0303877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a zoonotic bacteria of global public health significance. The organism has a complex, diverse, and relatively poorly understood animal reservoir but there is increasing evidence that macropods play some part in the epidemiology of Q fever in Australia. The aim of this cross-sectional survey was to estimate the animal- and tissue-level prevalence of coxiellosis amongst eastern grey (Macropus giganteus) and red (Osphranter rufus) kangaroos co-grazing with domestic cattle in a Q fever endemic area in Queensland. Serum, faeces and tissue samples from a range of organs were collected from 50 kangaroos. A total of 537 tissue samples were tested by real-time PCR, of which 99 specimens from 42 kangaroos (84% of animals, 95% confidence interval [CI], 71% to 93%) were positive for the C. burnetii IS1111 gene when tested in duplicate. Twenty of these specimens from 16 kangaroos (32%, 95% CI 20% to 47%) were also positive for the com1 or htpAB genes. Serum antibodies were present in 24 (57%, 95% CI 41% to 72%) of the PCR positive animals. There was no statistically significant difference in PCR positivity between organs and no single sample type consistently identified C. burnetii positive kangaroos. The results from this study identify a high apparent prevalence of C. burnetii amongst macropods in the study area, albeit seemingly with an inconsistent distribution within tissues and in relatively small quantities, often verging on the limits of detection. We recommend Q fever surveillance in macropods should involve a combination of serosurveys and molecular testing to increase chances of detection in a population, noting that a range of tissues would likely need to be sampled to confirm the diagnosis in a suspect positive animal.
Collapse
Affiliation(s)
- Anita Tolpinrud
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Victoria, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Victoria, Australia
| | - Louis Lignereux
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Joanne M. Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark A. Stevenson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Moorthy GS, Rubach MP, Maze MJ, Refuerzo RP, Shirima GM, Lukambagire AS, Bodenham RF, Cash-Goldwasser S, Thomas KM, Sakasaka P, Mkenda N, Bowhay TR, Perniciaro JL, Nicholson WL, Kersh GJ, Kazwala RR, Mmbaga BT, Buza JJ, Maro VP, Haydon DT, Crump JA, Halliday JE. Prevalence and risk factors for Q fever, spotted fever group rickettsioses, and typhus group rickettsioses in a pastoralist community of northern Tanzania, 2016-2017. Trop Med Int Health 2024; 29:365-376. [PMID: 38480005 PMCID: PMC11073910 DOI: 10.1111/tmi.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
BACKGROUND In northern Tanzania, Q fever, spotted fever group (SFG) rickettsioses, and typhus group (TG) rickettsioses are common causes of febrile illness. We sought to describe the prevalence and risk factors for these zoonoses in a pastoralist community. METHODS Febrile patients ≥2 years old presenting to Endulen Hospital in the Ngorongoro Conservation Area were enrolled from August 2016 through October 2017. Acute and convalescent blood samples were collected, and a questionnaire was administered. Sera were tested by immunofluorescent antibody (IFA) IgG assays using Coxiella burnetii (Phase II), Rickettsia africae, and Rickettsia typhi antigens. Serologic evidence of exposure was defined by an IFA titre ≥1:64; probable cases by an acute IFA titre ≥1:128; and confirmed cases by a ≥4-fold rise in titre between samples. Risk factors for exposure and acute case status were evaluated. RESULTS Of 228 participants, 99 (43.4%) were male and the median (interquartile range) age was 27 (16-41) years. Among these, 117 (51.3%) had C. burnetii exposure, 74 (32.5%) had probable Q fever, 176 (77.2%) had SFG Rickettsia exposure, 134 (58.8%) had probable SFG rickettsioses, 11 (4.8%) had TG Rickettsia exposure, and 4 (1.8%) had probable TG rickettsioses. Of 146 participants with paired sera, 1 (0.5%) had confirmed Q fever, 8 (5.5%) had confirmed SFG rickettsioses, and none had confirmed TG rickettsioses. Livestock slaughter was associated with acute Q fever (adjusted odds ratio [OR] 2.54, 95% confidence interval [CI] 1.38-4.76) and sheep slaughter with SFG rickettsioses case (OR 4.63, 95% CI 1.08-23.50). DISCUSSION Acute Q fever and SFG rickettsioses were detected in participants with febrile illness. Exposures to C. burnetii and to SFG Rickettsia were highly prevalent, and interactions with livestock were associated with increased odds of illness with both pathogens. Further characterisation of the burden and risks for these diseases is warranted.
Collapse
Affiliation(s)
- Ganga S. Moorthy
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Matthew P. Rubach
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Michael J. Maze
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Regina P. Refuerzo
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gabriel M. Shirima
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, Arusha, Tanzania
| | - AbdulHamid S. Lukambagire
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- EcoHealth Alliance, New York, United States of America
| | | | - Shama Cash-Goldwasser
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Kate M. Thomas
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Nestory Mkenda
- Endulen Hospital, Endulen, Ngorongoro Conservation Area, Tanzania
| | - Thomas R. Bowhay
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Jamie L. Perniciaro
- Rickettsial Zoonoses Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William L. Nicholson
- Rickettsial Zoonoses Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rudovick R. Kazwala
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Blandina T. Mmbaga
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Joram J. Buza
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, Arusha, Tanzania
| | - Venance P. Maro
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John A. Crump
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Jo E.B. Halliday
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Ghanem-Zoubi N, Atiya-Nasagi Y, Stoyanov E, Szwarcwort M, Darawsha B, Paul M, Shinar E. Cross-Sectional Study of Q Fever Seroprevalence among Blood Donors, Israel, 2021. Emerg Infect Dis 2024; 30:941-946. [PMID: 38666592 PMCID: PMC11060453 DOI: 10.3201/eid3005.230645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
We evaluated Q fever prevalence in blood donors and assessed the epidemiologic features of the disease in Israel in 2021. We tested serum samples for Coxeilla burnetii phase I and II IgG using immunofluorescent assay, defining a result of >200 as seropositive. We compared geographic and demographic data. We included 1,473 participants; 188 (12.7%) were seropositive. The calculated sex- and age-adjusted national seroprevalence was 13.9% (95% CI 12.2%-15.7%). Male sex and age were independently associated with seropositivity (odds ratio [OR] 1.6, 95% CI 1.1-2.2; p = 0.005 for male sex; OR 1.2, 95% CI 1.01-1.03; p<0.001 for age). Residence in the coastal plain was independently associated with seropositivity for Q fever (OR 1.6, 95% CI 1.2-2.3; p<0.001); residence in rural and farming regions was not. Q fever is highly prevalent in Israel. The unexpected spatial distribution in the nonrural coastal plain suggests an unrecognized mode of transmission.
Collapse
Affiliation(s)
| | | | - Evgeniy Stoyanov
- Rambam Health Care Campus, Haifa, Israel (N. Ghanem-Zoubi, M. Szwarcwort, M. Paul)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (N. Ghanem-Zoubi, B. Darawsha, M. Paul)
- Israel Institute for Biological Research, Ness-Ziona, Israel (Y. Atiya-Nasagi)
- Magen David Adom National Blood Services, Ramat Gan, Israel (E. Stoyanov, E. Shinar)
| | - Moran Szwarcwort
- Rambam Health Care Campus, Haifa, Israel (N. Ghanem-Zoubi, M. Szwarcwort, M. Paul)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (N. Ghanem-Zoubi, B. Darawsha, M. Paul)
- Israel Institute for Biological Research, Ness-Ziona, Israel (Y. Atiya-Nasagi)
- Magen David Adom National Blood Services, Ramat Gan, Israel (E. Stoyanov, E. Shinar)
| | - Basel Darawsha
- Rambam Health Care Campus, Haifa, Israel (N. Ghanem-Zoubi, M. Szwarcwort, M. Paul)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (N. Ghanem-Zoubi, B. Darawsha, M. Paul)
- Israel Institute for Biological Research, Ness-Ziona, Israel (Y. Atiya-Nasagi)
- Magen David Adom National Blood Services, Ramat Gan, Israel (E. Stoyanov, E. Shinar)
| | - Mical Paul
- Rambam Health Care Campus, Haifa, Israel (N. Ghanem-Zoubi, M. Szwarcwort, M. Paul)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (N. Ghanem-Zoubi, B. Darawsha, M. Paul)
- Israel Institute for Biological Research, Ness-Ziona, Israel (Y. Atiya-Nasagi)
- Magen David Adom National Blood Services, Ramat Gan, Israel (E. Stoyanov, E. Shinar)
| | - Eilat Shinar
- Rambam Health Care Campus, Haifa, Israel (N. Ghanem-Zoubi, M. Szwarcwort, M. Paul)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (N. Ghanem-Zoubi, B. Darawsha, M. Paul)
- Israel Institute for Biological Research, Ness-Ziona, Israel (Y. Atiya-Nasagi)
- Magen David Adom National Blood Services, Ramat Gan, Israel (E. Stoyanov, E. Shinar)
| |
Collapse
|
20
|
Choi Y, Yeh JY, Lee JK, Michelow IC, Park S. Risk factors associated with Coxiella burnetii in wild boars: A study in South Korea. Prev Vet Med 2024; 225:106157. [PMID: 38452603 DOI: 10.1016/j.prevetmed.2024.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Coxiella burnetii is a Gram-negative bacterium that causes the zoonotic disease Q fever. Wild boars serve as reservoirs for C. burnetii. This study aimed to identify the risk factors associated with C. burnetii infection in wild boars. We analyzed the data from 975 wild boar samples collected from June to November 2021 in South Korea. We utilized the indirect ELISA to detect antibodies against C. burnetii. A sample optical density to positive-control optical density value exceeding 50% was classified as positive. We gathered data on the forestation, terrain, weather, agriculture, and animal density of the region where the samples were collected. Continuous variables were categorized into tertiles. We performed a univariate logistic regression analysis and included variables with a p-value < 0.2 in the final multivariable logistic regression model. In our multivariable logistic regression analysis to identify risk factors for C. burnetii infection in wild boars, we used a forward selection method to enter variables based on the order of their significance. We performed the final multivariable logistic regression analyses using either continuous variables or variables categorized into tertiles. The prevalence of C. burnetii was 14.6% (n=142). Locations with the highest maximum wind speeds (3.92-8.24 m/s) showed a 59% increase in infection odds compared to locations with the lowest speeds (1.45-3.25 m/s)(p=0.044). For each 1 m/s increase in maximum wind speed, infection odds increased by 24.1% (p=0.037). Regions with the highest percentage of paddy fields per area (8.3-45%) showed a 76% increase in infection odds compared to regions with the lowest percentage (0-1.5%)(p=0.011). For each 1% increase in the proportion of paddy fields per area, infection odds increased by 3.3% (p=0.003). High maximum wind speed and a high percentage of paddy field were identified as significant risk factors for C. burnetii infection in wild boars.
Collapse
Affiliation(s)
- Yongyeon Choi
- Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jong Koo Lee
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Ian C Michelow
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Connecticut Children's Medical Center, Hartford, USA; Department of Pediatrics, University of Connecticut School of Medicine, Farmington, USA
| | - Sangshin Park
- Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea; Department of Urban Big Data Convergence, University of Seoul, Seoul, Republic of Korea; Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, USA.
| |
Collapse
|
21
|
Zendoia II, Barandika JF, Cevidanes A, Hurtado A, García-Pérez AL. Coxiella burnetii infection persistence in a goat herd during seven kidding seasons after an outbreak of abortions: the effect of vaccination. Appl Environ Microbiol 2024; 90:e0220123. [PMID: 38412030 PMCID: PMC10952520 DOI: 10.1128/aem.02201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.
Collapse
Affiliation(s)
- Ion I. Zendoia
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Jesús F. Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana Hurtado
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana L. García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
22
|
Castro-Scholten S, Caballero-Gómez J, Cano-Terriza D, Jiménez-Martín D, Rouco C, Beato-Benítez A, Camacho-Sillero L, García-Bocanegra I. Exposure to Coxiella burnetii in Wild Lagomorphs in Spanish Mediterranean Ecosystems. Animals (Basel) 2024; 14:749. [PMID: 38473134 DOI: 10.3390/ani14050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Coxiella burnetii is an important zoonotic pathogen of worldwide distribution that can infect a wide range of wild and domestic species. The European wild rabbit (Oryctolagus cuniculus) can play a role as a reservoir for this bacterium in certain epidemiological scenarios, but, to date, a very limited numbers of large-scale serosurveys have been conducted for this species worldwide. Although exposure in hare species has also been described, C. burnetii in Iberian hare (Lepus granatensis) has never been assessed. Here, we aimed to determine the seroprevalence and risk factors associated with C. burnetii exposure in wild lagomorphs in the Mediterranean ecosystems of southern Spain. Between the 2018/2019 and 2021/2022 hunting seasons, blood samples from 638 wild lagomorphs, including 471 wild rabbits and 167 Iberian hares, were collected from 112 hunting grounds distributed across all eight provinces of Andalusia (southern Spain). The overall apparent individual seroprevalence was 8.9% (57/638; 95% CI: 6.8-11.4). Antibodies against C. burnetii were found in 11.3% (53/471; 95% CI: 8.4-14.1) of the wild rabbits and 2.4% (4/167; 95% CI: 0.1-4.7) of the Iberian hares. Seropositive animals were detected for 16 (14.3%; 95% CI: 7.8-20.8) of the 112 hunting grounds tested and in all the hunting seasons sampled. A generalized estimating equations model showed that the geographical area (western Andalusia) and presence of sheep were risk factors potentially associated with C. burnetii exposure in wild lagomorphs. A statistically significant spatial cluster (p < 0.001) was identified in the south-west of Andalusia. Our results provide evidence of moderate, endemic and heterogeneous circulation of C. burnetii in wild lagomorph populations in Spanish Mediterranean ecosystems. Risk-based strategies for integrative surveillance programs should be implemented in these species to reduce the risk of transmission of the bacterium to sympatric species, including humans.
Collapse
Affiliation(s)
- Sabrina Castro-Scholten
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Carlos Rouco
- Departamento Biología Vegetal y Ecología, Área de Ecología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Adrián Beato-Benítez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Leonor Camacho-Sillero
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre en Andalucía (PVE), Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, 29002 Málaga, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Welch JL, Branan M, Urie N, Shrestha R, Wiedenheft A, Marshall K, Robbe-Austerman S, Shanmuganatham KK. Coxiella burnetii seroprevalence in domestic goat does in the United States: Prevalence, distribution, and associated risk factors. Prev Vet Med 2024; 223:106114. [PMID: 38198901 DOI: 10.1016/j.prevetmed.2023.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Infection with the bacterium Coxiella burnetii can cause coxiellosis in animals and Q fever in humans. Coxiellosis a consistently underreported infectious disease. The infection can result in reproductive consequences for humans and animals. Ruminants are a reservoir for infection and humans are generally infected via aerosolized secretions, making it a public health concern. Studies of ruminant seroprevalence are generally limited in size and scope. This study determined seroprevalence in a large-scale U.S. population of female goats using serum samples from 7736 does from 24 states. This study identified C. burnetii seroprevalence in the United States domestic goat population. Overall, 14.5 % (SE = 2.3) of does were seropositive and 21.0 % (SE = 2.4) of operations had at least 1 seropositive doe. Further, operation demographics and herd management practices associated with seropositivity were as follows: the suspected or confirmed presence of caprine arthritis encephalitis (CAE), caseous lymphadenitis (CL), Johne's disease, or sore mouth in the herd in the previous 3 years, not cleaning or disinfecting the kidding areas or removing aborting does from other does, allowing visitors to access the kidding areas, and a lower percentage of adult goat inventory that were adult bucks or wethers. Furthermore, goat breed was associated with seropositivity. These data show C. burnetii seroprevalence in the United States and identify operation and animal characteristics and management practices associated with C. burnetii seropositivity. Together, this information can be used to help limit animal transmission, inform public health measures, and help educate and protect individuals working with goats.
Collapse
Affiliation(s)
- Jennifer L Welch
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Matthew Branan
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Natalie Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - Ram Shrestha
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Alyson Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katherine Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Suelee Robbe-Austerman
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Karthik K Shanmuganatham
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
24
|
Perfilyeva YV, Berdygulova ZA, Mashzhan AS, Zhigailov AV, Ostapchuk YO, Naizabayeva DA, Cherusheva AS, Bissenbay AO, Kuatbekova SA, Abdolla N, Nizkorodova AS, Kulemin MV, Shapiyeva ZZ, Sayakova ZZ, Perfilyeva AV, Akhmetollayev IA, Maltseva ER, Skiba YA, Mamadaliyev SM, Dmitrovskiy AM. Molecular and seroepidemiological investigation of Сoxiella burnetii and spotted fever group rickettsiae in the southern region of Kazakhstan. Ticks Tick Borne Dis 2023; 14:102240. [PMID: 37647811 DOI: 10.1016/j.ttbdis.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Ticks are involved in the circulation of a number of human pathogens, including spotted fever group (SFG) Rickettsia spp. and Coxiella burnetii. Little is known about the occurrence of these microorganisms in the southern region of Kazakhstan. In 2018-2022, a total of 726 ticks were collected from bitten humans, livestock, and vegetation in four oblasts of the southern region of Kazakhstan and subjected to DNA extraction. The overall infection rate of Coxiella spp. and Rickettsia spp. in the ticks was 3.3% (24/726) and 69.9% (300/429), respectively. Phylogenetic analysis of ompA and gltA genes revealed the presence of three pathogenic SFG rickettsiae: Candidatus R. tarasevichiae, R. aeschlimannii and R. raoultii in ticks collected from bitten humans. In addition, Candidatus R. barbariae was detected in six Rhipicephalus turanicus ticks for the first time in Kazakhstan. To determine the seroprevalence of C. burnetii infection, we performed a serological analysis of samples collected from 656 domestic ruminants (cattle, sheep, and goats) in the region. Overall, 23.5% (154/656) of the animals tested were positive for IgG against C. burnetii. Seroprevalence at the herd level was 54% (28/52). Goats (43%; 12/28; odds ratio (OD) = 28.9, p < 0.05) and sheep (31.9%; 137/430; OD = 18.1, p < 0.05) had higher seroprevalence than cattle (2.5%; 5/198). Among the risk factors considered in this study, age (p = 0.003) and the oblast in which the animals were sampled (p = 0.049) were statistically associated with seropostivity for Q fever in sheep, according to the results of multivariate logistic regression analysis. Seroprevalence ranged from 0% to 55.5% in animals in different districts of the southern region of Kazakhstan. Active C. burnetii bacteremia was detected in four of 154 (2.6%) seropositive animals. The data obtained provide strong evidence of the presence of pathogenic rickettsiae and C. burnetii in the southern region of Kazakhstan and emphasize the need to improve epidemiological surveillance in the region.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Zhanna A Berdygulova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan.
| | - Akzhigit S Mashzhan
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan.
| | - Andrey V Zhigailov
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yekaterina O Ostapchuk
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Dinara A Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alena S Cherusheva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Akerke O Bissenbay
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Saltanat A Kuatbekova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Nurshat Abdolla
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Anna S Nizkorodova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Maxim V Kulemin
- Anti-Plague Station, 114 Dulati St., Shymkent 160013, Kazakhstan
| | - Zhanna Zh Shapiyeva
- Scientific Practical Center of Sanitary-Epidemiological Expertise and Monitoring, 84 Auezov St., Almaty 050008, Kazakhstan
| | - Zaure Z Sayakova
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M. Aikimbayev National Scientific Center for Especially Dangerous Infections, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | | | | | - Elina R Maltseva
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Tethys Scientific Society, 9 Microdisctrict 1/72, Almaty 050036, Kazakhstan
| | - Yuriy A Skiba
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Tethys Scientific Society, 9 Microdisctrict 1/72, Almaty 050036, Kazakhstan
| | - Seidigapbar M Mamadaliyev
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Andrey M Dmitrovskiy
- Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; M. Aikimbayev National Scientific Center for Especially Dangerous Infections, 14 Zhahanger St., Almaty 050054, Kazakhstan
| |
Collapse
|
25
|
Bauer BU, Knittler MR, Andrack J, Berens C, Campe A, Christiansen B, Fasemore AM, Fischer SF, Ganter M, Körner S, Makert GR, Matthiesen S, Mertens-Scholz K, Rinkel S, Runge M, Schulze-Luehrmann J, Ulbert S, Winter F, Frangoulidis D, Lührmann A. Interdisciplinary studies on Coxiella burnetii: From molecular to cellular, to host, to one health research. Int J Med Microbiol 2023; 313:151590. [PMID: 38056089 DOI: 10.1016/j.ijmm.2023.151590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The Q-GAPS (Q fever GermAn interdisciplinary Program for reSearch) consortium was launched in 2017 as a German consortium of more than 20 scientists with exceptional expertise, competence, and substantial knowledge in the field of the Q fever pathogen Coxiella (C.) burnetii. C. burnetii exemplifies as a zoonotic pathogen the challenges of zoonotic disease control and prophylaxis in human, animal, and environmental settings in a One Health approach. An interdisciplinary approach to studying the pathogen is essential to address unresolved questions about the epidemiology, immunology, pathogenesis, surveillance, and control of C. burnetii. In more than five years, Q-GAPS has provided new insights into pathogenicity and interaction with host defense mechanisms. The consortium has also investigated vaccine efficacy and application in animal reservoirs and identified expanded phenotypic and genotypic characteristics of C. burnetii and their epidemiological significance. In addition, conceptual principles for controlling, surveilling, and preventing zoonotic Q fever infections were developed and prepared for specific target groups. All findings have been continuously integrated into a Web-based, interactive, freely accessible knowledge and information platform (www.q-gaps.de), which also contains Q fever guidelines to support public health institutions in controlling and preventing Q fever. In this review, we will summarize our results and show an example of how an interdisciplinary consortium provides knowledge and better tools to control a zoonotic pathogen at the national level.
Collapse
Affiliation(s)
- Benjamin U Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Jennifer Andrack
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bahne Christiansen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Akinyemi M Fasemore
- Bundeswehr Institute of Microbiology, Munich, Germany; University of Würzburg, Würzburg, Germany; ZB MED - Information Centre for Life Science, Cologne, Germany
| | - Silke F Fischer
- Landesgesundheitsamt Baden-Württemberg, Ministerium für Soziales, Gesundheit und Integration, Stuttgart, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophia Körner
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany; Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Svea Matthiesen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Sven Rinkel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - Jan Schulze-Luehrmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Fenja Winter
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Munich, Germany; Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information, Munich, Germany
| | - Anja Lührmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| |
Collapse
|
26
|
G S J S, Ramakodi MP, T V B P S R. Review of bioaerosols from different sources and their health impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1321. [PMID: 37840110 DOI: 10.1007/s10661-023-11935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The emission of bioaerosols in the ambient atmosphere from different sources is a cause of concern for human health and the environment. Bioaerosols are a combination of biotic matter like microbes and pollens. The present review emphasizes the understanding of various sources of bioaerosols (industries, municipal solid waste, and medical facilities), their components, and their impact on human health. The study of bioaerosols is of great importance as large numbers of people are estimated to be exposed on the global scale. Bioaerosols exposure in different work environments results in health issues such as infectious diseases, allergies, toxic effects, and respiratory problems. Hence, extensive research is urged to establish an effective assessment of bioaerosols exposure in the workplace, risks involved, distribution, and validation. The present review is intended to explore the relationship between bioaerosols exposure to the atmosphere and its impacts on human health. Some of the preliminary findings, based on our analysis of bioaerosols arising from municipal solid waste at a landfill site and a waste transfer station in Hyderabad, India, are also discussed herein.
Collapse
Affiliation(s)
- Shailaja G S J
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India.
| | - Meganathan P Ramakodi
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishna T V B P S
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
27
|
Aubin A, Eldin C, Zemali N, Jaubert J, Koumar Y, Moiton MP, Poubeau P, Braunberger E, Gérardin P, Bertolotti A. Clinical and Epidemiological Aspects of Acute Q Fever in Reunion Island over Fourteen Years: A Retrospective Cohort Study. Microorganisms 2023; 11:2485. [PMID: 37894143 PMCID: PMC10609548 DOI: 10.3390/microorganisms11102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical characteristics and epidemiology of Q fever in the Tropics are poorly described. We performed a retrospective cohort study of hospitalized cases between 2004 and 2017 in Reunion Island. Acute Q fever was defined in presence of a positive serology (phase II IgG ≥ 200 and phase II IgM ≥ 50), or a seroconversion (4-fold increase in phase II IgG between paired samples), or a positive PCR (blood or serum). Forty-two cases matched the diagnostic criteria. The most common clinical manifestations were fever (85.7%) and pulmonary symptoms (61.9%), including pneumonia (45.2%). Ninety percent of the patients were living in a farming area. Cumulative incidence was estimated at 9.3 per 100,000 inhabitants (95%CI: 6.4-12.1) with cases diagnosed yearly all throughout the study period except in 2006. Together with the seroprevalence figures, these data suggest that Q fever reaches low to moderate endemic levels on Reunion Island. As previously reported, pulmonary symptoms are in the foreground.
Collapse
Affiliation(s)
- Alexandra Aubin
- Service des Maladies Infectieuses—Dermatologie, Centre Hospitalier Universitaire (CHU) Réunion, BP 350, 97448 Saint Pierre, La Réunion, France; (A.A.); (Y.K.); (A.B.)
| | - Carole Eldin
- Comité de Lutte Contre les Infections Nosocomiales (CLIN), Hôpital Nord, Chemin des Bourrély, 13015 Marseille, France
- Unité des Virus Emergents (UVE), Aix-Marseille Université, IRD 190 INSERM 1207 EFS-IRBA, 13005 Marseille, France
| | - Naël Zemali
- Laboratoire de Microbiologie, CHU Réunion, BP 350, 97448 Saint Pierre, La Réunion, France (J.J.)
| | - Julien Jaubert
- Laboratoire de Microbiologie, CHU Réunion, BP 350, 97448 Saint Pierre, La Réunion, France (J.J.)
| | - Yatrika Koumar
- Service des Maladies Infectieuses—Dermatologie, Centre Hospitalier Universitaire (CHU) Réunion, BP 350, 97448 Saint Pierre, La Réunion, France; (A.A.); (Y.K.); (A.B.)
| | - Marie-Pierre Moiton
- Service des Maladies Infectieuses-Médecine Interne, CHU Réunion, 97400 Saint Denis, La Réunion, France;
| | - Patrice Poubeau
- Service des Maladies Infectieuses—Dermatologie, Centre Hospitalier Universitaire (CHU) Réunion, BP 350, 97448 Saint Pierre, La Réunion, France; (A.A.); (Y.K.); (A.B.)
| | - Eric Braunberger
- Service de Chirurgie Thoracique, CHU Réunion, 97400 Saint Denis, La Réunion, France
| | - Patrick Gérardin
- Inserm CIC1410, CHU Réunion, BP 350, 97448 Saint Pierre, La Réunion, France;
| | - Antoine Bertolotti
- Service des Maladies Infectieuses—Dermatologie, Centre Hospitalier Universitaire (CHU) Réunion, BP 350, 97448 Saint Pierre, La Réunion, France; (A.A.); (Y.K.); (A.B.)
- Inserm CIC1410, CHU Réunion, BP 350, 97448 Saint Pierre, La Réunion, France;
| |
Collapse
|
28
|
Rodarte KA, Fair JM, Bett BK, Kerfua SD, Fasina FO, Bartlow AW. A scoping review of zoonotic parasites and pathogens associated with abattoirs in Eastern Africa and recommendations for abattoirs as disease surveillance sites. Front Public Health 2023; 11:1194964. [PMID: 37529427 PMCID: PMC10387540 DOI: 10.3389/fpubh.2023.1194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Abattoirs are facilities where livestock are slaughtered and are an important aspect in the food production chain. There are several types of abattoirs, which differ in infrastructure and facilities, sanitation and PPE practices, and adherence to regulations. In each abattoir facility, worker exposure to animals and animal products increases their risk of infection from zoonotic pathogens. Backyard abattoirs and slaughter slabs have the highest risk of pathogen transmission because of substandard hygiene practices and minimal infrastructure. These abattoir conditions can often contribute to environmental contamination and may play a significant role in disease outbreaks within communities. To assess further the risk of disease, we conducted a scoping review of parasites and pathogens among livestock and human workers in abattoirs across 13 Eastern African countries, which are hotspots for zoonoses. Our search results (n = 104 articles) showed the presence of bacteria, viruses, fungi, and macroparasites (nematodes, cestodes, etc.) in cattle, goats, sheep, pigs, camels, and poultry. Most articles reported results from cattle, and the most frequent pathogen detected was Mycobacterium bovis, which causes bovine tuberculosis. Some articles included worker survey and questionnaires that suggested how the use of PPE along with proper worker training and safe animal handling practices could reduce disease risk. Based on these findings, we discuss ways to improve abattoir biosafety and increase biosurveillance for disease control and mitigation. Abattoirs are a 'catch all' for pathogens, and by surveying animals at abattoirs, health officials can determine which diseases are prevalent in different regions and which pathogens are most likely transmitted from wildlife to livestock. We suggest a regional approach to biosurveillance, which will improve testing and data gathering for enhanced disease risk mapping and forecasting. Next generation sequencing will be key in identifying a wide range of pathogens, rather than a targeted approach.
Collapse
Affiliation(s)
- Katie A. Rodarte
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jeanne M. Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bernard K. Bett
- International Livestock Research Institute and ILRI/BMZ One Health Research, Education, Outreach and Awareness Centre, Nairobi, Kenya
| | - Susan D. Kerfua
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Folorunso O. Fasina
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Andrew W. Bartlow
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
29
|
Hurtado A, Zendoia II, Alonso E, Beraza X, Bidaurrazaga J, Ocabo B, Arrazola I, Cevidanes A, Barandika JF, García-Pérez AL. A Q fever outbreak among visitors to a natural cave, Bizkaia, Spain, December 2020 to October 2021. Euro Surveill 2023; 28:2200824. [PMID: 37440349 PMCID: PMC10347893 DOI: 10.2807/1560-7917.es.2023.28.28.2200824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
We describe a large Q fever outbreak reported in Spain, including 108 cases, 53 with pneumonia and 27 requiring hospitalisations. The first cases were detected in February 2021 among rock climbers visiting a cave in Bizkaia, and the last case was detected in October 2021. Most cases were notified after the Easter holiday (April-May 2021). More males (63.9%) than females (36.1%) were infected (median ages: 42 (1-68) and 39 years (6-61), respectively). We detected Coxiella burnetii by PCR in faecal, dust and/or aerosol samples taken inside the cave in March 2021, and in dust and aerosol samples collected between March 2021 and February 2023. Coxiella burnetii from dust samples were cultured on Vero cells, showing viability for 24 months. Based on serological and genotyping data, goats sheltering in the cave were the most likely source of infection. The cave was closed on 29 April 2021, movements of goats and sheep in the area were restricted (March-July 2021), and the animals were vaccinated in October 2021. Investigation of Q fever outbreaks requires a multidisciplinary One Health approach as these outbreaks can occur in unexpected places like natural sites where animals are present.
Collapse
Affiliation(s)
- Ana Hurtado
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- These authors contributed equally to the work and share first authorship
| | - Ion I Zendoia
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- These authors contributed equally to the work and share first authorship
| | - Eva Alonso
- Departamento de Salud del Gobierno Vasco, Subdirección de Salud Pública de Bizkaia, Servicio de Epidemiologia, Bilbao, Bizkaia, Spain
| | - Xabier Beraza
- Departamento de Salud del Gobierno Vasco, Subdirección de Salud Pública de Bizkaia, Servicio de Epidemiologia, Bilbao, Bizkaia, Spain
| | - Joseba Bidaurrazaga
- Departamento de Salud del Gobierno Vasco, Subdirección de Salud Pública de Bizkaia, Servicio de Epidemiologia, Bilbao, Bizkaia, Spain
| | - Blanca Ocabo
- Servicio de Ganadería, Departamento de Agricultura, Diputación Foral de Bizkaia, Bilbao, Bizkaia, Spain
| | - Iñaki Arrazola
- Servicio de Ganadería, Departamento de Agricultura, Diputación Foral de Bizkaia, Bilbao, Bizkaia, Spain
| | - Aitor Cevidanes
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Jesús F Barandika
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana L García-Pérez
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
30
|
Ohlopkova OV, Yakovlev SA, Emmanuel K, Kabanov AA, Odnoshevsky DA, Kartashov MY, Moshkin AD, Tuchkov IV, Nosov NY, Kritsky AA, Agalakova MA, Davidyuk YN, Khaiboullina SF, Morzunov SP, N'Fally M, Bumbali S, Camara MF, Boiro MY, Agafonov AP, Gavrilova EV, Maksyutov RA. Epidemiology of Zoonotic Coxiella burnetii in The Republic of Guinea. Microorganisms 2023; 11:1433. [PMID: 37374935 DOI: 10.3390/microorganisms11061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Q fever is a zoonotic infectious disease characterized by fever, malaise, chills, significant weakness, and muscle pain. In some cases, the disease can become chronic and affect the inner membranes of the heart, such as the valves, leading to endocarditis and a high risk of death. Coxiella burnetii (C. burnetii) is the primary causative agent of Q fever in humans. This study aims to monitor the presence of C. burnetii in ticks collected from small mammals and cattle in the Republic of Guinea (RG). METHODS Rodents were trapped in the Kindia region of RG during 2019-2020, and ticks were collected from cattle in six regions of RG. Total DNA was extracted using a commercial kit (RIBO-prep, InterLabService, Russia) following the manufacturer's instructions. Real-time PCR amplification was conducted using the kit (AmpliSens Coxiella burnetii-FL, InterLabService, Russia) to detect C. burnetii DNA. RESULTS AND CONCLUSIONS Bacterial DNA was detected in 11 out of 750 (1.4%) small mammals and 695 out of 9620 (7.2%) tick samples. The high number of infected ticks (7.2%) suggests that they are the main transmitters of C. burnetii in RG. The DNA was detected in the liver and spleen of a Guinea multimammate mouse, Mastomys erythroleucus. These findings demonstrate that C. burnetii is zoonotic in RG, and measures should be taken to monitor the bacteria's dynamics and tick prevalence in the rodent population.
Collapse
Affiliation(s)
- Olesia V Ohlopkova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Sergey A Yakovlev
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Kabwe Emmanuel
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Alexey A Kabanov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Dmitry A Odnoshevsky
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Mikhail Yu Kartashov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Alexey D Moshkin
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Igor V Tuchkov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Nikita Yu Nosov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Moscow 107076, Russia
| | - Andrey A Kritsky
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- Limited Liability Company, «Biotech Campus», Moscow 117437, Russia
| | - Milana A Agalakova
- Faculty of Preventive Medicine, Ural State Medical University, Yekaterinburg 620014, Russia
- Limited Liability Company, «Quality Med», Yekaterinburg 105318, Russia
| | - Yuriy N Davidyuk
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Svetlana F Khaiboullina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | | | - Magasuba N'Fally
- Faculty of Medicine, Pharmacy and Dentistry, University Gamal Abdel Nasser, Conakry 001, Guinea
| | - Sanaba Bumbali
- Research Institute of Applied Biology of Guinea, Kindia 100, Guinea
| | | | | | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Elena V Gavrilova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| |
Collapse
|
31
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Matos M, Pintado C, Figueira L, Mesquita JR, Matos AC, Coelho AC. Seropositivity for Coxiella burnetii in Wild Boar ( Sus scrofa) and Red Deer ( Cervus elaphus) in Portugal. Pathogens 2023; 12:421. [PMID: 36986343 PMCID: PMC10057195 DOI: 10.3390/pathogens12030421] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Q fever is caused by the pathogen Coxiella burnetii and is a zoonosis that naturally infects goats, sheep, and cats, but can also infect humans, birds, reptiles, or arthropods. A survey was conducted for the detection of antibodies against C. burnetii in a sample of 617 free-ranging wild ruminants, 358 wild boar (Sus scrofa) and 259 red deer (Cervus elaphus), in east-central Portugal during the 2016-2022 hunting seasons. Only adult animals were sampled in this study. Antibodies specific to C. burnetii were detected using a commercial enzyme-linked immunosorbent assay (ELISA; IDVet®, Montpellier, France) according to the manufacturer's instructions. The seroprevalence of C. burnetii infection was 1.5% (n = 9; 95% confidence interval [CI]: 0.7-2.8%). Antibodies against C. burnetii were detected in 4/358 wild boar (1.1%; 95% CI: CI: 0.3-2.8%) and 5/259 red deer (1.9%; 0.6-4.5%). Results of the present study indicate that antibodies against C. burnetii were present in wild boar and red deer in Portugal. These findings can help local health authorities to focus on the problem of C. burnetii in wildlife and facilitate the application of a One Health approach to its prevention and control.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-556 Vila Real, Portugal
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
- Researcher at Q-RURAL—Quality of Life in the Rural World, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4099-002 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4099-002 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4099-002 Porto, Portugal
| | - Ana Cristina Matos
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
- Researcher at Q-RURAL—Quality of Life in the Rural World, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| |
Collapse
|
32
|
Williams-Macdonald SE, Mitchell M, Frew D, Palarea-Albaladejo J, Ewing D, Golde WT, Longbottom D, Nisbet AJ, Livingstone M, Hamilton CM, Fitzgerald SF, Buus S, Bach E, Dinkla A, Roest HJ, Koets AP, McNeilly TN. Efficacy of Phase I and Phase II Coxiella burnetii Bacterin Vaccines in a Pregnant Ewe Challenge Model. Vaccines (Basel) 2023; 11:vaccines11030511. [PMID: 36992095 DOI: 10.3390/vaccines11030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The bacterium Coxiella burnetii can cause the disease Q-fever in a wide range of animal hosts. Ruminants, including sheep, are thought to play a pivotal role in the transmission of C. burnetii to humans; however, the only existing livestock vaccine, namely, Coxevac® (Ceva Animal Health Ltd., Libourne, France), a killed bacterin vaccine based on phase I C. burnetii strain Nine-Mile, is only approved for use in goats and cattle. In this study, a pregnant ewe challenge model was used to determine the protective effects of Coxevac® and an experimental bacterin vaccine based on phase II C. burnetii against C. burnetii challenge. Prior to mating, ewes (n = 20 per group) were vaccinated subcutaneously with either Coxevac®, the phase II vaccine, or were unvaccinated. A subset of pregnant ewes (n = 6) from each group was then challenged 151 days later (~100 days of gestation) with 106 infectious mouse doses of C. burnetii, Nine-Mile strain RSA493. Both vaccines provided protection against C. burnetii challenge as measured by reductions in bacterial shedding in faeces, milk and vaginal mucus, and reduced abnormal pregnancies, compared to unvaccinated controls. This work highlights that the phase I vaccine Coxevac® can protect ewes against C. burnetii infection. Furthermore, the phase II vaccine provided comparable levels of protection and may offer a safer and cost-effective alternative to the currently licensed vaccine.
Collapse
Affiliation(s)
| | - Mairi Mitchell
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Javier Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - David Ewing
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - William T Golde
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Clare M Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Stephen F Fitzgerald
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Søren Buus
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK 2200 Copenhagen, Denmark
| | - Emil Bach
- Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK 2200 Copenhagen, Denmark
| | - Annemieke Dinkla
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
33
|
Hemsley CM, Essex-Lopresti A, Chisnall T, Millar M, Neale S, Reichel R, Norville IH, Titball RW. MLVA and com1 genotyping of Coxiella burnetii in farmed ruminants in Great Britain. Vet Microbiol 2023; 277:109629. [PMID: 36535174 DOI: 10.1016/j.vetmic.2022.109629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q fever, has been shown to be endemic in Great Britain, but information on the prevailing genomic lineages or Genomic Groups (GGs) of Coxiella burnetii is limited. The aim of this study was to genotype C. burnetii isolates from infected farmed ruminants by Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) and identify their associated Genomic Group. A total of 51 Coxiella-containing abortion samples from farmed ruminants (sheep, goats, and cattle), which were collected in Great Britain during 2013-2018, were included in the study, 34 of which returned a C. burnetii MLVA genotype. All bovine samples (n = 18), 5/7 of the ovine samples, and 3/9 of the caprine samples belonged to an MLVA cluster which we could link to the MST20 genotype of GG III, whereas 6/9 of the caprine samples and 2/7 of the ovine samples belonged to MLVA clusters which we could link to the MST33 or MST32 genotypes of GG II (7 vs 1 sample(s), respectively). We also noted that the Coxiella-specific com1 gene contained unique mutations that could genomotype isolates, i.e. assign them to a Genomic Group. In conclusion, both goats and sheep in Great Britain (from 2014 onward) were found to carry the same MLVA genotypes (MST33-like; GG II) that were linked to a human Q fever outbreak in the Netherlands. This knowledge in combination with the usage of genotyping/genomotyping methods should prove useful in future surveillance programs and in the management of outbreaks.
Collapse
Affiliation(s)
- Claudia M Hemsley
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK.
| | | | | | | | - Sue Neale
- Animal and Plant Health Agency, Penrith, UK.
| | | | - Isobel H Norville
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK; Defence Science and Technology Laboratory, Porton Down, Salisbury, UK.
| | - Richard W Titball
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
34
|
Hip periprosthetic joint infection due to Coxiella burnetii in an adult male. IDCases 2022; 31:e01661. [PMID: 36593892 PMCID: PMC9803808 DOI: 10.1016/j.idcr.2022.e01661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium. "Query fever" (Q fever) first described in 1939 is a disease caused by Coxiella burnetii. This bacterium infects animals including goats, sheep, and cattle, and has been recognized as a pathogen causing acute illness in humans. A patient living on a farm with a history of a right total hip arthroplasty presented with right hip pain. Arthrocentesis revealed a total nucleated count of 4288 (93% neutrophils), however his synovial fluid culture remained negative. His Q fever phase I IgG and phase II IgG were elevated at 1:4096 and 1:2048, respectively. He underwent incision and drainage with exchange of the femoral head and acetabular component, with retention of the femoral stem. PCR of tissue samples returned positive for Coxiella burnettii. He was diagnosed with a persistent localized prosthetic joint infection (PJI) of the right hip. Coxiella burnetii PJI is a rare but increasingly recognized form of persistent localized Q fever infection. Q fever should be considered in the differential diagnosis of culture-negative PJI, especially among patients with exposure to sheep, goats, or cattle. Initial screening for Coxiella burnetii includes serology, but tissue PCR and immunohistochemical staining may be obtained to confirm joint infection.
Collapse
|
35
|
Seroprevalence and Risk Factors for Q fever ( Coxiella burnetii) Exposure in Smallholder Dairy Cattle in Tanzania. Vet Sci 2022; 9:vetsci9120662. [PMID: 36548823 PMCID: PMC9784148 DOI: 10.3390/vetsci9120662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Q fever is a zoonotic disease, resulting from infection with Coxiella burnetii. Infection in cattle can cause abortion and infertility, however, there is little epidemiological information regarding the disease in dairy cattle in Tanzania. Between July 2019 and October 2020, a serosurvey was conducted in six high dairy producing regions of Tanzania. Cattle sera were tested for antibodies to C. burnetii using an indirect enzyme-linked immunosorbent assay. A mixed effect logistic regression model identified risk factors associated with C. burnetii seropositivity. A total of 79 out of 2049 dairy cattle tested positive with an overall seroprevalence of 3.9% (95% CI 3.06-4.78) across the six regions with the highest seroprevalence in Tanga region (8.21%, 95% CI 6.0-10.89). Risk factors associated with seropositivity included: extensive feeding management (OR 2.77, 95% CI 1.25-3.77), and low precipitation below 1000 mm (OR 2.76, 95% 1.37-7.21). The disease seroprevalence is relatively low in the high dairy cattle producing regions of Tanzania. Due to the zoonotic potential of the disease, future efforts should employ a "One Health" approach to understand the epidemiology, and for interdisciplinary control to reduce the impacts on animal and human health.
Collapse
|
36
|
Anastácio S, de Sousa SR, Saavedra MJ, da Silva GJ. Role of Goats in the Epidemiology of Coxiella burnetii. BIOLOGY 2022; 11:biology11121703. [PMID: 36552213 PMCID: PMC9774940 DOI: 10.3390/biology11121703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Since its first description in the late 1930s, Q fever has raised many questions. Coxiella burnetii, the causative agent, is a zoonotic pathogen affecting a wide range of hosts. This airborne organism leads to an obligate, intracellular lifecycle, during which it multiplies in the mononuclear cells of the immune system and in the trophoblasts of the placenta in pregnant females. Although some issues about C. burnetii and its pathogenesis in animals remain unclear, over the years, some experimental studies on Q fever have been conducted in goats given their excretion pattern. Goats play an important role in the epidemiology and economics of C. burnetii infections, also being the focus of several epidemiological studies. Additionally, variants of the agent implicated in human long-term disease have been found circulating in goats. The purpose of this review is to summarize the latest research on C. burnetii infection and the role played by goats in the transmission of the infection to humans.
Collapse
Affiliation(s)
- Sofia Anastácio
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Correspondence:
| | - Sérgio Ramalho de Sousa
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Maria José Saavedra
- Laboratory Medical Microbiology—Antimicrobials, Biocides and Biofilms Unit, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre for the Research and Technology Agro-Environmental and Biological Sciences and Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge da Silva
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
37
|
Performance Evaluation and Validation of Air Samplers To Detect Aerosolized Coxiella burnetii. Microbiol Spectr 2022; 10:e0065522. [PMID: 36073825 PMCID: PMC9602806 DOI: 10.1128/spectrum.00655-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, is an intracellular zoonotic pathogen transmitted via the respiratory route. Once released from infected animals, C. burnetii can travel long distances through air before infecting another host. As such, the ability to detect the presence of C. burnetii in air is important. In this study, three air samplers, AirPort MD8, BioSampler, and the Coriolis Micro, were assessed against a set of predetermined criteria in the presence of three different aerosolized C. burnetii concentrations. Two liquid collection media, phosphate-buffered saline (PBS) and alkaline polyethylene glycol (Alk PEG), were tested with devices requiring a collection liquid. Samples were tested by quantitative polymerase chain reaction assay (qPCR) targeting the single-copy com1 gene or multicopy insertion element IS1111. All air samplers performed well at detecting airborne C. burnetii across the range of concentrations tested. At high nebulized concentrations, AirPort MD8 showed higher, but variable, recovery probabilities. While the BioSampler and Coriolis Micro recovered C. burnetii at lower concentrations, the replicates were far more repeatable. At low and intermediate nebulized concentrations, results were comparable in the trials between air samplers, although the AirPort MD8 had consistently higher recovery probabilities. In this first study validating air samplers for their ability to detect aerosolized C. burnetii, we found that while all samplers performed well, not all samplers were equal. It is important that these results are further validated under field conditions. These findings will further inform efforts to detect airborne C. burnetii around known point sources of infection. IMPORTANCE Coxiella burnetii causes Q fever in humans and coxiellosis in animals. It is important to know if C. burnetii is present in the air around putative sources as it is transmitted via inhalation. This study assessed air samplers (AirPort MD8, BioSampler, and Coriolis Micro) for their efficacy in detecting C. burnetii. Our results show that all three devices could detect aerosolized bacteria effectively; however, at high concentrations the AirPort performed better than the other two devices, showing higher percent recovery. At intermediate and low concentrations AirPort detected at a level higher than or similar to that of other samplers. Quantification of samples was hindered by the limit of quantitation of the qPCR assay. Compared with the other two devices, the AirPort was easier to handle and clean in the field. Testing air around likely sources (e.g., farms, abattoirs, and livestock saleyards) using validated sampling devices will help better estimate the risk of Q fever to nearby communities.
Collapse
|
38
|
Muema J, Nyamai M, Wheelhouse N, Njuguna J, Jost C, Oyugi J, Bukania Z, Oboge H, Ogoti B, Makori A, Fernandez MDP, Omulo S, Thumbi S. Endemicity of Coxiella burnetii infection among people and their livestock in pastoral communities in northern Kenya. Heliyon 2022; 8:e11133. [PMID: 36303929 PMCID: PMC9593183 DOI: 10.1016/j.heliyon.2022.e11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Coxiella burnetti can be transmitted to humans primarily through inhaling contaminated droplets released from infected animals or consumption of contaminated dairy products. Despite its zoonotic nature and the close association pastoralist communities have with their livestock, studies reporting simultaneous assessment of C. burnetti exposure and risk-factors among people and their livestock are scarce. Objective This study therefore estimated the seroprevalence of Q-fever and associated risk factors of exposure in people and their livestock. Materials and methods We conducted a cross-sectional study in pastoralist communities in Marsabit County in northern Kenya. A total of 1,074 women and 225 children were enrolled and provided blood samples for Q-fever testing. Additionally, 1,876 goats, 322 sheep and 189 camels from the same households were sampled. A structured questionnaire was administered to collect individual- and household/herd-level data. Indirect IgG ELISA kits were used to test the samples. Results Household-level seropositivity was 13.2% [95% CI: 11.2–15.3]; differences in seropositivity levels among women and children were statistically insignificant (p = 0.8531). Lactating women had higher odds of exposure, odds ratio (OR) = 2.4 [1.3–5.3], while the odds of exposure among children increased with age OR = 1.1 [1.0–1.1]. Herd-level seroprevalence was 83.7% [81.7–85.6]. Seropositivity among goats was 74.7% [72.7–76.7], while that among sheep and camels was 56.8% [51.2–62.3] and 38.6% [31.6–45.9], respectively. Goats and sheep had a higher risk of exposure OR = 5.4 [3.7–7.3] and 2.6 [1.8–3.4], respectively relative to camels. There was no statistically significant association between Q-fever seropositivity and nutrition status in women, p = 0.900 and children, p = 1.000. We found no significant association between exposure in people and their livestock at household level (p = 0.724) despite high animal exposure levels, suggesting that Q-fever exposure in humans may be occurring at a scale larger than households. Conclusion The one health approach used in this study revealed that Q-fever is endemic in this setting. Longitudinal studies of Q-fever burden and risk factors simultaneously assessed in human and animal populations as well as the socioeconomic impacts of the disease and further explore the role of environmental factors in Q-fever epidemiology are required. Such evidence may form the basis for designing Q-fever prevention and control strategies.
Collapse
Affiliation(s)
- Josphat Muema
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Corresponding author.
| | - Mutono Nyamai
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Joseph Njuguna
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Christine Jost
- United States Agency for International Development's Bureau for Humanitarian Assistance (USAID/BHA), Washington, DC, USA,Global Health Support Initiative III, Social Solutions International, Washington DC, USA
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Zipporah Bukania
- Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Harriet Oboge
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA
| | - Brian Ogoti
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Anita Makori
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Sylvia Omulo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - S.M. Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya,Paul G. Allen School for Global Health, Washington State University, Pullman, USA,South African Center for Epidemiological Modelling Analysis, South Africa,Institute of Immunology and Infection Research, University of Edinburgh, UK
| |
Collapse
|
39
|
Bauer BU, Herms TL, Runge M, Ganter M. A Q fever outbreak on a dairy goat farm did not result in Coxiella burnetii shedding on neighboring sheep farms – An observational study. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Souza EARD, André MR, Labruna MB, Horta MC. Q fever and coxiellosis in Brazil: an underestimated disease? A brief review. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e009822. [PMID: 36169506 DOI: 10.1590/s1984-29612022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Q fever, caused by the γ-proteobacterium Coxiella burnetii, is a zoonosis of great importance and global impact. This agent has high transmissibility and can spread over long distances via wind, in which a small number of aerosolized particles are needed to infect susceptible hosts. The clinical diagnosis of Q fever is difficult owing to the variety of clinical signs shared with other diseases. In Brazil, studies related to C. burnetii are constantly being conducted, and this review aims to increase the number of approaches already studied, leading to the following question: is Q fever an unknown, neglected disease, or does it have a focal occurrence in certain areas (exotic/rare) in the country?
Collapse
Affiliation(s)
- Eline Almeida Rodrigues de Souza
- Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
- Programa de Pós-graduação em Biociência Animal, Universidade Federal Rural de Pernambuco - UFRPE, Recife, PE, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCA, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia - FMVZ, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Mauricio Claudio Horta
- Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
- Programa de Pós-graduação em Biociência Animal, Universidade Federal Rural de Pernambuco - UFRPE, Recife, PE, Brasil
| |
Collapse
|
41
|
Graves SR, Islam A, Webb LD, Marsh I, Plain K, Westman M, Conlan XA, Carbis R, Toman R, Stenos J. An O-Specific Polysaccharide/Tetanus Toxoid Conjugate Vaccine Induces Protection in Guinea Pigs against Virulent Challenge with Coxiella burnetii. Vaccines (Basel) 2022; 10:vaccines10091393. [PMID: 36146471 PMCID: PMC9503072 DOI: 10.3390/vaccines10091393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Q fever is caused by the bacterium Coxiella burnetii and is spread to humans from infected animals especially goats, sheep and cattle, predominantly when giving birth. There is an effective human vaccine (Q-VAX) against Q fever, and although Q fever is a worldwide problem, the vaccine is only used in Australia due to difficulties associated with its use and the risk of adverse reactions. The desire to protect humans, particularly farmers and abattoir workers, from Q fever prompted the development of a new safe and effective human vaccine without all the difficulties associated with the current vaccine. Candidate vaccines were prepared using purified O-specific polysaccharide (OSP) extracted from the lipopolysaccharide of virulent (phase 1) C. burnetii, strain Nine Mile, which was then conjugated to a tetanus toxoid (TT) carrier protein. Two vaccines were prepared using OSP from C. burnetii grown in embryonated eggs (vaccine A) and axenic media (vaccine B). Vaccines with or without alum adjuvant were used to vaccinate guinea pigs, which were later challenged by intranasal inoculation with virulent C. burnetii. Both vaccines protected guinea pigs from fever and loss of weight post challenge. Post-mortem samples of the spleen, liver and kidney of vaccinated guinea pigs contained substantially less C. burnetii DNA as measured by PCR than those of the unvaccinated control animals. This study demonstrated that a C. burnetii OSP-TT conjugate vaccine is capable of inducing protection against virulent C. burnetii in guinea pigs. Additionally, OSP derived from C. burnetii grown in axenic media compared to OSP from embryonated eggs is equivalent in terms of providing a protective immune response.
Collapse
Affiliation(s)
- Stephen R. Graves
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
- Correspondence:
| | - Aminul Islam
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Lawrence D. Webb
- School of Life and Environmental Science, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Ian Marsh
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Karren Plain
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Mark Westman
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Xavier A. Conlan
- School of Life and Environmental Science, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Rodney Carbis
- Symbioticus Pty Ltd., Strathmore, VIC 3041, Australia
| | - Rudolf Toman
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC 3220, Australia
| |
Collapse
|
42
|
Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q Fever—A Neglected Zoonosis. Microorganisms 2022; 10:microorganisms10081530. [PMID: 36013948 PMCID: PMC9416428 DOI: 10.3390/microorganisms10081530] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Q fever remains a neglected zoonosis in many developing countries including Pakistan. The causing agent Coxiella (C.) burnetii is resistant to environmental factors (such as drying, heat and many disinfectants), resulting in a long-lasting infection risk for both human and animals. As the infection is usually asymptomatic, it mostly remains undiagnosed in animals until and unless adverse pregnancy outcomes occur in a herd. In humans, the infection leads to severe endocarditis and vascular infection in chronic cases. Limited data are available on molecular epidemiology and evolution of this pathogen, especially in ruminants. Genomic studies will help speculating outbreak relationships in this scenario. Likewise, pathogenesis of C. burnetii needs to be explored by molecular studies. Awareness programs and ensuring pasteurization of the dairy milk before human consumption would help preventing Q fever zoonosis.
Collapse
Affiliation(s)
- Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan 29111, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Mudassar Iqbal
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
43
|
Profiling Risk Factors for Household and Community Spatiotemporal Clusters of Q Fever Notifications in Queensland between 2002 and 2017. Pathogens 2022; 11:pathogens11080830. [PMID: 35894053 PMCID: PMC9332293 DOI: 10.3390/pathogens11080830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Q fever, caused by the bacterium Coxiella burnetii, is an important zoonotic disease worldwide. Australia has one of the highest reported incidences and seroprevalence of Q fever, and communities in the state of Queensland are at highest risk of exposure. Despite Australia’s Q fever vaccination programs, the number of reported Q fever cases has remained stable for the last few years. The extent to which Q fever notifications cluster in circumscribed communities is not well understood. This study aimed to retrospectively explore and identify the spatiotemporal variation in Q fever household and community clusters in Queensland reported during 2002 to 2017, and quantify potential within cluster drivers. We used Q fever notification data held in the Queensland Notifiable Conditions System to explore the geographical clustering patterns of Q fever incidence, and identified and estimated community Q fever spatiotemporal clusters using SatScan, Boston, MA, USA. The association between Q fever household and community clusters, and demographic and socioeconomic characteristics was explored using the chi-squared statistical test and logistic regression analysis. From the total 2175 Q fever notifications included in our analysis, we found 356 Q fever hotspots at a mesh-block level. We identified that 8.2% of Q fever notifications belonged to a spatiotemporal cluster. Within the spatiotemporal Q fever clusters, we found 44 (61%) representing household clusters and 20 (27.8%) were statistically significant with an average cluster size of 3 km radius. Our multivariable model shows statistical differences between cases belonging to clusters in comparison with cases outside clusters based on the type of reported exposure. In conclusion, our results demonstrate that clusters of Q fever notifications are temporally stable and geographically circumscribed, indicating a persistent common exposure. Furthermore, within individuals in household and community clusters, abattoir exposure (a traditional occupational exposure) was rarely reported by individuals.
Collapse
|
44
|
Li Z, Wang Y, Zheng W, Wang H, Li B, Liu C, Wang Y, Lei C. Effect of inlet-outlet configurations on the cross-transmission of airborne bacteria between animal production buildings. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128372. [PMID: 35236040 DOI: 10.1016/j.jhazmat.2022.128372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cross-transmission of airborne pathogens between buildings facilitates the spread of both human and animal diseases. Rational spatial arrangement of buildings and air inlet-outlet design are well-established preventive measures, but the effectiveness of current configurations for mitigating pathogens cross-transmission is still under assessment. An intensive field study in a laying hen farm was conducted to elucidate the spatial distribution of airborne bacteria (AB) and the source of AB at the inlets under different wind regimes. We found higher concentrations of AB at the interspace and sidewall inlets of buildings with sidewall exhaust systems than at those with endwall exhaust systems. We observed significant differences in bacterial diversity and richness at the interspace and sidewall inlets between buildings with side exhaust systems and those with endwall exhaust systems. We further found that the AB emitted from buildings could translocate to the sidewall inlets of adjacent building to a greater extent between buildings with sidewall exhaust systems than between those with endwall exhaust systems. Our findings revealed that sidewall exhaust systems aggravate cross-transmission of AB between buildings, suggesting that endwall exhaust systems or other compensatory preventive measures combined with sidewall exhaust systems could be a better choice to suppress airborne cross-transmission.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Chang Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
45
|
Cross AR, Roy S, Vivoli Vega M, Rejzek M, Nepogodiev SA, Cliff M, Salmon D, Isupov MN, Field RA, Prior JL, Harmer NJ. Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. J Biol Chem 2022; 298:101903. [PMID: 35398092 PMCID: PMC9095892 DOI: 10.1016/j.jbc.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.
Collapse
Affiliation(s)
- Alice R Cross
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sumita Roy
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mirella Vivoli Vega
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Matthew Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Debbie Salmon
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom; Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Joann L Prior
- Dstl, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
46
|
Mwololo D, Nthiwa D, Kitala P, Abuom T, Wainaina M, Kairu-Wanyoike S, Lindahl JF, Ontiri E, Bukachi S, Njeru I, Karanja J, Sang R, Grace D, Bett B. Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya. PLoS Negl Trop Dis 2022; 16:e0010214. [PMID: 35239658 PMCID: PMC8923444 DOI: 10.1371/journal.pntd.0010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/15/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remain scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. Methods Data were collected through a cross-sectional study. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as a random effect to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. Results The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57–14.11) and 24.44% (95% CI: 21.77–27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats (15.22%, 95% CI: 13.34-17.27) and sheep (14.22%, 95% CI: 12.04–16.64) while cattle (3.00%, 95% CI: 1.65–4.99) had the lowest seroprevalence. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. Conclusions This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen. Q fever caused by Coxiella burnetii is a significant zoonotic disease that affects wildlife, domestic animals and humans. This study determined the prevalence of antibodies to C. burnetii in livestock (cattle, sheep, and goats) and human populations in arid and semi-arid areas of Kenya between December 2013 and February 2014. We also identified potential factors that were associated with exposure among the above-targeted hosts. Results from this study showed considerable exposure in both livestock and human populations. However, human exposure to this pathogen at the household level was not correlated with herd-level seropositivity. Further studies are needed to elucidate the transmission routes of this pathogen among humans.
Collapse
Affiliation(s)
- Damaris Mwololo
- Directorate of Veterinary Services, Ministry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - Philip Kitala
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Tequiero Abuom
- Department of Clinical Medicine, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Salome Kairu-Wanyoike
- Department of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enoch Ontiri
- International Livestock Research Institute, Nairobi, Kenya
| | - Salome Bukachi
- Institute of Anthropology, University of Nairobi, Nairobi, Kenya
| | - Ian Njeru
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | - Joan Karanja
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | | | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
47
|
Vaca DJ, Dobler G, Fischer SF, Keller C, Konrad M, von Loewenich FD, Orenga S, Sapre SU, van Belkum A, Kempf VAJ. Contemporary diagnostics for medically relevant fastidious microorganisms belonging to the genera Anaplasma, Bartonella, Coxiella, Orientia, and Rickettsia. FEMS Microbiol Rev 2022; 46:6530194. [PMID: 35175353 PMCID: PMC9300619 DOI: 10.1093/femsre/fuac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Many of the human infectious pathogens—especially the zoonotic or vector-borne bacteria—are fastidious organisms that are difficult to cultivate because of their strong adaption to the infected host culminating in their near-complete physiological dependence on this environment. These bacterial species exhibit reduced multiplication rates once they are removed from their optimal ecological niche. This fact complicates the laboratory diagnosis of the disease and hinders the detection and further characterization of the underlying organisms, e.g. at the level of their resistance to antibiotics due to their slow growth. Here, we describe the current state of microbiological diagnostics for five genera of human pathogens with a fastidious laboratory lifestyle. For Anaplasma spp., Bartonella spp., Coxiella burnetii, Orientia spp. and Rickettsia spp., we will summarize the existing diagnostic protocols, the specific limitations for implementation of novel diagnostic approaches and the need for further optimization or expansion of the diagnostic armamentarium. We will reflect upon the diagnostic opportunities provided by new technologies including mass spectrometry and next-generation nucleic acid sequencing. Finally, we will review the (im)possibilities of rapidly developing new in vitro diagnostic tools for diseases of which the causative agents are fastidiously growing and therefore hard to detect.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| | - Gerhard Dobler
- Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Germany
| | - Silke F Fischer
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | - Maik Konrad
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | | | | | | | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| |
Collapse
|
48
|
Héloïse VN, Marcella M, Marielle M, Evelyne M, Sophie L, Doina G, El Mehdi C, Philippe C. A zoonotic cause of blood culture-negative infective endocarditis in Belgium: Case report and review of the literature on Q fever. IDCases 2022; 29:e01595. [PMID: 36032176 PMCID: PMC9399264 DOI: 10.1016/j.idcr.2022.e01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Q fever is a worldwide zoonotic infection caused by Coxiella burnetii. In Belgium, the disease must be notified, and the incidence is low. Human contamination is mostly due to sheep and goats. Herein, we report a case of chronic Q fever presenting as a prolonged fever in a patient with a history of valve prosthesis. Blood culture-negative endocarditis was diagnosed through an assessment including echocardiography and systematic serological testing. Despite the absence of travel abroad or obvious contact with domestic or wildlife animals, C. burnetii phase I and phase II IgG antibody titers were > 1:8192, and polymerase chain reaction performed on blood was positive for C. burnetii. Genotypic single nucleotide polymorphism (SNP) analysis of the pathogen strain identified a SNP-type 1 genomic group, which is associated with small ruminants in Belgium. The epidemiological investigation did not confirm the presence of positive C. burnetii cattle or sheep herds in the vicinity of the patient’s workplace and home, nor in the pest animals surrounding the workplace. Patients with risk factors for chronic Q fever should be tested for C. burnetii infection in case of prolonged fever of unknown origin, osteomyelitis, abscess or blood culture-negative endocarditis, even in the absence of direct exposure to animals.
Collapse
Affiliation(s)
- Van Noten Héloïse
- Infectious Diseases Department, CHU-Brugmann, Brussels, Belgium
- Correspondence to: CHU Brugmann Victor Horta, Département de cardiologie, Place Arthur Van Gehuchten 4, 1020 Brussels, Belgium.
| | - Mori Marcella
- National Reference Center for Coxiella burnetii and Bartonella, Zoonoses of Animals Unit, Sciensano, Brussels, Belgium
| | | | | | - Leemans Sophie
- Infectious Diseases Department, CHU-Brugmann, Brussels, Belgium
| | - Gvinda Doina
- Cardiology Department, CHU-Brugmann, Brussels, Belgium
| | | | | |
Collapse
|
49
|
Dorsch MA, Cantón GJ, Driemeier D, Anderson ML, Moeller RB, Giannitti F. Bacterial, protozoal and viral abortions in sheep and goats in South America: A review. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Jodełko A, Szymańska-Czerwińska M, Rola JG, Niemczuk K. Molecular detection of Coxiella burnetii in small ruminants and genotyping of specimens collected from goats in Poland. BMC Vet Res 2021; 17:341. [PMID: 34711239 PMCID: PMC8554849 DOI: 10.1186/s12917-021-03051-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Coxiella burnetii is the etiological agent of Q fever, a zoonosis affecting many animal species including sheep and goats. The aims of this study were to evaluate the shedding of Coxiella burnetii in small ruminant herds and to identify the pathogen’s genotypes and sequence types (STs) using multiple-locus variable number tandem repeat analysis (MLVA) and multispacer sequence typing (MST) methods. Results Overall, 165 samples from 43 herds of goats and 9 flocks of sheep were collected including bulk tank milk (BTM), individual milk samples, vaginal swabs, tissue sections from stillborn kids, feces and placentas. These were tested by real-time PCR targeting the IS1111 element. C. burnetii infection was confirmed in 51.16% of the herds of goats and 22.2% of the flocks of sheep. Six out of nine samples originating from goats were successfully genotyped using the MLVA method. The presence was confirmed of two widely distributed MLVA genotypes (I and J) and genotype PL1 previously reported only in cattle. Only one sequence type (ST61) was identified; however, the majority of specimens represented partial STs and some of them may belong to ST61. Other partial STs could possibly be ST74. Conclusion This study confirmed the relatively common occurrence of Coxiella burnetii in small ruminant herds in Poland. Interestingly, all genotyped samples represent cattle-associated MLVA genotypes.
Collapse
Affiliation(s)
- Agnieszka Jodełko
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland.
| | | | - Jolanta Grażyna Rola
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|