1
|
Churchill KJ, Winder CB, Goetz HM, Wilson D, Uyama T, Pardon B, Renaud DL. Evaluating case definitions of respiratory disease in dairy calves: A scoping review. J Dairy Sci 2025; 108:4030-4048. [PMID: 39824499 DOI: 10.3168/jds.2024-25827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Bovine respiratory disease (BRD) is one of the most common diseases observed in dairy calves in both the pre- and postweaning periods. Despite its common occurrence, no formal synthesis (e.g., scoping review) of the scientific literature has been conducted surrounding diagnosing BRD in dairy calves. As such, the objective of this scoping review was to describe what case definitions for diagnosing BRD in dairy calves have been used in research. An initial search of peer-reviewed journals and the gray literature yielded 12,001 unique articles, of which 307 records containing 358 case definitions were included. Seven categories of diagnostic methods were used to categorize case definitions: clinical scoring systems alone were the most used diagnostic method (n = 148, 41%); followed by physical exam parameters alone (i.e., the study did not provide a detailed description of how the calf was assessed for each component of the physical exam [i.e., no description or scoring options reported]), n = 91, 25%); physical exam parameters in combination with other diagnostic methods (n = 40, 11%); thoracic ultrasound alone (n = 31, 9%); clinical scoring system in combination with other diagnostic methods (n = 23, 7%); clinical scoring system in combination with thoracic ultrasound (n = 10, 3%); and other diagnostic methods (n = 15, 4%). Only two-thirds of publications provided a citation for their case definition (n = 230, 64%), of which the Wisconsin clinical scoring system was most referenced (n = 100, 43%), followed by the California clinical scoring system (n = 19, 8%). An attempt was made to compare entire case definitions within each diagnostic method; however, they displayed substantial diversity, which limited the ability to compare them at this level. Instead, counts of individual factors within each case definition (e.g., individual clinical signs) were reported for each diagnostic method. From all case definitions across the 7 diagnostic method categories (n = 358), common factors assessed included cough (n = 224, 63%), nasal discharge (n = 213, 60%), and body temperature (n = 142, 54%). Across all case definitions, additional parameters such as validity were frequently not reported; only 4 (1.1%) were referred to as validated, 9 (2.5%) were being validated in the study, and 28 (7.8%) modified existing case definitions. Additionally, assessment of severity of disease when present (e.g., mild, moderate or severe) was frequently not reported (n = 336, 93.9%). Further, 106 (29.0%) reported assessments of accuracy, 66 (18.4%) of which were reports of qualitative oversight (e.g., training of assessors), and 40 (11.1%) of which were related to a quantitative assessment of accuracy (e.g., sensitivity and specificity). Parameters surrounding conducting the assessment were also extracted, for example how often it was conducted (most common: at least daily, n = 120, 33.5%) and who conducted it (most common: information not reported, n = 144, 40.2%). The findings of this scoping review highlighted the need for a validated, standardized set of criteria for BRD diagnosis in dairy calves, achievable through following the methodology of developing a core outcome set.
Collapse
Affiliation(s)
- K J Churchill
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - C B Winder
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - H M Goetz
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - D Wilson
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - T Uyama
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - B Pardon
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - D L Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
2
|
Centeno-Delphia RE, Glidden N, Long E, Ellis A, Hoffman S, Mosier K, Ulloa N, Cheng JJ, Davidson JL, Mohan S, Kamel M, Szasz JI, Schoonmaker J, Koziol J, Boerman JP, Ault A, Verma MS, Johnson TA. Nasal pathobiont abundance is a moderate feedlot-dependent indicator of bovine respiratory disease in beef cattle. Anim Microbiome 2025; 7:27. [PMID: 40087791 PMCID: PMC11909826 DOI: 10.1186/s42523-025-00387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) poses a persistent challenge in the beef cattle industry, impacting both animal health and economic aspects. Several risk factors make an animal susceptible to BRD, including bacteria such as Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Despite efforts to characterize and quantify these bacteria in the nasal cavity for disease diagnosis, more research is needed to understand if there is a pathobiont abundance threshold for clinical signs of respiratory disease, and if the results are similar across feedlots. This study aims to compare the nasal microbiome community diversity and composition, along with the abundance of four bacterial pathogens and associated serotypes, in apparently healthy and BRD-affected beef cattle. Nasal swabs were collected from four beef feedlots across the US, covering the years 2019 to 2022. The study included post-weaned beef cattle with diverse housing conditions. RESULTS Quantification of BRD-associated pathogens effectively distinguished BRD-affected from apparently healthy beef cattle, surpassing the efficacy of 16S rRNA gene sequencing of the nasal microbiome community. Specifically, H. somni, M. bovis, and M. haemolytica had higher abundance in the BRD-affected group. Utilizing the abundance of these pathobionts and analyzing their combined abundance with machine learning models resulted in an accuracy of approximately 63% for sample classification into disease status. Moreover, there were no significant differences in nasal microbiome diversity (alpha and beta) between BRD-affected and apparently healthy cattle; instead, differences were detected between feedlots. CONCLUSIONS Notably, this study sheds light on the beef cattle nasal microbiome community composition, revealing specific differences between BRD-affected and apparently healthy cattle. Pathobiont abundance was increased in some, but not all farms. Nonetheless, more research is needed to determine if these differences are consistent across other studies. Additionally, future research should consider bacterial-viral interactions in the beef nasal metagenome.
Collapse
Affiliation(s)
| | - Natalie Glidden
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Erica Long
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Audrey Ellis
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Sarah Hoffman
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Kara Mosier
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Noelmi Ulloa
- Escuela Agrícola Panamericana Zamorano, Valle del Yeguare, Tegucigalpa, Honduras
| | - Johnnie Junior Cheng
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohamed Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Josh I Szasz
- Five Rivers Cattle Feeding, LLC, Johnstown, CO, 80534, USA
| | - Jon Schoonmaker
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Jacquelyn P Boerman
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA
| | - Aaron Ault
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Brick Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, 270 S Russell St, room 2020, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Lachowicz-Wolak A, Chmielina A, Przychodniak I, Karwańska M, Siedlecka M, Klimowicz-Bodys M, Dyba K, Rypuła K. Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease. Microorganisms 2025; 13:491. [PMID: 40142384 PMCID: PMC11944906 DOI: 10.3390/microorganisms13030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found together. Poland has one of the highest levels of antimicrobial use in food-producing animals among European Union countries. A total of 70 bacterial strains were analyzed, 48 P. multocida and 22 M. haemolytica, collected from affected calves' respiratory tracts. The bacterial species were confirmed molecularly using PCR, which was also employed to detect antimicrobial resistance and virulence-associated genes. Antimicrobial susceptibility was determined using the broth microdilution method. Antimicrobial resistance varied between the two bacterial species studied. The highest resistance in P. multocida was to chlortetracycline 79.2% (38/48) and oxytetracycline 81.3% (39/48), while M. haemolytica showed 63.6% (14/22) resistance to penicillin and tilmicosin. The highest susceptibility was found for fluoroquinolones: P. multocida demonstrated 91.7% (44/48) susceptibility to enrofloxacin and 87.5% (42/48) to danofloxacin, while 77.3% (17/22) of M. haemolytica were susceptible to both tested fluoroquinolones. The tetH and tetR genes were observed only in P. multocida, at frequencies of 20.8% (10/48) and 16.7% (8/48), respectively. Both species carried the mphE and msrE genes, though at lower frequencies. All M. haemolytica contained the lkt, gs60, and gcp genes. All P. multocida carried the sodA gene, while the hgbB and ompH genes were present in 37.5% (18/48) and 20.8% (10/48) of strains, respectively. The highest resistance was observed against the most commonly used antibiotics in the European Union, although the resistance differed between the studied bacterial species and each strain exhibited the presence of at least one virulence gene.
Collapse
Affiliation(s)
- Agnieszka Lachowicz-Wolak
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.K.); (M.S.); (M.K.-B.)
| | - Aleksandra Chmielina
- “Epi-Vet” Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.C.); (I.P.)
| | - Iwona Przychodniak
- “Epi-Vet” Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.C.); (I.P.)
| | - Magdalena Karwańska
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.K.); (M.S.); (M.K.-B.)
| | - Magdalena Siedlecka
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.K.); (M.S.); (M.K.-B.)
| | - Małgorzata Klimowicz-Bodys
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.K.); (M.S.); (M.K.-B.)
| | - Kamil Dyba
- Department of Applied Mathematics, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland;
| | - Krzysztof Rypuła
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.K.); (M.S.); (M.K.-B.)
| |
Collapse
|
4
|
Centeno-Delphia RE, Long EA, Ellis AC, Hofmann S, Mosier K, Ulloa N, Cheng JJ, Richards A, Boerman JP, Koziol J, Verma MS, Johnson TA. Nasal pathobiont abundance does not differ between dairy cattle with or without clinical symptoms of bovine respiratory disease. Anim Microbiome 2025; 7:16. [PMID: 39966965 PMCID: PMC11837595 DOI: 10.1186/s42523-025-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) remains a significant health and economic problem to the dairy cattle industry. Multiple risk factors contribute to BRD susceptibility including the bacterial pathobionts Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Studies have characterized and quantified the abundance of these bacteria in the nasal cavity of cattle to infer and help disease diagnosis; nonetheless, there is still discrepancy in the results observed of when these microbes are commensal or pathogenic. Additionally, some of these studies are limited to a specific farm. The goal of this study is to compare the nasal microbiome community (diversity and composition) and the abundance of the four bacterial pathogens (by qPCR) in the nasal cavity to identify differences between dairy calves that are apparently healthy and those identified to have BRD. Nasal swabs were collected from approximately 50 apparently healthy and 50 BRD-affected calves sampled from five different dairy farms in the US (CA, IN, NY (two farms), and TX). RESULTS Calves diagnosed with BRD in NY, and TX had lower nasal microbiome diversity compared to the apparently healthy calves. Differences in the nasal microbiome composition were observed between the different farms predicted by Bray-Curtis and weighted UniFrac dissimilarities. Commensal and pathobiont genera Acinetobacter, Moraxella, Psychrobacter, Histophilus, Mannheimia, Mycoplasma, and Pasteurella were prevalent in the bovine nasal microbiome regardless of farm or disease status. The BRD-pathobiont H. somni was the most prevalent pathobiont among all the samples and M. bovis the least prevalent. Only in CA was the abundance of a pathobiont different according to disease status, where M. haemolytica was significantly more abundant in the BRD-affected animals than apparently healthy animals. CONCLUSIONS This study offers insight into the nasal microbiome community composition in both animals diagnosed with BRD and healthy animals, and shows that the farm effect plays a more significant role in determining the microbiome community than disease status in young dairy calves.
Collapse
Affiliation(s)
| | - Erica A Long
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Audrey C Ellis
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Sarah Hofmann
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Kara Mosier
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Noelmi Ulloa
- Escuela Agrícola Panamericana Zamorano, Valle del Yeguare, Honduras
| | - Johnnie Junior Cheng
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Andrew Richards
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Jacquelyn P Boerman
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Brick Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Lindley G, Blackie N, Wathes DC, Booth RE. Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study. Animals (Basel) 2025; 15:360. [PMID: 39943130 PMCID: PMC11816342 DOI: 10.3390/ani15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The respiratory health of preweaned calves is an important determinant of their health, welfare, and future performance. This prospective cohort study measured bovine respiratory disease (BRD) on 16 dairy farms, including 476 calves in South-west England. Wisconsin and California respiratory scoring and thoracic ultrasonography were performed repeatedly at 7 ± 0.89 day intervals (mean ± SD) at 0-56 days of age (n = 3344 examinations). Cases were localized to the upper or lower respiratory tract, or both, and classified as new, repeat, or chronic. Prevalence and incidence were calculated. Multivariate modeling of factors associated with repeated measurements was performed. Increasing age (OR = 1.05, 95% CI 1.04-1.06) and fecal score (Score 2, OR = 1.78, 95% CI 1.14-2.77) were associated with a lower odds of a healthy BRD subtype, whereas increasing serum total protein (OR = 0.97, 95% CI 0.96-0.99) was protective. Older (OR 1.08, 95% CI 1.06-1.09), male (OR 1.69, 95% CI 1.01-2.84) calves with elevated Wisconsin respiratory scores (≥5, OR 5.61, 95% CI 3.38-9.30) were more likely to have elevated thoracic ultrasound scores. BRD remains common in calves born in UK dairy herds, requiring precise identification and management if preweaning health is to be optimized.
Collapse
Affiliation(s)
- George Lindley
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK; (N.B.); (R.E.B.)
| | | | | | | |
Collapse
|
6
|
Beilleau G, Stalder H, Almeida L, Oliveira Esteves BI, Alves MP, Schweizer M. The Pestivirus RNase E rns Tames the Interferon Response of the Respiratory Epithelium. Viruses 2024; 16:1908. [PMID: 39772215 PMCID: PMC11680131 DOI: 10.3390/v16121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae, is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections. Erns, an immunomodulatory viral protein, is present on the envelope of the virus and is released as a soluble protein. In this form, it is taken up by cells and, with its RNase activity, degrades single- and double-stranded (ds) RNA, thus preventing activation of the host's interferon system. Here, we show that Erns of the pestiviruses BVDV and Bungowannah virus effectively inhibit dsRNA-induced IFN synthesis in well-differentiated airway epithelial cells cultured at the air-liquid interface. This activity was observed independently of the side of entry, apical or basolateral, of the pseudostratified, polarized cell layer. Virus infection was successful from both surfaces but was inefficient, requiring several days of incubation. Virus release was almost exclusively restricted to the apical side. This confirms that primary, well-differentiated respiratory epithelial cells cultured at the air-liquid interface are an appropriate model to study viral infection and innate immunotolerance in the bovine respiratory tract. Furthermore, evidence is presented that Erns might contribute to the immunosuppressive effect observed after BVDV infections, especially in persistently infected animals.
Collapse
Affiliation(s)
- Guillaume Beilleau
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Marco P. Alves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
7
|
Buczinski S, Broes A, Savard C. Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023. Vet Sci 2024; 11:631. [PMID: 39728971 DOI: 10.3390/vetsci11120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc., QC, Canada) in the Province of Quebec, Eastern Canada. From the 1st of January 2019 to the 31st of December 2023, a total of 1875 samples were analyzed. Most samples collected were individual samples (1547 of 1860 samples for which information was available (83.17%)), and the rest were from pooled samples of 2 (8.55%, n = 159) or ≥3 specimens (8.28%, n = 154). In 19.3% of the samples (n = 362), no pathogen was found, whereas 54.1% of samples had two or more different pathogens. Among the viruses, bovine coronavirus (BCV) was the most commonly found (27.5% of samples, n = 516), followed by bovine respiratory syncytial virus (BRSV) (17.7%, n = 332), whereas, for bacteria, Pasteurella multocida (50.1%, n = 940) and Mannheimia haemolytica (26.9%, n = 505) were the most common. The frequency of samples positive for Histophilus somni, Mycoplasmopsis bovis, influenza type D virus (IDV), bovine parainfluenza virus type 3 (BPI3V), bovine herpesvirus type 1 (BHV1), and bovine viral diarrhea virus (BVDV) was 22.6%, 22.4%, 4.6%, 4.3%, 2.7%, and 0.9%, respectively. In the multivariable Poisson regression model, the total number of pathogens increased with the number of animals in the pool, with an incidence risk ratio (IRR) of 1.15 (95% CI 1.02-1.29) and 1.32 (1.18-1.47) for 2 individuals in the pool and ≥3 individuals vs. individual samples, respectively. An increased number of pathogens were isolated in the winter season (IRR = 1.28 (95% CI 1.17-1.40)) compared to fall, and a lower number of pathogens were isolated in the summer compared to fall (IRR = 0.82 (95% CI 0.73-0.92)). These seasonal differences were mostly driven by the number of viruses isolated. This study gives interesting insights on the circulation of BRD pathogens in cattle from Eastern Canada.
Collapse
Affiliation(s)
- Sébastien Buczinski
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - André Broes
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| | - Christian Savard
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| |
Collapse
|
8
|
Lisuzzo A, Achard D, Valenza A, Contiero B, Cozza L, Schiavon E, Catarin G, Conte F, Fiore E. Bovine Respiratory Disease in Veal Calves: Benefits Associated with Its Early Detection by Lung Ultrasonography and Its Prompt Treatment with a Single Dose of a Fixed Combination of Florfenicol and Meloxicam. Animals (Basel) 2024; 14:3499. [PMID: 39682464 DOI: 10.3390/ani14233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Lung ultrasonography can facilitate bovine respiratory disease (BRD) detection and can potentially improve treatment outcomes. In this study, ninety-six veal calves were followed weekly with clinical and lung ultrasound examinations during the production cycle. Thirty-six calves had clinical signs and abnormal lung ultrasound scans (TRT, n = 36) and were promptly treated with florfenicol and meloxicam. Healthy veal calves without clinical signs and lung lesions were enrolled in the control group (CTR, n = 48), while 12 calves were excluded by the study. The clinical (Wisconsin and California scores), ultrasound and lung lesion scores, total lung consolidation area, treatment rates (success, relapse, mortality), average daily gain (ADG), carcass quality, and gross lesions of lungs at slaughterhouse were monitored. Results showed 91.7% of treatments were performed 3-28 days after arrival. Lung lesions occurred five days before the peak of clinical scores. Following treatment, lungs healed within 5 days with high treatment success rates (97.1% success rate in 45 days and 94.9% overall success rate without relapse). Finally, TRT had similar gross lung lesion prevalence, ADG, and carcass quality to CTR. These results suggest that early detection of BRD followed by a prompt treatment can lead to several key benefits for the health and the growth performances of veal calves.
Collapse
Affiliation(s)
- Anastasia Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | | | | | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Luca Cozza
- Independent Researcher, 31054 Possagno, Italy
| | - Eliana Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Giacomo Catarin
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Fabio Conte
- National Veterinary Service, ULSS 3, 30174 Mestre, Italy
| | - Enrico Fiore
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| |
Collapse
|
9
|
Fritzen JTT, Yasumitsu CY, Silva IV, Lorenzetti E, Alfieri AF, Alfieri AA. Respiratory illness in young and adult cattle caused by bovine viral diarrhea virus subgenotype 2b in singular and mixed bacterial infection in a BVDV-vaccinated dairy herd. Braz J Microbiol 2024; 55:4139-4146. [PMID: 39143403 PMCID: PMC11711846 DOI: 10.1007/s42770-024-01476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Bovine respiratory disease (BRD) is a common global health problem in dairy cattle. The definitive diagnosis of BRD is complex because its etiology involves several predisposing and determining factors. This report describes the etiology of a BRD outbreak in a dairy herd in the mesoregion of Central Eastern Paraná, which simultaneously affected young (calves and heifers) and adult (cows) Holstein-Friesian cattle. Nine biological samples, consisting of five lung samples from two cows and three suckling calves, and four nasal swab samples from heifers, were used for etiological diagnosis. The nucleic acids extracted from lung fragments and nasal swabs were subjected to PCR and RT-PCR assays for partial amplification of the genes of five viruses [bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoAHV1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (BPIV-3), and bovine coronavirus (BCoV)] and four bacteria (Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) involved in the etiology of BRD. All nine biological samples from the animals with BRD tested negative for BoAHV1, BRSV, BPIV-3, BCoV, and H. somni. Therefore, the involvement of these microorganisms in the etiology of BRD outbreak can be ruled out. It was possible to identify the presence of BVDV and M. bovis in singular and mixed infections of the lower respiratory tract in cattle. BVDV was also identified in two nasal swabs: one as a single etiological agent and the other in association with two bacteria (P. multocida and M. haemolytica). The phylogenetic analysis conducted in the nucleotide sequence of the 5'UTR region and Npro gene of the BVDV amplicons demonstrated that the BVDV field strains of this BRD outbreak belong to subgenotype 2b. To the best of our knowledge, this is the first report of BVDV-2b involvement in the etiology of BRD in Brazil. Finally, it is necessary to highlight that the cattle were obtained from an open dairy herd with biannual vaccinations for BVDV-1a and - 2a.
Collapse
Affiliation(s)
- Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Carolina Yuka Yasumitsu
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Isabela Vaz Silva
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil.
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
10
|
Eyango Tabi TGL, Rouault M, Potdevin V, L'hostis X, Assié S, Picault S, Parisey N. Harnessing uncertainty: A deep mechanistic approach for cautious diagnostic and forecast of Bovine Respiratory Disease. Prev Vet Med 2024; 233:106354. [PMID: 39471650 DOI: 10.1016/j.prevetmed.2024.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
Bovine Respiratory Disease (BRD) is a prevalent infectious disease of respiratory tract in cattle, presenting challenges in accurate diagnosis and forecasting due to the complex interactions of multiple risk factors. Common methods, including mathematical epidemiological models and data-driven approaches such as machine learning models, face limitations such as difficult parameter estimation or the need for data across all potential outcomes, which is challenging given the scarcity and noise in observing BRD processes. In response to these challenges, we introduce a novel approach known as the Bayesian Deep Mechanistic method. This method couples a data-driven model with a mathematical epidemiological model while accounting for uncertainties within the processes. By utilising 265 lung ultrasound videos as sensor data from 163 animals across 9 farms in France, we trained a Bayesian deep learning model to predict the infection status (infected or non-infected) of an entire batch of 12 animals, also providing associated confidence levels. These predictions, coupled with their confidence levels, were used to filter out highly uncertain diagnoses and diffuse uncertainties into the parameterisation of a mathematical epidemiological model to forecast the progression of infected animals. Our findings highlight that considering the confidence levels (or uncertainties) of predictions enhances both the diagnosis and forecasting of BRD. Uncertainty-aware diagnosis reduced errors to 32 %, outperforming traditional automatic diagnosis. Forecast relying on veterinarian diagnoses, considered the most confident, had a 23 % error, whilst forecast taking into account diagnosis uncertainties had a close 27.2 % error. Building upon uncertainty-awareness, our future research could explore integrating multiple types of sensor data, such as video surveillance, audio recordings, and environmental parameters, to provide a comprehensive evaluation of animal health, employing multi-modal methods for processing this diverse data.
Collapse
Affiliation(s)
- Théophile Ghislain Loïc Eyango Tabi
- Oniris, INRAE, BIOEPAR, 44300, Nantes, France; ADVENTIEL, 7 boulevard nominoë, 35740, Pace, France; INRAE, IGEPP, La Motte au Vicomte, 35640, Le Rheu, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Jorritsma R, de Jong R, van den Hoven M, van Werven T. BRSV seroprevalence and associated risk factors on Dutch dairy farms. Vet J 2024; 308:106270. [PMID: 39577556 DOI: 10.1016/j.tvjl.2024.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Bovine respiratory syncytial virus (BRSV) causes infections of the respiratory tract of cattle and is endemic in the Netherlands. We aimed to update our knowledge on the seroprevalence of BRSV in youngstock on Dutch dairy farms by performing a cross sectional study during the winter of 2021-2022 and a telephone survey with the farmers to map the most important risk factors for the introduction, presence, and circulation of BRSV. Of 671 sampled calves among 135 herds, we found a seropositivity of 75 % at calf level and 77 % on herd level. Risk factors appeared similar to those identified by others including a higher ratio of youngstock versus adult cows and suboptimal colostrum administration. We concluded that the BRSV seroprevalence at animal and herd level is still substantially high, confirming the endemic circulation of this virus on the majority of the Dutch dairy farms. But given that there is also a smaller number of seronegative herds and the available knowledge about biological sound risk factors for BRSV circulation, it could be worth investigating the feasibility of decreasing the seroprevalence of BRSV at herd level in the Netherlands taking into account the lessons learned from the Norwegian control program.
Collapse
Affiliation(s)
- R Jorritsma
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands.
| | - R de Jong
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad 8221 RA, the Netherlands
| | - M van den Hoven
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands
| | - T van Werven
- Sustainable Ruminant Health, Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht 3584 CL, the Netherlands; University Farm Animal Practice, Reijerscopse Overgang 1, Harmelen 3481 LZ, the Netherlands
| |
Collapse
|
12
|
Okamura S, Fukuda A, Usui M. Rapid detection of causative bacteria including multiple infections of bovine respiratory disease using 16S rRNA amplicon-based nanopore sequencing. Vet Res Commun 2024; 48:3873-3881. [PMID: 39331342 DOI: 10.1007/s11259-024-10556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Bovine respiratory disease (BRD) is a multifaceted condition that poses a primary challenge in calf rearing. Viruses and bacteria are etiological agents of BRD. Viral BRD is typically managed symptomatically, whereas bacterial BRD is predominantly managed through the empirical administration of antimicrobials. However, this empirical administration has raised concerns regarding the emergence of antimicrobial-resistant bacteria. Thus, rapid identification of pathogenic bacteria and judicious selection of antimicrobials are required. This study evaluated the usefulness of 16S rRNA analysis through nanopore sequencing for the rapid identification of BRD-causing bacteria. A comparative evaluation of nanopore sequencing and traditional culture method was performed on 100 calf samples detected with BRD. Nanopore sequencing facilitated the identification of bacteria at the species level in bovine nasal swabs, ear swabs, and lung tissue samples within approximately 6 h. Of the 92 samples in which BRD-causing bacteria were identified via nanopore sequencing, 82 (89%) were concordant with the results of culture isolation. In addition, the occurrence of multiple infections exceeded that of singular infections. These results suggest that 16S rRNA sequencing via nanopore technology is effective in reducing analysis time and accurately identifying BRD-causing bacteria. This method is particularly advantageous for the initial detectable screening of BRD.
Collapse
Affiliation(s)
- Shingo Okamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan
- Dairy Technology Research Institute, National Federation of Dairy Co-operative Association, 5 Bunkyocho, Yabukimachi, Nishishirakawagun, 969-0223, Fukushima, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, 069- 8501, Hokkaido, Japan.
| |
Collapse
|
13
|
Hao F, Fu J, Chen J, Zhu D, Cai B, Li Y, Liu C. Establishment of a duplex TaqMan-based real time RT-PCR assay for simultaneous detection of BRSV and BVDV. Front Vet Sci 2024; 11:1473408. [PMID: 39559537 PMCID: PMC11571541 DOI: 10.3389/fvets.2024.1473408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Bovine respiratory disease complex (BRDC) represents a global acute respiratory condition that imposes substantial economic burdens on the cattle industry due to its high morbidity and mortality rates. Various factors contribute to the development of BRDC, including pathogen infections, environmental stresses, weaning of calves, and herd relocation. Viral pathogens, notably bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV), play a critical role in the etiology of BRDC, with single or combined viral infections being particularly clinically significant. In this study, we developed a duplex TaqMan-based real-time RT-PCR assay targeting the conserved regions of the F gene of BRSV and the 5' UTR sequence of BVDV. The limits of detection for BRSV and BVDV were 6.83 copies/μL and 5.24 copies/μL, respectively. Our validation data suggest the assay has excellent sensitivity, specificity and reproducibility. Testing of clinical samples revealed prevalence of BRSV and BVDV in local farms in Jiangsu Province, China. This study provides an efficient diagnostic tool for the epidemiological investigation of BRDC.
Collapse
Affiliation(s)
- Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daoxian Zhu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Bingyan Cai
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Yuxin Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
van Engelen E, Mars J, Dijkman R. Molecular characterisation of Mycoplasma bovis isolates from consecutive episodes of respiratory disease on Dutch veal farms. Vet Microbiol 2024; 298:110221. [PMID: 39216326 DOI: 10.1016/j.vetmic.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Mycoplasma bovis infections are wide spread in veal calf farms and a major contributor to respiratory disease. M. bovis are genetically diverse. It is unclear how this diversity influences the virulence and epidemiology of infections on veal calf farms over time. Therefore, the aim of this study was to follow the genetic composition of M. bovis isolates on veal farms over time in a fattening round and combine this with presence of disease and presence of other respiratory pathogens. For this, M. bovis isolates were obtained from healthy and diseased calves from ten different farms at different episodes of respiratory disease in the same groups in one fattening round. A new episode of respiratory disease was defined by the practitioner based on clinical diagnosis at least 7 days after end of a previous metaphylactic treatment. These isolates were sequenced using Illumina sequencing and analysed. This resulted in 148 sequenced isolates. The isolates belonged to 9 different clusters and to the known MLST sequence types ST4 (n=9), ST6 (n=2), ST7 (n=1), ST8 (n=1), ST21 (n=32), ST29 (n=30), ST32 (n=1), ST100 (n=36), ST122 (n=17) and ST135 (n=4), and new sequence types ST222 (n=8), ST223 (n=1), ST224 (n=5) and ST225 (n=1). Major sequence types are linked to types, found in other European countries. All farms showed presence of two or more different clusters, however with different distribution patterns. Farms did not show a major shift in type distribution over time. There was a relationship between M. bovis type and region of origin of the calves and the types differed with regards of presence of variable membrane surface lipoprotein (Vsp) genes. Types were not related to disease status of the calves or presence of other major respiratory pathogens. This study underlines the complexity of M. bovis infection on veal calf farms with persistent presence of different types together in both healthy and diseased calves with or without other respiratory pathogens. Prevention of introduction of M. bovis and biosecurity measures combined with optimisation of calf resilience should have priority.
Collapse
Affiliation(s)
| | - Jet Mars
- Royal GD, Deventer, the Netherlands
| | | |
Collapse
|
15
|
Tapiolas M, Gibert M, Montbrau C, Taberner E, Solé M, Santo Tomás H, Puig A, March R. Efficacy of a New Multivalent Vaccine for the Control of Bovine Respiratory Disease (BRD) in a Randomized Clinical Trial in Commercial Fattening Units. Vaccines (Basel) 2024; 12:1233. [PMID: 39591136 PMCID: PMC11598617 DOI: 10.3390/vaccines12111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
A new multivalent vaccine (DIVENCE®), containing live gE/tk double-gene-deleted BoHV-1, live-attenuated BRSV, inactivated PI3, and BVDV-1, and BVDV-2 recombinant proteins, has been designed to protect cattle against the main viral pathogens associated with bovine respiratory disease (BRD). The aim of this study was to demonstrate the efficacy of DIVENCE® against BRD in field conditions. A total of 360 animals from three different farms were included in this study. Calves were randomly distributed to the vaccinated (n = 183; DIVENCE®) or control (n = 177; phosphate-buffered saline solution) group. All animals received two intramuscular doses (2 mL/dose) three weeks apart of the corresponding product. The entire fattening period (approximately 9 months) was monitored to assess the incidence, severity, and morbidity of BRD as well as administered treatments and growth performance. During this study, a BRSV outbreak was reported in one farm, where vaccinated animals had significantly (p < 0.02) lower morbidity (20.4%) and severity (score of 1.70) compared to the control group (53.70% and score of 2.11). Overall, vaccinated animals had a significantly lower number of cases (p < 0.001; 0.36 vs. 0.64 cases/calf), lower morbidity (p < 0.004; 26.78% vs. 41.24%), and lower antimicrobial treatments (p = 0.01; 33.3% vs. 57.4%) than control animals. Vaccinated animals presented significantly (p = 0.01) higher carcass weight than controls (6.58 kg). Vaccination with DIVENCE® at the beginning of the fattening period decreased the incidence and morbidity of BRD following a BRSV outbreak. Additionally, the overall incidence and morbidity of BRD throughout the entire fattening period were reduced across farms. Thus, DIVENCE® can improve economic outcomes in fattening units by reducing antibiotic treatments and enhancing performance.
Collapse
Affiliation(s)
- Mariona Tapiolas
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| | - Marta Gibert
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| | - Carlos Montbrau
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| | - Ester Taberner
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| | - Marina Solé
- HIPRA S.A., Avinguda La Selva 135, 1710 Amer, Spain; (M.S.); (H.S.T.)
| | | | - Ainhoa Puig
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| | - Ricard March
- Hipra Scientific S.L.U., Avda. La Selva 135, 17170 Amer, Spain; (M.G.); (C.M.); (E.T.); (A.P.); (R.M.)
| |
Collapse
|
16
|
Alfieri AF, Fritzen JTT, Yasumitsu CY, Alfieri AA. Microbiological Profile of the Upper and Lower Respiratory Tract of Suckling and Weaned Dairy Calves with Acute Respiratory Disease. Vet Sci 2024; 11:493. [PMID: 39453085 PMCID: PMC11512243 DOI: 10.3390/vetsci11100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Bovine respiratory disease (BRD) is a significant global health issue in cattle farming, leading to substantial economic losses. This study analyzed the microbiological profiles of BRD outbreaks in nine dairy cattle herds in southern Brazil. We examined 36 biological samples, including 24 deep nasopharyngeal swabs (NS) and 12 lung tissue, from 29 suckling and 7 weaned heifer calves with acute BRD. PCR and RT-PCR techniques were used to partially amplify the genes of five viruses and four respiratory bacteria. A total of 8 different microorganisms, 4 viruses (bovine viral diarrhea virus, n = 5; bovine coronavirus, n = 3; bovine alphaherpesvirus 1, n = 3; and bovine parainfluenza virus 3, n = 2), and 4 bacteria (Pasteurella multocida, n = 16; Mycoplasma bovis, n = 8; Histophilus somni, n = 7; and Mannheimia haemolytica, n = 4) were identified in 29 (80.5%) samples. Seven samples (four lung tissue and three NS) were negative for all the microorganisms. Mixed infections were more common (62.1%) than single infections (37.9%). Bacterial nucleic acids were more commonly co-detected in NS than in lung tissue. Nucleic acids from a single pathogen were more frequently detected in lung tissues than in NS. M. bovis was the only bacterium detected in the lower respiratory tract. Understanding the microbiological profiles of the respiratory tracts of dairy calves with clinical signs of BRD is crucial for implementing effective biosecurity measures to prevent BRD in suckling and weaned dairy heifer calves.
Collapse
Affiliation(s)
- Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil (J.T.T.F.); (C.Y.Y.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Preventive Veterinary Preventive, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil (J.T.T.F.); (C.Y.Y.)
| | - Carolina Yuka Yasumitsu
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil (J.T.T.F.); (C.Y.Y.)
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil (J.T.T.F.); (C.Y.Y.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Preventive Veterinary Preventive, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
17
|
Jacobs A, Prete MC, Lesch A, Sebio AA, Teixeira Tarley CR, Swain GM. Measurement of Human and Bovine Exhaled Breath Condensate pH Using Polyaniline-Modified Flexible Inkjet-Printed Nanocarbon Electrodes. ACS OMEGA 2024; 9:40841-40856. [PMID: 39371969 PMCID: PMC11447749 DOI: 10.1021/acsomega.4c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The collection, processing, and electrochemical analysis of exhaled breath condensate (EBC) from healthy human and animal subjects is reported on. EBC is a biospecimen potentially rich in biomarkers of respiratory disease. The EBC pH was analyzed potentiometrically using a disposable polyaniline (PANI)-modified inkjet-printed (IJP) carbon electrode. Comparison measurements were performed using a commercial screen-printed carbon (SPC) electrode. The PANI-modified electrodes exhibited reproducible and near-Nernstian responses for pH values between 2 and 9 with slopes from -50 to -60 mV/dec. The PANI-modified IJP carbon electrode exhibited a faster response time and superior reproducibility to the modified SPC electrode. In proof-of-concept studies, the healthy human EBC pH was found to be 6.57 ± 0.09 and the healthy bovine EBC pH was 5.9 ± 0.2. All pH determined using the PANI-modified electrodes were in good agreement with the pH determined using a micro glass pH electrode. An RTube device was used to collect EBC from humans while a modified device was used to collect EBC from calves in the field. EBC volumes of 0.5-2 mL for 5-6 min of tidal breathing were collected from healthy animals. The pH of EBC from healthy calves (17 animals) depends on their age from 1 to 9 weeks with values ranging from 5.3 to 7.2. A distinct alkaline shift was observed for many animals around 20 days of age. The bovine EBC pH also depends on the ambient temperature and humidity at the time of collection. The results indicate that the PANI-modified IJP carbon electrodes outperform commercial SPC and provide reproducible and accurate measurement of pH across various biospecimen types.
Collapse
Affiliation(s)
- Aaron
I. Jacobs
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Maiyara C. Prete
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, State University of Londrina
(UEL), Londrina, Paraná 86051-990, Brazil
| | - Andreas Lesch
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Angel Abuelo Sebio
- Department
of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, Michigan 48824, United States
| | | | - Greg M. Swain
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Denholm K, Evans NP, Baxter-Smith K, Burr P. Retrospective study of the relative frequency of cattle respiratory disease pathogens in clinical laboratory samples submitted by UK veterinary practices. Vet Rec 2024; 195:e4434. [PMID: 39165014 DOI: 10.1002/vetr.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The objective of this study was to explore the relative frequency and seasonality of bovine respiratory pathogens in the UK, based on clinical case submission for laboratory PCR testing. METHODS This study used retrospective data generated by a central Scotland laboratory using 407 clinical (pooled) samples collected by 95 veterinary practices located throughout the UK between November 2020 and September 2022. Statistical analyses were performed using descriptive spatial analysis (choropleth maps), chi-squared analysis, Poisson and logistic regression modelling. RESULTS The majority (77.6%) of the samples had more than one species of bacteria identified, and 17.7% had multiple viruses identified. In comparison with the colder months of autumn and winter (September to February), the warmer months (March to August) were significantly associated with lower odds of respiratory disease caused by certain pathogens. Poisson models showed small but significant univariable associations between total viruses (coefficient = ‒0.01, standard error [SE] = 0.004, 95% confidence interval [CI] = ‒0.02 to ‒0.003) and total pathogens (coefficient = ‒0.005, SE = 0.002, 95% CI = ‒0.008 to 0.002) and increasing weekly age. LIMITATIONS This is an inherently biased population because it only comprises clinical samples submitted to a single UK laboratory, and the data were analysed retrospectively. CONCLUSIONS A large majority of clinical bovine respiratory disease (BRD) samples were multipathogenic, and pathogens such as bovine coronavirus (which has generally not been considered a significant contributing pathogen in the BRD complex in the UK) were prevalent.
Collapse
Affiliation(s)
- Katharine Denholm
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
19
|
Peng Q, Wan H, Yu Z, Li S, Huang H, Zhang L, Guo Y, Wang D, Lu Z. Detecting Bacteria with Ultralow Concentrations by Enzymatic Cascade Reaction-Amplifying Strategy. Anal Chem 2024; 96:14826-14834. [PMID: 39229918 DOI: 10.1021/acs.analchem.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bacteria can cause infectious diseases even at ultralow concentrations (<1 CFU/mL). It is important to rapidly identify bacterial contamination at ultralow concentrations. Herein, FITC-labeled gelatinase-sensitive nanoparticles (GNPs@FITCs) and NFM@GNP@FITCs are designed and fabricated as ultralow concentration bacteria detection platforms based on an enzymatic cascade reaction-amplifying strategy. Bacterial secretions could trigger the dissociation of GNPs@FITCs to release FITC, with gelatinase used as the model secretion. The detectable signal of ultralow concentration bacteria could be amplified effectively by the gelatinase-triggered cascade reaction. Bacterial concentration was evaluated by the change in fluorescence density. The results showed that the GNPs@FITCs and NFM@GNP@FITCs could be used for identifying bacterial contamination qualitatively, even when the bacterial contamination is lower than 1 CFU/mL. Moreover, the method has better timeliness and convenience, when compared with national standards. As solid films, NFM@GNP@FITCs have better long-term storage stability than GNPs@FITCs. The potential applications of GNPs@FITC and NFM@GNP@FITCs were proved by detecting pathogenic bacteria in food. All the results showed that the method has great potential for screening pathogenic bacterial contamination qualitatively.
Collapse
Affiliation(s)
- Qingzhi Peng
- Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Huakun Wan
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhenguo Yu
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shiyao Li
- Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Hui Huang
- Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Li Zhang
- Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Yinli Guo
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
20
|
Scott MA, Valeris-Chacin R, Thompson AC, Woolums AR, Karisch BB. Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease. Front Immunol 2024; 15:1412766. [PMID: 39346910 PMCID: PMC11427276 DOI: 10.3389/fimmu.2024.1412766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in beef cattle production systems. Host gene expression upon facility arrival may indicate risk of BRD development and severity. However, a time-course approach would better define how BRD development influences immunological and inflammatory responses after disease occurrences. Here, we evaluated whole blood transcriptomes of high-risk beef cattle at three time points to elucidate BRD-associated host response. Sequenced jugular whole blood mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days [D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of antimicrobial clinical treatment. Assessment of gene expression patterns over time within each BRD cohort was modeled through an autoregressive hidden Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10) identified differentially expressed genes between and across cohorts overtime. A total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the production of specialized resolving mediators (SPMs) decreased at D28 and then increased by D63 across all three cohorts. Accordingly, SPM production and alternative complement were differentially expressed between Healthy and Treated 2+ at D0, but not statistically different between the three groups by D63. Magnitude, but not directionality, of gene expression related to SPM production, alternative complement, and innate immune response signified Healthy and Treated 2+ cattle. Differences in gene expression at D63 across the three groups were related to oxygen binding and carrier activity, natural killer cell-mediated cytotoxicity, cathelicidin production, and neutrophil degranulation, possibly indicating prolonged airway pathology and inflammation weeks after clinical treatment for BRD. These findings indicate genomic mechanisms indicative of BRD development and severity over time.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
21
|
Lachowicz-Wolak A, Klimowicz-Bodys MD, Płoneczka-Janeczko K, Bednarski M, Dyba K, Knap P, Rypuła K. Simultaneous Presence of Antibodies against Five Respiratory Pathogens in Unvaccinated Dairy Calves from South-Western Poland. Animals (Basel) 2024; 14:2520. [PMID: 39272307 PMCID: PMC11394128 DOI: 10.3390/ani14172520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Bovine Respiratory Disease (BRD) poses a significant threat to cattle welfare worldwide, affecting their respiratory system and causing substantial economic losses. BRD is multifactorial in nature. This research aimed to investigate the serological profile of calves for the five main bovine respiratory pathogens. Serum samples were collected from dairy calves aged 7-12 months that had never been vaccinated against tested pathogens and had recently shown signs of BRD. A total of 4095 calves from 650 dairy herds located in south-western Poland were examined. The Commercial Indirect Respiratory ELISA Kit Multiplexed-Double well-BIO K 284/5 (Bio-X Diagnostics, Rochefort, Belgium) was used to determine the presence of antibodies against BVDV, BoAHV1, BRSV, BPIV3, and M. bovis. The presence of antibodies against at least one of the tested pathogens was found in 306 (47.08%) herds. The overall prevalence of antibodies was as follows: BoAHV1 21.54%, BVDV 32.0%, BRSV 34.15%, BPIV3 34.31%, and M. bovis 31.38%. The strongest correlation was between BRSV antibodies positive sera and BPIV3 antibodies positive sera. Among the five pathogens tested, antibodies to BVDV, BRSV, BPIV3, and M. bovis were most commonly detected simultaneously. The results of this study indicate the need for preventive measures against these pathogens in the studied region.
Collapse
Affiliation(s)
- Agnieszka Lachowicz-Wolak
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Małgorzata D Klimowicz-Bodys
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Katarzyna Płoneczka-Janeczko
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Michał Bednarski
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Kamil Dyba
- Department of Applied Mathematics, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Piotr Knap
- "Epi-Vet" Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Krzysztof Rypuła
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| |
Collapse
|
22
|
Medina JE, Castañeda S, Camargo M, Garcia-Corredor DJ, Muñoz M, Ramírez JD. Exploring viral diversity and metagenomics in livestock: insights into disease emergence and spillover risks in cattle. Vet Res Commun 2024; 48:2029-2049. [PMID: 38865041 DOI: 10.1007/s11259-024-10403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Cattle have a significant impact on human societies in terms of both economics and health. Viral infections pose a relevant problem as they directly or indirectly disrupt the balance within cattle populations. This has negative consequences at the economic level for producers and territories, and also jeopardizes human health through the transmission of zoonotic diseases that can escalate into outbreaks or pandemics. To establish prevention strategies and control measures at various levels (animal, farm, region, or global), it is crucial to identify the viral agents present in animals. Various techniques, including virus isolation, serological tests, and molecular techniques like PCR, are typically employed for this purpose. However, these techniques have two major drawbacks: they are ineffective for non-culturable viruses, and they only detect a small fraction of the viruses present. In contrast, metagenomics offers a promising approach by providing a comprehensive and unbiased analysis for detecting all viruses in a given sample. It has the potential to identify rare or novel infectious agents promptly and establish a baseline of healthy animals. Nevertheless, the routine application of viral metagenomics for epidemiological surveillance and diagnostics faces challenges related to socioeconomic variables, such as resource availability and space dedicated to metagenomics, as well as the lack of standardized protocols and resulting heterogeneity in presenting results. This review aims to provide an overview of the current knowledge and prospects for using viral metagenomics to detect and identify viruses in cattle raised for livestock, while discussing the epidemiological and clinical implications.
Collapse
Affiliation(s)
- Julián Esteban Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Mosquera, Cundinamarca, Colombia
| | - Diego J Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
24
|
Milićević V, Šolaja S, Glišić D, Ninković M, Milovanović B, Đorđević M, Ristevski S, Spasojević F, Dačić M. Bovine Parainfluenza Virus 3 and Bovine Respiratory Syncytial Virus: Dominant Viral Players in Bovine Respiratory Disease Complex among Serbian Cattle. Animals (Basel) 2024; 14:1458. [PMID: 38791675 PMCID: PMC11117219 DOI: 10.3390/ani14101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine respiratory disease complex, a complex respiratory ailment in cattle, results from a combination of viral and bacterial factors, compounded by environmental stressors such as overcrowding, transportation, and adverse weather conditions. Its impact extends beyond mere health concerns, posing significant economic threats to the cattle industry. This study presents an extensive investigation into viral pathogens associated with BRDC in Serbian cattle, utilizing serum samples and nasal swabs. A cross-sectional study was conducted in 2024 across 65 randomly selected dairy farms in Serbia, excluding farms with vaccinated cattle. The farms were categorized by their livestock count: small (≤50 animals), medium (51-200 animals), and large (>200 animals). Serum samples from adult cattle older than 24 months were tested for antibodies against BVDV, BHV-1, BRSV, and BPIV3. Nasal swab samples from the animals with respiratory signs were tested using PCR for viral genome detection. The results showed seropositivity for all four viruses across all of the farms, with BPIV3 exhibiting universal seropositivity. Medium-sized and large farms demonstrated higher levels of seropositivity for BRSV and BHV-1 compared to small farms (p < 0.05). Our true seroprevalence estimates at the animal level were 84.29% for BRSV, 54.08% for BVDV, 90.61% for BHV-1, and 84.59% for BPIV3. A PCR analysis of the nasal swabs revealed positive detections for BRSV (20%), BHV-1 (1.7%), BVDV (8%), and BPIV3 (10.9%). Influenza D virus was not found in any of the samples. This study provides critical insights into the prevalence and circulation of viral pathogens associated with BRDC in Serbian cattle, emphasizing the importance of surveillance and control measures to mitigate the impact of respiratory diseases in cattle populations.
Collapse
Affiliation(s)
- Vesna Milićević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia; (S.Š.); (D.G.); (M.N.); (B.M.)
| | - Sofija Šolaja
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia; (S.Š.); (D.G.); (M.N.); (B.M.)
| | - Dimitrije Glišić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia; (S.Š.); (D.G.); (M.N.); (B.M.)
| | - Milan Ninković
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia; (S.Š.); (D.G.); (M.N.); (B.M.)
| | - Bojan Milovanović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia; (S.Š.); (D.G.); (M.N.); (B.M.)
| | - Milan Đorđević
- Veterinary Clinic “Mladenovac”, Kralja Petra I 347, 11400 Mladenovac, Serbia;
| | | | - Filip Spasojević
- Al Dahra Srbija doo, Gorskih Jasenova 4, 11000 Belgrade, Serbia;
| | - Miroljub Dačić
- Veterinary Specialized Institute “Jagodina”, Boška Jovića 6, 35000 Jagodina, Serbia;
| |
Collapse
|
25
|
Blondeau JM, Fitch SD. Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida. Pathogens 2024; 13:399. [PMID: 38787251 PMCID: PMC11123865 DOI: 10.3390/pathogens13050399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Pradofloxacin-a dual-targeting fluoroquinolone-is the most recent approved for use in food animals. Minimum inhibitory and mutant prevention concentration values were determined for pradofloxacin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin. For M. haemolytica strains, MIC50/90/100 values were ≤0.016/≤0.016/≤0.016 and MPC50/90/100 values were 0.031/0.063/0.063; for P. multocida strains, the MIC50/90/100 values ≤0.016/≤0.016/0.031 and MPC50/90/100 ≤ 0.016/0.031/0.063 for pradofloxacin. The pradofloxacin Cmax/MIC90 and Cmax/MPC90 values for M. haemolytica and P. multocida strains, respectively, were 212.5 and 53.9 and 212.5 and 109.7. Similarly, AUC24/MIC90 and AUC24/MPC90 for M. haemolytica were 825 and 209.5, and for P. multocida, they were 825 and 425.8. Pradofloxacin would exceed the mutant selection window for >12-16 h. Pradofloxacin appears to have a low likelihood for resistance selection against key bovine respiratory disease bacterial pathogens based on low MIC and MPC values.
Collapse
Affiliation(s)
- Joseph M. Blondeau
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
- Department of Biochemistry, Microbiology and Immunology, Pathology and Laboratory Medicine and Ophthalmology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Shantelle D. Fitch
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
26
|
Jiang L, Zhang G, Wang P, Niu X, Liu Q, Zhang S, Gao W, Li Y. Simultaneous detection of bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) using recombinase polymerase amplification. Sci Rep 2024; 14:10169. [PMID: 38702375 PMCID: PMC11068760 DOI: 10.1038/s41598-024-56869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 05/06/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is considered to be the most common agent of severe diarrhea in cattle worldwide, causing fever, diarrhea, ulcers, and abortion. Bovine herpesvirus 1 (BoHV-1) is also a major bovine respiratory disease agent that spreads worldwide and causes extensive damage to the livestock industry. Recombinase polymerase amplification (RPA) is a novel nucleic acid amplification method with the advantages of high efficiency, rapidity and sensitivity, which has been widely used in the diagnosis of infectious diseases. A dual RPA assay was developed for the simultaneous detection of BVDV and BoHV-1. The assay was completed at a constant temperature of 37 °C for 30 min. It was highly sensitive and had no cross-reactivity with other common bovine viruses. The detection rate of BVDV RPA in clinical samples (36.67%) was higher than that of PCR (33.33%), the detection rate of BoHV-1 RPA and PCR were equal. Therefore, the established dual RPA assay for BVDV and BoHV-1 could be a potential candidate for use as an immediate diagnostic.
Collapse
Affiliation(s)
- Lingling Jiang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Gang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Pu Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Xiaoxia Niu
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Liu
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Sinong Zhang
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Weifeng Gao
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Yong Li
- School of Life Sciences, Ningxia University, Yinchuan, China.
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.
| |
Collapse
|
27
|
Yoshitani GD, Camilo SLO, Fritzen JTT, Oliveira MV, Lorenzetti E, Lisbôa JAN, Alfieri AF, Alfieri AA. Serological Profile for Major Respiratory Viruses in Unvaccinated Cows from High-Yielding Dairy Herds. Animals (Basel) 2024; 14:1256. [PMID: 38731260 PMCID: PMC11083270 DOI: 10.3390/ani14091256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
This study aims to determine the serological profile of high-yielding dairy cows for four main viruses (bovine alphaherpesvirus 1 (BoAHV1), bovine viral diarrhea virus (BVDV), bovine parainfluenza virus 3 (BPIV3), and bovine respiratory syncytial virus (BRSV)) related to bovine respiratory disease (BRD) in cattle herds worldwide. In this survey, 497 blood serum samples were collected from non-vaccinated dairy cows without clinical respiratory signs in 39 herds in the central-eastern mesoregion of Paraná State, South Brazil. The presence of neutralizing antibodies was determined by virus neutralization (VN) tests. VN antibodies against BoAHV1, BVDV, BPIV3, and BRSV were detected in 355 (71.4%), 280 (56.3%), 481 (96.8%), and 315 (63.4%) serum samples, respectively. The frequencies of seropositive herds for BoAHV1, BVDV, BPIV3, and BRSV were 79.5 (n = 31), 82.0 (n = 32), 100 (n = 39), and 84.6% (n = 33), respectively. The frequencies of seropositive cows varied according to the type of herd management and the number of cows in the herd. The detection of VN antibodies in unvaccinated dairy cattle herds demonstrated the endemic circulation of the four viruses in the herds evaluated. For BRD prevention, it is recommended to implement a vaccination program for cows that provides passive immunity in calves and active immunity in cows.
Collapse
Affiliation(s)
- Geovana Depieri Yoshitani
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
| | - Stefany Lia Oliveira Camilo
- Departament of Veterinary Clinics, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (S.L.O.C.); (J.A.N.L.)
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
| | - Marcos Vinicius Oliveira
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
- Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar Anhanguera, Arapongas 86702-670, PR, Brazil
| | - Julio Augusto Naylor Lisbôa
- Departament of Veterinary Clinics, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (S.L.O.C.); (J.A.N.L.)
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (G.D.Y.); (J.T.T.F.); (M.V.O.); (E.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
28
|
Flynn A, McAloon C, Sugrue K, Fitzgerald R, Sheridan C, Cowley B, McAloon C, Kennedy E. Investigation into the safety, and serological responses elicited by delivery of live intranasal vaccines for bovine herpes virus type 1, bovine respiratory syncytial virus, and parainfluenza type 3 in pre-weaned calves. Front Vet Sci 2024; 11:1283013. [PMID: 38464703 PMCID: PMC10920262 DOI: 10.3389/fvets.2024.1283013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Despite the fact that pneumonia remains a leading cause of mortality and morbidity in pre-weaned calves, relatively little is known regarding the effects of the concurrent administration of intranasal pneumonia virus vaccines, particularly in calves with high levels of maternally derived antibodies. The objective of this study was to use a cohort of 40 dairy and dairy-beef female and male calves (27 females and 13 males) to determine serological responses to concurrent administration at 3 weeks of age (22 ± 4.85 days) of two commercially available intranasal (IN) vaccines for the viruses: bovine respiratory syncytial virus (BRSV), bovine herpes virus 1 (BoHV-1), and parainfluenza-3-virus (PI3-V). The study groups were as follows: (i) Bovilis IBR Marker Live only® (IO), (ii) Bovilis INtranasal RSP Live® only (RPO), (iii) Concurrent vaccination with Bovilis IBR Marker Live® & Bovilis Intranasal RSP Live® (CV), and (iv) a control group of non-vaccinated calves (CONT). The calves' serological response post-IN vaccination, clinical health scores, rectal temperatures, and weights were measured. Data were analyzed in SAS using mixed models and logistic regression. The CV calves had an average daily weight gain (ADG) of 0.74 (±0.02) kg, which was similar to CONT (0.77 ± 0.02 kg). Despite no significant differences in the antibody levels between study groups 3 weeks post-IN vaccination, following the administration of subsequent parenteral injections in the form of Bovilis Bovipast RSP®(antigens; inactivated BRSV, inactivated PI3-V, inactivated Mannheimia haemolytica) and Bovilis IBR Marker Live®, the antibody levels of the BRSV and PI3-V increased in both the CV and RPO study groups. Concurrent vaccination resulted in no increase in fever and no difference in health scores when compared to CONT.
Collapse
Affiliation(s)
- Anna Flynn
- Teagasc, Animal & Grassland Research and Innovation Centre, Fermoy, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Katie Sugrue
- Teagasc, Animal & Grassland Research and Innovation Centre, Fermoy, Ireland
| | - Ricki Fitzgerald
- Teagasc, Animal & Grassland Research and Innovation Centre, Fermoy, Ireland
| | | | | | - Conor McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Fermoy, Ireland
| |
Collapse
|
29
|
Panchal J, Patel A, Patel S, Goswami D. Understanding mastitis: Microbiome, control strategies, and prevalence - A comprehensive review. Microb Pathog 2024; 187:106533. [PMID: 38171428 DOI: 10.1016/j.micpath.2023.106533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Mastitis significantly affects the udder tissue in dairy cattle, leading to inflammation, discomfort, and a decline in both milk yield and quality. The condition can be attributed to an array of microbial agents that access the mammary gland through multiple pathways. The ramifications of this ailment are not merely confined to animal welfare but extend to the financial viability of the livestock industry. This review offers a historical lens on mastitis, tracing its documentation back to 1851, and examines its global distribution with a focus on regional differences in prevalence and antimicrobial resistance (AMR) patterns. Specific microbial genes and communities implicated in both mastitis and AMR are explored, including Staphylococcus aureus, Streptococcus agalactiae,Streptococcus dysagalactiae, Streptococcus uberis Escherichia coli, Klebsiella pneumoniae, Mycoplasma bovis, Corynebacterium bovis, among others. These microorganisms have evolved diverse strategies to elude host immune responses and neutralize commonly administered antibiotics, complicating management efforts. The review aims a comprehensive overview of the current knowledge and research gaps on mastitis and AMR, and to highlight the need for a One Health approach to address this global health issue. Such an approach entails multi-disciplinary cooperation to foster judicious antibiotic use, enhance preventive measures against mastitis, and bolster surveillance and monitoring of AMR in pathogens responsible for mastitis.
Collapse
Affiliation(s)
- Janki Panchal
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Arun Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Sardarkrushinagar, 385505, Kamdhenu University, Gujarat, India
| | - Sandip Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Sardarkrushinagar, 385505, Kamdhenu University, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
30
|
Frucchi APS, Dall Agnol AM, Caldart ET, Bronkhorst DE, Alfieri AF, Alfieri AA, Headley SA. The Role of Mycoplasma bovirhinis in the Development of Singular and Concomitant Respiratory Infections in Dairy Calves from Southern Brazil. Pathogens 2024; 13:114. [PMID: 38392852 PMCID: PMC10892079 DOI: 10.3390/pathogens13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The role of Mycoplasma bovirhinis in the development of pulmonary disease in cattle is controversial and was never evaluated in cattle from Latin America. This study investigated the respiratory infection dynamics associated with M. bovirhinis in suckling calves from 15 dairy cattle herds in Southern Brazil. Nasal swabs were obtained from asymptomatic (n = 102) and calves with clinical manifestations (n = 103) of bovine respiratory disease (BRD) and used in molecular assays to identify the specific genes of viral and bacterial disease pathogens of BRD. Only M. bovirhinis, bovine coronavirus (BCoV), ovine gammaherpesvirus 2 (OvGHV2), Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica were detected. M. bovirhinis was the most frequently diagnosed pathogen in diseased (57.8%; 59/102) and asymptomatic (55.3%; 57/103) calves at all farms. BCoV-related infections were diagnosed in diseased (52%; 53/102) and asymptomatic (51.4%; 53/103) calves and occurred in 93.3% (14/15) of all farms. Similarly, infectious due to OvGHV2 occurred in diseased (37.2%; 38/102) and asymptomatic (27.2%; /28/103) calves and were diagnosed in 80% (12/15) of all farms investigated. Significant statistical differences were not identified when the two groups of calves were compared at most farms, except for infections due to OvGHV2 that affected five calves at one farm. These results demonstrated that the respiratory infection dynamics of M. bovirhinis identified in Southern Brazil are similar to those observed worldwide, suggesting that there is not enough sufficient collected data to consider M. bovirhinis as a pathogen of respiratory infections in cattle. Additionally, the possible roles of BCoV and OvGHV2 in the development of BRD are discussed.
Collapse
Affiliation(s)
- Ana Paula Souza Frucchi
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.P.S.F.); (A.M.D.A.); (D.E.B.); (A.F.A.); (A.A.A.)
| | - Alais Maria Dall Agnol
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.P.S.F.); (A.M.D.A.); (D.E.B.); (A.F.A.); (A.A.A.)
| | - Eloiza Teles Caldart
- Laboratory of Protozoology and Parasitic Diseases, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Dalton Everton Bronkhorst
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.P.S.F.); (A.M.D.A.); (D.E.B.); (A.F.A.); (A.A.A.)
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.P.S.F.); (A.M.D.A.); (D.E.B.); (A.F.A.); (A.A.A.)
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.P.S.F.); (A.M.D.A.); (D.E.B.); (A.F.A.); (A.A.A.)
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Selwyn Arlington Headley
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
31
|
Robi DT, Mossie T, Temteme S. A Comprehensive Review of the Common Bacterial Infections in Dairy Calves and Advanced Strategies for Health Management. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:1-14. [PMID: 38288284 PMCID: PMC10822132 DOI: 10.2147/vmrr.s452925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Dairy farming faces a significant challenge of bacterial infections in dairy calves, which can have detrimental effects on their health and productivity. This review offers a comprehensive overview of the most prevalent bacterial infections in dairy calves, including Escherichia coli, Salmonella typhimurium, Salmonella dublin, Salmonella enterica, Clostridium perfringens, Pasteurella multocida, Listeria monocytogenes, Mycoplasma bovis, and Haemophilus somnus. These pathogens can cause various clinical signs and symptoms, leading to diarrhea, respiratory distress, septicemia, and even mortality. Factors such as management practices, environmental conditions, and herd health influence the incidence and severity of the infections. Efficient management and prevention strategies include good colostrum and nutrient feeding, early detection, appropriate treatment, hygiene practices, and supportive care. Regular health monitoring and diagnostic tests facilitate early detection and intervention. The use of antibiotics should be judicious to prevent antimicrobial resistance and supportive care such as fluid therapy and nutritional support promotes recovery. Diagnostic methods, including immunological tests, culture, polymerase chain reaction (PCR), and serology, aid in the identification of specific pathogens. This review also explores recent advancements in the diagnosis, treatment, and prevention of bacterial infections in dairy calves, providing valuable insights for dairy farmers, veterinarians, and researchers. By synthesizing pertinent scientific literature, this review contributes to the development of effective strategies aimed at mitigating the impact of bacterial infections on the health, welfare, and productivity of young calves. Moreover, more research is required to enhance the understanding of the epidemiology and characterization of bacterial infections in dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
32
|
Pratelli A, Cirone F, Mountricha M, Padalino B. Editorial: Respiratory diseases and management in livestock. Front Vet Sci 2024; 11:1367128. [PMID: 38313062 PMCID: PMC10834777 DOI: 10.3389/fvets.2024.1367128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Affiliation(s)
- Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Francesco Cirone
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Maria Mountricha
- Division of Animal Sciences, Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Barbara Padalino
- Division of Animal Sciences, Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
34
|
Gaudino M, Salem E, Ducatez MF, Meyer G. Identification of Astrovirus in the virome of the upper and lower respiratory tracts of calves with acute signs of bronchopneumonia. Microbiol Spectr 2023; 11:e0302623. [PMID: 37982636 PMCID: PMC10714732 DOI: 10.1128/spectrum.03026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/22/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Astroviruses (AstV) are known suspects of enteric disease in humans and livestock. Recently, AstV have been linked to encephalitis in immunocompromised patients and other animals, such as cattle, minks, and swine. In our study, we also identified AstV in the respiratory samples of calves with signs of bronchopneumonia, suggesting that their tropism could be even broader. We obtained one bovine AstV (BAstV) complete genome sequence by next-generation sequencing and showed that respiratory and enteric AstV from different species formed a divergent genetic cluster with AstV isolated from encephalitis cases, indicating that tropism might be strain-specific. These data provide further insight into understanding the biology of these understudied pathogens and suggest BAstV as a potential new candidate for bovine respiratory disease.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Elias Salem
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
35
|
Uprety T, Sreenivasan CC, Thomas M, Hause B, Christopher-Hennings J, Miskimis D, Pillatzki A, Nelson E, Wang D, Li F. Prevalence and characterization of seven-segmented influenza viruses in bovine respiratory disease complex. Virology 2023; 587:109859. [PMID: 37544044 PMCID: PMC10592214 DOI: 10.1016/j.virol.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Chithra C Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Ben Hause
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dale Miskimis
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Angela Pillatzki
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
36
|
Sorin-Dupont B, Picault S, Pardon B, Ezanno P, Assié S. Modeling the effects of farming practices on bovine respiratory disease in a multi-batch cattle fattening farm. Prev Vet Med 2023; 219:106009. [PMID: 37688889 DOI: 10.1016/j.prevetmed.2023.106009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Bovine Respiratory Disease (BRD) affects young bulls, causing animal welfare and health concerns as well as economical costs. BRD is caused by an array of viruses and bacteria and also by environmental and abiotic factors. How farming practices influence the spread of these causal pathogens remains unclear. Our goal was to assess the impact of zootechnical practices on the spread of three causal agents of BRD, namely the bovine respiratory syncytial virus (BRSV), Mannheimia haemolytica and Mycoplasma bovis. In that extent, we used an individual based stochastic mechanistic model monitoring risk factors, infectious processes, detection and treatment in a farm possibly featuring several batches simultaneously. The model was calibrated with three sets of parameters relative to each of the three pathogens using data extracted from literature. Separated batches were found to be more effective than a unique large one for reducing the spread of pathogens, especially for BRSV and M.bovis. Moreover, it was found that allocating high risk and low risk individuals into separated batches participated in reducing cumulative incidence, epidemic peaks and antimicrobial usage, especially for M. bovis. Theses findings rise interrogations on the optimal farming practices in order to limit BRD occurrence and pave the way to models featuring coinfections and collective treatments p { line-height: 115%; margin-bottom: 0.25 cm; background: transparent}a:link { color: #000080; text-decoration: underline}a.cjk:link { so-language: zxx}a.ctl:link { solanguage: zxx}.
Collapse
Affiliation(s)
| | | | - Bart Pardon
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
37
|
Martínez EP, van Rosmalen J, Jacobs J, Sanders P, van Geijlswijk IM, Heederik DJJ, Verbon A. Seasonality of antimicrobial use in Dutch food-producing animals. Prev Vet Med 2023; 219:106006. [PMID: 37647721 DOI: 10.1016/j.prevetmed.2023.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Due to globally increasing antimicrobial resistance (AMR), it is pivotal to understand factors contributing to antimicrobial use (AMU) to enable development and implementation of AMR-reducing interventions. Therefore, we explored seasonal variations of systemic AMU in food-producing animals in the Netherlands. Dutch surveillance data from January 2013 to December 2018 from cattle, pig, and broiler farms were used. AMU was expressed as the number of Defined Daily Dosages Animal per month (DDDA/animal-month) per farm by animal sector, antimicrobial line (first, second, and third), antimicrobial class, and farm type. Seasonality of AMU was analyzed using Generalized Additive Models (GAMs) with DDDA/animal-month as outcome variable, and year and month as independent variables. Year and month were modelled as smooth terms represented with penalized regression splines.Significant seasonality of AMU was found in the cattle and pig sectors, but not in broilers. Significant seasonality of AMU was found mainly for first-line antimicrobials. In the cattle sector, a significant increase during winter was found for the use of amphenicols (an increase of 23.8%) and long-acting macrolides (an increase of 3.4%). In the pig sector, seasonality of AMU was found for pleuromutilins (p < 0.001) with an increase of 20% in October-November. The seasonality of pleuromutilins was stronger in sows/piglets (an increase of 47%) than in fattening pigs (16% increase). Only in fattening pigs, the use of amphenicols showed a significant seasonality with an increase of 11% during winter (P < 0.001). AMU in cattle and pig sectors shows seasonal variations likely caused by seasonality of diseases. In broilers, no AMU seasonality was observed, possibly due to the controlled environment in Dutch farms. In the context of the one health concept, future studies are necessary to explore whether this seasonality is present in other populations and whether it has implications for antimicrobial resistance in humans through the food chain.
Collapse
Affiliation(s)
- Evelyn Pamela Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Jerónimo Leiton s/n y Gatto Sobral, Quito 170103, Ecuador; Department of Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus MC, University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Jose Jacobs
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; The Netherlands Veterinary Medicines Institute (SDa), Yalelaan 114, 3584 CM Utrecht, the Netherlands.
| | - Pim Sanders
- The Netherlands Veterinary Medicines Institute (SDa), Yalelaan 114, 3584 CM Utrecht, the Netherlands.
| | - Ingeborg M van Geijlswijk
- The Netherlands Veterinary Medicines Institute (SDa), Yalelaan 114, 3584 CM Utrecht, the Netherlands; Pharmacy Department, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 106, 3584 CM Utrecht, the Netherlands.
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; The Netherlands Veterinary Medicines Institute (SDa), Yalelaan 114, 3584 CM Utrecht, the Netherlands.
| | - Annelies Verbon
- Department of Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
38
|
Gaudino M, Valarcher JF, Hägglund S, Näslund K, Zohari S, Ducatez MF, Meyer G. Molecular and genetic characterization of bovine parainfluenza type 3 European field and vaccine strains. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105483. [PMID: 37482235 DOI: 10.1016/j.meegid.2023.105483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Bovine Parainfluenza Type 3 virus (BPIV-3) is an enveloped, non-segmented single-stranded, negative-sense RNA virus belonging to the Paramyxoviridae family (genus Respirovirus) with a well-known role in Bovine Respiratory Disease (BRD) onset. Being isolated for the first time in 1959, BPIV-3 currently circulates worldwide in cattle herds and is routinely tested in suspected BRD cases. Different commercial vaccines are available to prevent infection and/or to reduce the clinical signs associated with BPIV-3 infection, which are essential to prevent secondary infections. Despite years of molecular surveillance, a very limited number of complete genome sequences were made publicly available, preventing thus the understanding of the genetic diversity of the circulating strains in the field. In addition, no data about the genetic identity between field and vaccine strains is currently available. In this study, we sequenced the full-genome and genetically characterized BPIV-3 strains isolated from animals displaying respiratory illness in France and Sweden, as well as the vaccine strains contained in three different commercialized vaccines. Our results show that the sequences from France and Sweden belong to genotype C. However, a third sequence from Sweden from 2017 clustered within genotype A. The sequencing of vaccine strains revealed that two of the vaccine strains clustered within genotype C, whereas the third vaccine strain belonged to genotype A. Altogether, our findings suggest that both genotypes A and C circulate in Europe and that BPIV-3 field and vaccine strains are genetically divergent. Our sequencing results could be useful to better understand the genetic differences between the circulating field and vaccine BPIV-3 strains. This is crucial for a correct interpretation of diagnostic findings and for the assessment of BPIV-3 prevalence in cattle population.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Jean-François Valarcher
- HPIG, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hägglund
- HPIG, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Katarina Näslund
- HPIG, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
39
|
Rahman S, Hollis A. The effect of antibiotic usage on resistance in humans and food-producing animals: a longitudinal, One Health analysis using European data. Front Public Health 2023; 11:1170426. [PMID: 37397718 PMCID: PMC10311110 DOI: 10.3389/fpubh.2023.1170426] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
This paper estimates the effect of antibiotic usage in humans and food-producing animals on the prevalence of resistance in zoonotic bacteria in both humans and animals. Using comprehensive longitudinal data from annual surveillance reports on resistance and usage in Europe, we find that antibiotic usage in food-producing animals and antibiotic usage in humans are independently and causally related to the prevalence of resistance in both humans and animals. The study considers simultaneous and total usage of antibiotics in humans and food-producing animals to identify the marginal effects and joint effects of usage on resistance of both groups. By employing lagged-dependent variable and fixed-effects specifications, we provide a lower and an upper bound on the effects on resistance. The paper also contributes to the scant literature on how antibiotic use in humans is related to resistance in other animals.
Collapse
Affiliation(s)
| | - Aidan Hollis
- Department of Economics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Headley SA, Fritzen JTT, Silva DC, Xavier AAC, Yasumitsu CY, Silva FHP, Alfieri AF, Soethe AM, Alfieri AA. Histophilus somni disease conditions with simultaneous infections by ovine gammaherpesvirus 2 in cattle herds from Southern Brazil. Braz J Microbiol 2023; 54:1169-1179. [PMID: 36759491 PMCID: PMC9911339 DOI: 10.1007/s42770-023-00915-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
This report investigated the cause of cattle mortality in two farms in Southern Brazil. The tissues of one animal from each farm (animals #1 and #2) respectively were used in pathological and molecular investigations to determine the possible cause of death. The principal pathological findings observed in animal #1 were pulmonary, myocardial, and encephalitic hemorrhages with vasculitis, and lymphoplasmacytic interstitial pneumonia with proliferative vascular lesions (PVL). The main pathological findings observed in animal #2 were purulent bronchopneumonia, hemorrhagic myocarditis, and lymphoplasmacytic interstitial pneumonia with PVL. An immunohistochemical assay detected intralesional antigens of a malignant catarrhal fever virus (MCFV) from multiple tissues of animal #2 while PCR confirmed that the MCFV amplified was ovine gammaherpesvirus 2 (OvGHV2), genus Macavirus, subfamily Gammaherpesvirinae; OvGHV2 was also amplified from multiple tissues of animal #1. Furthermore, PCR assays amplified Histophilus somni DNA from multiple fragments of both animals. However, the nucleic acids of Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine respiratory syncytial virus, bovine alphaherpesvirus virus 1 and 5, bovine coronavirus, and bovine parainfluenza virus 3 were not amplified from any of the tissues analyzed, suggesting that these pathogens did not participate in the development of the lesions herein described. These findings demonstrated that both animals were concomitantly infected by H. somni and OvGHV2 and developed the septicemic and encephalitic manifestations of H. somni. Furthermore, the interstitial pneumonia observed in cow #2 was more likely associated with infection by OvGHV2.
Collapse
Affiliation(s)
- Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, PO Box 10.011, Londrina, Paraná, 86057-970, Brazil.
- Program of Graduate Studies in Animal Bioscience, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil.
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Denise Correia Silva
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana Aparecida Correa Xavier
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, PO Box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Carolina Yuka Yasumitsu
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
41
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. Material and Methods The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. Results Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. Conclusion Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
42
|
Goto Y, Fukunari K, Suzuki T. Multiplex RT-qPCR Application in Early Detection of Bovine Respiratory Disease in Healthy Calves. Viruses 2023; 15:v15030669. [PMID: 36992378 PMCID: PMC10057971 DOI: 10.3390/v15030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Bovine respiratory diseases (BRD) are associated with various predisposing factors, such as physical and physiological stress factors, and bacterial and viral pathogens. These stressors and viruses suppress immune defenses, leading to bacterial growth in the upper respiratory tract and invasion of pathogens into the lower respiratory tract. Therefore, continuous monitoring of the causative pathogens would contribute to the early detection of BRD. Nasal swabs and sera from 63 clinically healthy calves were continuously collected from seven farms in Iwate prefecture from 2019 to 2021. We attempted to monitor dynamics of BRD-associated pathogens by multiplex real-time RT-PCR (RT-qPCR) using their nasal swab samples. In addition, we attempted to monitor fluctuation of antibody titers against each BRD-associated pathogen by virus neutralization test (VNT) using their sera. In contrast, nasal swabs from 89 calves infected with BRD were collected from 28 farms in Iwate prefecture from 2019 to 2021. We attempted to analyze their nasal swab samples by multiplex RT-qPCR aim to detect BRD-associated pathogens that are dominant in this region. As a result, our analyses using samples from clinically healthy calves showed that positive results by multiplex RT-qPCR were closely related to a significant increase of antibody titers by VNT in bovine coronavirus (BCoV), bovine torovirus (BToV), and bovine respiratory syncytial virus (BRSV). In addition, our data exhibited that BCoV, BToV, BRSV, bovine parainfluenza virus 3, and Mycoplasma bovis have been more frequently detected in calves infected with BRD compared to those detected in clinically healthy calves. Moreover, the data presented herein revealed co-infections by combination multiple viral pathogens with bacterial pathogens are closely involved in the onset of BRD. Taken together, our study demonstrates multiplex RT-qPCR which can simultaneously analyze multiple pathogens, including viruses and bacteria, and is useful for the early detection of BRD.
Collapse
Affiliation(s)
- Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa 020-0605, Iwate, Japan
| | - Kazuhiro Fukunari
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa 020-0605, Iwate, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research and Division of Hygiene Management, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo 062-0045, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-851-2132; Fax: +81-11-853-0767
| |
Collapse
|
43
|
Tomazi ACCH, Tomazi T, Bringhenti L, Vinhal APA, Rodrigues MX, Bilby TR, Huson HJ, Bicalho RC. Treatment with 2 commercial antibiotics reduced clinical and systemic signs of pneumonia and the abundance of pathogenic bacteria in the upper respiratory tract of preweaning dairy calves. J Dairy Sci 2023; 106:2750-2771. [PMID: 36797182 DOI: 10.3168/jds.2022-22451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 02/16/2023]
Abstract
The aim of this study was to evaluate the effect of therapeutically administered tildipirosin or florfenicol + flunixin meglumine for the treatment of bovine respiratory disease (BRD) accompanied by fever in calves before weaning compared with diseased and untreated animals. As specific objectives, we evaluated the composition of the bacterial microbiota of the upper respiratory tract (URT) and blood and health parameters of the animals. Preweaning Holstein female calves diagnosed with naturally acquired pneumonia were randomly assigned to one of the following experimental groups on the day of diagnosis (d 0): (1) TLD (n = 36): single subcutaneous injection with 4 mg/kg tildipirosin; (2) FLF (n = 33): single subcutaneous injection with an antimicrobial (40 mg/kg florfenicol) combined with a nonsteroidal anti-inflammatory drug (2.2 mg/kg flunixin meglumine); and (3) NEG (n = 35): no treatment within the first 5 d following enrollment. The NEG treatment group was closely monitored for 5 d, and calves were removed from the study following a standardized late treatment protocol, when necessary, to minimize health concerns. Healthy untreated calves (CTR; n = 31) were also selected for the study and used as controls. Blood samples used for biochemical analysis and nasopharyngeal swabs used for evaluation of URT microbiota were collected daily from d 0 until d 5 and then weekly until weaning. Next-generation sequencing of the 16S rRNA gene was used to assess the URT microbiota at the phylum and genus levels. Clinical signs associated with pneumonia and otitis media were assessed daily, as was the need for antibiotic interventions. Calves in the TLD and FLF groups had faster recovery from fever within the first 5 d after enrollment. In addition, antibiotic-treated calves reached the same serum haptoglobin levels as healthy calves on d 2 after diagnosis, whereas calves in the NEG group had higher haptoglobin levels than the CTR group until at least d 5 after BRD diagnosis. Calves in the TLD and FLF groups had a lower risk of treatment for pneumonia (FLF = 22.8%; TLD = 27.7%) from d 5 to weaning than calves in the NEG group (54.7%). Furthermore, FLF treatment had a significantly lower risk of nasal discharge, otitis media, and treatment failure compared with the NEG group, but did not differ from the TLD group. Differences in the composition of the URT microbiota were found between groups, and the genus Mycoplasma was the most abundant in samples collected from the URT of calves with and without pneumonia. Both drugs were effective in reducing the mean relative abundance (MRA) of important genera associated with pneumonia (Mannheimia and Pasteurella), although an increase in Mycoplasma MRA was observed for tildipirosin-treated calves. In conclusion, both drugs were effective in reducing the inflammatory signs of pneumonia and the need for antimicrobial treatment after enrollment compared with no treatment. In addition, both TLD and FLF were effective in reducing the MRA of important bacterial genera associated with pneumonia; however, TLD treatment was associated with increased Mycoplasma MRA compared with healthy and untreated calves.
Collapse
Affiliation(s)
- A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; Merck Animal Health, Madison, NJ 07940.
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - A P A Vinhal
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - T R Bilby
- Merck Animal Health, Madison, NJ 07940
| | - H J Huson
- Department of Animal Sciences, Cornell University, Ithaca, NY 14853
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| |
Collapse
|
44
|
Protection against Bovine Respiratory Syncytial Virus Afforded by Maternal Antibodies from Cows Immunized with an Inactivated Vaccine. Vaccines (Basel) 2023; 11:vaccines11010141. [PMID: 36679988 PMCID: PMC9864491 DOI: 10.3390/vaccines11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.
Collapse
|
45
|
Maya-Rodríguez LM, Carrillo-Casas EM, Rojas-Trejo V, Trigo-Tavera F, Miranda-Morales RE. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico. Trop Anim Health Prod 2022; 54:394. [PMID: 36417039 PMCID: PMC9685072 DOI: 10.1007/s11250-022-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to identify Mycoplasma bovis, Myc. dispar, and Myc. bovirhinis, which are involved in bovine respiratory disease through a multiplex PCR as an alternative to culture's features that hamper Mycoplasma isolation. Nasal swabs were taken from 335 cattle with and without respiratory disease background (RDB) from dairy herds in the central region of Mexico. Each sample was divided in two; the first part was processed for the direct DNA extraction of the nasal swab and the second for Mycoplasma isolation, culture, and then the multiplex PCR was performed. In the nasal swabs, Myc. bovis was identified in 21.1%; Myc. dispar, in 11.8%; and Myc. bovirhinis, in 10.8% in cattle with RDB. Isolates were identified as Myc. bovis, 20.1%; Myc. dispar, 11.8%; and Myc. bovirhinis, 6.1%. There is a strong correlation between the presence of Mycoplasma identified by PCR and the clinical history of the disease (ρ < 0.0000). In animals without RDB, Myc. bovirhinis was the only species detected in 6.1% of the samples processed directly for multiplex PCR, and in 2% of the isolates. There is an excellent correlation (kappa 0.803) between the isolation and the 16S PCR and a high correlation (kappa 0.75) between the isolation and the multiplex PCR. Therefore, we conclude that the PCR multiplex test is highly sensitive and may be used for the diagnosis and surveillance of the three species in biological samples and mycoplasma isolates.
Collapse
Affiliation(s)
- L. M. Maya-Rodríguez
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - E. M. Carrillo-Casas
- grid.414754.70000 0004 6020 7521Hospital General “Dr. Manuel Gea González”, Depto. de Biología Molecular e Histocompatibilidad, Dirección de Investigación, Calz. de Tlalpan 4800, Secc XVI, 14080 Tlalpan CDMX, CP Mexico
| | - V. Rojas-Trejo
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - F. Trigo-Tavera
- grid.9486.30000 0001 2159 0001Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Patología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - R. E. Miranda-Morales
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| |
Collapse
|