1
|
Beltrami S, Rizzo S, Schiuma G, Cianci G, Narducci M, Baroni M, Di Luca D, Rizzo R, Bortolotti D. West Nile virus non-structural protein 1 promotes amyloid Beta deposition and neurodegeneration. Int J Biol Macromol 2025; 305:141032. [PMID: 39954900 DOI: 10.1016/j.ijbiomac.2025.141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Recent observations highlight a notable surge in West Nile Virus (WNV) infections in Europe that can lead to neuroinvasive consequences associated with neurodegeneration, mainly triggered by WNV Non-Structural protein 1 (NS1). During viral replication, various protein-protein interactions take place, allowing viral proteins to interact with host factors. NS1 is actively secreted in the bloodstream by infected cells and is known to affect endothelial permeability and host immune response. Focusing on the recently discovered antimicrobial roles of Amyloid-Beta (Aβ) in the context Central Nervous System (CNS), we connected WNV late pathology to overlapping features encountered in neurodegenerative diseases. In fact, CNS viral infections, or presence of specific viral components, activate glial cells, which in turn increase Aβ expression as an antiviral mechanism, leading to Aβ accumulation and neuronal damage. Considering West Nile neuroinvasive disease (WNND) as a possible complication of WNV infection, we investigated the impact of soluble WNV (s)NS1 on glial and neuronal cells, in 2D and 3D in vitro models. We reported an increased Aβ deposition after WNV sNS1 treatment, particularly of Aβ-142 isoform, and increased glial activation with a subsequent neurotoxicity. These findings underscore the crucial role of sNS1 in CNS-related effects during WNV infection, suggesting a novel pathogenetic role.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Sabrina Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giovanna Schiuma
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giorgia Cianci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Marco Narducci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Temple University, Japan Campus, 1 Chome-14-29 Taishido, Setagaya City, Tokyo 154-0004, Japan.
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Roberta Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
2
|
Tang H, Evers TMJ, Babaei M, Mashaghi A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater Sci Eng 2025; 11:2448-2455. [PMID: 40131123 PMCID: PMC12001184 DOI: 10.1021/acsbiomaterials.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Capillary leakage is a hallmark of severe dengue, yet its precise mechanisms remain elusive. Emerging evidence highlights the dengue virus's targeting of mechanically active endothelial cells as a key contributor to dengue shock syndrome. The viral nonstructural protein 1 (NS1) has been identified as a central player, disrupting endothelial integrity and inducing vascular hyperpermeability independently of pro-inflammatory cytokines. This study provides a direct assessment of NS1-induced endothelial pathology by combining single-cell force spectroscopy and a microvessel-on-a-chip platform. We demonstrate that NS1 significantly alters endothelial cell mechanics, reducing cell stiffness and compromising junctional integrity, thereby directly linking these mechanical alterations to vascular dysfunction. These findings establish a framework for understanding the mechano-pathology of dengue and offer a platform for developing targeted therapeutic strategies to mitigate severe disease outcomes.
Collapse
Affiliation(s)
| | | | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| |
Collapse
|
3
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
4
|
Lai SK, Lee ZQ, Tan TI, Tan BH, Sugrue RJ. Evidence that the cell glycocalyx envelops respiratory syncytial virus (RSV) particles that form on the surface of RSV-infected human airway cells. Virology 2025; 604:110415. [PMID: 40044247 DOI: 10.1016/j.virol.2025.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 05/11/2025]
Abstract
We examined how respiratory syncytial virus (RSV) particles circumvent the overlying glycocalyx on virus-infected A549 cells. The glycocalyx was detected using the lectin WGA-AL488 probe, and the antibodies anti-HS and anti-syndecan-4 that detect heparin sulphate (HS) and the syndecan-4 protein (SYND4) respectively. Imaging of RSV-infected cells provided evidence that the glycocalyx envelopes the virus filaments as they form, and that components of the glycocalyx such as HS moieties and SYND4 are displayed on the surface of the mature virus filaments. Recombinant expression of the G protein in these cells suggested that the G protein was trafficked into pre-existing filamentous cellular structures with a well-defined glycocalyx, further suggesting that the glycocalyx is maintained at the site of virus particle assembly. These data provide evidence that during RSV particle assembly the virus filaments become enveloped by the glycocalyx, and that the glycocalyx should be considered as a structural component of virus filaments.
Collapse
Affiliation(s)
- Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Trina Isabel Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
5
|
Alfaro-García JP, Orozco-Castaño CA, Sánchez-Rendón JA, Casanova-Yépes HF, Vicente-Manzanares M, Gallego-Gómez JC. Characterization of the Temporal Dynamics of the Endothelial-Mesenchymal-like Transition Induced by Soluble Factors from Dengue Virus Infection in Microvascular Endothelial Cells. Int J Mol Sci 2025; 26:2139. [PMID: 40076764 PMCID: PMC11900998 DOI: 10.3390/ijms26052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Dengue virus (DV) infection poses a severe life-threatening risk in certain cases. This is mainly due to endothelial dysregulation, which causes plasma leakage and hemorrhage. However, the etiology of DV-induced endothelial dysregulation remains incompletely understood. To identify the potential mechanisms of endothelial dysregulation caused by DV, the effects of conditioned media from Dengue virus (CMDV) on the mechanics and transcriptional profile of the endothelial cells were examined using permeability assays, atomic force microscopy, In-Cell Western blot and in silico transcriptomics. Exposure of HMEC-1 cells to the CMDV increased endothelial permeability and cellular stiffness. It also induced the expression of the key proteins associated with endothelial-to-mesenchymal transition (EndMT). These data support the notion that the DV promotes endothelial dysfunction by triggering transcriptional programs that compromise the endothelial barrier function. Understanding the molecular mechanisms underlying DV-induced endothelial dysregulation is crucial for developing targeted therapeutic strategies to mitigate the severe outcomes associated with dengue infection.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Grupo Medicina de Translación—Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | - Julián Andrés Sánchez-Rendón
- Grupo de Coloides—Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia; (J.A.S.-R.); (H.F.C.-Y.)
| | - Herley Fernando Casanova-Yépes
- Grupo de Coloides—Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia; (J.A.S.-R.); (H.F.C.-Y.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain
| | - Juan Carlos Gallego-Gómez
- Grupo Medicina de Translación—Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
6
|
Kumari S, Biswas A, Maiti TK, Bandyopadhyay B, Banerjee A. Induction of PD-1 and CD44 in CD4 + T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway. J Virol 2025; 99:e0186124. [PMID: 39745465 PMCID: PMC11852895 DOI: 10.1128/jvi.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 02/26/2025] Open
Abstract
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.g., immunoregulatory proteins (PD-L1, CD44). Further, we demonstrated that SD-EV induces PD-1 and CD44 expression on CD4+ T cells. SD-EV-modulated CD4+ T (SD-EV-CD4) cells released secretome delayed endothelial cell (EC) migration, arrested them in the G1 phase, and augmented the expression of PD-L1 and ICAM-1 expression on EC through the Notch signaling pathway. Blocking SD-EV and CD4+ T-cell interaction through the PD-1/PD-L1 pathway partially rescued the CD4+ T cell's effect on EC but did not alter ICAM-1 expression on EC. We observed that the ICAM-1 expression on EC and hyaluronic acid (HA) release from EC was mediated by CD44, which was elevated on SD-EV-modulated CD4+ T cells (SD-EV-CD4), indicating a permeability defect. Blocking of CD44 on SD-EV-CD4 significantly reduced ICAM-1 expression on EC. Further, depletion of specific cytokines, e.g., TNF-α and not IFN-γ from the SD-EV-CD4 secretome, reduced ICAM-1 expression, decreased transendothelial electrical resistance, and induced apoptosis on EC significantly. Treatment with NF-kB inhibitor before secretome addition to EC reduced ICAM-1 expression on EC. In conclusion, we provided evidence that SD-EV-CD4 carrying PD-1 and CD44, when interacting with EC, significantly affected endothelial cell properties and may be significant in dengue-mediated endothelial dysfunction.IMPORTANCEExtracellular vesicles (EVs) are small membrane vesicles secreted into biological fluids, including plasma from living cells, holding insights into pathological processes. Studying EVs under pathological conditions is extremely important as they play a selective role in intercellular communication and modulation of immune response under diverse pathological conditions. However, there is less clarity on how circulatory extracellular vesicles influence immune cells during dengue virus (DV) infection and impact pathogenesis. Our present study highlights the impact of severe dengue patients' plasma-derived EV (SD-EV) on CD4+ T cells and together induce endothelial barrier dysfunction. We provided evidence that SD-EV induces PD-1 and CD44 on CD4+ T cells and, when interacting with endothelial cells (EC), drives endothelial damage through direct interaction or secretome and may be significant in dengue-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Sharda Kumari
- Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | - Ankit Biswas
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | | | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
Pahmeier F, Monticelli SR, Feng X, Hjorth CK, Wang A, Kuehne AI, Bakken RR, Batchelor TG, Lee SE, Middlecamp M, Stuart L, Duarte-Neto AN, Abelson DM, McLellan JS, Biering SB, Herbert AS, Chandran K, Harris E. Antibodies targeting Crimean-Congo hemorrhagic fever virus GP38 limit vascular leak and viral spread. Sci Transl Med 2025; 17:eadq5928. [PMID: 39970234 DOI: 10.1126/scitranslmed.adq5928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells release the viral glycoprotein GP38, whose extracellular function is presently unknown. GP38 is considered an important target for vaccine and therapeutic design because GP38-specific antibodies can protect against severe disease in animal models, albeit through an unknown mechanism of action. Here, we showed that GP38 induces endothelial barrier dysfunction in vitro by disrupting the endothelial glycocalyx layer and triggering hyperpermeability. We also demonstrated that GP38 alone can cause vascular leak in a mouse model. We found that CCHFV infection leads to vascular leak in vivo, which was exacerbated by exogenous administration of GP38, facilitating dissemination of CCHFV into target tissues such as the liver. Protective antibodies that recognized specific antigenic sites on GP38, but not a protective neutralizing antibody binding the structural protein Gc, potently inhibited endothelial hyperpermeability in vitro and vascular leak in vivo during CCHFV infection. This work uncovers a function of the circulating viral protein GP38 as a viral toxin in CCHFV pathogenesis and elucidates a potential mode of action of nonneutralizing yet protective GP38-specific antibodies.
Collapse
Affiliation(s)
- Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Stephanie R Monticelli
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Xinyi Feng
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Russell R Bakken
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Thomas G Batchelor
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Oak Ridge Institute of Science Education, Oak Ridge, TN 37830, USA
| | - Saeyoung E Lee
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - Lauren Stuart
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | - Amaro N Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05409-011 SP, Brazil
| | | | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew S Herbert
- Viral Immunology Branch, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Varela SS, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025; 12:RP86931. [PMID: 39913180 PMCID: PMC11801798 DOI: 10.7554/elife.86931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Belinda S Hall
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Jane Newcombe
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Tom A Mendum
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Sonia Santana Varela
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Wei Q Shi
- Department of Chemistry, Ball State UniversityMuncieUnited States
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic LaboratoryCollege StationUnited States
| | | | - Rachel E Simmonds
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| |
Collapse
|
9
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Prieto-Torres AE, Medina-Lozano LJ, Ramírez-Ávila JD, Faccini-Martínez ÁA. Utility of VIDAS ® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia. Trop Med Infect Dis 2025; 10:40. [PMID: 39998044 PMCID: PMC11860576 DOI: 10.3390/tropicalmed10020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
This study aimed to assess the diagnostic utility of VIDAS® DENGUE NS1 Ag and anti-DENV IgM and IgG assays in parallel for an early and accurate diagnosis and classification of dengue virus (DENV) infection. For this retrospective cross-sectional study, 190 patients with suspected dengue were tested using VIDAS® NS1, IgM, and IgG assays, requested in parallel, regardless of symptom onset timing, and classified into primary and secondary infections. Results were analyzed to determine diagnostic accuracy and correlation with disease severity. Parallel testing effectively differentiated between primary and secondary DENV infection. Secondary dengue cases with warning signs showed significantly elevated IgG levels (p = 0.026). Notably, NS1-negative (possible secondary cases) had higher IgM and IgG levels than NS1-positive cases (p < 0.01), suggesting that NS1 negativity might indicate an amplified immune response. In conclusion, VIDAS® Dengue diagnostic assays not only enhance the diagnostic accuracy of dengue infection but also offer valuable insights into serological patterns, especially in secondary cases. These assays could be used not only to confirm diagnosis but also to stratify patients by risk, particularly in cases of secondary dengue, where IgG levels might indicate a higher risk for severe outcomes.
Collapse
Affiliation(s)
- Andrés E. Prieto-Torres
- Internal Medicine Department, Hospital Militar Central, Bogotá D.C 110231, Colombia; (A.E.P.-T.); (L.J.M.-L.)
| | - Leidy J. Medina-Lozano
- Internal Medicine Department, Hospital Militar Central, Bogotá D.C 110231, Colombia; (A.E.P.-T.); (L.J.M.-L.)
- Infectious Disease Department, School of Medicine, Universidad Nacional de Colombia, Bogotá D.C 111321, Colombia
| | | | - Álvaro A. Faccini-Martínez
- Infectious Disease Department, Hospital Militar Central, Bogotá D.C 110231, Colombia
- School of Medicine, Universidad Militar Nueva Granada, Bogotá D.C 110231, Colombia
| |
Collapse
|
11
|
Jalilian S, Vasei M, Garshasbi A, Nabavi SS, Bastani MN. Viral intruders in the heart: A review of RNA viruses and their role in cardiac disorders. APMIS 2025; 133:e13500. [PMID: 39530180 DOI: 10.1111/apm.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Viral cardiac diseases have a significant impact on global health, and RNA viruses play a crucial role in their pathogenesis. This literature review aims to provide a comprehensive understanding of the complex relationship between RNA viruses and cardiac diseases, focusing on the molecular processes and clinical implications of these interactions. The paper begins by discussing the various RNA viruses that have been linked to cardiac infections. Subsequently, the study explores the mechanisms through which RNA viruses can cause cardiac injury, including direct viral invasion, immune-mediated responses, and molecular mimicry. The review extensively examines the intricate interplay between the host immune system and RNA viruses, shedding light on both protective and harmful immune responses. Additionally, it investigates the role of viral persistence and chronic inflammation in the long-term effects on cardiac health. The thorough analysis presented not only enhances our scientific understanding of how RNA viruses contribute to the development of cardiac diseases but also highlights potential avenues for future research and breakthroughs in this field. Given the significant global health threat posed by viral cardiac disorders, unraveling the molecular foundations of these diseases is essential for advancing diagnostic capabilities and therapeutic interventions.
Collapse
Affiliation(s)
- Shahram Jalilian
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Vasei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ashkan Garshasbi
- Immunology Department of Immunology and Microbiology, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Salaheddin Nabavi
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Navid Bastani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Shabil M, Bushi G, Apostolopoulos V, Alrahbeni T, Al-Mugheed K, Khatib MN, Gaidhane S, Zahiruddin QS, Kukreti N, Rustagi S, Alhashem YN, Alotaibi J, Kaabi NAA, Sulaiman T, Alturaifi HR, Khamis F, Rabaan AA, Satapathy P. Hypoalbuminemia as a predictor of severe dengue: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2025; 23:105-118. [PMID: 39745180 DOI: 10.1080/14787210.2024.2448721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Dengue fever is a significant health concern globally, especially in tropical regions. Identifying reliable markers for severe dengue, such as hypoalbuminemia, is crucial for early diagnosis and treatment. METHODS This review systematically explores the association between hypoalbuminemia and severe dengue. We searched databases including PubMed, Embase, Scopus, Cochrane, and Web of Science until 28 December 2023, focusing on studies that reported albumin levels in dengue patients. Our selection criteria aimed at observational studies, from which data extraction and quality assessment were performed using Nested- Knowledge and the Newcastle-Ottawa Scale. RESULTS A meta-analysis of 17 studies involving 974 severe and 18,496 non-severe dengue patients identified a standardized mean difference (SMD) in albumin levels of -1.625 g/dL (95% CI: -3.618 to -0.369). Subgroup analysis indicated more pronounced hypoalbuminemia in pediatric patients, with a pooled SMD of -1.08 g/dL (95% CI: -1.71 to -0.45). Our analysis demonstrated the link between hypoalbuminemia and severe dengue, indicating a significant pooled relative risk of 2.286, within 95% CI 1.308 to 3.996. CONCLUSIONS The study confirms hypoalbuminemia as a significant predictor of severe dengue. Recognizing hypoalbuminemia in dengue patients can aid clinicians in forecasting the severity, potentially improving patient outcomes through targeted therapeutic strategies.
Collapse
Affiliation(s)
- Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Tahani Alrahbeni
- Molecular Toxicology and Genetics, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Khalid Al-Mugheed
- Adult Health Nursing and Critical Care, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- Global South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to be University), Dehradun, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Yousef N Alhashem
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hussain R Alturaifi
- Department of Laboratory and Blood Bank, King Fahad Hospital, Al Hofuf, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat, Oman
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| |
Collapse
|
13
|
Das S, Mallik MH, Chattopadyay P, Mallick S, Karmakar D, Ghora S, Begum F, Chatterjee B, Thagriki DS, Srivastava AK, Ray U. Dengue virus NS1 leads to downregulation of HNF4 alpha in liver cells resulting in a decrease in coagulation factors I, V, X, and XIII, contributing to coagulopathy. J Virol 2024; 98:e0141824. [PMID: 39513713 PMCID: PMC11650988 DOI: 10.1128/jvi.01418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Dengue virus NS1 protein is a major pathogenic protein. In this study, we examined the role of NS1 in coagulopathy associated with Dengue infection, a common feature of Dengue virus pathogenesis. Since most coagulation factors are produced by hepatocytes and liver is key organ affected during infection, we conducted transcriptomics using total-RNA extracted from Huh7 cells overexpressing NS1 protein. Coagulation factors 1, 5, 10, and 13 were downregulated and was confirmed using quantitative real-time polymerase chain reaction (RT-PCR) and western blot assays in both adherent and non-adherent cell culture systems across all four serotypes of Dengue. We also determined that downregulation of coagulation factors is a result of reduced expression of transcription activator HNF4α. Furthermore, we demonstrated that phosphorylation of extracellular signal-regulated kinase (ERK) leads to HNF4α downregulation and subsequent downregulation of coagulation factors. The downregulation of HNF4α and the downregulation of subsequent coagulation factors were validated in BALB/c mice by hydrodynamic tail vein injection of NS1 expression plasmids. Western blot assays using plasma from Dengue patients indicated that at least two coagulation factors of the common pathway of coagulation cascade are downregulated during the febrile phase, with levels improving toward the convalescent phase. NS1-mediated downregulation of coagulation factors was observed for both intracellular and secreted NS1. The hypothesis was also validated using virus infection assays. Overall, our study highlights the role of NS1 in mediating coagulopathy by modulating the expression of coagulation factors through transcriptional suppression of HNF4α by elevated phosphorylated ERK. This signaling cascade could be targeted for therapeutic intervention against virus-related coagulopathies. IMPORTANCE Thrombocytopenia has been linked to coagulopathy of Dengue infection, and Dengue patients with coagulopathies are often administered platelet transfusion. For coagulopathies without thrombocytopenia, platelet transfusion might not help. We demonstrated the role of NS1 in coagulopathy by downregulating coagulation factors themselves. When thrombocytopenia does not exist or when thrombocytopenia as well as reduced levels of coagulation factors are the causative factors for coagulopathies, only platelet transfusion might not be effective. Alternative strategies, like administration of coagulation factor cocktails or platelet transfusion along with coagulation factor cocktail, might be promising. Our work also leads to a signaling pathway of NS1-mediated downregulation of coagulation factors via phosphorylated ERK and HNF4α. HNF4α is a transcription regulator for many other liver-based metabolic factors and pathways like lipid metabolism, carbohydrate metabolism, etc, and thus, therapeutic targeting of NS1-based downregulation of HNF4α can lead to designing therapeutic candidates for managing other Dengue-based liver dysfunction.
Collapse
Affiliation(s)
- Sandeepan Das
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Md Hasan Mallik
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | | | - Subhadip Ghora
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Feroza Begum
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Bilash Chatterjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Dluya Samuel Thagriki
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Adamawa State University Mubi, Nigeria, Adamawa State, Africa
| | - Amit Kumar Srivastava
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
14
|
Premazzi Papa M, Mendoza-Torres E, Sun P, Encinales L, Goulet J, Defang G, Vihasi J, Cheng Y, Suchowiecki K, Rosales W, Amdur R, Porras-Ramirez A, Rico-Mendoza A, Herrera Gomez C, Nicholes S, Zuluaga I, Halstead L, Halstead S, Simon G, Porter K, Lynch RM, Chang AY. Dengue NS1 Antibodies Are Associated With Clearance of Viral Nonstructural Protein-1. J Infect Dis 2024; 230:e1226-e1234. [PMID: 38842497 PMCID: PMC11646586 DOI: 10.1093/infdis/jiae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Dengue vascular permeability syndrome is the primary cause of death in severe dengue infections. The protective versus potentially pathogenic role of dengue nonstructural protein-1 (NS1) antibodies are not well understood. The main goal of this analysis was to characterize the relationship between free NS1 concentration and NS1 antibody titers in primary and secondary dengue infection to better understand the presence and duration of NS1 antibody complexes in clinical dengue infections. METHODS Hospitalized participants with acute dengue infection were recruited from Northern Colombia between 2018 and 2020. Symptom assessment, including dengue signs and symptoms, chart review, and blood collection, was performed. Primary versus secondary dengue was assessed serologically. NS1 titers and anti-NS1 antibodies were measured daily. RESULTS Patients with secondary infection had higher antibody titers than those in primary infection, and there was a negative correlation between anti-NS1 antibody titer and NS1 protein. We demonstrate that in a subset of secondary infection, there were indeed NS1 antigen-antibody complexes on the admission day during the febrile phase that were not detectable by the recovery phase. Furthermore, dengue infection status was associated with higher circulating sialidases. DISCUSSION The negative correlation between antibody and protein suggests that antibodies may play a role in clearing this viral protein.
Collapse
Affiliation(s)
- Michelle Premazzi Papa
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Universidad Libre de Colombia, Barranquilla, Atlántico, Colombia
| | - Peifang Sun
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Liliana Encinales
- Department of Medicine, Allied Research Society Colombia, Barranquilla, Atlántico, Colombia
| | - Joseph Goulet
- Department of Emergency Medicine, Yale School of Medicine, West Haven, Connecticut, USA
| | - Gabriel Defang
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Jani Vihasi
- Henry Jackson Foundation, Bethesda, Maryland, USA
| | | | - Karol Suchowiecki
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Universidad Libre de Colombia, Barranquilla, Atlántico, Colombia
| | - Richard Amdur
- Department of Quantitative Intelligence, Institute for Health Systems Science, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | | - Alejandro Rico-Mendoza
- Grupo de Medicina Comunitaria y Salud Colectiva, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Herrera Gomez
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Samuel Nicholes
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Ivan Zuluaga
- Clínica Iberoamérica, Universidad Libre de Barranquilla, Barranquilla, Atlántico, Colombia
| | - Liam Halstead
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Scott Halstead
- Department of Medicine, Infectious Diseases Division, Uniformed Services University, Bethesda, Maryland, USA
| | - Gary Simon
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Kevin Porter
- Directorate for Defense Infectious Diseases, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Medicine, Infectious Diseases Division, Uniformed Services University, Bethesda, Maryland, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Aileen Y Chang
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Srivastava S, Dhoundiyal S, Kumar S, Kaur A, Khatib MN, Gaidhane S, Zahiruddin QS, Mohanty A, Henao-Martinez AF, Krsak M, Rodriguez-Morales AJ, Montenegro-Idrogo JJ, Bonilla-Aldana DK, Sah R. Yellow Fever: Global Impact, Epidemiology, Pathogenesis, and Integrated Prevention Approaches. LE INFEZIONI IN MEDICINA 2024; 32:434-450. [PMID: 39660161 PMCID: PMC11627485 DOI: 10.53854/liim-3204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Yellow fever poses a substantial global health concern as one of the re-emerging diseases with pandemic potential in a scenario of the worldwide distribution of some vectors (such as Aedes aegypti); in the context of climatic change, an unclear knowledge about the immune behaviour of the virus, between other determinants. This review details the historical foundations, intricate evolution of geographical spread, and transmission mechanisms of the disease to understand the behaviour of outbreaks over time in a multifactorial context that could be difficult to understand. This article approaches to epidemiological, pathophysiological, immunological, social determinants, and climatic crisis by understanding possible control mechanisms and anticipating potential future epidemics. This article explores the evidence of yellow fever virus (YFV) pathogenesis and its complex interactions with the immune response in the host, the vector, and in the context of immunisation. These discussions contribute to a more comprehensive understanding of the disease's progression. Despite the global presence of the vector and other factors that could facilitate an epidemic spread, yellow fever outbreaks have remained confined to specific endemic areas. This limited distribution is not entirely understood. However, it may be influenced by the complex immune interactions between the virus, the vector, and the host, preventing its spread to other regions.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017,
India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201,
India
| | - Shivang Dhoundiyal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, 333031 Rajasthan,
India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017,
India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201,
India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha,
India
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha,
India
| | - Quazi Syed Zahiruddin
- Global Health Academy, Division of Evidence Synthesis, School of Epidemiology and Public Health and Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha.
India
| | - Aroop Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur,
India
| | - Andres F. Henao-Martinez
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO,
USA
| | - Martin Krsak
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO,
USA
| | - Alfonso J. Rodriguez-Morales
- Master of Clinical Epidemiology and Biostatistics Program, Faculty of Health Sciences, Universidad Científica del Sur, Lima,
Peru
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira 660003, Risaralda,
Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut,
Lebanon
| | - Juan J. Montenegro-Idrogo
- Master of Clinical Epidemiology and Biostatistics Program, Faculty of Health Sciences, Universidad Científica del Sur, Lima,
Peru
- Infectious and Tropical Diseases Service, Hospital Nacional Dos de Mayo, Lima,
Peru
| | | | - Ranjit Sah
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra,
India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra,
India
- SR Sanjeevani Hospital, Kalyanpur-10, Siraha,
Nepal
| |
Collapse
|
16
|
Puerta-Guardo H, Biering SB, Castillo-Rojas B, DiBiasio-White MJ, Lo NT, Espinosa DA, Warnes CM, Wang C, Cao T, Glasner DR, Beatty PR, Kuhn RJ, Harris E. Flavivirus NS1-triggered endothelial dysfunction promotes virus dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625931. [PMID: 39651279 PMCID: PMC11623691 DOI: 10.1101/2024.11.29.625931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The Flaviviridae are a family of viruses that include the important arthropod-borne human pathogens dengue virus (DENV), West Nile virus, Zika virus, Japanese encephalitis virus, and yellow fever virus. Flavivirus nonstructural protein 1 (NS1) is essential for virus replication but is also secreted from virus-infected cells. Extracellular NS1 acts as a virulence factor during flavivirus infection in multiple ways, including triggering endothelial dysfunction and vascular leak via interaction with endothelial cells. While the role of NS1 in inducing vascular leak and exacerbating pathogenesis is well appreciated, if and how NS1-triggered endothelial dysfunction promotes virus infection remains obscure. Flaviviruses have a common need to disseminate from circulation into specific tissues where virus-permissive cells reside. Tissue-specific dissemination is associated with disease manifestations of a given flavivirus, but mechanisms dictating virus dissemination are unclear. Here we show that NS1-mediated endothelial dysfunction promotes virus dissemination in vitro and in vivo . In mouse models of DENV infection, we show that anti-NS1 antibodies decrease virus dissemination, while the addition of exogenous NS1 promotes virus dissemination. Using an in vitro system, we show that NS1 promotes virus dissemination in two distinct ways: (1) promoting crossing of barriers and (2) increasing infectivity of target cells in a tissue- and virus-specific manner. The capacity of NS1 to modulate infectivity correlates with a physical association between virions and NS1, suggesting a potential NS1-virion interaction. Taken together, our study indicates that flavivirus NS1 promotes virus dissemination across endothelial barriers, providing an evolutionary basis for virus-triggered vascular leak. Author Summary The Flaviviridae contain numerous medically important human pathogens that cause potentially life-threatening infections. Over half of the world's population is at risk of flavivirus infection, and this number is expected to increase as climate change expands the habitats of the arthropod vectors that transmit these flaviviruses. There are few effective vaccines and no therapeutics approved for prevention or treatment of flavivirus infection, respectively. Given these challenges, understanding how and why flaviviruses cause pathogenesis is critical for identifying targets for therapeutic intervention. The secreted nonstructural protein 1 (NS1) of flaviviruses is a conserved virulence factor that triggers endothelial dysfunction in a tissue-specific manner. It is unknown if this endothelial dysfunction provides any benefit for virus infection. Here we provide evidence that NS1-triggered endothelial dysfunction facilitates virus crossing of endothelial barriers and augments infection of target cells in vitro and promotes virus dissemination in vivo . This study provides an evolutionary explanation for flaviviruses evolving the capacity to trigger barrier dysfunction and highlights NS1 and the pathways governing endothelial dysfunction, as therapeutic targets to prevent flavivirus dissemination.
Collapse
|
17
|
de Sousa FTG, Warnes CM, Manuli ER, Tjang LV, Carneiro PH, Maria de Oliveira Pinto L, Ng A, Bhat S, Zambrana JV, D'Elia Zanella LGFAB, Ho YL, Romano CM, Beatty PR, Biering SB, Kallas EG, Sabino EC, Harris E. Yellow fever disease severity and endothelial dysfunction are associated with elevated serum levels of viral NS1 protein and syndecan-1. EBioMedicine 2024; 109:105409. [PMID: 39454515 PMCID: PMC11539239 DOI: 10.1016/j.ebiom.2024.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Yellow fever virus (YFV) infections are a major global disease concern with high mortality in humans, and as such it is critical to identify clinical correlates of disease severity. While nonstructural protein 1 (NS1) of the related dengue virus is implicated in contributing to vascular leak, little is known about the role of YFV NS1 in severe YF and mechanisms of vascular dysfunction in YFV infections. METHODS Using serum samples from laboratory-confirmed YF patients with severe (n = 39) or non-severe (n = 18) disease in a well-defined hospital observational cohort in Brazil, plus samples from healthy uninfected controls (n = 11), we investigated factors associated with disease severity and endothelial dysfunction. FINDINGS We found significantly increased levels of NS1, as well as syndecan-1, a marker of vascular leak, in serum from severe YF as compared to non-severe YF or control groups. We also showed that hyperpermeability of endothelial cell monolayers treated with serum from severe YF patients was significantly higher compared to non-severe YF and control groups, as measured by transendothelial electrical resistance (TEER). Further, we demonstrated that YFV NS1 induces shedding of syndecan-1 from the surface of human endothelial cells. Notably, YFV NS1 serum levels significantly correlated with syndecan-1 serum levels, TEER values, and signs of disease severity. Syndecan-1 levels also significantly correlated with clinical laboratory parameters of disease severity, viral load, hospitalization, and death. INTERPRETATION This study provides further evidence for endothelial dysfunction as a mechanism of YF pathogenesis in humans and suggests serum quantification of YFV NS1 and syndecan-1 as valuable tools for disease diagnosis and/or prognosis. FUNDING This work was supported by the US NIH and FAPESP.
Collapse
Affiliation(s)
- Francielle T G de Sousa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403000, Brazil; Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil.
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Erika R Manuli
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403000, Brazil; Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil
| | - Laurentia V Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Pedro H Carneiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| | - Luzia Maria de Oliveira Pinto
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Laboratório das Interações Vírus-Hospedeiros (LIVH), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil.
| | - Arash Ng
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-3200, USA.
| | - Samhita Bhat
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jose Victor Zambrana
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Luiz G F A B D'Elia Zanella
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil
| | - Yeh-Li Ho
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil.
| | - Camila M Romano
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403000, Brazil; Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil.
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-3200, USA.
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Esper G Kallas
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403000, Brazil; Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil; Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil.
| | - Ester C Sabino
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403000, Brazil; Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP 05403000, Brazil.
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-3200, USA.
| |
Collapse
|
18
|
Carneiro PH, Jimenez-Posada EV, Lopes E, Mohana-Borges R, Biering SB, Harris E. The ApoA1-mimetic peptide 4F blocks flavivirus NS1-triggered endothelial dysfunction and protects against lethal dengue virus challenge. Antiviral Res 2024; 231:106002. [PMID: 39260777 DOI: 10.1016/j.antiviral.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flavivirus infections result in a variety of outcomes, from clinically inapparent infections to severe, sometimes fatal cases characterized by hemorrhagic manifestations and vascular leakage leading to shock (dengue), meningomyeloencephalitis (West Nile), and congenital abnormalities (Zika). Although there are approved vaccines against several flaviviruses, potentially enhancing cross-reactive immune responses have complicated the development and implementation of vaccines against dengue and Zika viruses, and no specific therapeutics currently exist. The flavivirus nonstructural protein 1 (NS1) is a promising antiviral target because it is a conserved multifunctional virulence factor that directly triggers vascular leak. We previously showed that interactions between NS1 and the ApoA1 lipoprotein modulate DENV infection. Here, we evaluated the potential of the ApoA1-mimetic peptide, 4F, to interfere with endothelial dysfunction mediated by the NS1 protein of dengue, Zika, and West Nile flaviviruses. In an in vitro model consisting of human endothelial cell monolayers, 4F inhibited NS1-induced hyperpermeability, as measured by a transendothelial electrical resistance assay, and prevented NS1-triggered disruption of the endothelial glycocalyx layer. We also demonstrate that treatment with 4F inhibited NS1 interaction with endothelial cells. Finally, we show that 4F protects against lethal DENV challenge in a mouse model, reducing morbidity and mortality in a dose-dependent manner. Our data demonstrate the potential of 4F to inhibit flavivirus NS1-mediated pathology and severe dengue disease in mice and suggest that 4F can also serve as a molecular tool to probe different NS1 functions in vitro and in vivo.
Collapse
Affiliation(s)
- Pedro H Carneiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Vanessa Jimenez-Posada
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eduarda Lopes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
20
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
21
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
22
|
Wilken L, Rimmelzwaan GF, Elbahesh H. The Raf kinase inhibitors Dabrafenib and Regorafenib impair Zika virus replication via distinct mechanisms. J Virol 2024; 98:e0061824. [PMID: 39023323 PMCID: PMC11334485 DOI: 10.1128/jvi.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| |
Collapse
|
23
|
Nasar S, Iftikhar S, Saleem R, Nadeem MS, Ali M. The N and C-terminal deleted variant of the dengue virus NS1 protein is a potential candidate for dengue vaccine development. Sci Rep 2024; 14:18883. [PMID: 39143088 PMCID: PMC11324946 DOI: 10.1038/s41598-024-65593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
NS1 is an elusive dengue protein, involved in viral replication, assembly, pathogenesis, and immune evasion. Its levels in blood plasm are positively related to disease severity like thrombocytopenia, hemorrhage, and vascular leakage. Despite its pathogenic roles, NS1 is being used in various vaccine formulations due to its sequence conservancy, ability to produce protective antibodies and low risk for inducing antibody-dependent enhancement. In this study, we have used bioinformatics tools and reported literature to develop an NS1 variant (dNS1). Molecular docking studies were performed to evaluate the receptor-binding ability of the NS1 and dNS1 with TLR4. NS1 and dNS1 (153 to 312 amino acid region) genes were cloned, expressed and protein was purified followed by refolding. Docking studies showed the binding of NS1 and dNS1 with the TLR4 receptor which suggests that N and C-terminal sequences of NS1 are not critical for receptor binding. Antibodies against NS1 and dNS1 were raised in rabbits and binding affinity of anti-dNS1 anti-NS1 sera was evaluated against both NS1 and dNS1. Similar results were observed through western blotting which highlight that N and C-terminal deletion of NS1 does not compromise the immunogenic potential of dNS1 hence, supports its use in future vaccine formulations as a substitute for NS1.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Rida Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Ali
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
25
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
26
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
27
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
28
|
Chanh HQ, Trieu HT, Tran Kim H, Huynh Ngoc Thien V, Huyen VNT, Moncada A, Thanh Nguyen Thi K, Duyen HTL, Nguyen-Lyle N, Vuong NL, Lam PK, McBride A, Phan TQ, Dong Thi Hoai T, Wills B, Yacoub S. Kinetics of cardiovascular and inflammatory biomarkers in paediatric dengue shock syndrome. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae005. [PMID: 39193474 PMCID: PMC11211616 DOI: 10.1093/oxfimm/iqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Glycocalyx disruption and hyperinflammatory responses are implicated in the pathogenesis of dengue-associated vascular leak, however little is known about their association with clinical outcomes of patients with dengue shock syndrome (DSS). We investigated the association of vascular and inflammatory biomarkers with clinical outcomes and their correlations with clinical markers of vascular leakage. We performed a prospective cohort study in Viet Nam. Children ≥5 years of age with a clinical diagnosis of DSS were enrolled into this study. Blood samples were taken daily during ICU stay and 7-10 days after hospital discharge for measurements of plasma levels of Syndecan-1, Hyaluronan, Suppression of tumourigenicity 2 (ST-2), Ferritin, N-terminal pro Brain Natriuretic Peptide (NT-proBNP), and Atrial Natriuretic Peptide (ANP). The primary outcome was recurrent shock. Ninety DSS patients were enrolled. Recurrent shock occurred in 16 patients. All biomarkers, except NT-proBNP, were elevated at presentation with shock. There were no differences between compensated and decompensated DSS patients. Glycocalyx markers were positively correlated with inflammatory biomarkers, haematocrit, percentage haemoconcentration, and negatively correlated with stroke volume index. While Syndecan-1, Hyaluronan, Ferritin, and ST-2 improved with time, ANP continued to be raised at follow-up. Enrolment Syndecan-1 levels were observed to be associated with developing recurrent shock although the association did not reach the statistical significance at the P < 0.01 (OR = 1.82, 95% CI 1.07-3.35, P = 0.038). Cardiovascular and inflammatory biomarkers are elevated in DSS, correlate with clinical vascular leakage parameters and follow different kinetics over time. Syndecan-1 may have potential utility in risk stratifying DSS patients in ICU.
Collapse
Affiliation(s)
- Ho Quang Chanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | - Huynh Trung Trieu
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Hung Tran Kim
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | - Vu Ngo Thanh Huyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | | | | | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | - Ngan Nguyen-Lyle
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | - Nguyen Lam Vuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phung Khanh Lam
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Tu Qui Phan
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Tam Dong Thi Hoai
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, 72707, Viet Nam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| |
Collapse
|
29
|
Chew BLA, Ngoh ANQ, Phoo WW, Chan KWK, Ser Z, Tulsian NK, Lim SS, Weng MJG, Watanabe S, Choy MM, Low J, Ooi EE, Ruedl C, Sobota RM, Vasudevan SG, Luo D. Secreted dengue virus NS1 from infection is predominantly dimeric and in complex with high-density lipoprotein. eLife 2024; 12:RP90762. [PMID: 38787378 PMCID: PMC11126310 DOI: 10.7554/elife.90762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - AN Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Singapore Centre for Life Sciences, Department of Biochemistry, National University of SingaporeSingaporeSingapore
| | - Shiao See Lim
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Jenny Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Infectious Diseases, Singapore General HospitalSingaporeSingapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Microbiology and Immunology, National University of SingaporeSingaporeSingapore
- Institute for Glycomics (G26), Griffith University Gold Coast CampusSouthportAustralia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
30
|
Zhang L, Nan X, Zhou D, Wang X, Zhu S, Li Q, Jia F, Zhu B, Si Y, Cao S, Ye J. Japanese encephalitis virus NS1 and NS1' protein disrupts the blood-brain barrier through macrophage migration inhibitory factor-mediated autophagy. J Virol 2024; 98:e0011624. [PMID: 38591880 PMCID: PMC11092347 DOI: 10.1128/jvi.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.
Collapse
Affiliation(s)
- Luping Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaowei Nan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dengyuan Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuyan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fan Jia
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Wong MP, Juan EYW, Pahmeier F, Chelluri SS, Wang P, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The inflammasome pathway is activated by dengue virus non-structural protein 1 and is protective during dengue virus infection. PLoS Pathog 2024; 20:e1012167. [PMID: 38662771 DOI: 10.1371/journal.ppat.1012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/07/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
33
|
Grushko OG, Cho S, Tate AM, Rosenson RS, Pinsky DJ, Haus JM, Hummel SL, Goonewardena SN. Glycocalyx Disruption Triggers Human Monocyte Activation in Acute Heart Failure Syndromes. Cardiovasc Drugs Ther 2024; 38:305-313. [PMID: 36260206 DOI: 10.1007/s10557-022-07390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Acute heart failure (AHF) syndromes manifest increased inflammation and vascular dysfunction; however, mechanisms that integrate the two in AHF remain largely unknown. The glycocalyx (GAC) is a sugar-based shell that envelops all mammalian cells. Much GAC research has focused on its role in vascular responses, with comparatively little known about how the GAC regulates immune cell function. METHODS In this study, we sought to determine if GAC degradation products are elevated in AHF patients, how these degradation products relate to circulating inflammatory mediators, and whether the monocyte GAC (mGAC) itself modulates monocyte activation. Inflammatory markers and GAC degradation products were profiled using ELISAs. Flow cytometry was used to assess the mGAC and RNA-seq was employed to understand the role of the mGAC in regulating inflammatory activation programs. RESULTS In a cohort of hospitalized AHF patients (n = 17), we found that (1) the GAC degradation product heparan sulfate (HS) was elevated compared with age-matched controls (4396 and 2903 ng/mL; p = 0.01) and that (2) HS and soluble CD14 (a marker of monocyte activation) levels were closely related (Pearson's r = 0.65; p = 0.002). Mechanistically, Toll-like receptor (TLR) activation of human monocytes results in GAC remodeling and a decrease in the mGAC (71% compared with no treatment; p = 0.0007). Additionally, we found that ex vivo enzymatic removal of HS and disruption of the mGAC triggers human monocyte activation and amplifies monocyte inflammatory responses. Specifically, using RNA-seq, we found that enzymatic degradation of the mGAC increases transcription of inflammatory (IL6, CCL3) and vascular (tissue factor/F3) mediators. CONCLUSION These studies indicate that the mGAC is dynamically remodeled during monocyte activation and that mGAC remodeling itself may contribute to the heightened inflammation associated with AHF.
Collapse
Affiliation(s)
- Olga G Grushko
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Steven Cho
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Ashley M Tate
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Icahn School of Medicine at Mount Sinai, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai, NY, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott L Hummel
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
- VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA.
- VA Ann Arbor Health System, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Rabinowitz ZM, Wang Z, Liu J, Zhang Y, Ybargollin AJ, Saketkhou M, Cui L. A Fluorogenic Green Merocyanine-Based Probe to Detect Heparanase-1 Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581963. [PMID: 38464176 PMCID: PMC10925095 DOI: 10.1101/2024.02.25.581963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Heparanase-1 (HPSE-1), an endo-β-D-glucuronidase, is an extracellular matrix (ECM) remodeling enzyme that degrades heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs). HPSE-1 functions to remodel the ECM and thereby disseminate cells, liberate HS-bound bioactive molecules, and release biologically active HS fragments. Being the only known enzyme for the cleavage of HS, HPSE-1 regulates a number of fundamental cellular processes including cell migration, cytokine regulation, angiogenesis, and wound healing. Overexpression of HPSE-1 has been discovered in most cancers, inflammatory diseases, viral infections, among others. As an emerging therapeutic target, the biological role of HPSE-1 remains to be explored but is hampered by a lack of research tools. To expand the chemical tool-kit of fluorogenic probes to interrogate HPSE-1 activity, we design and synthesized a fluorogenic green disaccharide-based HPSE-1 probe using our design strategy of tuning the electronic effect of the aryl aglycon. The novel probe exhibits a highly sensitive 278-fold fluorescence turn-on response in the presence of recombinant human HPSE-1, while emitting green light at 560 nm, enabling the fluorescence imaging of HPSE-1 activity in cells.
Collapse
|
35
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
36
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
37
|
Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:16-33. [PMID: 38263966 PMCID: PMC10800775 DOI: 10.1016/j.jointm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 01/25/2024]
Abstract
Dengue fever is considered the most prolific vector-borne disease in the world, with its transmission rate increasing more than eight times in the last two decades. While most cases present mild to moderate symptoms, 5% of patients can develop severe disease. Although the mechanisms are yet not fully comprehended, immune-mediated activation leading to excessive cytokine expression is suggested as a cause of the two main findings in critical patients: increased vascular permeability that may shock and thrombocytopenia, and coagulopathy that can induce hemorrhage. The risk factors of severe disease include previous infection by a different serotype, specific genotypes associated with more efficient replication, certain genetic polymorphisms, and comorbidities such as diabetes, obesity, and cardiovascular disease. The World Health Organization recommends careful monitoring and prompt hospitalization of patients with warning signs or propensity for severe disease to reduce mortality. This review aims to update the diagnosis and management of patients with severe dengue in the intensive care unit.
Collapse
Affiliation(s)
- Alexandre Mestre Tejo
- Intensive Care Unit, Department of Intensive Medicine of the Cancer Institute of the State of São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Toshie Hamasaki
- Transfusion Medicine and Cell Therapy Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Letícia Mattos Menezes
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yeh-Li Ho
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Kurosu T, Okuzaki D, Sakai Y, Kadi MA, Phanthanawiboon S, Ami Y, Shimojima M, Yoshikawa T, Fukushi S, Nagata N, Suzuki T, Kamimura D, Murakami M, Ebihara H, Saijo M. Dengue virus infection induces selective expansion of Vγ4 and Vγ6TCR γδ T cells in the small intestine and a cytokine storm driving vascular leakage in mice. PLoS Negl Trop Dis 2023; 17:e0011743. [PMID: 37939119 PMCID: PMC10659169 DOI: 10.1371/journal.pntd.0011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/β and γ receptor knockout mice (IFN-α/β/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/β/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1β, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | | | - Yasusi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
39
|
Zeng Q, Liu J, Hao C, Zhang B, Zhang H. Making sense of flavivirus non-strctural protein 1 in innate immune evasion and inducing tissue-specific damage. Virus Res 2023; 336:199222. [PMID: 37716670 PMCID: PMC10518729 DOI: 10.1016/j.virusres.2023.199222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Flaviviruses include medically important mosquito-borne pathogens, such as Zika virus (ZIKV), Japanese encephalitis virus (JEV), dengue virus (DENV) and West Nile virus (WNV), that cause hundreds of millions of infections each year. Currently, there are no approved effect therapies against mosquito-borne flaviviruses. The flaviviruses encoded nonstructural protein 1 (NS1) is a secreted glycoprotein widely involved in viral replication, immune evasion, and directly causing tissue-specific damage during flaviviruses infection. Upon viral infection of host cell, NS1 can be found in multiple oligomeric forms and include a dimer on the cell surface, and a soluble secreted hexameric lipoparticle. In the recent decade, the detailed crystal structure of several flaviviruses NS1 have been determined and unraveled its broader and deeper functions. Consistent with the potential immune function revealed by its structure, NS1 is involved in the escaping of host signal immune pathway mediated by pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRS) and Toll-like receptors (TLRs). Moreover, the flavivirus NS1 is efficiently secreted by infected cells and circulates in the blood of the host to directly induce specific tissues damage. The NS1 of ZIKV, JEV and WNV changes the permeability of brain microvascular endothelial cell to cause endothelial cell dysfunction and promote virus pathogenesis. DENV NS1 can induce systemic tissues damage in humans through multiple strategies. Mutations of several key amino acids in NS1 can reduce the neurovirulence of the flavivirus. In this article, we provide an overview of the latest research on this fascinating protein in these disparate areas.
Collapse
Affiliation(s)
- Quan Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
40
|
Giugni FR, Aiello VD, Faria CS, Pour SZ, Cunha MDP, Giugni MV, Pinesi HT, Ledesma FL, Morais CE, Ho YL, Sztajnbok J, de Morais Fernezlian S, Ferraz da Silva LF, Mauad T, Ferreira Alves VA, Hilário do Nascimento Saldiva P, Antonangelo L, Dolhnikoff M, Duarte-Neto AN. Understanding yellow fever-associated myocardial injury: an autopsy study. EBioMedicine 2023; 96:104810. [PMID: 37757571 PMCID: PMC10550587 DOI: 10.1016/j.ebiom.2023.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Yellow fever (YF) is a viral hemorrhagic fever, endemic in parts of South America and Africa. There is scarce evidence about the pathogenesis of the myocardial injury. The objective of this study is to evaluate the cardiac pathology in fatal cases of YF. METHODS This retrospective autopsy study included cases from the São Paulo (Brazil) epidemic of 2017-2019. We reviewed medical records and performed cardiac tissue histopathological evaluation, electron microscopy, immunohistochemical assays, RT-qPCR for YF virus (YFV)-RNA, and proteomics analysis on inflammatory and endothelial biomarkers. FINDINGS Seventy-three confirmed YF cases with a median age of 48 (34-60) years were included. We observed myocardial fibrosis in 68 (93.2%) patients; cardiomyocyte hypertrophy in 68 (93.2%); endothelial alterations in 67 (91.8%); fiber necrosis in 50 (68.5%); viral myocarditis in 9 (12.3%); and secondary myocarditis in 5 (6.8%). Four out of five patients with 17DD vaccine-associated viscerotropic disease presented with myocarditis. The cardiac conduction system showed edema, hemorrhages and endothelial fibrinoid necrosis. Immunohistochemistry detected CD68-positive inflammatory interstitial cells and YFV antigens in endothelial and inflammatory cells. YFV-RNA was detected positive in 95.7% of the cardiac samples. The proteomics analysis demonstrated that YF patients had higher levels of multiple inflammatory and endothelial biomarkers in comparison to cardiovascular controls, and higher levels of interferon gamma-induced protein 10 (IP-10) in comparison to sepsis (p = 0.01) and cardiovascular controls (p < 0.001) in Dunn test. INTERPRETATION Myocardial injury is frequent in severe YF, due to multifactorial mechanisms, including direct YFV-mediated damage, endothelial cell injury, and inflammatory response, with a possible prominent role for IP-10. FUNDING This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo, Bill and Melinda Gates Foundation, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.
Collapse
Affiliation(s)
- Fernando Rabioglio Giugni
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Demarchi Aiello
- Instituto do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Caroline Silverio Faria
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Laboratório de Evolução Molecular e Bioinformática, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Marielton Dos Passos Cunha
- Laboratório de Evolução Molecular e Bioinformática, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Melina Valdo Giugni
- Instituto do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henrique Trombini Pinesi
- Instituto do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Felipe Lourenço Ledesma
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina Esteves Morais
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Yeh-Li Ho
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Serviço de Verificação de Óbitos da Capital (SVOC), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Mauad
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Leila Antonangelo
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Wong MP, Juan EYW, Chelluri SS, Wang P, Pahmeier F, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The Inflammasome Pathway is Activated by Dengue Virus Non-structural Protein 1 and is Protective During Dengue Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558875. [PMID: 37790301 PMCID: PMC10543007 DOI: 10.1101/2023.09.21.558875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
42
|
Wang Y, Yu S, Li M. Neurovascular crosstalk and cerebrovascular alterations: an underestimated therapeutic target in autism spectrum disorders. Front Cell Neurosci 2023; 17:1226580. [PMID: 37692552 PMCID: PMC10491023 DOI: 10.3389/fncel.2023.1226580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Normal brain development, function, and aging critically depend on unique characteristics of the cerebrovascular system. Growing evidence indicated that cerebrovascular defects can have irreversible effects on the brain, and these defects have been implicated in various neurological disorders, including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder with heterogeneous clinical manifestations and anatomical changes. While extensive research has focused on the neural abnormalities underlying ASD, the role of brain vasculature in this disorder remains poorly understood. Indeed, the significance of cerebrovascular contributions to ASD has been consistently underestimated. In this work, we discuss the neurovascular crosstalk during embryonic development and highlight recent findings on cerebrovascular alterations in individuals with ASD. We also discuss the potential of vascular-based therapy for ASD. Collectively, these investigations demonstrate that ASD can be considered a neurovascular disease.
Collapse
Affiliation(s)
- Yiran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shunyu Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
43
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
44
|
Zhang S, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Zhang L, Yu Y, Chen S, Cheng A. Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front Immunol 2023; 14:1205002. [PMID: 37520540 PMCID: PMC10372224 DOI: 10.3389/fimmu.2023.1205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The genus Flavivirus contains a wide variety of viruses that cause severe disease in humans, including dengue virus, yellow fever virus, Zika virus, West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus. Nonstructural protein 1 (NS1) is a glycoprotein that encodes a 352-amino-acid polypeptide and has a molecular weight of 46-55 kDa depending on its glycosylation status. NS1 is highly conserved among multiple flaviviruses and occurs in distinct forms, including a dimeric form within the endoplasmic reticulum, a cell-associated form on the plasma membrane, or a secreted hexameric form (sNS1) trafficked to the extracellular matrix. Intracellular dimeric NS1 interacts with other NSs to participate in viral replication and virion maturation, while extracellular sNS1 plays a critical role in immune evasion, flavivirus pathogenesis and interactions with natural vectors. In this review, we provide an overview of recent research progress on flavivirus NS1, including research on the structural details, the secretory pathways in mammalian and mosquito cells and the multiple functions in viral replication, immune evasion, pathogenesis and interaction with natural hosts, drawing together the previous data to determine the properties of this protein.
Collapse
Affiliation(s)
- Senzhao Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
45
|
Malnero CM, Azevedo RC, Bergmann IE, de Meneses MDF, Cavalcanti AC, Ibáñez LI, Malirat V. Expression of recombinant dengue virus type 1 non-structural protein 1 in mammalian cells and preliminary assessment of its suitability to detect human IgG antibodies elicited by viral infection. J Immunol Methods 2023; 518:113503. [PMID: 37263391 DOI: 10.1016/j.jim.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
In recent years dengue has become a rapidly growing public health problem worldwide, however, the availability of accurate and affordable diagnostic immunoassays is limited, partly due to the difficulty of producing large quantities of purified antigen. Non-structural protein 1 (NS1) has shown to be a good candidate for inclusion in diagnostic assays and for serosurveys, particularly in endemic countries as a prerequisite for vaccination. In this work the NS1 antigen derived from dengue virus type-1 (DENV1) was expressed in HEK293-T cells and purified by affinity chromatography. The recombinant protein was recovered properly folded as dimers, highly purified and with good yield (1.5 mg/L). It was applied as a serological probe in an indirect ELISA developed in this work to detect human IgG antibodies. Preliminary comparative performance values of 81.1% sensitivity and 83.0% specificity of the developed and preliminary validated iELISA, relative to a commercial kit were obtained, suggesting that the purified recombinant DENV1 NS1 antigen is suitable to detect IgG antibodies, indicative of past DENV infection.
Collapse
Affiliation(s)
- Cristian Miguel Malnero
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires C1287, Argentina
| | - Renata Campos Azevedo
- Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ingrid Evelyn Bergmann
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires C1287, Argentina
| | | | - Andrea Cony Cavalcanti
- Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Central Laboratory of Public Health Noel Nutels (LACEN-RJ), Rio de Janeiro, Brazil
| | - Lorena Itatí Ibáñez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Viviana Malirat
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires C1287, Argentina.
| |
Collapse
|
46
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
47
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Hafsia S, Barbar T, Wilkinson DA, Atyame C, Biscornet L, Bibi J, Louange M, Gedeon J, De Santis O, Flahault A, Cabie A, Bertolotti A, Mavingui P. Genetic characterization of dengue virus serotype 1 circulating in Reunion Island, 2019-2021, and the Seychelles, 2015-2016. BMC Infect Dis 2023; 23:294. [PMID: 37147570 PMCID: PMC10161969 DOI: 10.1186/s12879-023-08125-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.
Collapse
Affiliation(s)
- Sarah Hafsia
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Tatiana Barbar
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - David A Wilkinson
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Célestine Atyame
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Leon Biscornet
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Jastin Bibi
- Disease Surveillance and Response Unit, Epidemiology and Statistics Section, Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Meggy Louange
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Jude Gedeon
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Olga De Santis
- Institute of global health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Antoine Flahault
- Institute of global health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - André Cabie
- CHU de Martinique, service de maladies infectieuses et tropicales, INSERM, CHU de Martinique, PCCEI, Univ Montpellier, Univ Antilles, INSERM, EFS, CIC1424, Fort-de-France, Montpellier, France
| | - Antoine Bertolotti
- Service des Maladies Infectieuses - Dermatologie, CHU Réunion, INSERM CIC1410, Saint Pierre, Saint Pierre, La Réunion, France
| | - Patrick Mavingui
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France.
| |
Collapse
|
49
|
Tan BEK, Beard MR, Eyre NS. Identification of Key Residues in Dengue Virus NS1 Protein That Are Essential for Its Secretion. Viruses 2023; 15:v15051102. [PMID: 37243188 DOI: 10.3390/v15051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Dengue virus (DENV) non-structural protein 1 (NS1) is involved in multiple aspects of the DENV lifecycle. Importantly, it is secreted from infected cells as a hexameric lipoparticle that mediates vascular damage that is a hallmark of severe dengue. Although the secretion of NS1 is known to be important in DENV pathogenesis, the exact molecular features of NS1 that are required for its secretion from cells are not fully understood. In this study, we employed random point mutagenesis in the context of an NS1 expression vector encoding a C-terminal HiBiT luminescent peptide tag to identify residues within NS1 that are essential for its secretion. Using this approach, we identified 10 point mutations that corresponded with impaired NS1 secretion, with in silico analyses indicating that the majority of these mutations are located within the β-ladder domain. Additional studies on two of these mutants, V220D and A248V, revealed that they prevented viral RNA replication, while studies using a DENV NS1-NS5 viral polyprotein expression system demonstrated that these mutations resulted in a more reticular NS1 localisation pattern and failure to detect mature NS1 at its predicted molecular weight by Western blotting using a conformation-specific monoclonal antibody. Together, these studies demonstrate that the combination of a luminescent peptide tagged NS1 expression system with random point mutagenesis enables rapid identification of mutations that alter NS1 secretion. Two such mutations identified via this approach revealed residues that are essential for correct NS1 processing or maturation and viral RNA replication.
Collapse
Affiliation(s)
- Brandon E K Tan
- Research Centre of Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael R Beard
- Research Centre of Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicholas S Eyre
- College of Medicine and Public Health (CMPH), Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
50
|
Wilken L, Stelz S, Agac A, Sutter G, Prajeeth CK, Rimmelzwaan GF. Recombinant Modified Vaccinia Virus Ankara Expressing a Glycosylation Mutant of Dengue Virus NS1 Induces Specific Antibody and T-Cell Responses in Mice. Vaccines (Basel) 2023; 11:vaccines11040714. [PMID: 37112626 PMCID: PMC10140942 DOI: 10.3390/vaccines11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The four serotypes of dengue virus (DENV1-4) continue to pose a major public health threat. The first licenced dengue vaccine, which expresses the surface proteins of DENV1-4, has performed poorly in immunologically naïve individuals, sensitising them to antibody-enhanced dengue disease. DENV non-structural protein 1 (NS1) can directly induce vascular leakage, the hallmark of severe dengue disease, which is blocked by NS1-specific antibodies, making it an attractive target for vaccine development. However, the intrinsic ability of NS1 to trigger vascular leakage is a potential drawback of its use as a vaccine antigen. Here, we modified DENV2 NS1 by mutating an N-linked glycosylation site associated with NS1-induced endothelial hyperpermeability and used modified vaccinia virus Ankara (MVA) as a vector for its delivery. The resulting construct, rMVA-D2-NS1-N207Q, displayed high genetic stability and drove efficient secretion of NS1-N207Q from infected cells. Secreted NS1-N207Q was composed of dimers and lacked N-linked glycosylation at position 207. Prime-boost immunisation of C57BL/6J mice induced high levels of NS1-specific antibodies binding various conformations of NS1 and elicited NS1-specific CD4+ T-cell responses. Our findings support rMVA-D2-NS1-N207Q as a promising and potentially safer alternative to existing NS1-based vaccine candidates, warranting further pre-clinical testing in a relevant mouse model of DENV infection.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Ayse Agac
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig Maximilian University (LMU), 80539 Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| |
Collapse
|