1
|
Wei L, Hu S, Gong X, Ahemaiti Y, Li D, Ouyang S, Huang Y, Wang Y, Liang Y, Deng Y, Liu L, Zhao T. Disrupted maxillofacial, cardiovascular, and nervous development in washc5 knockout Zebrafish: Insights into 3C syndrome. Gene 2025; 948:149351. [PMID: 39988189 DOI: 10.1016/j.gene.2025.149351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
3C syndrome features craniofacial, nervous, and cardiovascular malformations. WASHC5 gene mutations may underline this syndrome, but the pathogenicity and underlying mechanism remain undetermined. We analyzed the expression pattern of the washc5 gene in zebrafish using whole-body in situ hybridization and generated a zebrafish model with washc5 gene knockout using CRISPR/Cas9 technology. Homozygous zebrafish exhibited high mortality, retarded growth, lighter stripes, and reduced pigmentation around the pupils. In the maxillofacial region, homozygotes displayed a shortened and tilted maxilla and delayed ossification of bones. In the heart, homozygous zebrafish showed a decreased heart rate, increased ventricular area, disorganized ventricular muscle fibers, mitochondrial swelling, Golgi lysis, and endoplasmic reticulum (ER) lysis in ventricular myocytes. The mRNA levels of nppb and myh7 were significantly increased. In the nervous system, homozygotes displayed bradykinesia and impaired neuronal development. qRT-PCR analysis revealed downregulation of col1a2, col1a1a, col1a1b, sp7, and msx2b (osteogenic factors and regulators of maxillofacial skeletal development) and abnormal expression of alpk2, alpk3b, actc2 (cardiac development factors), as well as tsen54, exosc8, and exosc9 (cerebellar development factors). Enrichment analysis of differentially expressed genes and proteins indicated involvement in ER-related processes. The washc5 knockout zebrafish model exhibits phenotypic similarities to human 3C syndrome, suggesting that mutations of this gene may play a pathogenic role in the syndrome. The mechanism of the washc5 gene in 3C syndrome may be associated with disturbances in ER homeostasis, providing insights into potential gene therapy strategies.
Collapse
Affiliation(s)
- Luyao Wei
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Xueyang Gong
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Yiliya Ahemaiti
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Diwen Li
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Shi Ouyang
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081 Hunan, China
| | - Yuyang Huang
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Yan Liang
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Yun Deng
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081 Hunan, China
| | - Lin Liu
- Department of Stomatology, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China
| | - Tianli Zhao
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011 Hunan, China.
| |
Collapse
|
2
|
Pecci F, Cognigni V, Giudice GC, Paoloni F, Cantini L, Saini KS, Abushukair HM, Naqash AR, Cortellini A, Mazzaschi G, Alia S, Membrino V, Araldi E, Tiseo M, Buti S, Vignini A, Berardi R. Unraveling the link between cholesterol and immune system in cancer: From biological mechanistic insights to clinical evidence. A narrative review. Crit Rev Oncol Hematol 2025; 209:104654. [PMID: 39923921 DOI: 10.1016/j.critrevonc.2025.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Cholesterol and its metabolism seem to be involved not only in cancer progression but also in immune cells activity. In this comprehensive review, we summarize preclinical, translational, and clinical evidence regarding the crucial role of cholesterol and its metabolism in regulating the immune response against cancer cells, shedding light on the multifaceted mechanisms by which cholesterol influences immune cell function and anti-tumor immunity. By synthesizing findings from preclinical studies, we have elucidated the impact of cholesterol on immune cell activation, differentiation, and effector functions. These investigations have revealed that cholesterol metabolism plays a pivotal role in shaping the immune response, with alterations in cholesterol levels directly impacting immune cell behavior and anti-tumor activity. All the steps related to cholesterol metabolism, including its de-novo synthesis, its influx and efflux mechanisms, as well as its metabolites, have a distinct impact on immune cells function and activity, which, if altered, might influence tumor progression. In addition, we have reviewed clinical studies investigating the role of circulating cholesterol on outcomes of patients with advanced tumors treated with immune checkpoint inhibitors, highlighting again in a clinical scenario the correlation between cholesterol and the immune system. Overall, our review emphasizes the importance of cholesterol and its metabolism in orchestrating the immune response against cancer cells. Herein we have provided a comprehensive overview of this emerging field by illustrating the intricate interplay between cholesterol and immune system.
Collapse
Affiliation(s)
- Federica Pecci
- Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - Valeria Cognigni
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Giulia Claire Giudice
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Francesco Paoloni
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | | | - Kamal S Saini
- Fortrea, Inc., Durham, NC, USA; Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hassan Mohammed Abushukair
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, USA; Division of Oncology Sciences, University of Oklahoma Health Sciences Center, USA
| | - Abdul Rafeh Naqash
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, USA; Division of Oncology Sciences, University of Oklahoma Health Sciences Center, USA; Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK, USA
| | - Alessio Cortellini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy; Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Araldi
- Systems Medicine Laboratory, Department of Medicine and Surgery (DiMeC), Università degli Studi di Parma, Parma, Italy; Preventive Cardiology and Preventive Medicine, University Medical Center Of The Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Germany
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy; Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, Ancona, Italy
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| |
Collapse
|
3
|
Heravi G, Liu Z, Herroon M, Wilson A, Fan YY, Jiang Y, Vakeesan N, Tao L, Peng Z, Zhang K, Li J, Chapkin RS, Podgorski I, Liu W. Targeting polyunsaturated fatty acids desaturase FADS1 inhibits renal cancer growth via ATF3-mediated ER stress response. Biomed Pharmacother 2025; 186:118006. [PMID: 40121894 PMCID: PMC12034426 DOI: 10.1016/j.biopha.2025.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain polyunsaturated fatty acids (PUFAs). Increasing studies suggest that FADS1 is a potential cancer target. Our previous research has demonstrated the significant role of FADS1 in cancer biology and patient survival, especially in kidney cancers. We aim to explore the underlying mechanism in this study. METHOD AND RESULTS We found that pharmacological inhibition or knockdown of the expression of FADS1 significantly reduced the intracellular conversion of long-chain PUFAs, effectively inhibits renal cancer cell proliferation, and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we showed that while FADS1 inhibition induces endoplasmic reticulum (ER) stress, FADS1 expression is augmented by ER-stress inducer, suggesting a necessary role of PUFA production in response to ER stress. FADS1-inhibition sensitized cellular response to ER stress inducers, leading to cell apoptosis. Also, FADS1 inhibition-induced ER stress leads to activation of the PERK/eIF2α/ATF4/ATF3 pathway. Inhibiting PERK or knockdown of ATF3 rescued FADS1 inhibition-induced ER stress and cell growth suppression, while ATF3-overexpression aggravates the FADS1 inhibition-induced cell growth suppression and leads to cell death. Metabolomic analysis revealed that FADS1 inhibition results in decreased level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response, as well as impaired biosynthesis of nucleotides, possibly accounting for the cell cycle arrest. CONCLUSION Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexis Wilson
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Yang-Yi Fan
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | - Yang Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nivisa Vakeesan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Tao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jing Li
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Robert S Chapkin
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX 77843, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
4
|
Kuzminsky I, Ghanim M. Immunity responses as checkpoints for efficient transmission of begomoviruses by whiteflies. Virology 2025; 605:110462. [PMID: 40020542 DOI: 10.1016/j.virol.2025.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Begomoviruses are a group of single stranded DNA plant viruses exclusively transmitted by the sweet potato whitefly Bemisia tabaci in a persistent, circulative manner. After acquisition from plant phloem, this group of viruses circulate and are retained within the whitefly, interacting with tissues, cells and molecular pathways for maintaining the safety of the infective intact virions, by exploiting cellular mechanisms and avoiding degradation by the insect immune responses. During retention, the virions are internalized in the midgut cells, exit and spend hours-days in the hemolymph and cross into salivary gland cells, before transmission. Destroying this group of viruses by the insect immune system seems inefficient for the most part, by examining their very efficient transmission. Thus, within the various sites along the transmission pathway especially in the midgut, it is thought that the immune system with its various layers is activated for avoiding the damage caused by the viruses on one hand, and for ensuring their safe circulation and transmission on the other hand. Begomoviruses have evolved mechanisms for counteracting and exploiting the activated immune system for their safe translocation within the whitefly. In this review, we discuss the various levels of immunity activated against begomoviruses in B. tabaci, taking other pathogen-vector systems as examples and reflecting relevant components on the interactions between B. tabaci and Begomoviruses.
Collapse
Affiliation(s)
- Ilana Kuzminsky
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel; Department of Agroecology and Plant Health, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
5
|
Makdissi S, Loudhaief R, George S, Weller T, Salim M, Malick A, Mu Y, Parsons BD, Di Cara F. Alterations in ether phospholipids metabolism activate the conserved UPR-Xbp1- PDIA3/ERp60 signaling to maintain intestinal homeostasis. iScience 2025; 28:111946. [PMID: 40034858 PMCID: PMC11872617 DOI: 10.1016/j.isci.2025.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Intestinal epithelium regeneration and homeostasis must be tightly regulated. Alteration of epithelial homeostasis is a major contributing factor to diseases such as colorectal cancer and inflammatory bowel diseases. Many pathways involved in epithelial regeneration have been identified, but more regulators remain undiscovered. Metabolism has emerged as an overlooked regulator of intestinal epithelium homeostasis. Using the model organism Drosophila melanogaster, we found that ether lipids metabolism is required to maintain intestinal epithelial homeostasis. Its dysregulation in intestinal progenitors causes the activation of the unfolded protein response of the endoplasmic reticulum (UPR) that triggers Xbp1 and upregulates the conserved disulfide isomerase PDIA3/ERp60. Activation of the Xbp1-ERp60 signaling causes Jak/Stat-mediated increase in progenitor cells, compromising epithelial barrier function and survival in males but not females. This study identified ether lipids-PDIA3/ERp60 as a key regulator of intestinal progenitor homeostasis in health that, if altered, causes pathological conditions in the intestinal epithelium.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Rihab Loudhaief
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Smitha George
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Tabatha Weller
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Minna Salim
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ahsan Malick
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brendon D. Parsons
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry -University of Alberta, Edmonton, AB, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Zhu W, Pan L, Cui X, Russo AC, Ray R, Pederson B, Wei X, Lin LL, Hafner H, Gregg B, Shrestha N, Liu C, Naji A, Arvan P, Sandoval DA, Lindberg I, Qi L, Reinert RB. SEL1L-HRD1 ER-Associated Degradation Facilitates Prohormone Convertase 2 Maturation and Glucagon Production in Islet α Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644437. [PMID: 40166183 PMCID: PMC11957139 DOI: 10.1101/2025.03.20.644437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteolytic cleavage of proglucagon by prohormone convertase 2 (PC2) is required for islet α cells to generate glucagon. However, the regulatory mechanisms underlying this process remain largely unclear. Here, we report that SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD), a highly conserved protein quality control system responsible for clearing misfolded proteins from the ER, plays a key role in glucagon production by regulating turnover of the nascent proform of the PC2 enzyme (proPC2). Using a mouse model with SEL1L deletion in proglucagon-expressing cells, we observed a progressive decline in stimulated glucagon secretion and a reduction in pancreatic glucagon content. Mechanistically, we found that endogenous proPC2 is a substrate of SEL1L-HRD1 ERAD, and that degradation of misfolded proPC2 ensures the maturation of activation-competent proPC2 protein. These findings identify ERAD as a novel regulator of PC2 biology and an essential mechanism for maintaining α cell function.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Linxiu Pan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Xianwei Cui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Anna Chiara Russo
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rohit Ray
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Brent Pederson
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Xiaoqiong Wei
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Liangguang Leo Lin
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Hannah Hafner
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brigid Gregg
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA
| | - Neha Shrestha
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Darleen A. Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rachel B. Reinert
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Yan B, Liao P, Zhang W, Han Z, Wang C, Chen F, Lei P. Identification of Key Fatty Acid Metabolism-Related Genes in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04857-x. [PMID: 40108056 DOI: 10.1007/s12035-025-04857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the role of fatty acid metabolism in its pathogenesis remains incompletely understood. Using AD transcriptome sequencing data from the GEO database, we initially screened for differentially expressed genes and applied Weighted Gene Correlation Network Analysis (WGCNA) to identify crucial gene modules. By intersecting these genes with fatty acid metabolism-related genes (FAMRGs), we obtained AD-related fatty acid metabolism genes (AD-FAMRGs). Subsequently, we conducted KEGG, GO, and Single-sample Gene Set Enrichment Analysis (ssGSEA). Furthermore, we employed three machine learning algorithms to determine the key AD-FAMRGs. Risk genes were thus identified, leading to the construction of a risk model which was subsequently validated through receiver operating characteristic (ROC) curve analysis. Additionally, protein docking studies were performed to assess interactions between key AD-FAMRGs and Tau as well as amyloid beta (Aβ) proteins. To explore potential therapeutic avenues, we searched the DrugBank database for agents targeting these AD-FAMRGs, followed by molecular docking and dynamics simulations. Our investigations highlighted three key AD-FAMRGs: DLD, ELOVL5, and HMGCS1. Functional enrichment analysis indicated their association with metabolism, oxidative stress, and AD pathogenesis. ZDOCK analysis further suggested their interactions with Tau and Aβ proteins, pointing to their possible involvement in AD's pathological processes. ROC analysis demonstrated the predictive accuracy of these AD-FAMRGs, with AUC values ranging from 0.764 to 0.876. Molecular docking and dynamic simulations confirmed the favorable binding of predicted therapeutic agents to these key AD-FAMRGs. Our findings suggest that fatty acid metabolism may be involved in AD pathogenesis, and DLD, ELOVL5, and HMGCS1 may serve as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300192, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Conglin Wang
- First Department of General Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Fanglian Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
- School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
8
|
Pemberton JG, Roy K, Kim YJ, Fischer TD, Joshi V, Ferrer E, Youle RJ, Pucadyil TJ, Balla T. Acute diacylglycerol production activates critical membrane-shaping proteins leading to mitochondrial tubulation and fission. Nat Commun 2025; 16:2685. [PMID: 40102394 PMCID: PMC11920102 DOI: 10.1038/s41467-025-57439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial dynamics are orchestrated by protein assemblies that directly remodel membrane structure, however the influence of specific lipids on these processes remains poorly understood. Here, using an inducible heterodimerization system to selectively modulate the lipid composition of the outer mitochondrial membrane (OMM), we show that local production of diacylglycerol (DAG) directly leads to transient tubulation and rapid fragmentation of the mitochondrial network, which are mediated by isoforms of endophilin B (EndoB) and dynamin-related protein 1 (Drp1), respectively. Reconstitution experiments on cardiolipin-containing membrane templates mimicking the planar and constricted OMM topologies reveal that DAG facilitates the membrane binding and remodeling activities of both EndoB and Drp1, thereby independently potentiating membrane tubulation and fission events. EndoB and Drp1 do not directly interact with each other, suggesting that DAG production activates multiple pathways for membrane remodeling in parallel. Together, our data emphasizes the importance of OMM lipid composition in regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Biology, Western University, London, ON, Canada.
- Division of Development & Genetics, Children's Health Research Institute, London Health Sciences Centre Research Institute, London, ON, Canada.
| | - Krishnendu Roy
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vijay Joshi
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Ferrer
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Ferrero E, Vaz FM, Cheillan D, Brusco A, Marelli C. The ELOVL proteins: Very and ultra long-chain fatty acids at the crossroads between metabolic and neurodegenerative disorders. Mol Genet Metab 2025; 144:109050. [PMID: 39946831 DOI: 10.1016/j.ymgme.2025.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
In lipid metabolism, the fatty acid (FA) elongation system synthesises a wide array of FAs, crucial for various biological functions. The role of this system is to lengthen FA carbon chains to produce FAs with ≥C16, and notably, very long-chain FAs (VLCFAs, C24-C26) and ultra long-chain FAs (ULCFAs, C28 to ≥C36). Elongation occurs in the endoplasmic reticulum (ER) through the actions of a complex of four ER-embedded enzymes, which includes the ELOVL proteins. Together with desaturases that introduce double bonds, these processes significantly increase the variety of FAs. VLCFAs and ULCFAs are required for the biosynthesis of complex lipids, notably glycero(phospho)lipids, ether(phospho)lipids and sphingolipids. The FA elongation system is therefore fundamental for membrane biogenesis and lipid homeostasis, and also for signalling pathways associated with inflammation and cell proliferation. This review focuses on the elongase enzymes, encoded by the ELOVL genes, which catalyze the first and rate-limiting step of the FA elongation cycle. We summarize the physiological roles of the elongase system, with emphasis on the less-characterized ULCFAs, their biological functions, and the functional tools, biomarkers and lipidomic studies used to study them. Additionally, we discuss how ELOVL enzyme defects contribute to disorders at the intersection of metabolic and neurodegenerative conditions, driven by disrupted lipid metabolism and misfolded enzymes in the ER and Golgi.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - David Cheillan
- Unité Pathologies Métaboliques, Érythrocytaires et Dépistage Périnatal, Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire Carmen INSERM INRAE, Centre Hospitalier Lyon Sud, 69310 Pierre Bénite, France
| | - Alfredo Brusco
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Cecilia Marelli
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; Expert Center for Neurogenetic Diseases, CHU of Montpellier, 34095 Montpellier, France.
| |
Collapse
|
11
|
Lu J, Xiaoyang C, Li J, Wu H, Wang Y, Di P, Deyholos MK, Zhang J. Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. PLANT, CELL & ENVIRONMENT 2025; 48:2221-2239. [PMID: 39564899 PMCID: PMC11788951 DOI: 10.1111/pce.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Fatty acid desaturase (FAD) is essential for plant growth and development and plant defence response. Although flax (Linum usitatissimum L.) is an important oil and fibre crop, but its FAD gene remains understudied. This study identified 43 LuFAD genes in the flax genome. The phylogenetic analysis divided the FAD genes into seven subfamilies. LuFAD is unevenly distributed on 15 chromosomes, and fragment duplication is the only driving force for the amplification of the LuFAD gene family. In the LuFAD gene promoter region, most elements respond to plant hormones (MeJA, ABA) and abiotic stresses (anaerobic and low temperature). The expression pattern analysis showed that the temporal and spatial expression patterns of all LuFAD genes in different tissues and the response patterns to abiotic stresses (heat and salt) were identified. Subcellular localisation showed that all LuFAD2-GFP were expressed in the endoplasmic reticulum membrane. RT-qPCR analysis revealed that LuFAD2 was significantly upregulated under cold, salt and drought stress, and its overexpression in Arabidopsis thaliana enhanced cold tolerance genes and reduced ROS accumulation. This study offers key insights into the FAD gene family's role in flax development and stress adaptation.
Collapse
Affiliation(s)
- Jianyu Lu
- Faculty of AgronomyJilin Agricultural UniversityChangchunChina
| | | | - Jinxi Li
- Faculty of AgronomyJilin Agricultural UniversityChangchunChina
| | - Hanlu Wu
- Faculty of AgronomyJilin Agricultural UniversityChangchunChina
| | - Yifei Wang
- College of Life SciencesJilin Agricultural UniversityChangchunChina
| | - Peng Di
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| | - Michael K. Deyholos
- Department of BiologyUniversity of British Columbia, OkanaganKelownaBritish ColumbiaCanada
| | - Jian Zhang
- Faculty of AgronomyJilin Agricultural UniversityChangchunChina
- Department of BiologyUniversity of British Columbia, OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
12
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Townson J, Progida C. The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction. J Cell Sci 2025; 138:JCS263503. [PMID: 39976266 DOI: 10.1242/jcs.263503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Cells are continuously subjected to physical and chemical cues from the extracellular environment, and sense and respond to mechanical cues via mechanosensation and mechanotransduction. Although the role of the cytoskeleton in these processes is well known, the contribution of intracellular membranes has been long neglected. Recently, it has become evident that various organelles play active roles in both mechanosensing and mechanotransduction. In this Review, we focus on mechanosensitive roles of the endoplasmic reticulum (ER), the functions of which are crucial for maintaining cell homeostasis. We discuss the effects of mechanical stimuli on interactions between the ER, the cytoskeleton and other organelles; the role of the ER in intracellular Ca2+ signalling via mechanosensitive channels; and how the unfolded protein response and lipid homeostasis contribute to mechanosensing. The expansive structure of the ER positions it as a key intracellular communication hub, and we additionally explore how this may be leveraged to transduce mechanical signals around the cell. By synthesising current knowledge, we aim to shed light on the emerging roles of the ER in cellular mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jonathan Townson
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
14
|
Song MS, Sim HJ, Eun SH, Jung MK, Hwang SJ, Ham MH, Kwak K, Lee HJ, Kim JY, Jang DG, Chung HC, Shin DH, Kim YJ, Noh SH, Mun JY, Lee JM, Lee MG. Tubular ER structures shaped by ER-phagy receptors engage in stress-induced Golgi bypass. Dev Cell 2025:S1534-5807(25)00031-0. [PMID: 39919755 DOI: 10.1016/j.devcel.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Cellular stresses, particularly endoplasmic reticulum (ER) stress induced by ER-to-Golgi transport blockade, trigger Golgi-independent secretion of cytosolic and transmembrane proteins. However, the molecular mechanisms underlying this unconventional protein secretion (UPS) remain largely elusive. Here, we report that an ER tubulovesicular structure (ER tubular body [ER-TB]), shaped by the tubular ER-phagy receptors ATL3 and RTN3L, plays an important role in stress-induced UPS of transmembrane proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Correlative light-electron microscopy analyses demonstrate the formation of ER-TB under UPS-inducing conditions in HEK293 and HeLa cells. Individual gene knockdowns of ATL3 and RTN3 inhibit ER-TB formation and the UPS of trafficking-deficient ΔF508-CFTR. Combined supplementation of ATL3 and RTN3L induces ER-TB formation and UPS. ATL3 also participates in the SARS-CoV-2-associated convoluted membrane formation and Golgi-independent trafficking of SARS-CoV-2 spike protein. These findings suggest that ER-TB serves a common function in mediating stress-induced UPS, which participates in various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Physiology, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Hun Ju Sim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Ho Eun
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Gastroenterology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Min Kyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Su Jin Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Hee Ham
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hea Ji Lee
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong Geon Jang
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Chun Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye Jin Kim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Barnhart S, Shimizu-Albergine M, Kedar E, Kothari V, Shao B, Krueger M, Hsu CC, Tang J, Kanter JE, Kramer F, Djukovic D, Pascua V, Loo YM, Colonna L, Van den Bogaerde SJ, An J, Gale M, Reue K, Fisher EA, Gharib SA, Elkon KB, Bornfeldt KE. Type I IFN induces long-chain acyl-CoA synthetase 1 to generate a phosphatidic acid reservoir for lipotoxic saturated fatty acids. J Lipid Res 2025; 66:100730. [PMID: 39675509 PMCID: PMC11786746 DOI: 10.1016/j.jlr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the conversion of long-chain fatty acids to acyl-CoAs. ACSL1 is required for β-oxidation in tissues that rely on fatty acids as fuel, but no consensus exists on why ACSL1 is induced by inflammatory mediators in immune cells. We used a comprehensive and unbiased approach to investigate the role of ACSL1 induction by interferon type I (IFN-I) in myeloid cells in vitro and in a mouse model of IFN-I overproduction. Our results show that IFN-I induces ACSL1 in macrophages via its interferon-α/β receptor, and consequently that expression of ACSL1 is increased in myeloid cells from individuals with systemic lupus erythematosus (SLE), an autoimmune condition characterized by increased IFN production. Taking advantage of a myeloid cell-targeted ACSL1-deficient mouse model and a series of lipidomics, proteomics, metabolomics and functional analyses, we show that IFN-I leverages induction of ACSL1 to increase accumulation of fully saturated phosphatidic acid species in macrophages. Conversely, ACSL1 induction is not needed for IFN-I's ability to induce the prototypical IFN-stimulated protein signature or to suppress proliferation or macrophage metabolism. Loss of ACSL1 in IFN-I stimulated myeloid cells enhances apoptosis and secondary necrosis in vitro, especially in the presence of increased saturated fatty acid load, and in a mouse model of atherosclerosis associated with IFN overproduction, resulting in larger lesion necrotic cores. We propose that ACSL1 induction is a mechanism used by IFN-I to increase phosphatidic acid saturation while protecting the cells from saturated fatty acid-induced cell death.
Collapse
Affiliation(s)
- Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Eyal Kedar
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Melissa Krueger
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Vadim Pascua
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.
| |
Collapse
|
17
|
Izumida K, Hara Y, Iwatsuki R, Ohta S, Tabata K, Morita E. In vitro characteristics of purified recombinant hepatitis C virus core protein. Virology 2025; 601:110297. [PMID: 39536644 DOI: 10.1016/j.virol.2024.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
In our previous study, we established a method for purifying bacterially expressed HCV core 1-164 under non-denaturing conditions. In the present study, we elucidated the characteristics of the purified core. The purified HCV core exhibited a notable affinity for HCV RNA, with a Kd of 3 nM, as determined by a filter binding assay. Electron microscopy analysis revealed that the purified HCV core self-assembled with RNA into spherical structures approximately 50 nm in diameter. Additionally, we demonstrated the direct binding of the purified HCV core to the purified endoplasmic reticulum (ER). Moreover, lipid strip assays revealed specific binding of the purified HCV core to specific phospholipids, suggesting that the core plays a role in specific ER membrane domains. These studies reveal the biochemical characteristics of the HCV core that significantly advance our understanding of its role as a capsid protein in the viral lifecycle and pathogenesis.
Collapse
Affiliation(s)
- Kyo Izumida
- Laboratory of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Yumiko Hara
- Laboratory of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryuta Iwatsuki
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Sora Ohta
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Keisuke Tabata
- Laboratory of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Suita, 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Suita, 565-0871, Japan
| | - Eiji Morita
- Laboratory of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan.
| |
Collapse
|
18
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
19
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
20
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
21
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
22
|
Chen S, Li S, Qian S, Xing J, Liao J, Guo Z. Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas. Int J Mol Sci 2024; 25:13304. [PMID: 39769069 PMCID: PMC11679888 DOI: 10.3390/ijms252413304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER. Our measurements of photosynthetic parameters showed that these ER stress-inducing compounds caused a significant decline in photosynthetic efficiency. A proteomic analysis confirmed that TM and BFA effectively induce ER stress, as evidenced by the upregulation of ER stress-related proteins. Furthermore, we observed a widespread downregulation of photosynthesis-related proteins, which is consistent with the results obtained from our measurements of photosynthetic parameters. These findings suggest that the stress on ER has a profound impact on chloroplast function, disrupting photosynthetic processes. This study highlights the critical interdependence between the ER and chloroplasts, and it underscores the broader implications of ER stress on the cellular metabolism and energy efficiency of photosynthetic organisms.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shuyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Shiyuan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.L.); (S.Q.); (J.X.)
| | - Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
| |
Collapse
|
23
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
24
|
Shomo ZD, Li F, Smith CN, Edmonds SR, Roston RL. From sensing to acclimation: The role of membrane lipid remodeling in plant responses to low temperatures. PLANT PHYSIOLOGY 2024; 196:1737-1757. [PMID: 39028871 DOI: 10.1093/plphys/kiae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to cold stress.
Collapse
Affiliation(s)
- Zachery D Shomo
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | - Fangyi Li
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | - Cailin N Smith
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | | | - Rebecca L Roston
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| |
Collapse
|
25
|
Kim N, Yun H, Lee H, Yoo JY. Interplay between membranes and biomolecular condensates in the regulation of membrane-associated cellular processes. Exp Mol Med 2024; 56:2357-2364. [PMID: 39482532 PMCID: PMC11612285 DOI: 10.1038/s12276-024-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Liquid‒liquid phase separation (LLPS) has emerged as a key mechanism for organizing cellular spaces independent of membranes. Biomolecular condensates, which assemble through LLPS, exhibit distinctive liquid droplet-like behavior and can exchange constituents with their surroundings. The regulation of condensate phases, including transitions from a liquid state to gel or irreversible aggregates, is important for their physiological functions and for controlling pathological progression, as observed in neurodegenerative diseases and cancer. While early studies on biomolecular condensates focused primarily on those in fluidic environments such as the cytosol, recent discoveries have revealed their existence in close proximity to, on, or even comprising membranes. The aim of this review is to provide an overview of the properties of membrane-associated condensates in a cellular context and their biological functions in relation to membranes.
Collapse
Affiliation(s)
- Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Hyeri Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hojin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
26
|
Norell PN, Campisi D, Mohan J, Wollert T. Biogenesis of omegasomes and autophagosomes in mammalian autophagy. Biochem Soc Trans 2024; 52:2145-2155. [PMID: 39392358 PMCID: PMC11555699 DOI: 10.1042/bst20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that maintains cellular homeostasis by promoting the degradation of damaged or superfluous cytoplasmic material. A hallmark of autophagy is the generation of membrane cisternae that sequester autophagic cargo. Expansion of these structures allows cargo to be engulfed in a highly selective and exclusive manner. Cytotoxic stress or starvation induces the formation of autophagosomes that sequester bulk cytoplasm instead of selected cargo. This rather nonselective pathway is essential for maintaining vital cellular functions during adverse conditions and is thus a major stress response pathway. Both selective and nonselective autophagy rely on the same molecular machinery. However, due to the different nature of cargo to be sequestered, the involved molecular mechanisms are fundamentally different. Although intense research over the past decades has advanced our understanding of autophagy, fundamental questions remain to be addressed. This review will focus on molecular principles and open questions regarding the formation of omegasomes and phagophores in nonselective mammalian autophagy.
Collapse
Affiliation(s)
- Puck N. Norell
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| |
Collapse
|
27
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
28
|
Wu TJ, Teng M, Jing X, Pritchard KA, Day BW, Naylor S, Teng RJ. Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence? Cells 2024; 13:1774. [PMID: 39513884 PMCID: PMC11544778 DOI: 10.3390/cells13211774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity. Oxidative stress (OS) and inflammation are the major contributors to BPD. Despite aggressive treatments, BPD prevalence remains unchanged, which underscores the urgent need to explore more potential therapies. The endoplasmic reticulum (ER) plays crucial roles in surfactant and protein synthesis, assisting mitochondrial function, and maintaining metabolic homeostasis. Under OS, disturbed metabolism and protein folding transform the ER structure to refold proteins and help degrade non-essential proteins to resume cell homeostasis. When OS becomes excessive, the endogenous chaperone will leave the three ER stress sensors to allow subsequent changes, including cell death and senescence, impairing the growth potential of organs. The contributing role of ER stress in BPD is confirmed by reproducing the BPD phenotype in rat pups by ER stress inducers. Although chemical chaperones attenuate BPD, ER stress is still associated with cellular senescence. N-acetyl-lysyltyrosylcysteine amide (KYC) is a myeloperoxidase inhibitor that attenuates ER stress and senescence as a systems pharmacology agent. In this review, we describe the role of ER stress in BPD and discuss the therapeutic potentials of chemical chaperones and KYC, highlighting their promising role in future therapeutic interventions.
Collapse
Affiliation(s)
- Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
29
|
Scott ZC, Steen SB, Huber G, Westrate LM, Koslover EF. The endoplasmic reticulum as an active liquid network. Proc Natl Acad Sci U S A 2024; 121:e2409755121. [PMID: 39392663 PMCID: PMC11494354 DOI: 10.1073/pnas.2409755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and constantly evolving network of membrane-bound tubules in eukaryotic cells. While individual structural elements and the morphogens that stabilize them have been described, a quantitative understanding of the dynamic large-scale network topology remains elusive. We develop a physical model of the ER as an active liquid network, governed by a balance of tension-driven shrinking and new tubule growth. This minimalist model gives rise to steady-state network structures with density and rearrangement timescales predicted from the junction mobility and tubule spawning rate. Several parameter-independent geometric features of the liquid network model are shown to be representative of ER architecture in live mammalian cells. The liquid network model connects the timescales of distinct dynamic features such as ring closure and new tubule growth in the ER. Furthermore, it demonstrates how the steady-state network morphology on a cellular scale arises from the balance of microscopic dynamic rearrangements.
Collapse
Affiliation(s)
| | - Samuel B. Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Greg Huber
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA94158
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
30
|
McPhee M, Dellaire G, Ridgway ND. Mechanisms for assembly of the nucleoplasmic reticulum. Cell Mol Life Sci 2024; 81:415. [PMID: 39367888 PMCID: PMC11455740 DOI: 10.1007/s00018-024-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
The nuclear envelope consists of an outer membrane connected to the endoplasmic reticulum, an inner membrane facing the nucleoplasm and a perinuclear space separating the two bilayers. The inner and outer nuclear membranes are physically connected at nuclear pore complexes that mediate selective communication and transfer of materials between the cytoplasm and nucleus. The spherical shape of the nuclear envelope is maintained by counterbalancing internal and external forces applied by cyto- and nucleo-skeletal networks, and the nuclear lamina and chromatin that underly the inner nuclear membrane. Despite its apparent rigidity, the nuclear envelope can invaginate to form an intranuclear membrane network termed the nucleoplasmic reticulum (NR) consisting of Type-I NR contiguous with the inner nuclear membrane and Type-II NR containing both the inner and outer nuclear membranes. The NR extends deep into the nuclear interior potentially facilitating communication and exchanges between the nuclear interior and the cytoplasm. This review details the evidence that NR intrusions that regulate cytoplasmic communication and genome maintenance are the result of a dynamic interplay between membrane biogenesis and remodelling, and physical forces exerted on the nuclear lamina derived from the cyto- and nucleo-skeletal networks.
Collapse
Affiliation(s)
- Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada.
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
31
|
Li CM, Kang J, Baek J, Kim Y, Park H, Jung YK. Cytosolic FKBPL and ER-resident CKAP4 co-regulates ER-phagy and protein secretion. Nat Commun 2024; 15:7886. [PMID: 39251576 PMCID: PMC11383940 DOI: 10.1038/s41467-024-52188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.
Collapse
Affiliation(s)
- Cathena Meiling Li
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaemin Kang
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jongyeon Baek
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Heemin Park
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
32
|
Silva NSM, Siebeneichler B, Oliveira CS, Dores-Silva PR, Borges JC. The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141034. [PMID: 39009203 DOI: 10.1016/j.bbapap.2024.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The HSPA5 protein (BiP/Grp78) serves as a pivotal chaperone in maintaining cellular protein quality control. As a member of the human HSP70 family, HSPA5 comprises two distinct domains: a nucleotide-binding domain (NBD) and a peptide-binding domain (PBD). In this study, we investigated the interdomain interactions of HSPA5, aiming to elucidate how these domains regulate its function as a chaperone. Our findings revealed that HSPA5-FL, HSPA5-T, and HSPA5-N exhibit varying affinities for ATP and ADP, with a noticeable dependency on Mg2+ for optimal interactions. Interestingly, in ADP assays, the presence of the metal ion seems to enhance NBD binding only for HSPA5-FL and HSPA5-T. Moreover, while the truncation of the C-terminus does not significantly impact the thermal stability of HSPA5, experiments involving MgATP underscore its essential role in mediating interactions and nucleotide hydrolysis. Thermal stability assays further suggested that the NBD-PBD interface enhances the stability of the NBD, more pronounced for HSPA5 than for the orthologous HSPA1A, and prevents self-aggregation through interdomain coupling. Enzymatic analyses indicated that the presence of PBD enhances NBD ATPase activity and augments its nucleotide affinity. Notably, the intrinsic chaperone activity of the PBD is dependent on the presence of the NBD, potentially due to the propensity of the PBD for self-oligomerization. Collectively, our data highlight the pivotal role of allosteric mechanisms in modulating thermal stability, nucleotide interaction, and ATPase activity of HSPA5, underscoring its significance in protein quality control within cellular environments.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| | - Bruna Siebeneichler
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Carlos S Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
33
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
34
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
35
|
Jiang Y, Zhu X, Jordan K, Li Y, Conley S, Tang H, Lerman A, Eirin A, Ou T, Lerman LO. Dyslipidemia-induced renal fibrosis related to ferroptosis and endoplasmic reticulum stress. J Lipid Res 2024; 65:100610. [PMID: 39094771 PMCID: PMC11401224 DOI: 10.1016/j.jlr.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Dyslipidemia may induce chronic kidney disease and trigger both ferroptosis and endoplasmic reticulum (ER) stress, but the instigating factors are incompletely understood. We tested the hypothesis that different models of dyslipidemia engage distinct kidney injury mechanisms. Wild-type (WT) or proprotein-convertase subtilisin/kexin type-9 (PCSK9)-gain-of-function (GOF) Ossabaw pigs were fed with a 6-month normal diet (ND) or high-fat diet (HFD) (n = 5-6 each). Renal function and fat deposition were studied in vivo using CT, and blood and kidney tissue studied ex-vivo for lipid profile, systemic and renal vein FFAs levels, and renal injury mechanisms including lipid peroxidation, ferroptosis, and ER stress. Compared with WT-ND pigs, both HFD and PCSK9-GOF elevated triglyceride levels, which were highest in WT-HFD, whereas total and LDL cholesterol levels rose only in PCSK9-GOF pigs, particularly in PCSK9-GOF/HFD. The HFD groups had worse kidney function than the ND groups. The WT-HFD kidneys retained more FFA than other groups, but all kidneys developed fibrosis. Furthermore, HFD-induced ferroptosis in WT-HFD indicated by increased free iron, lipid peroxidation, and decreased glutathione peroxidase-4 mRNA expression, while PCSK9-GOF induced ER stress with upregulated GRP94 and CHOP protein expression. In vitro, pig kidney epithelial cells treated with palmitic acid and oxidized LDL to mimic HFD and PCSK9-GOF showed similar trends to those observed in vivo. Taken together, HFD-induced hypertriglyceridemia promotes renal FFA retention and ferroptosis, whereas PCSK9-GOF-induced hypercholesterolemia elicits ER stress, both resulting in renal fibrosis. These observations suggest different targets for preventing and treating renal fibrosis in subjects with specific types of dyslipidemia.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Yongxin Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
37
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
38
|
Koo J, Palli SR. StaufenC facilitates utilization of the ERAD pathway to transport dsRNA through the endoplasmic reticulum to the cytosol. Proc Natl Acad Sci U S A 2024; 121:e2322927121. [PMID: 38885386 PMCID: PMC11214074 DOI: 10.1073/pnas.2322927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| |
Collapse
|
39
|
Marquez AB, Vicente J, Castro E, Vota D, Rodríguez-Varela MS, Lanza Castronuovo PA, Fuentes GM, Parise AR, Romorini L, Alvarez DE, Bueno CA, Ramirez CL, Alaimo A, García CC. Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses. Cannabis Cannabinoid Res 2024; 9:751-765. [PMID: 37682578 DOI: 10.1089/can.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Introduction: Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. Objectives: The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses. Materials and Methods: Cell cultures were infected with enveloped and nonenveloped viruses and treated with non-cytotoxic concentrations of CBD and then, viral titers were determined. Additionally, the mechanism of action of the compound during ZIKV in vitro infections was studied. To study the possible immunomodulatory role of CBD, infected and uninfected Huh-7 cells were exposed to 10 μM CBD during 48 h and levels of interleukins 6 and 8 and interferon-beta (IFN-β) expression levels were measured. On the other hand, the effect of CBD on cellular membranes was studied. For this, an immunofluorescence assay was performed, in which cell membranes were labeled with wheat germ agglutinin. Finally, intracellular cholesterol levels were measured. Results: CBD exhibited a potent antiviral activity against all the tested viruses in different cell lines with half maximal effective concentration values (CE50) ranging from 0.87 to 8.55 μM. Regarding the immunomodulatory effect of CBD during ZIKV in vitro infections, CBD-treated cells exhibited significantly IFN-β increased levels, meanwhile, interleukins 6 and 8 were not induced. Furthermore, it was determined that CBD affects cellular membranes due to the higher fluorescence intensity that was observed in CBD-treated cells and lowers intracellular cholesterol levels, thus affecting the multiplication of ZIKV and other viruses. Conclusions: It was demonstrated that CBD inhibits structurally dissimilar viruses, suggesting that this phytochemical has broad-spectrum antiviral effect, representing a valuable alternative in emergency situations during viral outbreaks, like the one caused by severe acute respiratory syndrome coronavirus 2 in 2020.
Collapse
Affiliation(s)
- Agostina B Marquez
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Inmunofarmacología, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - María S Rodríguez-Varela
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Priscila A Lanza Castronuovo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Giselle M Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandro R Parise
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Carlos A Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina L Ramirez
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Asociación Civil CBG2000, Mar del Plata, Argentina
| | - Agustina Alaimo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Zhu Y, Cho K, Lacin H, Zhu Y, DiPaola JT, Wilson BA, Patti GJ, Skeath JB. Loss of dihydroceramide desaturase drives neurodegeneration by disrupting endoplasmic reticulum and lipid droplet homeostasis in glial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573836. [PMID: 38260379 PMCID: PMC10802327 DOI: 10.1101/2024.01.01.573836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dihydroceramide desaturases convert dihydroceramides to ceramides, the precursors of all complex sphingolipids. Reduction of DEGS1 dihydroceramide desaturase function causes pediatric neurodegenerative disorder hypomyelinating leukodystrophy-18 (HLD-18). We discovered that infertile crescent (ifc), the Drosophila DEGS1 homolog, is expressed primarily in glial cells to promote CNS development by guarding against neurodegeneration. Loss of ifc causes massive dihydroceramide accumulation and severe morphological defects in cortex glia, including endoplasmic reticulum (ER) expansion, failure of neuronal ensheathment, and lipid droplet depletion. RNAi knockdown of the upstream ceramide synthase schlank in glia of ifc mutants rescues ER expansion, suggesting dihydroceramide accumulation in the ER drives this phenotype. RNAi knockdown of ifc in glia but not neurons drives neuronal cell death, suggesting that ifc function in glia promotes neuronal survival. Our work identifies glia as the primary site of disease progression in HLD-18 and may inform on juvenile forms of ALS, which also feature elevated dihydroceramide levels.
Collapse
Affiliation(s)
- Yuqing Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Haluk Lacin
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yi Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Jose T DiPaola
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Beth A Wilson
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
42
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
43
|
Molonia MS, Salamone FL, Speciale A, Saija A, Cimino F. D-Allulose Reduces Hypertrophy and Endoplasmic Reticulum Stress Induced by Palmitic Acid in Murine 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:4059. [PMID: 38612868 PMCID: PMC11012259 DOI: 10.3390/ijms25074059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-β and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
- “Prof. Antonio Imbesi” Foundation, University of Messina, 98100 Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| |
Collapse
|
44
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling. ACS CENTRAL SCIENCE 2024; 10:543-554. [PMID: 38559292 PMCID: PMC10979500 DOI: 10.1021/acscentsci.3c01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light-oxygen-voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Masaaki Uematsu
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jeremy M. Baskin
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
45
|
Heravi G, Liu Z, Herroon M, Wilson A, Fan YY, Jiang Y, Vakeesan N, Tao L, Peng Z, Zhang K, Li J, Chapkin RS, Podgorski I, Liu W. Targeting Fatty Acid Desaturase I Inhibits Renal Cancer Growth Via ATF3-mediated ER Stress Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586426. [PMID: 38586033 PMCID: PMC10996531 DOI: 10.1101/2024.03.23.586426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexis Wilson
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Yang-Yi Fan
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
| | - Yang Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nivisa Vakeesan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Tao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jing Li
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Robert S. Chapkin
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
46
|
Liang C, Murray S, Li Y, Lee R, Low A, Sasaki S, Chiang AWT, Lin WJ, Mathews J, Barnes W, Lewis NE. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab Eng 2024; 82:110-122. [PMID: 38311182 PMCID: PMC11163374 DOI: 10.1016/j.ymben.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.
Collapse
Affiliation(s)
- Chenguang Liang
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Yang Li
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Shruti Sasaki
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, La Jolla, CA, 92093, USA
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Joel Mathews
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Will Barnes
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Tsai YX, Chang NE, Reuter K, Chang HT, Yang TJ, von Bülow S, Sehrawat V, Zerrouki N, Tuffery M, Gecht M, Grothaus IL, Colombi Ciacchi L, Wang YS, Hsu MF, Khoo KH, Hummer G, Hsu STD, Hanus C, Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024; 187:1296-1311.e26. [PMID: 38428397 DOI: 10.1016/j.cell.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ning-En Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Klaus Reuter
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Vidhi Sehrawat
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland
| | - Noémie Zerrouki
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Matthieu Tuffery
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Isabell Louise Grothaus
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France.
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
| |
Collapse
|
48
|
Shukla S, Chen W, Rao S, Yang S, Ou C, Larsen KP, Hummer G, Hanson PI, Hurley JH. Mechanism and cellular function of direct membrane binding by the ESCRT and ERES-associated Ca 2+-sensor ALG-2. Proc Natl Acad Sci U S A 2024; 121:e2318046121. [PMID: 38386713 PMCID: PMC10907313 DOI: 10.1073/pnas.2318046121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Apoptosis linked Gene-2 (ALG-2) is a multifunctional intracellular Ca2+ sensor and the archetypal member of the penta-EF hand protein family. ALG-2 functions in the repair of damage to both the plasma and lysosome membranes and in COPII-dependent budding at endoplasmic reticulum exit sites (ERES). In the presence of Ca2+, ALG-2 binds to ESCRT-I and ALIX in membrane repair and to SEC31A at ERES. ALG-2 also binds directly to acidic membranes in the presence of Ca2+ by a combination of electrostatic and hydrophobic interactions. By combining giant unilamellar vesicle-based experiments and molecular dynamics simulations, we show that charge-reversed mutants of ALG-2 at these locations disrupt membrane recruitment. ALG-2 membrane binding mutants have reduced or abrogated ERES localization in response to Thapsigargin-induced Ca2+ release but still localize to lysosomes following lysosomal Ca2+ release. In vitro reconstitution shows that the ALG-2 membrane-binding defect can be rescued by binding to ESCRT-I. These data thus reveal the nature of direct Ca2+-dependent membrane binding and its interplay with Ca2+-dependent protein binding in the cellular functions of ALG-2.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Wei Chen
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Shanlin Rao
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
| | - Serim Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenxi Ou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
- Institute of Biophysics, Goethe UniversityFrankfurt, Frankfurt am Main60438, Germany
| | - Phyllis I. Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
49
|
Chen G, Zhou G, Zhai L, Bao X, Tiwari N, Li J, Mottillo E, Wang J. SHMT2 reduces fatty liver but is necessary for liver inflammation and fibrosis in mice. Commun Biol 2024; 7:173. [PMID: 38347107 PMCID: PMC10861579 DOI: 10.1038/s42003-024-05861-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Non-alcoholic fatty liver disease is associated with an irregular serine metabolism. Serine hydroxymethyltransferase 2 (SHMT2) is a liver enzyme that breaks down serine into glycine and one-carbon (1C) units critical for liver methylation reactions and overall health. However, the contribution of SHMT2 to hepatic 1C homeostasis and biological functions has yet to be defined in genetically modified animal models. We created a mouse strain with targeted SHMT2 knockout in hepatocytes to investigate this. The absence of SHMT2 increased serine and glycine levels in circulation, decreased liver methylation potential, and increased susceptibility to fatty liver disease. Interestingly, SHMT2-deficient mice developed simultaneous fatty liver, but when fed a diet high in fat, fructose, and cholesterol, they had significantly less inflammation and fibrosis. This study highlights the critical role of SHMT2 in maintaining hepatic 1C homeostasis and its stage-specific functions in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Lidong Zhai
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Nivedita Tiwari
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Emilio Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
50
|
Nomura M, Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Increased fatty acid synthesis and disturbed lipid metabolism in Neuro2a cells after repeated cocaine exposure: A preliminary study. Biochem Biophys Res Commun 2024; 695:149438. [PMID: 38160532 DOI: 10.1016/j.bbrc.2023.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Chronic use of cocaine prompts neurodegeneration and neuroinflammation. Lipids play pivotal roles in neuronal function and pathology. Although evidence correlates cocaine use with the alteration of lipid metabolism in blood and brain, the precise mechanism remains to be elucidated. In this study, we explore the effect of cocaine on neuronal fatty acid profiles in vitro. Neuro2a cells following seven days of repeated exposure to cocaine (0, 600, 800, 1000 μM) showed apoptosis-irrelevant cell death, dysregulated autophagy, activation of atypical endoplasmic reticulum stress response, increased saturated and unsaturated fatty acid synthesis, and disrupted lipid metabolism. These preliminary findings indicated the association between lipid metabolism and cocaine-induced neurotoxicity, which should be beneficial for understanding the neurotoxicity of cocaine.
Collapse
Affiliation(s)
- Moeka Nomura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|