1
|
Garcia NS, Dayan FE, Camargo ER, Ceolin BC, Deuner S, de Avila LA. Auxin-mimic herbicides dilema: Their benefits and limitations. PEST MANAGEMENT SCIENCE 2025. [PMID: 40401492 DOI: 10.1002/ps.8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/21/2025] [Accepted: 05/04/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Auxinic herbicides have revolutionized weed control since their introduction in agriculture in 1945. In recent years, auxinic herbicides have become essential and cost-effective weed management tools to control glyphosate-resistant and other difficult-to-control weeds in soybean and cotton. The recent commercialization of auxinic-resistant crops (ARC) (i.e., soybean and cotton) allows preemergent and in-season post-emergent applications of auxinic herbicides. However, the off-target movement of auxinic herbicides has been a recurring problem, threatening the livelihood of growers producing sensitive plants such as cucurbits, tomatoes, and grapevines. It is challenging to pinpoint the exact source of the drift and assess the short and long-term impacts of auxinic herbicides drift to sensitive surrounding vegetation. In this context, we provide an overview on the relative sensitivity of several important crops to very low doses of the auxinic herbicides dicamba and 2,4-D. RESULTS Given the wide range of effects triggered by auxinic herbicides in plant metabolism, sensitive crops are highly variable in their responses to sublethal doses; however, there is a consensus that crop symptomatology is not always predictive of yield loss or growth penalties. These studies demonstrate the difficulty of observing patterns that indicate when management decisions should be made after a suspected off-target movement event. CONCLUSION Several crops are sensitive to auxinic herbicides, which can cause damage and may affect crop yield. Therefore, there is a need to develop a low-cost and consistent diagnosis tool to detect very low doses of auxinic herbicides in sensitive species in the field, thus the losses of produced crop due to contamination with the auxinic herbicides in concentrations above the limit for consumption could be rapidly detected. This review demonstrates that ARC is sustainable in weed management only if application practices are improved to minimize unintended off-target damage. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Natália S Garcia
- Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Edinalvo R Camargo
- Crop Protection Department, Federal University of Pelotas, Pelotas, Brazil
| | - Bruna C Ceolin
- Crop Protection Department, Federal University of Pelotas, Pelotas, Brazil
| | - Sidnei Deuner
- Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Luis A de Avila
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
2
|
Fitzgerald JL, Ogilvie JE, CaraDonna PJ. Intraspecific body size variation across distributional moments reveals trait filtering processes. J Anim Ecol 2025; 94:394-409. [PMID: 39354661 PMCID: PMC11880653 DOI: 10.1111/1365-2656.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024]
Abstract
Natural populations are composed of individuals that vary in their morphological traits, timing and interactions. The distribution of a trait can be described by several dimensions, or mathematical moments-mean, variance, skew and kurtosis. Shifts in the distribution of a trait across these moments in response to environmental variation can help to reveal which trait values are gained or lost, and consequently how trait filtering processes are altering populations. To examine the role and drivers of intraspecific variation within a trait filtering framework, we investigate variation in body size among five wild bumblebee species in the Colorado Rocky Mountains. First, we examine the relationships between environmental factors (climate and floral food resources) and body size distributions across bumblebee social castes to identify demographic responses to environmental variation. Next, we examine changes in the moments of trait distributions to reveal potential mechanisms behind intraspecific shifts in body size. Finally, we examine how intraspecific body size variation is related to diet breadth and phenology. We found that climate conditions have a strong effect on observed body size variation across all distributional moments, but the filtering mechanism varies by social caste. For example, with earlier spring snowmelt queens declined in mean size and became negatively skewed and more kurtotic. This suggests a skewed filter admitting a greater frequency of small individuals. With greater availability of floral food resources, queens increased in mean size, but workers and males decreased in size. Observed shifts in body size variation also correspond with variation in diet breadth and phenology. Populations with larger average body size were associated with more generalized foraging in workers of short-tongued species and increased specialization in longer-tongued workers. Altered phenological timing was associated with species- and caste-specific shifts in skew. Across an assemblage of wild bumblebees, we find complex patterns of trait variation that may not have been captured if we had simply considered mean and variance. The four-moment approach we employ here provides holistic insight into intraspecific trait variation, which may otherwise be overlooked and reveals potential underlying filtering processes driving such variation within populations.
Collapse
Affiliation(s)
- Jacquelyn L. Fitzgerald
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Negaunee Institute for Plant Conservation Science & ActionChicago Botanic GardenGlencoeIllinoisUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Jane E. Ogilvie
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Paul J. CaraDonna
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Negaunee Institute for Plant Conservation Science & ActionChicago Botanic GardenGlencoeIllinoisUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| |
Collapse
|
3
|
Davenport ME, Bentz BJ, Hansen EM, Ragland GJ. Variability in spruce beetle (Coleoptera: Curculionidae, Scolytinae) adult diapause and evidence for oocyte development prior to winter in a Colorado population. ENVIRONMENTAL ENTOMOLOGY 2025; 54:154-166. [PMID: 39450749 DOI: 10.1093/ee/nvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/29/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Diapause regulates seasonal insect life cycles and may be highly variable within and among populations due to genetic and environmental variability. Both types of variation may influence how populations respond plastically or evolutionarily to changing climates. We assessed diapause variability in spruce beetle Dendroctonus rufipennis Kirby (Coleoptera: Curculionidae, Scolytinae), a major forest pest whose life cycle timing is regulated by both prepupal and adult diapauses. Using mating studies and ovary dissections, we tested for variability in adult diapause within and between collection sites in Colorado and Wyoming, USA. Ovary morphology suggested that most females from both sites enter diapause prior to egg formation (oogenesis) when reared at warm temperatures. Though previous studies suggested that adult diapause is obligate, we found that a small proportion of females from both populations terminated diapause without winter chilling in the lab. Moreover, we found that most female beetles sampled at the Colorado field site had mature ovaries relatively early in the fall, suggesting that transient exposure to low temperatures may potentiate pre-winter reproductive development. Adult diapause may act primarily as a block to prevent offspring production late in the season but not necessarily as an overwintering phenotype. Overall, our data do not suggest imminent life cycle shifts mediated by adult diapause, but if the observed variability is heritable, diapause regulation may evolve in response to changing environmental conditions.
Collapse
Affiliation(s)
- Marianne E Davenport
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Barbara J Bentz
- Rocky Mountain Research Station, USDA Forest Service, Logan, UT, USA
| | - E Matthew Hansen
- Rocky Mountain Research Station, USDA Forest Service, Logan, UT, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
4
|
Pareja-Bonilla D, Arista M, Morellato LPC, Ortiz PL. Better soon than never: climate change induces strong phenological reassembly in the flowering of a Mediterranean shrub community. ANNALS OF BOTANY 2025; 135:239-254. [PMID: 38099507 PMCID: PMC11805945 DOI: 10.1093/aob/mcad193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Flowering is a key process in the life cycle of a plant. Climate change is shifting flowering phenologies in the Northern Hemisphere, but studies with long data series at the community level are scarce, especially those considering the consequences of phenological changes for emerging ecological interactions. In the Mediterranean region, the effects of climate change are stronger than the global average and there is an urgent need to understand how biodiversity will be affected in this area. METHODS In this study, we investigated how the entire flowering phenology of a community comprising 51 perennial species from the south of the Iberian Peninsula changed from the decade of the 1980s to the 2020s. Furthermore, we have analysed the consequences of these changes for flowering order and co-flowering patterns. KEY RESULTS We have found that the flowering phenology of the community has advanced by ~20 days, which is coherent with the increasing temperatures related to climate change. Individual species have generally advanced their entire flowering phenology (start and end) and increased their flowering duration. The early flowering has resulted in a re-organization of the flowering order of the community and generated new co-flowering assemblages of species, with a slight trend towards an increase of shared flowering time among species. CONCLUSIONS The advanced flowering phenology and changes in flowering duration reported here were of unprecedented magnitude, showcasing the extreme effects of climate change on Mediterranean ecosystems. Furthermore, the effects were not similar among species, which could be attributed to differences in sensitivities of environmental cues for flowering. One consequence of these changes in flowering times is ecological mismatches, indicated by changes in the flowering order and co-flowering between decades. This new scenario might lead to new competitive or facilitative interactions and to the loss or gain of pollinators.
Collapse
Affiliation(s)
- Daniel Pareja-Bonilla
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Leonor Patrícia Cerdeira Morellato
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, São Paulo, Rio Claro, Brazil
| | - Pedro Luis Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Müller S, Collatz J, Richter H, Zboray R, Albrecht M. Increased overwintering temperature reduces reproductive success of the solitary bee species Osmia bicornis. Sci Rep 2025; 15:2965. [PMID: 39849078 PMCID: PMC11757717 DOI: 10.1038/s41598-025-86729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Solitary wild bees play a key role as pollinators of wild plants and crops, but they are increasingly at risk from anthropogenic global change, such as climate warming. However, how warmer temperature during overwintering affects reproductive success of those bees remains largely unknown. In a semi-field experiment we assessed individual life-long reproductive success of 144 females of the solitary bee species Osmia bicornis that had been wintered at three different temperatures. Overwintering mortality of bees was on average 32% higher at winter temperatures of 8 °C compared to 4.5 °C-0 °C, at which almost all bees successfully emerged. After wintering at 4.5 °C and 8 °C females produced less offspring than after overwintering at 0 °C (26% or 36% less offspring, respectively). Although longevity and daily offspring production rate were not significantly affected, nesting duration of females wintered at 0 °C tended to be longer (+ 2.5 days) than that of bees wintered at 4.5 °C, which likely contributed to the higher offspring production at colder overwintering temperatures. Mortality and sex ratio of offspring was not significantly affected. While future studies should also consider climatic variation during winter, these findings indicate that increasing mean overwintering temperatures could threaten O. bicornis and potentially other solitary bee populations.
Collapse
Affiliation(s)
- Sarah Müller
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zürich, 8046, Switzerland
| | - Jana Collatz
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zürich, 8046, Switzerland
| | - Henning Richter
- Diagnostic Imaging Research Unit (DIRU), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 258c, Zurich, 8057, Switzerland
| | - Robert Zboray
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zürich, 8046, Switzerland.
| |
Collapse
|
6
|
Schiestl FP, Wartmann BA, Bänziger R, Györög‐Kobi B, Hess K, Luder J, Merz E, Peter B, Reutlinger M, Richter T, Senn H, Ulrich T, Waldeck B, Wartmann C, Wüest R, Wüest W, Rusman Q. The Late Orchid Catches the Bee: Frost Damage and Pollination Success in the Face of Global Warming in a European Terrestrial Orchid. Ecol Evol 2025; 15:e70729. [PMID: 39830708 PMCID: PMC11739451 DOI: 10.1002/ece3.70729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 01/22/2025] Open
Abstract
Global warming changes flowering times of many plant species, with potential impacts on frost damage and their synchronization with pollinator activity. These effects can have severe impacts on plant fitness, yet we know little about how frequently they occur and the extent of damage they cause. We addressed this topic in a thermophilic orchid with a highly specific pollination mechanism, the Small Spider Orchid, Ophrys araneola RchB, in six populations in Northern Switzerland. We measured flowering time, frost damage, and fruiting success in 1250 individually marked plants during 3 years, and documented spring temperatures. Using regression models with historical climate data, we estimated past and future frost damage. In addition, we analyzed historical records of the orchid and its only verified pollinator, the solitary bee Andrena combinata in Northern Switzerland, to estimate potential desynchronization between flowering and pollinator activity due to climate change. Increased spring temperatures accelerated flowering time, and together with the number of frost days explained frost damage well. Frost damage was severe and early-flowering plants were more likely to be damaged. Historical climate data suggested frost damage has increased in the last decades and may increase further in the future. All populations but one had very low fruit set, and plants that flowered earlier were less likely to set fruit. The historical data from between 1970 and 2019 showed a significant advance of flowering- and pollinator occurrence time in the last decades, but to a similar degree in orchids and bees. Our study shows that the orchid, despite being limited to warm habitats in central Europe, suffers under global warming by increased frost damage caused by earlier flowering. We did not detect an effect of accelerated flowering on desynchronization in flowering time and pollinator activity in this orchid species.
Collapse
Affiliation(s)
- Florian P. Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZürichSwitzerland
| | - Beat A. Wartmann
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Ruth Bänziger
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Brigitte Györög‐Kobi
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Klaus Hess
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Jürg Luder
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Edith Merz
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Beat Peter
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Max Reutlinger
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Tobias Richter
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Heinz Senn
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Thomas Ulrich
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Beate Waldeck
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Claudia Wartmann
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Roland Wüest
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Walter Wüest
- Arbeitsgruppe Einheimische Orchideen Schweiz (AGEO) c/o President Beat A. WartmannOberengstringenSwitzerland
| | - Quint Rusman
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
7
|
Wang W, Du J, He Z, Miao C, Wu J, Ma D, Zhao P. Pollinator peaking earlier than flowering is more detrimental to plant fecundity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170458. [PMID: 38290677 DOI: 10.1016/j.scitotenv.2024.170458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Climate change has caused asynchronous phenological shifts between most plants and their pollinators, resulting in an earlier or later appearance of peak flowering relative to peak pollinator abundance. The fitness impact of these two mismatch patterns may not be simply equivalent, but the information has so far been limited. To explore how differently plant fitness responds to the distinct mismatch patterns, we conducted a seed-setting comparative study at the individual level in an alpine grassland community in the Qilian Mountains of China. By monitoring flowering abundance and insect visits, we measured the phenological matching relationship between plants and their key pollinators, and evaluated the impact of mismatches on plant productivity. We found that the pattern of "pollinator peaks earlier" accounted for a relatively high proportion in the natural community, with a significantly stronger fitness impact on plants than that of the "flower peaks earlier" pattern. The asymmetry in the fitness impacts between phenological mismatch patterns is related to the length of flowering period. Specially, the shorter the flowering duration, the greater the difference in influence between the two patterns. Our results suggest that plants with shorter flowering periods may be confronted with more severe pollination limitations if climate warming cause insects to forage further ahead. Therefore, the asymmetric effects of phenological mismatch patterns should be considered in phenological models to improve the predictive performance of plant responses to climate change.
Collapse
Affiliation(s)
- Wen Wang
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Du
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Chenxin Miao
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wu
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengke Ma
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhao
- School of Computer Science, Huainan Normal University, Anhui 232038, China
| |
Collapse
|
8
|
Cohen M, Ottmann E, Varga Linde D, Sanchez S. Is Joint Management between Conservationists and Farmers Sustainable and Biodiversity-friendly? A Ten-year Study in Residual Grasslands of a Protected Area. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-023-01931-9. [PMID: 38263340 DOI: 10.1007/s00267-023-01931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
In recent decades, there has been a discernible reduction in temperate and Mediterranean grasslands with consequences on the decline of biodiversity and landscape heterogeneity. When this decline is due to agricultural abandonment, a renewed joint management, combining bush clearing by conservationists and grazing by farmers, should favor the maintenance of grasslands, their protected habitats and species and forage production. Rainfall irregularity explains part of the variation of these parameters. To verify these hypotheses, we conduct a comprehensive, multi-scale, multi-taxa study over a ten-year period in a Mediterranean protected area. At the regional scale, experimental plots in which this joint management was implemented are representative of residual managed grasslands of the protected area. At the mesoscale, rainfall irregularity is the main factor explaining inter-annual differences in the biomass of open landscapes, while fauna depends on management, tree cover and trophic resources. At the local scale, in a representative experimental plot, clearing had an immediate negative impact on plant richness and bird and positive on forage. Over a decade, plant biodiversity increased while forage, specialist plants and bird maintained, despite the regrowth of bush. Drought had a negative impact on richness, plant and forage abundance and phenological asynchrony on butterflies. In conclusion, joint management has positive, neutral and negative impacts to be considered before implementing this strategy. This long-term monitoring study draws important lessons for designing a sustainable management of grasslands under abandonment and irregular climate, that should be applied in temperate and Mediterranean regions that are increasingly vulnerable to these trends.
Collapse
Affiliation(s)
- Marianne Cohen
- Laboratoire Médiations, Sorbonne Université, Paris 75, France.
| | | | | | | |
Collapse
|
9
|
Christiansen DM, Römer G, Dahlgren JP, Borg M, Jones OR, Merinero S, Hylander K, Ehrlén J. High-resolution data are necessary to understand the effects of climate on plant population dynamics of a forest herb. Ecology 2024; 105:e4191. [PMID: 37878669 DOI: 10.1002/ecy.4191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Collapse
Affiliation(s)
- Ditte M Christiansen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Gesa Römer
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Johan P Dahlgren
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Malin Borg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Owen R Jones
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Sonia Merinero
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Keller AG, Dahlhoff EP, Bracewell R, Chatla K, Bachtrog D, Rank NE, Williams CM. Multi-locus genomic signatures of local adaptation to snow across the landscape in California populations of a willow leaf beetle. Proc Biol Sci 2023; 290:20230630. [PMID: 37583321 PMCID: PMC10427825 DOI: 10.1098/rspb.2023.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
Organisms living in mountains contend with extreme climatic conditions, including short growing seasons and long winters with extensive snow cover. Anthropogenic climate change is driving unprecedented, rapid warming of montane regions across the globe, resulting in reduced winter snowpack. Loss of snow as a thermal buffer may have serious consequences for animals overwintering in soil, yet little is known about how variability in snowpack acts as a selective agent in montane ecosystems. Here, we examine genomic variation in California populations of the leaf beetle Chrysomela aeneicollis, an emerging natural model system for understanding how organisms respond to climate change. We used a genotype-environment association approach to identify genomic signatures of local adaptation to microclimate in populations from three montane regions with variable snowpack and a coastal region with no snow. We found that both winter-associated environmental variation and geographical distance contribute to overall genomic variation across the landscape. We identified non-synonymous variation in novel candidate loci associated with cytoskeletal function, ion transport and membrane stability, cellular processes associated with cold tolerance in other insects. These findings provide intriguing evidence that variation in snowpack imposes selective gradients in montane ecosystems.
Collapse
Affiliation(s)
- Abigail G. Keller
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Ryan Bracewell
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Nathan E. Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | |
Collapse
|
11
|
Kolanowska M. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Sci Rep 2023; 13:6848. [PMID: 37100884 PMCID: PMC10133392 DOI: 10.1038/s41598-023-33856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The first comprehensive species distribution models for orchid, its fungal symbionts and pollinator are presented. To evaluate impact of global warming on these organisms three different projections and four various climate change scenarios were analysed. The niche modelling was based on presence-only records of Limodorum abortivum, two species of Russula and three insects pollinating orchid (Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum). Two sets of orchid predictions were examined-the first one included only climatic data and the second one was based on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range shift is predicted to occur as a result of climate change and apparently global warming will be favorable for L. abortivum and its potential geographical range will expand. However, due to the negative effect of global warming on fungal symbionts of L. abortivum, the actual extension of the suitable niches of the orchid will be much limited. Considering future possibility of cross-pollination, the availability of A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only for 21% of orchid populations. On the other hand, the overlap of orchid and the buff-tailed bumblebee will increase and as much as 86.5% of plant populations will be located within B. terrestris potential range. Also the availability of R. septemdentatum will be higher than currently observed in almost all analysed climate change projections. This study showed the importance of inclusion of ecological factors in species distribution models as the climate data itself are not enough to estimate the future distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long-term survival of orchid populations should be analysed in context of climate changes.
Collapse
Affiliation(s)
- Marta Kolanowska
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
12
|
Ssali F, Sheil D. Seasonality in the equatorial tropics: Flower, fruit, and leaf phenology of montane trees in the highlands of Southwest Uganda. Biotropica 2023. [DOI: 10.1111/btp.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Schiffer A, Loy X, Morozumi C, Brosi BJ. Differences in individual flowering time change pollen limitation and seed set in three montane wildflowers. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36571456 DOI: 10.1002/ajb2.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Changes to flowering time caused by climate change could affects plant fecundity, but studies that compare the individual-level responses of phenologically distinct, co-occurring species are lacking. We assessed how variation in floral phenology affects the fecundity of individuals from three montane species with different seasonal flowering times, including in snowmelt acceleration treatments to increase variability in phenology. METHODS We collected floral phenology and seed set data for individuals of three montane plant species (Mertensia fusiformis, Delphinium nuttallianum, Potentilla pulcherrima). To examine the drivers of seed set, we measured conspecific floral density and conducted pollen limitation experiments to isolate pollination function. We advanced the phenology of plant communities in a controlled large-scale snowmelt acceleration experiment. RESULTS Differences in individual phenology relative to the rest of the population affected fecundity in our focal species, but effects were species-specific. For our early-season species, individuals that bloomed later than the population peak bloom had increased fecundity, while for our midseason species, simply blooming before or after the population peak increased individual fecundity. For our late-season species, blooming earlier than the population peak increased fecundity. The early and midseason species were pollen-limited, and conspecific density affected seed set only for our early-season species. CONCLUSIONS Our study shows that variation in individual phenology affects fecundity in three phenologically distinct montane species, and that pollen limitation may be more influential than conspecific density. Our results suggest that individual-level changes in phenology are important to consider for understanding plant reproductive success.
Collapse
Affiliation(s)
- Annie Schiffer
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322, USA
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
| | - Xingwen Loy
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Southeastern Center for Conservation, Atlanta Botanical Garden, 1345 Piedmont Ave NE, Atlanta, GA, 30309, USA
| | - Connor Morozumi
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY, 40292, USA
| | - Berry J Brosi
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Department of Biology, University of Washington, W Stevens Way, Seattle, WA, 98195-1800, USA
| |
Collapse
|
14
|
Dorian NN, McCarthy MW, Crone EE. Ecological traits explain long-term phenological trends in solitary bees. J Anim Ecol 2023; 92:285-296. [PMID: 35839142 DOI: 10.1111/1365-2656.13778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Across taxa, the timing of life-history events (phenology) is changing in response to warming temperatures. However, little is known about drivers of variation in phenological trends among species. We analysed 168 years of museum specimen and sighting data to evaluate the patterns of phenological change in 70 species of solitary bees that varied in three ecological traits: diet breadth (generalist or specialist), seasonality (spring, summer or fall) and nesting location (above-ground or below-ground). We estimated changes in onset, median, end and duration of each bee species' annual activity (flight duration) using quantile regression. To determine whether ecological traits could explain phenological trends, we compared average trends across species groups that differed in a single trait. We expected that specialist bees would be constrained by their host plants' phenology and would show weaker phenological change than generalist species. We expected phenological advances in spring and delays in summer and fall. Lastly, we expected stronger shifts in above-ground versus below-ground nesters. Across all species, solitary bees have advanced their phenology by 0.43 days/decade. Since 1970, this advancement has increased fourfold to 1.62 days/decade. Solitary bees have also lengthened their flight period by 0.44 days/decade. Seasonality and nesting location explained variation in trends among species. Spring- and summer-active bees tended to advance their phenology, whereas fall-active bees tended to delay. Above-ground nesting species experienced stronger advances than below-ground nesting bees in spring; however, the opposite was true in summer. Diet breadth was not associated with patterns of phenological change. Our study has two key implications. First, an increasing activity period of bees across the flight season means that bee communities will potentially provide pollination services for a longer period of time during the year. And, since phenological trends in solitary bees can be explained by some ecological traits, our study provides insight into mechanisms underpinning population viability of insect pollinators in a changing world.
Collapse
Affiliation(s)
- Nicholas N Dorian
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Max W McCarthy
- Department of Biology, Tufts University, Medford, Massachusetts, USA.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
15
|
Prather RM, Dalton RM, barr B, Blumstein DT, Boggs CL, Brody AK, Inouye DW, Irwin RE, Martin JGA, Smith RJ, Van Vuren DH, Wells CP, Whiteman HH, Inouye BD, Underwood N. Current and lagged climate affects phenology across diverse taxonomic groups. Proc Biol Sci 2023; 290:20222181. [PMID: 36629105 PMCID: PMC9832555 DOI: 10.1098/rspb.2022.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.
Collapse
Affiliation(s)
- Rebecca M. Prather
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Rebecca M. Dalton
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - billy barr
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol L. Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alison K. Brody
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien G. A. Martin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 9A7
| | - Rosemary J. Smith
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Dirk H. Van Vuren
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Caitlin P. Wells
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Howard H. Whiteman
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Brian D. Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Nora Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
16
|
Valdés A, Helmutsdóttir VF, Marteinsdottir B, Ehrlén J. Selection against early flowering in geothermally heated soils is associated with pollen but not prey availability in a carnivorous plant. AMERICAN JOURNAL OF BOTANY 2022; 109:1693-1701. [PMID: 35971628 PMCID: PMC9826420 DOI: 10.1002/ajb2.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
PREMISE In high-latitude environments, plastic responses of phenology to increasing spring temperatures allow plants to extend growing seasons while avoiding late frosts. However, evolved plasticity might become maladaptive if climatic conditions change and spring temperatures no longer provide reliable cues for conditions important for fitness. Maladaptative phenological responses might be related to both abiotic factors and mismatches with interacting species. When mismatches arise, we expect selection to favor changes in phenology. METHODS We combined observations along a soil temperature gradient in a geothermally heated area with pollen and prey supplementation experiments and examined how phenotypic selection on flowering time in the carnivorous plant Pinguicula vulgaris depends on soil temperature, and pollen and prey availability. RESULTS Flowering advanced and fitness decreased with increasing soil temperature. However, in pollen-supplemented plants, fitness instead increased with soil temperature. In heated soils, there was selection favoring later flowering, while earlier flowering was favored in unheated soils. This pattern remained also after artificially increasing pollen and prey availability. CONCLUSIONS Plant-pollinator mismatches can be an important reason why evolved plastic responses of flowering time to increasing spring temperatures become maladaptive under novel environmental conditions, and why there is selection to delay flowering. In our study, selection for later flowering remained after artificially increasing pollen availability, suggesting that abiotic factors also contribute to the observed selection. Identifying the factors that make evolved phenological responses maladaptive under novel conditions is fundamental for understanding and predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Alicia Valdés
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Vigdís F. Helmutsdóttir
- The Soil Conservation Service of Iceland851 HellaIceland
- Institute of Life and Environmental SciencesUniversity of Iceland102 ReykjavíkIceland
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| |
Collapse
|
17
|
Miller-Struttmann N, Miller Z, Galen C. Climate driven disruption of transitional alpine bumble bee communities. GLOBAL CHANGE BIOLOGY 2022; 28:6165-6179. [PMID: 36184909 DOI: 10.1111/gcb.16348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/16/2023]
Abstract
Pollinators at high elevations face multiple threats from climate change including heat stress, failure to phenological match advancing flower resources and competitive pressure from range-expanding species of lower elevations. We conducted long-term multi-site surveys of alpine bumble bees to determine how phenology of range-stable and range-expanding species is responding to climate change. We ask whether bumble bee responses generate mismatches with floral resources, and whether these mismatches in turn promote community disruption and potential species replacement. In alpine environments of the central Rocky Mountains, range-stable and range-expanding bumble bees exhibit phenological mismatches with flowering host plants due to earlier flowering of preferred resources under warmer spring temperatures. However, workers of range-stable species are more canalised in their foraging schedules, exploiting a relatively narrow portion of the flowering season. Specifically, range-stable species show less variance in phenology in response to temporally and spatially changing conditions than range-expanding ones. Because flowering duration drives the seasonal abundance of floral resources at the landscape scale, we hypothesize that canalisation of phenology in alpine bumble bees could reduce their access to earlier or later season flowers. Warmer conditions are decreasing abundances of range-stable alpine bumble bees above the timberline, increasing abundance of range-expanding species, and facilitating a novel and more species-diverse bumble bee community. However, this trend is not explained by greater phenological mismatch of range-stable bees. Results suggest that conversion of historic habitats for cold-adapted alpine bumble bee species into refugia for more heat-tolerant congeners is disrupting bumble bee communities at high elevations, though the precise mechanisms accounting for these changes are not yet known. If warming continues, we predict that the transient increase in diversity due to colonization by historically low-elevation species will likely give way to declines of alpine bumble bees in the central Rocky Mountains.
Collapse
Affiliation(s)
| | - Zachary Miller
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Candace Galen
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Xie Y, Thammavong HT, Park DS. The ecological implications of intra- and inter-species variation in phenological sensitivity. THE NEW PHYTOLOGIST 2022; 236:760-773. [PMID: 35801834 PMCID: PMC9796043 DOI: 10.1111/nph.18361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| | | | - Daniel S. Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
19
|
Keaveny EC, Dillon ME. Phat Queens Emerge Fashionably Late: Body Size and Condition Predict Timing of Spring Emergence for Queen Bumble Bees. INSECTS 2022; 13:870. [PMID: 36292818 PMCID: PMC9604070 DOI: 10.3390/insects13100870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
For insects, the timing of many life history events (phenology) depends on temperature cues. Body size is a critical mediator of insect responses to temperature, so may also influence phenology. The determinants of spring emergence of bumble bee queens are not well understood, but body size is likely important for several reasons. In fall, queens accumulate energy stores to fuel overwinter survival. Accumulation of fat stores prior to and depletion of fat stores during overwintering are likely size-dependent: larger queens can accumulate more lipids and have lower mass-specific metabolic rates. Therefore, larger queens and queens in relatively better condition may have delayed depletion of energy stores, allowing for later spring emergence. To test whether timing of spring emergence is associated with body size and condition, we captured 295 Bombus huntii queens in Laramie, WY, during the 2020 and 2021 growing seasons, weighed them, and measured intertegular width (a size metric unaffected by variation in feeding and hydration state). Early emerging queens were smaller than later emerging queens across years. Mass relative to intertegular width increased as the season progressed suggesting, as predicted, that body condition influences the timing of spring emergence for these crucial pollinators.
Collapse
Affiliation(s)
- Ellen C. Keaveny
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Michael E. Dillon
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
20
|
Song B, Sun L, Barrett SCH, Moles AT, Luo YH, Armbruster WS, Gao YQ, Zhang S, Zhang ZQ, Sun H. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. THE NEW PHYTOLOGIST 2022; 235:2054-2065. [PMID: 35611604 DOI: 10.1111/nph.18271] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The length of time a flower remains open and functional - floral longevity - governs important reproductive processes influencing pollination and mating and varies considerably among angiosperm species. However, little is known about large-scale biogeographic patterns and the correlates of floral longevity. Using published data on floral longevity from 818 angiosperm species in 134 families and 472 locations world-wide, we present the first global quantification of the latitudinal pattern of floral longevity and the relationships between floral longevity and a range of biotic and abiotic factors. Floral longevity exhibited a significant phylogenetic signal and was longer at higher latitudes in both northern and southern hemispheres, even after accounting for elevation. This latitudinal variation was associated with several biotic and abiotic variables. The mean temperature of the flowering season had the highest predictive power for floral longevity, followed by pollen number per flower. Surprisingly, compatibility status, flower size, pollination mode, and growth form had no significant effects on flower longevity. Our results suggest that physiological processes associated with floral maintenance play a key role in explaining latitudinal variation in floral longevity across global ecosystems, with potential implications for floral longevity under global climate change and species distributions.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Ya-Huang Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Yong-Qian Gao
- Yunnan Forestry Technological College, Kunming, 650224, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
21
|
Walters J, Zavalnitskaya J, Isaacs R, Szendrei Z. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100927. [PMID: 35500861 DOI: 10.1016/j.cois.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extreme heat events threaten the development, functioning, and success of bee pollinators and crops that rely on pollinators for high yields. While direct effects of extreme heat and climate warming have gained more attention, the indirect effects on bees and crops remain largely unexplored. Extreme heat can directly alter the nutritional value of floral rewards, which indirectly contributes to lower bee survival, development, and reproduction with implications for pollination. Phenological mismatches between bee activity and crop flowering are also expected. Heat-stressed crop plants with reduced floral rewards may reduce bee foraging and nesting, limiting pollination services. Understanding how extreme heat affects bee-crop interactions will be essential for resilient production of pollinator-dependent crops in this era of climate change.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Rauschkolb R, Li Z, Godefroid S, Dixon L, Durka W, Májeková M, Bossdorf O, Ensslin A, Scheepens JF. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. THE NEW PHYTOLOGIST 2022; 235:773-785. [PMID: 35357713 DOI: 10.1111/nph.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ongoing global warming, coupled with increased drought frequencies, together with other biotic drivers may have resulted in complex evolutionary adaptation. The resurrection approach, comparing ancestors raised from stored seeds with their contemporary descendants under common conditions, is a powerful method to test for recent evolution in plant populations. We used 21-26-yr-old seeds of four European plant species - Matthiola tricuspidata, Plantago crassifolia, Clinopodium vulgare and Leontodon hispidus - stored in seed banks together with re-collected seeds from their wild populations. To test for evolutionary changes, we conducted a glasshouse experiment that quantified heritable changes in plant responses to drought and simulated insect herbivory. In three out of the four studied species, we found evidence that descendants had evolved shorter life cycles through faster growth and flowering. Shifts in the osmotic potential and leaf dry matter content indicated that descendants also evolved increased drought tolerance. A comparison of quantitative genetic differentiation (QST ) vs neutral molecular differentiation (FST ) values, using double digest restriction-site associated DNA (ddRAD) genotyping data, suggested that directional selection, and therefore adaptive evolution, was underlying some of the observed phenotypic changes. In summary, our study revealed evolutionary changes in plant populations over the last decades that are consistent with adaptation of drought escape and tolerance as well as herbivory avoidance.
Collapse
Affiliation(s)
- Robert Rauschkolb
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Germany, Philosophenweg 16, 07743, Jena, Germany
| | - Zixin Li
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | | | - Lara Dixon
- Conservatoire Botanique National Méditerranéen de Porquerolles, 34 avenue Gambetta, 83400, Hyères, France
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Maria Májeková
- Plant Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Andreas Ensslin
- Conservatory and Botanic Garden of the City of Geneva, 1296, Chambésy, Geneva, Switzerland
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Shivanna KR. Climate change and its impact on biodiversity and human welfare. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9058818 DOI: 10.1007/s43538-022-00073-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K. R. Shivanna
- Ashoka Trust for Research in Ecology and the Environment, Srirampura, Jakkur Post, Bengaluru, 560064 India
| |
Collapse
|
24
|
Weaver SA, Mallinger RE. A specialist bee and its host plants experience phenological shifts at different rates in response to climate change. Ecology 2022; 103:e3658. [PMID: 35129842 DOI: 10.1002/ecy.3658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Changes in climate can alter the phenology of organisms, potentially decoupling partners within mutualisms. Previous studies have shown that plant and pollinator phenologies are shifting over time, but these shifts have primarily been documented for generalists and within small geographic regions, and the specific climatic cues regulating these shifts are not well-understood. We examined phenological shifts in a specialist pollinator and its host plant species over a 117-year study period using a digitized dataset of over 4000 unique collection records. We assess how climatic cues regulate these organisms' phenologies using PRISM weather data associated with each record. We tested the hypothesis that rates of phenological change would be greater at northern latitudes. We found that the phenology of the specialist bee pollinator Habropoda laboriosa is changing over time, but at different rates across its range. Specifically, phenology is advancing to a greater degree in more northern populations, with increasing phenological advances of 0.04 days/year with each degree of latitude, and with a delay in phenology in more southern populations. In contrast, only one species in the host plant genus Vaccinium is experiencing phenological change over time. For this plant, rates of change are also variable across latitudes, but in a pattern opposite that of the bee; while phenology is advancing across its range, rates of advance are highest in more southern populations, with decreasing phenological advances of 0.01 days/year with each degree of latitude. The phenologies of both the bee and three of four Vaccinium spp. were regulated primarily by spring temperature, with phenologies overall advancing with increasing temperature, and with the strongest responses shown by the bee in northern populations. Our study provides partial support for the hypothesis that phenologies advance most at northern latitudes, but demonstrates that pollinators and plants do not adhere similarly to this prediction. Additionally, we illustrate the potential for phenological mismatch between a specialist pollinator and its host plants by showing that plants and pollinators are advancing their phenologies at different rates across space and time and with differing responses to changing climatic cues.
Collapse
Affiliation(s)
- Sarah A Weaver
- Department of Entomology and Nematology, Gainesville, Florida, United States
| | - Rachel E Mallinger
- Department of Entomology and Nematology, Gainesville, Florida, United States
| |
Collapse
|
25
|
Slatyer RA, Umbers KDL, Arnold PA. Ecological responses to variation in seasonal snow cover. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13727. [PMID: 33636757 DOI: 10.1111/cobi.13727] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 05/23/2023]
Abstract
Seasonal snow is among the most important factors governing the ecology of many terrestrial ecosystems, but rising global temperatures are changing snow regimes and driving widespread declines in the depth and duration of snow cover. Loss of the insulating snow layer will fundamentally change the environment. Understanding how individuals, populations, and communities respond to different snow conditions is thus essential for predicting and managing future ecosystem change. We synthesized 365 studies that examined ecological responses to variation in winter snow conditions. This research encompasses a broad range of methods (experimental manipulations, measurement of natural snow gradients, and long-term monitoring), locations (35 countries), study organisms (plants, mammals, arthropods, birds, fish, lichen, and fungi), and response measures. Earlier snowmelt was consistently associated with advanced spring phenology in plants, mammals, and arthropods. Reduced snow depth often increased mortality or physical injury in plants, although there were few clear effects on animals. Neither snow depth nor snowmelt timing had clear or consistent directional effects on body size of animals or biomass of plants. However, because 96% of studies were from the northern hemisphere, the generality of these trends across ecosystems and localities is also unclear. We identified substantial research gaps for several taxonomic groups and response types; research on wintertime responses was notably scarce. Future research should prioritize examination of the mechanisms underlying responses to changing snow conditions and the consequences of those responses for seasonally snow-covered ecosystems.
Collapse
Affiliation(s)
- Rachel A Slatyer
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kate D L Umbers
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pieter A Arnold
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
26
|
Finn DS, Johnson SL, Gerth WJ, Arismendi I, Li JL. Spatiotemporal patterns of emergence phenology reveal complex species‐specific responses to temperature in aquatic insects. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Debra S. Finn
- Department of Biology Missouri State University Springfield Missouri USA
| | - Sherri L. Johnson
- U.S. Forest Service Pacific Northwest Research Station Corvallis Oregon USA
| | - William J. Gerth
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Ivan Arismendi
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Judith L. Li
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| |
Collapse
|
27
|
Foley T, Swann DE, Sotelo G, Perkins N, Winkler DE. Asynchronous flowering patterns in saguaro cacti (
Carnegiea gigantea
). Ecosphere 2021. [DOI: 10.1002/ecs2.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Theresa Foley
- Sonora Environmental Research Institute, Inc. (SERI) P.O. Box 65782 Tucson Arizona 85728 USA
| | - Don E. Swann
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Guadalupe Sotelo
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Nicholas Perkins
- Saguaro National Park 3693 South Old Spanish Trail Tucson Arizona 85748 USA
| | - Daniel E. Winkler
- U.S. Geological Survey Southwest Biological Science Center Tucson Arizona 85719 USA
| |
Collapse
|
28
|
Slominski AH, Burkle LA. Asynchrony between solitary bee emergence and flower availability reduces flower visitation rate and may affect offspring size. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Jerome DK, Petry WK, Mooney KA, Iler AM. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology. GLOBAL CHANGE BIOLOGY 2021; 27:5054-5069. [PMID: 34265142 DOI: 10.1111/gcb.15803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Organisms use environmental cues to align their phenology-the timing of life events-with sets of abiotic and biotic conditions that favor the successful completion of their life cycle. Climate change has altered the environmental cues organisms use to track climate, leading to shifts in phenology with the potential to affect a variety of ecological processes. Understanding the drivers of phenological shifts is critical to predicting future responses, but disentangling the effects of temperature from precipitation on phenology is often challenging because they tend to covary. We addressed this knowledge gap in a high-elevation environment where phenological shifts are associated with both the timing of spring snow melt and temperature. We factorially crossed early snow melt and passive warming treatments to (1) disentangle the effects of snow melt timing and warming on the phenology of flowering and fruiting and reproductive success in three subalpine plant species (Delphinium nuttallianum, Valeriana edulis, and Potentilla pulcherrima); and (2) assess whether snow melt acts via temperature accumulation or some other aspect of the environment (e.g., soil moisture) to affect phenological events. Both the timing and duration of flowering and fruiting responded to the climate treatments, but the effect of snow melt timing and warming varied among species and phenological stages. The combined effects of the treatments on phenology were always additive, and the snow melt treatment often affected phenology even when the warming treatment did not. Despite marked responses of phenology to climate manipulations, the species showed little change in reproductive success, with only one species producing fewer seeds in response to warming (Delphinium, -56%). We also found that snow melt timing can act both through temperature accumulation and as a distinct cue for phenology, and these effects are not mutually exclusive. Our results show that one environmental cue, here snow melt timing, may act through multiple mechanisms to shift phenology.
Collapse
Affiliation(s)
- Diana K Jerome
- Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - William K Petry
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kailen A Mooney
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Ecology & Evolutionary Biology, University of California, Irvine, California, USA
| | - Amy M Iler
- Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
30
|
McCain CM, Garfinkel CF. Climate change and elevational range shifts in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:111-118. [PMID: 34175465 DOI: 10.1016/j.cois.2021.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
On mountains, unique in their steep and rapid climatic gradients, many insects are shifting their elevational range limits to track recent temperature change. In a review of the range shift literature to date, most of the 1478 montane insect populations tested so far are shifting to higher elevations, but there is conspicuous variation in the responses. We discuss the impact of study methodology as well as potential abiotic and biotic factors that may underlie this variation in climate change response. We encourage more empirical studies spanning greater insect biodiversity and directly testing how variation in species' traits, biogeography, and abiotic-biotic context shapes variation in range shift responses.
Collapse
Affiliation(s)
- Christy M McCain
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA; CU Museum of Natural History, University of Colorado, Boulder, CO 80309 USA.
| | - Chloe F Garfinkel
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
31
|
Konvicka M, Kuras T, Liparova J, Slezak V, Horázná D, Klečka J, Kleckova I. Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains. PeerJ 2021; 9:e12021. [PMID: 34532158 PMCID: PMC8404571 DOI: 10.7717/peerj.12021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Low-elevation mountains represent unique model systems to study species endangered by climate warming, such as subalpine and alpine species of butterflies. We aimed to test the effect of climate variables experienced by Erebia butterflies during their development on adult abundances and phenology, targeting the key climate factors determining the population dynamics of mountain insects. We analysed data from a long-term monitoring of adults of two subalpine and alpine butterfly species, Erebia epiphron and E. sudetica (Nymphalidae: Satyrinae) in the Jeseník Mts and Krkonoše Mts (Czech Republic). Our data revealed consistent patterns in their responses to climatic conditions. Lower precipitation (i.e., less snow cover) experienced by overwintering larvae decreases subsequent adult abundances. Conversely, warmer autumns and warmer and drier springs during the active larval phase increase adult abundances and lead to earlier onset and extended duration of the flight season. The population trends of these mountain butterflies are stable or even increasing. On the background of generally increasing temperatures within the mountain ranges, population stability indicates dynamic equilibrium of positive and detrimental consequences of climate warming among different life history stages. These contradictory effects warn against simplistic predictions of climate change consequences on mountain species based only on predicted increases in average temperature. Microclimate variability may facilitate the survival of mountain insect populations, however the availability of suitable habitats will strongly depend on the management of mountain grasslands.
Collapse
Affiliation(s)
- Martin Konvicka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| | - Tomas Kuras
- Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Liparova
- Institute of Entomology, Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| | - Vit Slezak
- Jeseníky Protected Landscape Area Administration, Jesenik, Czech Republic
| | - Dita Horázná
- Institute of Entomology, Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| | - Jan Klečka
- Institute of Entomology, Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| | - Irena Kleckova
- Institute of Entomology, Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| |
Collapse
|
32
|
From the ground up: Building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Global Warming, Advancing Bloom and Evidence for Pollinator Plasticity from Long-Term Bee Emergence Monitoring. INSECTS 2021; 12:insects12050457. [PMID: 34065667 PMCID: PMC8155920 DOI: 10.3390/insects12050457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Common experience has it that natural seasonal events are earlier in some years and later in others. In temperate zones, these events often seem to be timed by some combination of winter chill hours followed by cumulative warmth, variables which vary with a year’s weather. Over the course of decades, monitored annual bloom dates of a variety of wildflower species varies over 4–8-week ranges. This study reports annual emergence dates of four wild species of ground-nesting bees recorded over 12–24 years. Their first emergence ranged over 4–6 weeks, comparable to wildflowers and in part relatable to the same thermal cues used by plants. Global warming is advancing seasonal events, notably flowering, but it appears that native bees have the phenological flexibility to maintain their floral associations and critical pollination services both in wild and agricultural settings. Abstract Global warming is extending growing seasons in temperate zones, yielding earlier wildflower blooms. Short-term field experiments with non-social bees showed that adult emergence is responsive to nest substrate temperatures. Nonetheless, some posit that global warming will decouple bee flight and host bloom periods, leading to pollination shortfalls and bee declines. Resolving these competing scenarios requires evidence for bees’ natural plasticity in their annual emergence schedules. This study reports direct observations spanning 12–24 years for annual variation in the earliest nesting or foraging activities by 1–4 populations of four native ground-nesting bees: Andrena fulva (Andrenidae), Halictus rubicundus (Halictidae), Habropoda laboriosa and Eucera (Peponapis) pruinosa (Apidae). Calendar dates of earliest annual bee activity ranged across 25 to 45 days, approximating reported multi-decadal ranges for published wildflower bloom dates. Within a given year, the bee H. rubicundus emerged in close synchrony at multiple local aggregations, explicable if meteorological factors cue emergence. Emergence dates were relatable to thermal cues, such as degree day accumulation, soil temperature at nesting depth, and the first pulse of warm spring air temperatures. Similar seasonal flexibilities in bee emergence and wildflower bloom schedules bodes well for bees and bloom to generally retain synchrony despite a warming climate. Future monitoring studies can benefit from several simple methodological improvements.
Collapse
|
34
|
Wong LH, Forrest JRK. The earlier the better? Nesting timing and reproductive success in subalpine cavity-nesting bees. J Anim Ecol 2021; 90:1353-1366. [PMID: 33656748 DOI: 10.1111/1365-2656.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Reproductive timing can affect an organism's production of offspring and its offspring's success, both of which contribute to its overall fitness. In seasonal environments, the timing of reproductive activity may be restricted to short periods of the year owing to numerous potential selective pressures such as variation in daylength, weather, food availability, predation or competition. We documented the relationships between reproductive timing and individual reproductive success (total reproductive output and offspring success) in subalpine populations of five cavity-nesting solitary bee species. We also examined the relationships between bee reproductive success and environmental variables that are likely ultimate drivers of bee phenology in subalpine environments (i.e. seasonality of floral resource abundance and temperature). Over 6 years, we recorded solitary bee nesting timing, egg production and offspring success using artificial nesting structures ('trap-nests') established at multiple study sites. We also quantified floral resources and recorded temperature throughout growing seasons. Bees nesting earlier in the season exhibited greater reproductive success. Reproductive output generally increased with floral abundance, although this relationship was weak and only significant for some bee species. Elevated temperatures were associated with increased nest construction rate, but not with greater reproductive output. These contrasting effects of temperature may have been driven by the negative relationship between temperature and bee longevity. Bees who nested for shorter durations of time (a proxy for longevity) produced fewer offspring, and individuals exhibiting the shortest nesting durations were also those that began nesting late in the season. Overall, bees who initiated nesting early and sustained activity for a long duration had the highest reproductive output. This work documents the relationship between reproductive phenology and fitness in wild insect populations and highlights the ways in which organisms can cope with the challenges of living in seasonal and highly variable environments.
Collapse
Affiliation(s)
- Lydia H Wong
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| |
Collapse
|
35
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
Duque L, Poelman EH, Steffan-Dewenter I. Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115953. [PMID: 33190978 DOI: 10.1016/j.envpol.2020.115953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Collapse
Affiliation(s)
- Laura Duque
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700AA, Wageningen, the Netherlands
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
37
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
38
|
Khorsand RS, Awolaja O. Breeding System and Pollination of Thermopsis divaricarpa (Fabaceae: Papilionoideae) in the Southern Rocky Mountains. WEST N AM NATURALIST 2020. [DOI: 10.3398/064.080.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Roxaneh S. Khorsand
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, CO 80903
| | - Olufisayo Awolaja
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639
| |
Collapse
|
39
|
La Sorte FA, Graham CH. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J Anim Ecol 2020; 90:343-355. [PMID: 33107060 DOI: 10.1111/1365-2656.13345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
The seasonal movement of animals has been linked to seasonal variation in ecological productivity, and it has been hypothesized that primary consumers synchronize migration with vegetation phenology. Within temperate regions of the Northern Hemisphere, herbivorous bird species often track the phenology of vegetation greenness during spring migration. Phenological synchronization with vegetation greenness by migratory birds in other dietary guilds, across the full extent of their annual distributions during both spring and autumn migration, has not been explored. Here, we document population-level associations with a remotely sensed measure of vegetation greenness for 230 North American migratory bird species in seven dietary guilds across the full annual cycle using eBird occurrence information for the combined period 2006-2018. Evidence of phenological synchronization was strongest for omnivores, herbivores, herbivore-granivores and granivores during spring and autumn migration, except for omnivores in the west during spring migration. Strong evidence of synchronization was also observed for insectivores during spring migration and carnivores during spring and autumn migration that migrated across the entire breadth of the continent. The level of evidence declined for insectivores in the west and east during spring migration, and for nectarivores in the west during spring and autumn migration. Limited evidence was also found for insectivores in the east during autumn migration, insectivores in the west and the centre of the continent during spring and autumn migration, and carnivores in the west during spring migration. Carnivores in the west during autumn migration showed the weakest evidence of synchronization. We found broad support across an array of dietary guilds for phenological coupling between vegetation greenness and seasonal bird migration within North America. Our results highlight the potential for many migratory bird species to encounter phenological mismatches as vegetation phenology responds to climate change. Our findings emphasize the need to better understand the environmental cues that regulate migratory behaviour across dietary guilds, consumer levels and migration tactics.
Collapse
|
40
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
41
|
Stoner DC, Messmer TA, Larsen RT, Frey SN, Kohl MT, Thacker ET, Dahlgren DK. Using satellite-derived estimates of plant phenological rhythms to predict sage-grouse nesting chronology. Ecol Evol 2020; 10:11169-11182. [PMID: 33144957 PMCID: PMC7593141 DOI: 10.1002/ece3.6758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
The "green wave" hypothesis posits that during spring consumers track spatial gradients in emergent vegetation and associated foraging opportunities. This idea has largely been invoked to explain animal migration patterns, yet the general phenomenon underlies trends in vertebrate reproductive chronology as well. We evaluated the utility of this hypothesis for predicting spatial variation in nest initiation of greater sage-grouse (Centrocerus urophasianus), a species of conservation concern in western North America. We used the Normalized Difference Vegetation Index (NDVI) to map the green wave across elevation and then compiled dates and locations of >450 sage-grouse nests from 20 study sites (2000-2014) to model nest initiation as a function of the start of the growing season (SOS), defined here as the maximum daily rate of increase in NDVI. Individual sites were drawn from three ecoregions, distributed over 4.5° latitude, and spanning 2,300 m in elevation, which captured the climatic, edaphic, and floristic diversity of sagebrush ecosystems in the southern half of current sage-grouse range. As predicted, SOS displayed a significant, positive relationship with elevation, occurring 1.3 days later for each 100 m increase in elevation. In turn, sage-grouse nest initiation followed SOS by 22 ± 10 days (r2 = .57), with hatch dates falling on or just prior to the peak of the growing season. By timing nesting to the green wave, sage-grouse chicks hatched when the abundance of protein-rich invertebrate biomass is hypothesized to be nearing a seasonal high. This adaptation likely represents a strategy for maximizing reproductive success in the arid, variable environments that define sagebrush ecosystems. Given projected changes in climate and land use, these results can be used to predict periods of relative sensitivity to habitat disturbance for sage-grouse. Moreover, the near real-time availability of satellite imagery offers a heretofore underutilized means of mapping the green wave, planning habitat restoration, and monitoring range conditions.
Collapse
Affiliation(s)
- David C. Stoner
- Department of Wildland ResourcesUtah State UniversityLoganUTUSA
| | | | - Randy T. Larsen
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUTUSA
| | | | - Michel T. Kohl
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | - Eric T. Thacker
- Department of Wildland ResourcesUtah State UniversityLoganUTUSA
| | | |
Collapse
|
42
|
Baguette M, Bertrand JAM, Stevens VM, Schatz B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol Rev Camb Philos Soc 2020; 95:1630-1663. [PMID: 32954662 DOI: 10.1111/brv.12633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Adaptive radiations occur mostly in response to environmental variation through the evolution of key innovations that allow emerging species to occupy new ecological niches. Such biological innovations may play a major role in niche divergence when emerging species are engaged in reciprocal ecological interactions. To demonstrate coevolution is a difficult task; only a few studies have confirmed coevolution as driver of speciation and diversification. Herein we review current knowledge about bee orchid (Ophrys spp.) reproductive biology. We propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, comprising several hundred species, is due to coevolutionary dynamics between these plants and their pollinators. We suggest that pollination by sexual swindling used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic a sexually receptive female of one particular insect species, mainly bees. Male bees are first attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males then are lured by the flower shape, colour and hairiness, and attempt to copulate with the flower, which glues pollen onto their bodies. Pollen is later transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. In contrast to rewarding pollination strategies, Ophrys pollinators appear to be parasitized. Here we propose that this apparent parasitism is in fact a coevolutionary relationship between Ophrys and their pollinators. For plants, pollination by sexual swindling could ensure pollination efficiency and specificity, and gene flow among populations. For pollinators, pollination by sexual swindling could allow habitat matching and inbreeding avoidance. Pollinators might use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. In small populations, male pollinators would disperse once they have memorized the local diversity of sexual pseudo-pheromone bouquets or if all Ophrys flowers are fertilized and thus repel pollinators via production of repulsive pheromones that mimic those produced by fertilized female bees. We propose the following evolutionary scenario: Ophrys radiation is driven by strong intra-specific competition among Ophrys individuals for the attraction of species-specific pollinators, which is a consequence of the high cognitive abilities of pollinators. Male bees record the pheromone signatures of kin or of previously courted partners to avoid further copulation attempts, thereby inducing strong selection on Ophrys for variation in odour bouquets emitted by individual flowers. The resulting odour bouquets could by chance correspond to pseudo-pheromones of the females of another bee species, and thus attract a new pollinator. If such pollinator shifts occur simultaneously in several indivuals, pollen exchanges might occur and initiate speciation. To reinforce the attraction of the new pollinator and secure prezygotic isolation, the following step is directional selection on flower phenotypes (shape, colour and hairiness) towards a better match with the body of the pollinator's female. Pollinator shift and the resulting prezygotic isolation is adaptive for new Ophrys species because they may benefit from competitor-free space for limited pollinators. We end our review by proritizing several critical research avenues.
Collapse
Affiliation(s)
- Michel Baguette
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, F-75005, Paris, France.,Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Joris A M Bertrand
- LGDP (Laboratoire Génome et Développement des Plantes) UMR5096, Université de Perpignan Via Domitia -CNRS, F-66860, Perpignan, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Bertrand Schatz
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive) UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| |
Collapse
|
43
|
Stemkovski M, Pearse WD, Griffin SR, Pardee GL, Gibbs J, Griswold T, Neff JL, Oram R, Rightmyer MG, Sheffield CS, Wright K, Inouye BD, Inouye DW, Irwin RE. Bee phenology is predicted by climatic variation and functional traits. Ecol Lett 2020; 23:1589-1598. [DOI: 10.1111/ele.13583] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Michael Stemkovski
- Department of Biology & Ecology Center Utah State University 5305 Old Main Hill Logan UT 84322 USA
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
| | - William D. Pearse
- Department of Biology & Ecology Center Utah State University 5305 Old Main Hill Logan UT 84322 USA
- Department of Life Sciences Imperial College London, Silwood Park Campus Buckhurst Rd., Ascot Berkshire SL5 7PY UK
| | - Sean R. Griffin
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Integrative Biology University of Texas at Austin 2415 Speedway, Stop C0930 Austin TX 78712 USA
| | - Gabriella L. Pardee
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Integrative Biology University of Texas at Austin 2415 Speedway, Stop C0930 Austin TX 78712 USA
| | - Jason Gibbs
- Department of Entomology University of Manitoba Winnipeg Manitoba R3T 2N2Canada
| | - Terry Griswold
- USDA‐ARS Pollinating Insects Research UnitUtah State University Logan UT84322‐5310USA
| | - John L. Neff
- Central Texas Melittological Institute 7307 Running Rope Austin TX78731USA
| | - Ryan Oram
- Royal Saskatchewan Museum 2340 Albert Street Regina SaskatchewanS4P 2V7Canada
| | | | - Cory S. Sheffield
- Royal Saskatchewan Museum 2340 Albert Street Regina SaskatchewanS4P 2V7Canada
| | - Karen Wright
- Department of Entomology Texas A&M University 2475 TAMU College Station TX77845USA
| | - Brian D. Inouye
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Biological Science Florida State University Tallahassee FL32306USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Biology University of Maryland College Park MD20742USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Applied Ecology North Carolina State University Campus Box 7617 Raleigh NC27695USA
| |
Collapse
|
44
|
Werner CM, Stuble KL, Groves AM, Young TP. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 2020; 101:e03104. [PMID: 32455484 DOI: 10.1002/ecy.3104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/06/2020] [Accepted: 04/15/2020] [Indexed: 11/07/2022]
Abstract
Environmental conditions that vary from year to year can be strong drivers of ecological dynamics, including the composition of newly assembled communities. However, ecologists often chalk such dynamics up to "noise" in ecological experiments. Our lack of attention to such "year effects" hampers our understanding of contingencies in ecological assembly mechanisms and limits the generalizability of research findings. Here, we provide examples from published research demonstrating the importance of year effects during community assembly across study systems. We further quantify these year effects with two case studies-a grassland restoration experiment and a study of postfire conifer recruitment-finding that the effects of initiation year on community composition can dictate community as much, if not more, than the effects of experimental treatments or site. The evidence strongly suggests that year effects are pervasive and profound, and that year effects early in community assembly can drive strong and enduring divergence in community structure and function. Explicit attention to year effects in ecological research serves to illuminate basic ecological principles, allowing for better understanding of contingencies in ecology. These dynamics also have strong implications for applied ecological research, offering new insights into ecological restoration as well as future climate change.
Collapse
Affiliation(s)
- Chhaya M Werner
- Department of Physiological Diversity, Helmholtz Center for Environmental Research (UFZ), D-04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103, Leipzig, Germany.,Department of Ecology, University of Oulu, FI-90014, Oulu, Finland
| | | | - Anna M Groves
- Department of Plant Biology, Program in Ecology, Evolutionary Biology & Behavior, Michigan State University, East Lansing, Michigan, 48824, USA.,Discover Magazine, Kalmbach Media, Waukesha, Wisconsin, 53186, USA
| | - Truman P Young
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
| |
Collapse
|
45
|
Cariveau DP, Bruninga-Socolar B, Pardee GL. A review of the challenges and opportunities for restoring animal-mediated pollination of native plants. Emerg Top Life Sci 2020; 4:ETLS20190073. [PMID: 32556128 PMCID: PMC7326338 DOI: 10.1042/etls20190073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Ecological restoration is increasingly implemented to reverse habitat loss and concomitant declines in biological diversity. Typically, restoration success is evaluated by measuring the abundance and/or diversity of a single taxon. However, for a restoration to be successful and persistent, critical ecosystem functions such as animal-mediated pollination must be maintained. In this review, we focus on three aspects of pollination within ecological restorations. First, we address the need to measure pollination directly in restored habitats. Proxies such as pollinator abundance and richness do not always accurately assess pollination function. Pollen supplementation experiments, pollen deposition studies, and pollen transport networks are more robust methods for assessing pollination function within restorations. Second, we highlight how local-scale management and landscape-level factors may influence pollination within restorations. Local-scale management actions such as prescribed fire and removal of non-native species can have large impacts on pollinator communities and ultimately on pollination services. In addition, landscape context including proximity and connectivity to natural habitats may be an important factor for land managers and conservation practitioners to consider to maximize restoration success. Third, as climate change is predicted to be a primary driver of future loss in biodiversity, we discuss the potential effects climate change may have on animal-mediated pollination within restorations. An increased mechanistic understanding of how climate change affects pollination and incorporation of climate change predictions will help practitioners design stable, functioning restorations into the future.
Collapse
Affiliation(s)
- Daniel P Cariveau
- Department of Entomology, University of Minnesota, St. Paul, MN, U.S.A
| | | | | |
Collapse
|
46
|
Pashalidou FG, Lambert H, Peybernes T, Mescher MC, De Moraes CM. Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science 2020; 368:881-884. [PMID: 32439792 DOI: 10.1126/science.aay0496] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/31/2020] [Accepted: 04/10/2020] [Indexed: 01/26/2023]
Abstract
Maintaining phenological synchrony with flowers is a key ecological challenge for pollinators that may be exacerbated by ongoing environmental change. Here, we show that bumble bee workers facing pollen scarcity damage leaves of flowerless plants and thereby accelerate flower production. Laboratory studies revealed that leaf-damaging behavior is strongly influenced by pollen availability and that bee-damaged plants flower significantly earlier than undamaged or mechanically damaged controls. Subsequent outdoor experiments showed that the intensity of damage inflicted varies with local flower availability; furthermore, workers from wild colonies of two additional bumble bee species were also observed to damage plant leaves. These findings elucidate a feature of bumble bee worker behavior that can influence the local availability of floral resources.
Collapse
Affiliation(s)
- Foteini G Pashalidou
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.,UMR Agronomie, INRA, AgroParisTech, Universite Paris-Saclay, 78850 Thiverval- Grignon, France
| | - Harriet Lambert
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Peybernes
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| | - Consuelo M De Moraes
- Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
47
|
Sevenello M, Sargent RD, Forrest JRK. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest. Oecologia 2020; 193:475-488. [PMID: 32462408 DOI: 10.1007/s00442-020-04670-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
Climate warming could disrupt species interactions if organisms' phenologies respond to climate change at different rates. Phenologies of plants and insects can be sensitive to temperature and timing of snowmelt; however, many important pollinators including ground-nesting bees have been little studied in this context. Without knowledge of the environmental cues affecting phenologies of co-occurring species, we have little ability to predict how species assemblages, and species interactions, will be affected by climate change. Here, we studied a hardwood forest understory over six years, to determine how spring temperatures, snowmelt timing, and photoperiod influence the phenology of two spring wildflowers (Anemone spp. and Trillium grandiflorum), activity of ground-nesting bees, and their temporal overlap. Surface degree-day accumulation was a better predictor of phenology for Anemone spp. (plant) and Nomada (bees) than were day of year (a proxy for photoperiod) or snowmelt date, whereas Trillium flowering appeared most sensitive to photoperiodic cues. Activity periods of Andrena and Lasioglossum bees were equally well described by degree-day accumulation and day of year. No taxon's phenology was best predicted by snowmelt date. Despite these differences among taxa in their phenological responses, timing of bee activity and flowering responded similarly to variation in snowmelt date and early spring temperatures. Furthermore, temporal overlap between flowering and bee activity was similar over the years of this study and was unaffected by variability in snowmelt date or temperature. Nevertheless, the differences among some taxa in their phenological responses suggests that diverging temporal shifts are a possibility for the future.
Collapse
Affiliation(s)
- Manuel Sevenello
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, K1N 6N5, Canada.
| | - Risa D Sargent
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
48
|
Senior VL, Evans LC, Leather SR, Oliver TH, Evans KL. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study. GLOBAL CHANGE BIOLOGY 2020; 26:2814-2828. [PMID: 31985111 DOI: 10.1111/gcb.15015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/06/2019] [Indexed: 05/24/2023]
Abstract
Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter-annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics-particularly for insects. We use a 20 year study on a tri-trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local-scale aphid population dynamics. Warmer temperatures in mid-March to late-April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density-dependent compensation, from adverse impacts of the marked inter-annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.
Collapse
Affiliation(s)
- Vicki L Senior
- Animal and Plant Sciences Department, University of Sheffield, Sheffield, UK
| | - Luke C Evans
- School of Biological Sciences, University of Reading, Reading, UK
| | - Simon R Leather
- Centre for Integrated Pest Management, Harper Adams University, Newport, UK
| | - Tom H Oliver
- School of Biological Sciences, University of Reading, Reading, UK
| | - Karl L Evans
- Animal and Plant Sciences Department, University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Shima JS, Osenberg CW, Alonzo SH, Noonburg EG, Mitterwallner P, Swearer SE. Reproductive phenology across the lunar cycle: parental decisions, offspring responses, and consequences for reef fish. Ecology 2020; 101:e03086. [PMID: 32320474 DOI: 10.1002/ecy.3086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 11/10/2022]
Abstract
Most organisms reproduce in a dynamic environment, and life-history theory predicts that this can favor the evolution of strategies that capitalize on good times and avoid bad times. When offspring experience these environmental changes, fitness can depend strongly upon environmental conditions at birth and at later life stages. Consequently, fitness will be influenced by the reproductive decisions of parents (i.e., birth date effects) and developmental decisions (e.g., adaptive plasticity) of their offspring. We explored the consequences of these decisions using a highly iteroparous coral reef fish (the sixbar wrasse, Thalassoma hardwicke) and in a system where both parental and offspring environments vary with the lunar cycle. We tested the hypotheses that (1) reproductive patterns and offspring survival vary across the lunar cycle and (2) offspring exhibit adaptive plasticity in development time. We evaluated temporal variation in egg production from February to June 2017, and corresponding larval developmental histories (inferred from otolith microstructure) of successful settlers and surviving juveniles that were spawned during that same period. We documented lunar-cyclic variation in egg production (most eggs were spawned at the new moon). This pattern was at odds with the distribution of birth dates of settlers and surviving juveniles-most individuals that successfully survived to settlement and older stages were born during the full moon. Consequently, the probability of survival across the larval stage was greatest for offspring born close to the full moon, when egg production was at its lowest. Offspring also exhibited plasticity in developmental duration, adjusting their age at settlement to settle during darker portions of the lunar cycle than expected given their birth date. Offspring born near the new moon tended to be older and larger at settlement, and these traits conveyed a strong fitness advantage (i.e., a carryover effect) through to adulthood. We speculate that these effects (1) are shaped by a dynamic landscape of risk and reward determined by moonlight, which differentially influences adults and offspring, and (2) can explain the evolution of extreme iteroparity in sixbars.
Collapse
Affiliation(s)
- Jeffrey S Shima
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Craig W Osenberg
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, Georgia, 30602, USA
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California at Santa Cruz, Santa Cruz, California, USA
| | - Erik G Noonburg
- Biological Sciences, Florida Atlantic University, Davie, Florida, 33314, USA
| | - Pauline Mitterwallner
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Stephen E Swearer
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
50
|
Groves AM, Bauer JT, Brudvig LA. Lasting signature of planting year weather on restored grasslands. Sci Rep 2020; 10:5953. [PMID: 32249766 PMCID: PMC7136215 DOI: 10.1038/s41598-020-62123-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
Ecological restoration - the rebuilding of damaged or destroyed ecosystems - is a critical component of conservation efforts, but is hindered by inconsistent, unpredictable outcomes. We investigated a source of this variation that is anecdotally suggested by practitioners, but for which empirical evidence is rare: the weather conditions during the first growing season after planting. The idea of whether natural communities face long-term consequences from conditions even many years in the past, called historical contingency, is a debated idea in ecological research. Using a large dataset (83 sites) across a wide geographic distribution (three states), we find evidence that precipitation and temperatures in the planting year (2-19 years before present) affected the relative dominance of the sown (native target species) and non-sown (mostly non-native) species. We find strong support for lasting planting year weather effects in restored tallgrass prairies, thereby supporting the historically contingent model of community assembly in a real-world setting.
Collapse
Affiliation(s)
- Anna M Groves
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.
- Discover Magazine, Kalmbach Media, Waukesha, WI, USA.
| | - Jonathan T Bauer
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biology, Institute for the Environment and Sustainability, Miami University, Oxford, OH, USA
| | - Lars A Brudvig
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA
| |
Collapse
|