1
|
Park H, Lee SM, Jeong SJ, Kweon YC, Shin GW, Kim WY, Lee-Kwon W, Park CY, Kwon HM. A Gain-of-Function Cleavage of TonEBP by Coronavirus NSP5 to Suppress IFN-β Expression. Cells 2024; 13:1614. [PMID: 39404379 PMCID: PMC11476177 DOI: 10.3390/cells13191614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Human coronaviruses (HCoVs) modify host proteins to evade the antiviral defense and sustain viral expansion. Here, we report tonicity-responsive enhancer (TonE) binding protein (TonEBP) as a cellular target of HCoVs. TonEBP was cleaved into N-terminal and C-terminal fragments (TonEBP NT and TonEBP CT, respectively) by NSP5 from all the HCoVs tested. This cleavage resulted in the loss of TonEBP's ability to stimulate the TonE-driven transcription. On the other hand, TonEBP NT promoted viral expansion in association with the suppression of IFN-β expression. TonEBP NT competed away NF-κB binding to the PRD II domain on the IFN-β promoter. A TonEBP mutant resistant to the cleavage by NSP5 did not promote the viral expansion nor suppress the IFN-β expression. These results demonstrate that HCoVs use a common strategy of targeting TonEBP to suppress the host immune defense.
Collapse
Affiliation(s)
- Hyun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Sang Min Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Su Ji Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Yeong Cheon Kweon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Go Woon Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Whi Young Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Whaseon Lee-Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| | - Chan Young Park
- Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyug Moo Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.P.); (S.M.L.); (S.J.J.); (Y.C.K.)
| |
Collapse
|
2
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
4
|
Favoino E, Grapsi E, Barbuti G, Liakouli V, Ruscitti P, Foti C, Giacomelli R, Perosa F. Systemic sclerosis and primary biliary cholangitis share an antibody population with identical specificity. Clin Exp Immunol 2023; 212:32-38. [PMID: 36715304 PMCID: PMC10081109 DOI: 10.1093/cei/uxad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Anti-centromere (ACA) and antimitochondrial antibodies (AMA) are specific for limited-cutaneous systemic sclerosis (lcSSc) and primary biliary cholangitis (PBC), respectively, and can coexist in up to 25 and 30% of SSc and PBC patients. Here, we evaluated whether anti-centromeric protein A (CENP-A) antibodies cross-react with mitochondrial antigens. To this end, sera from two lcSSc patients (pt1 and pt4), one of them (pt4) also affected by PBC, were used as the source of ACA, previously shown to recognize different groups of amino acids (motifs) in the CENP-A region spanning amino acids 1-17 (Ap1-17). Pt1 and pt4 Ap1-17-specific IgG were purified by affinity-chromatography on insolubilized Ap1-17-peptide column and tested by western blotting with nuclear and cytoplasmic protein extract from HeLa cells. Immunoreactive proteins were identified by mass spectrometry and validated by immunodot. The results showed that affinity-purified SSc/PBC pt4 anti-Ap1-17 and not SSc pt1 anti-Ap1-17 Ab, specifically cross-reacted with the E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC-E2), the major mitochondrial autoantigen in PBC. Sequence homology analysis indicated that the motif A-x-x-P-x-A-P recognized by pt4 anti-Ap1-17 IgG and shared by CENP-A and PDC-E2, is also expressed by some members of the Human Herpesvirus family, suggesting that they may trigger the production of these cross-reacting antibodies.
Collapse
Affiliation(s)
- Elvira Favoino
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Ettore Grapsi
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Giovanna Barbuti
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Department of Precision Medicine, Rheumatology Section, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L’Aquila, L’Aquila, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari Medical School, Bari, Italy
| | - Roberto Giacomelli
- Department of Medicine, Rheumatology and Immunology Unit, University of Rome “Campus Biomedico”, Rome, Italy
| | - Federico Perosa
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| |
Collapse
|
5
|
Castillo G, Nelli RK, Phadke KS, Bravo-Parra M, Mora-Díaz JC, Bellaire BH, Giménez-Lirola LG. SARS-CoV-2 Is More Efficient than HCoV-NL63 in Infecting a Small Subpopulation of ACE2+ Human Respiratory Epithelial Cells. Viruses 2023; 15:v15030736. [PMID: 36992445 PMCID: PMC10059808 DOI: 10.3390/v15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Human coronavirus (HCoV)-NL63 is an important contributor to upper and lower respiratory tract infections, mainly in children, while severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, can cause lower respiratory tract infections, and more severe, respiratory and systemic disease, which leads to fatal consequences in many cases. Using microscopy, immunohistochemistry (IHC), virus-binding assay, reverse transcriptase qPCR (RT-qPCR) assay, and flow cytometry, we compared the characteristics of the susceptibility, replication dynamics, and morphogenesis of HCoV-NL63 and SARS-CoV-2 in monolayer cultures of primary human respiratory epithelial cells (HRECs). Less than 10% HRECs expressed ACE2, and SARS-CoV-2 seemed much more efficient than HCoV-NL63 at infecting the very small proportion of HRECs expressing the ACE2 receptors. Furthermore, SARS-CoV-2 replicated more efficiently than HCoV-NL63 in HREC, which correlates with the cumulative evidence of the differences in their transmissibility.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Marlene Bravo-Parra
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
6
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
7
|
Human Air-Liquid-Interface Organotypic Airway Cultures Express Significantly More ACE2 Receptor Protein and Are More Susceptible to HCoV-NL63 Infection than Monolayer Cultures of Primary Respiratory Epithelial Cells. Microbiol Spectr 2022; 10:e0163922. [PMID: 35863002 PMCID: PMC9431431 DOI: 10.1128/spectrum.01639-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human coronavirus NL63 (HCoV-NL63) is commonly associated with mild respiratory tract infections in infants, being that the respiratory epithelial cells are the main target for infection and initial replication of this virus. Standard immortalized cells are highly permissive to HCoV-NL63, and they are routinely used for isolation and propagation of the virus from clinical specimens. However, these cell lines are not the natural cell target of the virus and lack sufficient complexity to mimic the natural infection process in vivo. This study comparatively evaluated the differences on the susceptibility to HCoV-NL63 infection and virus replication efficiency of submerged monolayer cultures of LLC-MK2 and primary human respiratory epithelial cells (HRECs) and organotypic airway cultures of respiratory cells (ALI-HRECs). Productive viral infection and growth kinetics were assessed by morphologic examination of cytopathic effects, immunofluorescence, reverse transcription quantitative real-time PCR, and flow cytometry. Results from this study showed higher susceptibility to HCoV-NL63 infection and replication in LLC-MK2 cells followed by ALI-HRECs, with very low susceptibility and no significant virus replication in HRECs. This susceptibility was associated with the expression levels of angiontensin-converting enzyme 2 (ACE2) receptor protein in LLC-MK2, ALI-HRECs, and HRECs, respectively. Remarkably, organotypic ALI-HREC cultures expressed significantly more ACE2 receptor protein and were more susceptible to HCoV-NL63 infection than monolayer cultures of HREC. The ACE2 receptor is, therefore, a critical factor for susceptibility to HCoV-NL63 infection and replication, as is the type of culture used during infection studies. IMPORTANCE HCoV-NL63 is widespread globally, accounting for a significant number of respiratory infections in children and adults. HCoV-NL63 gains entrance into respiratory epithelial cells via the ACE2 receptor, the same cell receptor used by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Thus, HCoV-NL63 has been suggested as safe surrogate for studying disease mechanisms and therapeutic interventions against SARS-like CoVs, while working under BSL-2 conditions. The present study not only showed the critical role of ACE2 for effective HCoV-NL63 infection and replication, but also shed light on the need of more refined and complex in vitro organotypic models that recapitulate the proxy of air-liquid respiratory epithelia cell composition, structure, and functionality. These cultures have broaden virological studies toward improving our understanding of how coronaviruses cause disease and transmission not just within humans but also in animal populations.
Collapse
|
8
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a 'leaky state' of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.
Collapse
|
9
|
Oh C, Kim K, Araud E, Wang L, Shisler JL, Nguyen TH. A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads. WATER RESEARCH 2022; 212:118112. [PMID: 35091223 DOI: 10.1016/j.watres.2022.118112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Viruses are present at low concentrations in wastewater; therefore, an effective method for concentrating virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species, including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the final solution to that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency was significantly higher when calculated with virus titers than it was with genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk to humans who are inadvertently exposed to wastewater contaminated with infectious viruses. Furthermore, PCR inhibitors were not concentrated by PGM-MBs, suggesting that this tool will be successful for use with environmental samples. In addition, the PGM-MBs method is cost-effective (0.5 USD/sample) and has a fast turnaround time (3 h from virus concentration to genome quantification). Thus, this method can be implemented in high throughput facilities. Because of its strong performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, the PGM-MBs method can be successfully applied to WBE and ultimately provides valuable public health information.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States.
| | - Kyukyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, United States
| | - Elbashir Araud
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana-Champaign
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
10
|
Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CL pro). J Med Chem 2022; 65:2880-2904. [PMID: 34347470 PMCID: PMC8353992 DOI: 10.1021/acs.jmedchem.1c00598] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Starting from the MLPCN probe compound ML300, a structure-based optimization campaign was initiated against the recent severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). X-ray structures of SARS-CoV-1 and SARS-CoV-2 3CLpro enzymes in complex with multiple ML300-based inhibitors, including the original probe ML300, were obtained and proved instrumental in guiding chemistry toward probe compound 41 (CCF0058981). The disclosed inhibitors utilize a noncovalent mode of action and complex in a noncanonical binding mode not observed by peptidic 3CLpro inhibitors. In vitro DMPK profiling highlights key areas where further optimization in the series is required to obtain useful in vivo probes. Antiviral activity was established using a SARS-CoV-2-infected Vero E6 cell viability assay and a plaque formation assay. Compound 41 demonstrates nanomolar activity in these respective assays, comparable in potency to remdesivir. These findings have implications for antiviral development to combat current and future SARS-like zoonotic coronavirus outbreaks.
Collapse
Affiliation(s)
- Sang Hoon Han
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Christopher M. Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tarun Arya
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Woo-Jin Shin
- Cleveland Clinic Florida Research & Innovation Center, Port St. Lucie, FL, 34987, USA
| | - Joshua Maw
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Alice Hooper
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dhiraj P. Sonawane
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew R. Porter
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Breyanne E. Bannister
- Department of Pharmaceutical Science, Lipscomb University College of Pharmacy, Nashville, TN, 37204, USA
| | - Rachel D. Crouch
- Department of Pharmaceutical Science, Lipscomb University College of Pharmacy, Nashville, TN, 37204, USA
| | - A. Abigail Lindsey
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gabriella Lakatos
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Steven R. Martinez
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Joseph Alvarado
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Wendell S. Akers
- Department of Pharmaceutical Science, Lipscomb University College of Pharmacy, Nashville, TN, 37204, USA
| | - Nancy S. Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jae U. Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Global and Emerging Pathogens Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jonathan D. Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
11
|
Abstract
The coronaviruses belong to the family Coronaviridae in the order Nidovirales. CoVs are found globally and infect a variety of animals, causing illnesses that range from gastrointestinal tract infections, encephalitis and demyelination; and can be fatal. Humans coronaviruses (hCoVs) have traditionally been associated with self-limiting upper respiratory tract infections and gastrointestinal tract infections. In recent years, however, it has become increasingly evident that the hCoVs can cause more severe lower respiratory tract infections such as bronchitis, pneumonia and even acute respiratory distress syndrome (ARDS), and can lead to death. Seven CoVs are known to infect humans, with the four “common cold” CoVs circulating globally on a yearly basis. The remaining three are more pathogenic and have resulted in outbreaks with high mortality rates. This review focussed on the three pathogenic CoVs.
Collapse
|
12
|
Hoque MN, Sarkar MMH, Rahman MS, Akter S, Banu TA, Goswami B, Jahan I, Hossain MS, Shamsuzzaman AKM, Nafisa T, Molla MMA, Yeasmin M, Ghosh AK, Osman E, Alam SKS, Uzzaman MS, Habib MA, Mahmud ASM, Crandall KA, Islam T, Khan MS. SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts. Sci Rep 2021; 11:24042. [PMID: 34911967 PMCID: PMC8674272 DOI: 10.1038/s41598-021-03245-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Murshed Hasan Sarkar
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science Technology, Jashore, 7408, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - M Saddam Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Tasnim Nafisa
- National Institute of Laboratory Medicine and Referral Center, Dhaka, 1207, Bangladesh
| | - M Maruf Ahmed Molla
- National Institute of Laboratory Medicine and Referral Center, Dhaka, 1207, Bangladesh
| | - Mahmuda Yeasmin
- National Institute of Laboratory Medicine and Referral Center, Dhaka, 1207, Bangladesh
| | - Asish Kumar Ghosh
- National Institute of Laboratory Medicine and Referral Center, Dhaka, 1207, Bangladesh
| | - Eshrar Osman
- SciTech Consulting and Solutions, Dhaka, 1213, Bangladesh
| | - S K Saiful Alam
- Shaheed Tajuddin Ahmad Medical College, Gazipur, 1700, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh.
| | - Md Salim Khan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| |
Collapse
|
13
|
Zandi M, Farahani A, Zakeri A, Akhavan Rezayat S, Mohammadi R, Das U, Dimmock JR, Afzali S, Nakhaei MA, Doroudi A, Erfani Y, Soltani S. Clinical Symptoms and Types of Samples Are Critical Factors for the Molecular Diagnosis of Symptomatic COVID-19 Patients: A Systematic Literature Review. Int J Microbiol 2021; 2021:5528786. [PMID: 34545287 PMCID: PMC8449726 DOI: 10.1155/2021/5528786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Currently, a novel coronavirus found in 2019 known as SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Various parameters including clinical manifestations and molecular evaluation can affect the accuracy of diagnosis. This review aims to discuss the various clinical symptoms and molecular evaluation results in COVID-19 patients, to point out the importance of onset symptoms, type, and timing of the sampling, besides the methods that are used for detection of SARS-CoV-2. METHODS A systematic literature review of current articles in the Web of Science, PubMed, Scopus, and EMBASE was conducted according to the PRISMA guideline. RESULTS Of the 12946 patients evaluated in this investigation, 7643 were confirmed to be COVID-19 positive by molecular techniques, particularly the RT-PCR/qPCR combined technique (qRT-PCR). In most of the studies, all of the enrolled cases had 100% positive results for molecular evaluation. Among the COVID-19 patients who were identified as such by positive PCR results, most of them showed fever or cough as the primary clinical signs. Less common symptoms observed in clinically confirmed cases were hemoptysis, bloody sputum, mental disorders, and nasal congestion. The most common clinical samples for PCR-confirmed COVID-19 patients were obtained from throat, oropharyngeal, and nasopharyngeal swabs, while tears and conjunctival secretions seem to be the least common clinical samples for COVID-19 diagnosis among studies. Also, different conserved SARS-CoV-2 gene sequences could be targeted for qRT-PCR detection. The suggested molecular assay being used by most laboratories for the detection of SARS-CoV-2 is qRT-PCR. CONCLUSION There is a worldwide concern on the COVID-19 pandemic and a lack of well-managed global control. Hence, it is crucial to update the molecular diagnostics protocols for handling the situation. This is possible by understanding the available advances in assays for the detection of the SARS-CoV-2 infection. Good sampling procedure and using samples with enough viral loads, also considering the onset symptoms, may reduce the qRT-PCR false-negative results in symptomatic COVID-19 patients. Selection of the most efficient primer-probe for target genes and samples containing enough viral loads to search for the existence of SARS-CoV-2 helps detecting the virus on time using qRT-PCR.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Akhavan Rezayat
- Department of Health Economics and Management, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Mohammadi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Shervin Afzali
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mohammadvala Ashtar Nakhaei
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Alireza Doroudi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kalamar Ž, Markota A. Non-SARS-CoV-2 coronavirus severe acute respiratory failure. Minerva Anestesiol 2021; 88:84-85. [PMID: 34337926 DOI: 10.23736/s0375-9393.21.15977-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Žiga Kalamar
- Medical Intensive Care Unit, University Medical Centre Maribor, Maribor, Slovenia -
| | - Andrej Markota
- Medical Intensive Care Unit, University Medical Centre Maribor, Maribor, Slovenia
| |
Collapse
|
15
|
Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven pathogenic human coronaviruses. Rev Med Virol 2021; 32:e2282. [PMID: 34339073 DOI: 10.1002/rmv.2282] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
To date, seven human coronaviruses (HCoVs) have been detected: HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2. Four of these viruses, including HCoV-NL63, -229E, -HKU1 and -OC43, usually cause mild-to-moderate respiratory diseases with a seasonal pattern. Since 2000, three new HCoVs have emerged with a significant mortality rate. Although SARS-CoV and MERS-CoV caused an epidemic in some countries, SARS-CoV-2 escalated into a pandemic. All HCoVs can cause severe complications in the elderly and immunocompromised individuals. The bat origin of HCoVs, the presence of intermediate hosts and the nature of their viral replication suggest that other new coronaviruses may emerge in the future. Despite the fact that all HCoVs share similarities in viral replication, they differ in their accessory proteins, incubation period and pathogenicity. This study aims to review these differences between the seven HCoVs.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, Du M, Khatib A, Xiao J, Saeed A, El-Seedi HHR, Zhao C, Efferth T, El-Seedi HR. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153311. [PMID: 33067112 PMCID: PMC7455571 DOI: 10.1016/j.phymed.2020.153311] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Starting December 2019, mankind faced an unprecedented enemy, the COVID-19 virus. The world convened in international efforts, experiences and technologies in order to fight the emerging pandemic. Isolation, hygiene measure, diagnosis, and treatment are the most efficient ways of prevention and intervention nowadays. The health organizations and global care systems screened the available resources and offered recommendations of approved and proposed medications. However, the search for a specific selective therapy or vaccine against COVID-19 remains a challenge. METHODS A literature search was performed for the screening of natural and derived bio-active compounds which showed potent antiviral activity against coronaviruses using published articles, patents, clinical trials website (https://clinicaltrials.gov/) and web databases (PubMed, SCI Finder, Science Direct, and Google Scholar). RESULTS Through the screening for natural products with antiviral activities against different types of the human coronavirus, extracts of Lycoris radiata (L'Hér.), Gentiana scabra Bunge, Dioscorea batatas Decne., Cassia tora L., Taxillus chinensis (DC.), Cibotium barometz L. and Echinacea purpurea L. showed a promising effect against SARS-CoV. Out of the listed compound Lycorine, emetine dihydrochloride hydrate, pristimerin, harmine, conessine, berbamine, 4`-hydroxychalcone, papaverine, mycophenolic acid, mycophenolate mofetil, monensin sodium, cycloheximide, oligomycin and valinomycin show potent activity against human coronaviruses. Additionally, it is worth noting that some compounds have already moved into clinical trials for their activity against COVID-19 including fingolimod, methylprednisolone, chloroquine, tetrandrine and tocilizumab. CONCLUSION Natural compounds and their derivatives could be used for developing potent therapeutics with significant activity against SARS-COV-2, providing a promising frontline in the fighting against COVID-19.
Collapse
Affiliation(s)
- Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Nermeen Yosri
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed F El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Reem Ghonaim
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116024, China
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia; Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hesham R El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Association of endemic coronaviruses with nasopharyngeal metabolome and microbiota among infants with severe bronchiolitis: a prospective multicenter study. Pediatr Res 2021; 89:1594-1597. [PMID: 32937650 PMCID: PMC7960557 DOI: 10.1038/s41390-020-01154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023]
|
18
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 DOI: 10.20944/preprints202007.0613.v3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 PMCID: PMC8082124 DOI: 10.1017/s0950268821000790] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
Momtazi-Borojeni AA, Banach M, Reiner Ž, Pirro M, Bianconi V, Al-Rasadi K, Sahebkar A. Interaction Between Coronavirus S-Protein and Human ACE2: Hints for Exploring Efficient Therapeutic Targets to Treat COVID-19. Angiology 2021; 72:122-130. [PMID: 32864982 DOI: 10.1177/0003319720952284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the global expansion of coronavirus disease 2019 (COVID-19) and the declaration of its outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for vaccines and medicines to prevent and treat COVID-19. The responsible pathogen for the disease is the newly severe acute respiratory syndrome coronavirus (SARS-CoV) 2 belonging to the same family of viruses SARS-CoV and Middle East respiratory syndrome coronavirus that originally are zoonotic and have been associated with severe illness during the outbreaks in 2003 and 2012, respectively. The virulence of coronavirus strains is mainly associated with variations in surface proteins mediating cellular entry of the virus, which can help in finding effective therapeutic targets. In this review, we seek evidence showing the role of coronavirus spike protein (S-protein) and its potential cellular receptor, angiotensin-converting enzyme 2 (ACE2), during infection of coronaviruses, including the newly SARS-CoV-2 and its similar strain SARS-CoV. This review also discusses the therapeutic effect of inhibiting the renin-angiotensin system cascade, a target of ACE2, in patients having coronavirus with cardiovascular disease.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
- 37800Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Željko Reiner
- Department of Internal Medicine, 37631University Hospital Center Zagreb, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Abstract
The pandemic causing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally infected more than 50 million people and ∼1.2 million have succumbed to this deadly pathogen. With the vaccine trials still in clinical phases, mitigation of Coronavirus Disease 2019 (COVID-19) relies primarily on robust virus detection methods and subsequent quarantine measures. Hence, the importance of rapid, affordable and reproducible virus testing will serve the need to identify and treat infected subjects in a timely manner. Based on the type of diagnostic assay, the primary targets are viral genome (RNA) and encoded proteins. Currently, COVID-19 detection is performed using various molecular platforms as well as serodiagnostics that exhibit approximately 71% sensitivity. These methods encounter several limitations including sensitivity, specificity, availability of skilled expertise and instrument access. Saliva-based COVID-19 diagnostics are emerging as a superior alternative to nasal swabs because of the ease of sample collection, no interaction during sampling, and high viral titers during early stages of infection. In addition, SARS-CoV-2 is detected in the environment as aerosols associated with suspended particulate matter. Designing virus detection strategies in diverse samples will allow timely monitoring of virus spread in humans and its persistence in the environment. With the passage of time, advanced technologies are overcoming limitations associated with detection. Enhanced sensitivity and specificity of next-generation diagnostics are key features enabling improved prognostic care. In this comprehensive review, we analyze currently adopted advanced technologies and their concurrent use in the development of diagnostics for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Konno H, Akaji K. Preparation of SARS-CoV 3CL Protease and Synthesis of its Inhibitors. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University
| | | |
Collapse
|
23
|
Lang Y, Chen K, Li Z, Li H. The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery. Life Sci 2020; 282:118754. [PMID: 33189817 PMCID: PMC7658559 DOI: 10.1016/j.lfs.2020.118754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022]
Abstract
Betacoronaviruses are in one genera of coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), etc. These viruses threaten public health and cause dramatic economic losses. The nucleocapsid (N) protein is a structural protein of betacoronaviruses with multiple functions such as forming viral capsids with viral RNA, interacting with viral membrane protein to form the virus core with RNA, binding to several cellular kinases for signal transductions, etc. In this review, we highlighted the potential of the N protein as a suitable antiviral target from different perspectives, including structure, functions, and antiviral strategies for combatting betacoronaviruses.
Collapse
Affiliation(s)
- Yuekun Lang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Ke Chen
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
24
|
Stein RA, Young LM. From ACE2 to COVID-19: A multiorgan endothelial disease. Int J Infect Dis 2020; 100:425-430. [PMID: 32896660 PMCID: PMC7832810 DOI: 10.1016/j.ijid.2020.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; LaGuardia Community College, Department of Natural Sciences, City University of New York, New York, NY 11101, USA.
| | - Lauren M Young
- University of Chicago, Department of Internal Medicine, 5841 S Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Roy V, Fischinger S, Atyeo C, Slein M, Loos C, Balazs A, Luedemann C, Astudillo MG, Yang D, Wesemann DR, Charles R, Lafrate AJ, Feldman J, Hauser B, Caradonna T, Miller TE, Murali MR, Baden L, Nilles E, Ryan E, Lauffenburger D, Beltran WG, Alter G. SARS-CoV-2-specific ELISA development. J Immunol Methods 2020; 484-485:112832. [PMID: 32780998 PMCID: PMC7414735 DOI: 10.1016/j.jim.2020.112832] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Critical to managing the spread of COVID-19 is the ability to diagnose infection and define the acquired immune response across the population. While genomic tests for the novel Several Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) detect the presence of viral RNA for a limited time frame, when the virus is shed in the upper respiratory tract, tests able to define exposure and infection beyond this short window of detectable viral replication are urgently needed. Following infection, antibodies are generated within days, providing a durable read-out and archive of exposure and infection. Several antibody tests have emerged to diagnose SARS-CoV-2. Here we report on a qualified quantitative ELISA assay that displays all the necessary characteristics for high-throughput sample analysis. Collectively, this test offers a quantitative opportunity to define both exposure and levels of immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Matthew Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America; Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Corinne Luedemann
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Michael Gerino Astudillo
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Diane Yang
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Duane R Wesemann
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Richelle Charles
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - A John Lafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Blake Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Tim Caradonna
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Mandakolathur R Murali
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Lindsey Baden
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Eric Nilles
- Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Edward Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Douglas Lauffenburger
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Wilfredo Garcia Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, United States of America.
| |
Collapse
|
26
|
Yavarian J, Shafiei-Jandaghi NZ, Sadeghi K, Shatizadeh Malekshahi S, Salimi V, Nejati A, Aja-Minejad F, Ghavvami N, Saadatmand F, Mahfouzi S, Fateminasab G, Parhizgari N, Ahmadi A, Razavi K, Ghabeshi S, Saberian M, Zanjani E, Namazi F, Shahbazi T, Rezaie F, Erfani H, Gouya MM, Nasr Dadras M, Mokhtari Azad T. First Cases of SARS-CoV-2 in Iran, 2020: Case Series Report. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1564-1568. [PMID: 33083334 PMCID: PMC7554384 DOI: 10.18502/ijph.v49i8.3903] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Jan 2020, the outbreak of the 2019 novel coronavirus (SARS-CoV-2) in Wuhan, Hubei Province of China spread increasingly to other countries worldwide which WHO declared it as a public health emergency of international concern. Iran was included in the affected countries. Throat swab specimens were collected and tested by using real-time reverse transcription PCR (RT-PCR) kit targeting the E region for screening and RNA dependent RNA polymerase for confirmation. Conventional RT-PCR was conducted for the N region and the PCR products were sequenced by Sanger sequencing. The first seven cases of SARS-CoV-2 infections were identified in Qom, Iran. This report describes the clinical and epidemiological features of the first cases of SARS-CoV-2 confirmed in Iran. Future research should focus on finding the routes of transmission for this virus, including the possibility of transmission from foreign tourists to identify the possible origin of SARS-CoV-2 outbreak in Iran.
Collapse
Affiliation(s)
- Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aja-Minejad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavvami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Mahfouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Fateminasab
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akramsadat Ahmadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Razavi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zanjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Namazi
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Shahbazi
- Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farshid Rezaie
- Iranian Center for Communicable Disease Control, Tehran, Iran
| | - Hossein Erfani
- Iranian Center for Communicable Disease Control, Tehran, Iran
| | | | | | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Kaslow DC. Certainty of success: three critical parameters in coronavirus vaccine development. NPJ Vaccines 2020; 5:42. [PMID: 32509338 PMCID: PMC7248068 DOI: 10.1038/s41541-020-0193-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/24/2023] Open
Abstract
Vaccines for 17 viral pathogens have been licensed for use in humans. Previously, two critical biological parameters of the pathogen and the host–pathogen interaction—incubation period and broadly protective, relative immunogenicity—were proposed to account for much of the past successes in vaccine development, and to be useful in estimating the “certainty of success” of developing an effective vaccine for viral pathogens for which a vaccine currently does not exist. In considering the “certainty of success” in development of human coronavirus vaccines, particularly SARS-CoV-2, a third, related critical parameter is proposed—infectious inoculum intensity, at an individual-level, and force of infection, at a population-level. Reducing the infectious inoculum intensity (and force of infection, at a population-level) is predicted to lengthen the incubation period, which in turn is predicted to reduce the severity of illness, and increase the opportunity for an anamnestic response upon exposure to the circulating virus. Similarly, successfully implementing individual- and population-based behaviors that reduce the infectious inoculum intensity and force of infection, respectively, while testing and deploying COVID-19 vaccines is predicted to increase the “certainty of success” of demonstrating vaccine efficacy and controlling SARS-CoV-2 infection, disease, death, and the pandemic itself.
Collapse
Affiliation(s)
- David C Kaslow
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| |
Collapse
|
28
|
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30339-9. [PMID: 32081428 PMCID: PMC7092824 DOI: 10.1016/j.bbrc.2020.02.071] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
Abstract
2019-nCoV is a newly identified coronavirus with high similarity to SARS-CoV. We performed a structural analysis of the receptor binding domain (RBD) of spike glycoprotein responsible for entry of coronaviruses into host cells. The RBDs from the two viruses share 72% identity in amino acid sequences, and molecular simulation reveals highly similar ternary structures. However, 2019-nCoV has a distinct loop with flexible glycyl residues replacing rigid prolyl residues in SARS-CoV. Molecular modeling revealed that 2019-nCoV RBD has a stronger interaction with angiotensin converting enzyme 2 (ACE2). A unique phenylalanine F486 in the flexible loop likely plays a major role because its penetration into a deep hydrophobic pocket in ACE2. ACE2 is widely expressed with conserved primary structures throughout the animal kingdom from fish, amphibians, reptiles, birds, to mammals. Structural analysis suggests that ACE2 from these animals can potentially bind RBD of 2019-nCoV, making them all possible natural hosts for the virus. 2019-nCoV is thought to be transmitted through respiratory droplets. However, since ACE2 is predominantly expressed in intestines, testis, and kidney, fecal-oral and other routes of transmission are also possible. Finally, antibodies and small molecular inhibitors that can block the interaction of ACE2 with RBD should be developed to combat the virus.
Collapse
Affiliation(s)
- Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhizhuang Joe Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
29
|
Wang Y, Li X, Liu W, Gan M, Zhang L, Wang J, Zhang Z, Zhu A, Li F, Sun J, Zhang G, Zhuang Z, Luo J, Chen D, Qiu S, Zhang L, Xu D, Mok CKP, Zhang F, Zhao J, Zhou R, Zhao J. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg Microbes Infect 2020; 9:246-255. [PMID: 31996093 PMCID: PMC7034077 DOI: 10.1080/22221751.2020.1717999] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is primarily associated with common cold in children, elderly and immunocompromised individuals. Outbreaks caused by HCoV-NL63 are rare. Here we report a cluster of HCoV-NL63 cases with severe lower respiratory tract infection that arose in Guangzhou, China, in 2018. Twenty-three hospitalized children were confirmed to be HCoV-NL63 positive, and most of whom were hospitalized with severe pneumonia or acute bronchitis. Whole genomes of HCoV-NL63 were obtained using next-generation sequencing. Phylogenetic and single amino acid polymorphism analyses showed that this outbreak was associated with two subgenotypes (C3 and B) of HCoV-NL63. Half of patients were identified to be related to a new subgenotype C3. One unique amino acid mutation at I507 L in spike protein receptor binding domain (RBD) was detected, which segregated this subgenotype C3 from other known subgenotypes. Pseudotyped virus bearing the I507 L mutation in RBD showed enhanced entry into host cells as compared to the prototype virus. This study proved that HCoV-NL63 was undergoing continuous mutation and has the potential to cause severe lower respiratory disease in humans.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guoxian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiaying Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dehui Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Duo Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fuchun Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Phelps KL, Hamel L, Alhmoud N, Ali S, Bilgin R, Sidamonidze K, Urushadze L, Karesh W, Olival KJ. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses 2019; 11:v11030240. [PMID: 30857374 PMCID: PMC6466127 DOI: 10.3390/v11030240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bat research networks and viral surveillance are assumed to be at odds due to seemingly conflicting research priorities. Yet human threats that contribute to declines in bat populations globally also lead to increased transmission and spread of bat-associated viruses, which may pose a threat to global health and food security. In this review, we discuss the importance of and opportunities for multidisciplinary collaborations between bat research networks and infectious disease experts to tackle shared threats that jeopardize bat conservation as well as human and animal health. Moreover, we assess research effort on bats and bat-associated viruses globally, and demonstrate that Western Asia has limited published research and represents a gap for coordinated bat research. The lack of bat research in Western Asia severely limits our capacity to identify and mitigate region-specific threats to bat populations and detect interactions between bats and incidental hosts that promote virus spillover. We detail a regional initiative to establish the first bat research network in Western Asia (i.e., the Western Asia Bat Research Network, WAB-Net), with the aim of integrating ecological research on bats with virus surveillance to find “win-win” solutions that promote bat conservation and safeguard public and animal health across the region.
Collapse
Affiliation(s)
| | - Luke Hamel
- EcoHealth Alliance, New York, NY 10001, USA.
| | - Nisreen Alhmoud
- Biosafety and Biosecurity Center, Royal Scientific Society, 11941 Amman, Jordan.
| | - Shahzad Ali
- Department of Wildlife & Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Rasit Bilgin
- Institute of Environmental Sciences, Boğaziçi University, 34342 Istanbul, Turkey.
| | | | - Lela Urushadze
- National Center for Disease Control & Public Health, 0198 Tbilisi, Georgia.
| | | | | |
Collapse
|
31
|
Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63. Viruses 2019; 11:v11010043. [PMID: 30634419 PMCID: PMC6356407 DOI: 10.3390/v11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 01/05/2019] [Indexed: 01/17/2023] Open
Abstract
Known human coronaviruses are believed to have originated in animals and made use of intermediate hosts for transmission to humans. The intermediate hosts of most of the human coronaviruses are known, but not for HCoV-NL63. This study aims to assess the possible role of some major domestic livestock species as intermediate hosts of HCoV-NL63. We developed a testing algorithm for high throughput screening of livestock sera with ELISA and confirmation with recombinant immunofluorescence assay testing for antibodies against HCoV-NL63 in livestock. Optimization of the ELISA showed a capability of the assay to significantly distinguish HCoV-NL63 from HCoV-229E (U = 27.50, p < 0.001) and HCoV-OC43 (U = 55.50, p < 0.001) in coronavirus-characterized sera. Evaluation of the assay with collected human samples showed no significant difference in mean optical density values of immunofluorescence-classified HCoV-NL63-positive and HCoV-NL63-negative samples (F (1, 215) = 0.437, p = 0.509). All the top 5% (n = 8) most reactive human samples tested by ELISA were HCoV-NL63 positive by immunofluorescence testing. In comparison, only a proportion (84%, n = 42) of the top 25% were positive by immunofluorescence testing, indicating an increased probability of the highly ELISA reactive samples testing positive by the immunofluorescence assay. None of the top 5% most ELISA reactive livestock samples were positive for HCoV-NL63-related viruses by immunofluorescence confirmation. Ghanaian domestic livestock are not likely intermediate hosts of HCoV-NL63-related coronaviruses.
Collapse
|
32
|
MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018; 10:v10020093. [PMID: 29495250 PMCID: PMC5850400 DOI: 10.3390/v10020093] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development.
Collapse
|
33
|
Abstract
The four endemic human coronaviruses HCoV-229E, -NL63, -OC43, and -HKU1 contribute a considerable share of upper and lower respiratory tract infections in adults and children. While their clinical representation resembles that of many other agents of the common cold, their evolutionary histories, and host associations could provide important insights into the natural history of past human pandemics. For two of these viruses, we have strong evidence suggesting an origin in major livestock species while primordial associations for all four viruses may have existed with bats and rodents. HCoV-NL63 and -229E may originate from bat reservoirs as assumed for many other coronaviruses, but HCoV-OC43 and -HKU1 seem more likely to have speciated from rodent-associated viruses. HCoV-OC43 is thought to have emerged from ancestors in domestic animals such as cattle or swine. The bovine coronavirus has been suggested to be a possible ancestor, from which HCoV-OC43 may have emerged in the context of a pandemic recorded historically at the end of the 19th century. New data suggest that HCoV-229E may actually be transferred from dromedary camels similar to Middle East respiratory syndrome (MERS) coronavirus. This scenario provides important ecological parallels to the present prepandemic pattern of host associations of the MERS coronavirus.
Collapse
Affiliation(s)
- Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany
| | - Doreen Muth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany
| | - Daniela Niemeyer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
34
|
Abstract
The human coronaviruses have been shown to be a major player in clinical microbiology and frequently occur as pathogens responsible for mild to severe respiratory infections. Moreover, two of the most dangerous viral respiratory infections are caused by novel coronaviruses, namely, the SARS and the MERS coronavirus. This chapter briefly summarizes the most important facts and knowledge required for the appropriate laboratory diagnostics of infections caused by the human coronaviruses.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
35
|
Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. J Virol 2017; 91:JVI.01953-16. [PMID: 28077633 DOI: 10.1128/jvi.01953-16] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/04/2016] [Indexed: 11/20/2022] Open
Abstract
Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.
Collapse
|
36
|
Wang X, Wang Z, Xu H, Xiang B, Dang R, Yang Z. Orally Administrated Whole Yeast Vaccine Against Porcine Epidemic Diarrhea Virus Induced High Levels of IgA Response in Mice and Piglets. Viral Immunol 2016; 29:526-531. [PMID: 27598459 DOI: 10.1089/vim.2016.0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mucosal immune response against the porcine epidemic diarrhea virus (PEDV) is very important in piglets. To develop a PEDV vaccine suitable for inducing high levels of intestinal IgA in piglets, recombinant yeast expressing the PEDV S1 gene was constructed and tested by oral immunization of mice and piglets. The S1-specific IgG and IgA were tested at 0, 14, and 28 days postimmunization (dpi) in mice. Compared to the control group, the mice treated with S1 expressing yeast, demonstrated significantly higher levels of IgG and IgA against PEDV from 14 dpi onward. The recombinant yeast inducing a fecal IgA response in piglets was also tested. PEDV-specific IgA could be detected at 7 dpi and increased to 28 dpi. We demonstrated that whole recombinant yeast can be used as a PEDV vaccine vector for inducing high levels of IgA against PEDV in piglets. This could be a good vaccine candidate for PEDV control in piglets.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Zhenbing Wang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Biao Xiang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Ruiyi Dang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| |
Collapse
|
37
|
Konno H, Wakabayashi M, Takanuma D, Saito Y, Akaji K. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease. Bioorg Med Chem 2016; 24:1241-54. [PMID: 26879854 PMCID: PMC7111485 DOI: 10.1016/j.bmc.2016.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/19/2023]
Abstract
Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity.
Collapse
Affiliation(s)
- Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| | - Masaki Wakabayashi
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Daiki Takanuma
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yota Saito
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
38
|
Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep 2016; 6:22677. [PMID: 26948040 PMCID: PMC4780191 DOI: 10.1038/srep22677] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (M(pro)), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, M(pro) has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 M(pro) in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with M(pro)s from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 M(pro) provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs.
Collapse
|
39
|
Abstract
Bats have been recognized as the natural reservoirs of a large variety of viruses. Special attention has been paid to bat coronaviruses as the two emerging coronaviruses which have caused unexpected human disease outbreaks in the 21st century, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), are suggested to be originated from bats. Various species of horseshoe bats in China have been found to harbor genetically diverse SARS-like coronaviruses. Some strains are highly similar to SARS-CoV even in the spike protein and are able to use the same receptor as SARS-CoV for cell entry. On the other hand, diverse coronaviruses phylogenetically related to MERS-CoV have been discovered worldwide in a wide range of bat species, some of which can be classified to the same coronavirus species as MERS-CoV. Coronaviruses genetically related to human coronavirus 229E and NL63 have been detected in bats as well. Moreover, intermediate hosts are believed to play an important role in the transmission and emergence of these coronaviruses from bats to humans. Understanding the bat origin of human coronaviruses is helpful for the prediction and prevention of another pandemic emergence in the future.
Collapse
|
40
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 672] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
41
|
Wang F, Tan Y, Li H, Chen X, Wang J, Li S, Fu S, Zhao Q, Chen C, Su D, Yang H. Crystallization and preliminary crystallographic study of human coronavirus NL63 main protease in complex with an inhibitor. Acta Crystallogr F Struct Biol Commun 2014; 70:1068-71. [PMID: 25084384 PMCID: PMC4118806 DOI: 10.1107/s2053230x14012953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/04/2014] [Indexed: 02/05/2023] Open
Abstract
Human coronavirus NL63 mainly infects younger children and causes cough, fever, rhinorrhoea, bronchiolitis and croup. It encodes two polyprotein precursors required for genome replication and transcription. Each polyprotein undergoes extensive proteolytic processing, resulting in functional subunits. This process is mainly mediated by its genome-encoded main protease, which is an attractive target for antiviral drug design. In this study, the main protease of human coronavirus NL63 was crystallized in complex with a Michael acceptor. The complex crystals diffracted to 2.85 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 87.2, c = 212.1 Å. Two molecules were identified per asymmetric unit.
Collapse
Affiliation(s)
- Fenghua Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yusheng Tan
- School of Life Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Huiyan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610017, People’s Republic of China
| | - Xia Chen
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jinshan Wang
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Shuang Li
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
| | - Sheng Fu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
| | - Dan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610017, People’s Republic of China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People’s Republic of China
| |
Collapse
|
42
|
Silva CS, Mullis LB, Pereira O, Saif LJ, Vlasova A, Zhang X, Owens RJ, Paulson D, Taylor D, Haynes LM, Azevedo MP. Human Respiratory Coronaviruses Detected In Patients with Influenza-Like Illness in Arkansas, USA. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27588218 PMCID: PMC5004774 DOI: 10.4172/2161-0517.s2-004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute respiratory viruses often result in significant morbidity and mortality. The potential impact of human respiratory coronavirus (CoV) infections was underestimated until the severe acute respiratory syndrome (SARS-CoV) outbreak in 2003, which showed that new, highly pathogenic coronaviruses could be introduced to humans, highlighting the importance of monitoring the circulating coronaviruses. The use of sensitive molecular methods has contributed to the differential diagnosis of viruses circulating in humans. Our study aim was to investigate the molecular epidemiology of human CoV strains circulating in Arkansas, their genetic variability and their association with reported influenza-like symptoms. We analyzed 200 nasal swab samples, collected by the Arkansas Department of Health in 2010, for influenza diagnosis. All samples were from patients showing acute respiratory symptoms while testing negative for influenza. Samples were pre-screened, using a quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) multiprobe for coronavirus, and subjected to confirmatory pancoronavirus and/or strain-specific reverse transcriptase (RT)-PCR followed by sequence analysis. Seventy-nine samples (39.5%) were positive by qRT-PCR and 35 samples (17.5%) were confirmed by conventional RT-PCR. Twenty-three of the confirmed samples (59%) were sequenced. The most frequent strain detected was HCoV-OC43-like followed by NL63-like; only one sample was positive for HCoV-229E and one for HCoV-HKU1. Feline-like CoV strains were detected in three samples, representing possible evidence of interspecies transmission or a new human strain. Seventeen percent of the coronavirus positive samples were also positive for other respiratory viruses, such as Respiratory Syncytial Virus (RSV), Parainfluenza 2 and 3, and Rhinovirus. Thus, HCoV-OC43, NL63, HKU1 and new feline-like strains were circulating in Arkansas in 2010. HCoV was the sole respiratory virus detected in 16% of the patients who showed acute respiratory symptoms with negative diagnoses for influenza virus.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, USA
| | - Lisa B Mullis
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, USA
| | - Olavo Pereira
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, USA
| | - Anastasia Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Randall J Owens
- Public Health Laboratory, Arkansas Department of Health, Little Rock, USA
| | - Dale Paulson
- Public Health Laboratory, Arkansas Department of Health, Little Rock, USA
| | - Deborah Taylor
- Center for Biologics Evaluation and Research, US FDA, Rockville, USA
| | - Lia M Haynes
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), USA
| | - Marli P Azevedo
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, USA
| |
Collapse
|
43
|
Turlington M, Chun A, Tomar S, Eggler A, Grum-Tokars V, Jacobs J, Daniels JS, Dawson E, Saldanha A, Chase P, Baez-Santos YM, Lindsley CW, Hodder P, Mesecar AD, Stauffer SR. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg Med Chem Lett 2013; 23:6172-7. [PMID: 24080461 PMCID: PMC3878165 DOI: 10.1016/j.bmcl.2013.08.112] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/22/2022]
Abstract
Herein we report the discovery and SAR of a novel series of SARS-CoV 3CLpro inhibitors identified through the NIH Molecular Libraries Probe Production Centers Network (MLPCN). In addition to ML188, ML300 represents the second probe declared for 3CLpro from this collaborative effort. The X-ray structure of SARS-CoV 3CLpro bound with a ML300 analog highlights a unique induced-fit reorganization of the S2-S4 binding pockets leading to the first sub-micromolar noncovalent 3CLpro inhibitors retaining a single amide bond.
Collapse
Affiliation(s)
- Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Chen SE, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y. Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies. Eur J Med Chem 2013; 68:372-84. [PMID: 23994330 PMCID: PMC7115411 DOI: 10.1016/j.ejmech.2013.07.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 01/17/2023]
Abstract
We report the design and synthesis of a series of dipeptide-type inhibitors with novel P3 scaffolds that display potent inhibitory activity against SARS-CoV 3CLpro. A docking study involving binding between the dipeptidic lead compound 4 and 3CLpro suggested the modification of a structurally flexible P3 N-(3-methoxyphenyl)glycine with various rigid P3 moieties in 4. The modifications led to the identification of several potent derivatives, including 5c-k and 5n with the inhibitory activities (Ki or IC50) in the submicromolar to nanomolar range. Compound 5h, in particular, displayed the most potent inhibitory activity, with a Ki value of 0.006 μM. This potency was 65-fold higher than the potency of the lead compound 4 (Ki=0.39 μM). In addition, the Ki value of 5h was in very good agreement with the binding affinity (16 nM) observed in isothermal titration calorimetry (ITC). A SAR study around the P3 group in the lead 4 led to the identification of a rigid indole-2-carbonyl unit as one of the best P3 moieties (5c). Further optimization showed that a methoxy substitution at the 4-position on the indole unit was highly favorable for enhancing the inhibitory potency.
Collapse
Affiliation(s)
- Pillaiyar Thanigaimalai
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumar V, Jung YS, Liang PH. Anti-SARS coronavirus agents: a patent review (2008 - present). Expert Opin Ther Pat 2013; 23:1337-48. [PMID: 23905913 DOI: 10.1517/13543776.2013.823159] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. AREAS COVERED To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. EXPERT OPINION The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.
Collapse
Affiliation(s)
- Vathan Kumar
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica , Taipei 115 , Taiwan R.O.C
| | | | | |
Collapse
|
46
|
Lee H, Cao S, Hevener KE, Truong L, Gatuz JL, Patel K, Ghosh AK, Johnson ME. Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications. ChemMedChem 2013; 8:1361-72. [PMID: 23788528 PMCID: PMC3954986 DOI: 10.1002/cmdc.201300134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/29/2013] [Indexed: 11/09/2022]
Abstract
We previously developed two potent chemical classes that inhibit the essential papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus. In this study, we applied a novel approach to identify small fragments that act synergistically with these inhibitors. A fragment library was screened in combination with four previously developed lead inhibitors by fluorescence-based enzymatic assays. Several fragment compounds synergistically enhanced the inhibitory activity of the lead inhibitors by approximately an order of magnitude. Surface plasmon resonance measurements showed that three fragments bind specifically to the PLpro enzyme. Mode of inhibition, computational solvent mapping, and molecular docking studies suggest that these fragments bind adjacent to the binding site of the lead inhibitors and further stabilize the inhibitor-bound state. We propose potential next-generation compounds based on a computational fragment-merging approach. This approach provides an alternative strategy for lead optimization for cases in which direct co-crystallization is difficult.
Collapse
Affiliation(s)
- Hyun Lee
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Kiso Y, Kawasaki Y, Chen SE, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y. Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: structure-activity relationship study. Eur J Med Chem 2013; 65:436-47. [PMID: 23747811 PMCID: PMC7115367 DOI: 10.1016/j.ejmech.2013.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/20/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Abstract
This work describes the design, synthesis, and evaluation of low-molecular weight peptidic SARS-CoV 3CL protease inhibitors. The inhibitors were designed based on the potent tripeptidic Z-Val-Leu-Ala(pyrrolidone-3-yl)-2-benzothiazole (8; Ki = 4.1 nM), in which the P3 valine unit was substituted with a variety of distinct moieties. The resulting series of dipeptide-type inhibitors displayed moderate to good inhibitory activities against 3CLpro. In particular, compounds 26m and 26n exhibited good inhibitory activities with Ki values of 0.39 and 0.33 μM, respectively. These low-molecular weight compounds are attractive leads for the further development of potent peptidomimetic inhibitors with pharmaceutical profiles. Docking studies were performed to model the binding interaction of the compound 26m with the SARS-CoV 3CL protease. The preliminary SAR study of the peptidomimetic compounds with potent inhibitory activities revealed several structural features that boosted the inhibitory activity: (i) a benzothiazole warhead at the S1′ position, (ii) a γ-lactam unit at the S1-position, (iii) an appropriately hydrophobic leucine moiety at the S2-position, and (iv) a hydrogen bond between the N-arylglycine unit and a backbone hydrogen bond donor at the S3-position.
Collapse
Affiliation(s)
- Pillaiyar Thanigaimalai
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
49
|
Jacobs J, Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, Eggler A, Dawson ES, Baez-Santos YM, Tomar S, Mielech AM, Baker SC, Lindsley CW, Hodder P, Mesecar A, Stauffer SR. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J Med Chem 2013; 56:534-46. [PMID: 23231439 PMCID: PMC3569073 DOI: 10.1021/jm301580n] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). Unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure-activity relationships within S(1'), S(1), and S(2) enzyme binding pockets. The X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.
Collapse
Affiliation(s)
- Jon Jacobs
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Valerie Tokars
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60607, USA
| | - Ya Zhou
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - S. Adrian Saldanha
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Peter Chase
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Aimee Eggler
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Eric S. Dawson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Yahira M. Baez-Santos
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sakshi Tomar
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Anna M. Mielech
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Hodder
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew Mesecar
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
,Corresponding Author Information: Tel: 616-936-8407. ; Tel 765-494-1924.
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
,Corresponding Author Information: Tel: 616-936-8407. ; Tel 765-494-1924.
| |
Collapse
|
50
|
McBride R, Fielding BC. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 2012. [PMID: 23202509 PMCID: PMC3509677 DOI: 10.3390/v4112902] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies.
Collapse
Affiliation(s)
- Ruth McBride
- Anatomy Cluster, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape, 7535, South Africa;
| | - Burtram C. Fielding
- Molecular Biology and Virology Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape, 7535, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-21-959-3620; Fax: +27-21-959-3125
| |
Collapse
|