1
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 PMCID: PMC12024935 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | - Liuxin Shi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
- BGI Research, Hangzhou 310030, China;
| |
Collapse
|
2
|
Korenjak B, Tratenšek A, Arko M, Romolo A, Hočevar M, Kisovec M, Berry M, Bedina Zavec A, Drobne D, Vovk T, Iglič A, Nemec Svete A, Erjavec V, Kralj-Iglič V. Assessment of Extracellular Particles Directly in Diluted Plasma and Blood by Interferometric Light Microscopy. A Study of 613 Human and 163 Canine Samples. Cells 2024; 13:2054. [PMID: 39768146 PMCID: PMC11674815 DOI: 10.3390/cells13242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density (n) and hydrodynamic diameter (Dh) of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS). We found a highly statistically significant correlation between n in the plasma and n in the blood only in the human (i.e., but not canine) blood samples, between the samples with trisodium citrate and EDTA, and between the respective Dh for both species (all p < 10-3). In the human plasma, the average was 139 ± 31 nm; in the human blood, was 158 ± 11 nm; in the canine plasma, was 155 ± 32 nm; and in the canine blood, was 171 ± 33 nm. The differences within species were statistically significant (p < 10-2), with sufficient statistical power (P > 0.8). For , we found no statistically significant differences between the human plasma and blood samples or between the samples with trisodium citrate and EDTA. Our results prove that measuring n and Dh of EPs in minimally processed fresh blood and in diluted fresh plasma by means of ILM is feasible for large populations of samples.
Collapse
Affiliation(s)
- Boštjan Korenjak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Matevž Arko
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Anna Romolo
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Matic Kisovec
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.)
| | - Maxence Berry
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
- College for Basic and Applied Sciences, University of Poitiers, 86000 Poitiers, France
| | | | - David Drobne
- Department of Gastroenterology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, SI-1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Vladimira Erjavec
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| |
Collapse
|
3
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
4
|
Brachtlova T, Li J, van der Meulen-Muileman IH, Sluiter F, von Meijenfeldt W, Witte I, Massaar S, van den Oever R, de Vrij J, van Beusechem VW. Quantitative Virus-Associated RNA Detection to Monitor Oncolytic Adenovirus Replication. Int J Mol Sci 2024; 25:6551. [PMID: 38928259 PMCID: PMC11203762 DOI: 10.3390/ijms25126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Jing Li
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ida H. van der Meulen-Muileman
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Femke Sluiter
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Willem von Meijenfeldt
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Isabella Witte
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Sanne Massaar
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | | | - Jeroen de Vrij
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ExoVectory BV, Biopartner 2 Building, 2333 CH Leiden, The Netherlands
| | - Victor W. van Beusechem
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 1157] [Impact Index Per Article: 1157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
6
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
7
|
Soukup J, Moško T, Kereïche S, Holada K. Large extracellular vesicles transfer more prions and infect cell culture better than small extracellular vesicles. Biochem Biophys Res Commun 2023; 687:149208. [PMID: 37949026 DOI: 10.1016/j.bbrc.2023.149208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Prions are responsible for a number of lethal neurodegenerative and transmissible diseases in humans and animals. Extracellular vesicles, especially small exosomes, have been extensively studied in connection with various diseases. In contrast, larger microvesicles are often overlooked. In this work, we compared the ability of large extracellular vesicles (lEVs) and small extracellular vesicles (sEVs) to spread prions in cell culture. We utilized CAD5 cell culture model of prion infection and isolated lEVs by 20,000×g force and sEVs by 110,000×g force. The lEV fraction was enriched in β-1 integrin with a vesicle size starting at 100 nm. The fraction of sEVs was partially depleted of β-1 integrin with a mean size of 79 nm. Both fractions were enriched in prion protein, but the lEVs contained a higher prion-converting activity. In addition, lEV infection led to stronger prion signals in both cell cultures, as detected by cell and western blotting. These results were verified on N2a-PK1 cell culture. Our data suggest the importance of lEVs in the trafficking and spread of prions over extensively studied small EVs.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.
| | - Tibor Moško
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic.
| |
Collapse
|
8
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
9
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
10
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
11
|
Su X, Liu X, Xie Y, Chen M, Zheng C, Zhong H, Li M. Integrated SERS-Vertical Flow Biosensor Enabling Multiplexed Quantitative Profiling of Serological Exosomal Proteins in Patients for Accurate Breast Cancer Subtyping. ACS NANO 2023; 17:4077-4088. [PMID: 36758150 DOI: 10.1021/acsnano.3c00449] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein profiles of exosomes (EXOs) in clinical samples of cancer patients have become a promising diagnostic and therapeutic biomarker. However, simultaneous quantitative analysis of multiple exosomal proteins of interest remains challenging. To address the unmet need, we develop a paper-based surface-enhanced Raman spectroscopy (SERS)-vertical flow biosensor, named iREX (integrated Raman spectroscopic EXO) biosensor, for multiplexed quantitative profiling of exosomal proteins in clinical serum samples of patients. Utilizing this iREX biosensor, we are able to quantitatively profile MUC1, HER2 and CEA in EXO samples derived from various breast cancer cell subtypes. The results show discriminative expression profiles of the three exosomal proteins in these cell subtypes, which allows for accurate diagnosis and molecular subtyping of breast cancer. We further validate the clinical utility of the iREX biosensor for simultaneous quantitative analysis of MUC1, HER2 and CEA in patient's blood serums, thereby aiding in noninvasive breast cancer subtyping and longitudinal treatment monitoring. Our iREX biosensor integrating the SERS detection in a vertical flow diagnostic device offers great advantages of high sensitivity, molecular specificity, powerful multiplexing capability, and high diagnostic accuracy. We believe that the iREX biosensor could be a promising clinical tool for comprehensive analysis of exosomal proteins in clinical samples for personalized diagnosis and precise management of breast cancer.
Collapse
Affiliation(s)
- Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
12
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
13
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. Lab Invest 2022; 20:404. [PMID: 36064415 PMCID: PMC9444106 DOI: 10.1186/s12967-022-03599-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Microparticles (MPs) are 100–1000 nm heterogeneous submicron membranous vesicles derived from various cell types that express surface proteins and antigenic profiles suggestive of their cellular origin. MPs contain a diverse array of bioactive chemicals and surface receptors, including lipids, nucleic acids, and proteins, which are essential for cell-to-cell communication. The tumour microenvironment (TME) is enriched with MPs that can directly affect tumour progression through their interactions with receptors. Liquid biopsy, a minimally invasive test, is a promising alternative to tissue biopsy for the early screening of lung cancer (LC). The diverse biomolecular information from MPs provides a number of potential biomarkers for LC risk assessment, early detection, diagnosis, prognosis, and surveillance. Remodelling the TME, which profoundly influences immunotherapy and clinical outcomes, is an emerging strategy to improve immunotherapy. Tumour-derived MPs can reverse drug resistance and are ideal candidates for the creation of innovative and effective cancer vaccines. This review described the biogenesis and components of MPs and further summarised their main isolation and quantification methods. More importantly, the review presented the clinical application of MPs as predictive biomarkers in cancer diagnosis and prognosis, their role as therapeutic drug carriers, particularly in anti-tumour drug resistance, and their utility as cancer vaccines. Finally, we discussed current challenges that could impede the clinical use of MPs and determined that further studies on the functional roles of MPs in LC are required.
Collapse
|
16
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
17
|
Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes. Microbiol Spectr 2021; 9:e0127321. [PMID: 34937167 PMCID: PMC8694105 DOI: 10.1128/spectrum.01273-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Collapse
|
18
|
Saad MG, Beyenal H, Dong WJ. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. BIOSENSORS 2021; 11:518. [PMID: 34940275 PMCID: PMC8699402 DOI: 10.3390/bios11120518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.
Collapse
Affiliation(s)
| | | | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (M.G.S.); (H.B.)
| |
Collapse
|
19
|
Tan YJ, Wong BYX, Vaidyanathan R, Sreejith S, Chia SY, Kandiah N, Ng ASL, Zeng L. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis Rep 2021; 5:805-813. [PMID: 34870106 PMCID: PMC8609483 DOI: 10.3233/adr-210311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer’s disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD). Objective: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores. Methods: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p. Results: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534– 0.870, and showed significant correlation with lower CSF Aβ42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-β and tau metabolism in AD. Conclusion: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Benjamin Y X Wong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | | | - Sivaramapanicker Sreejith
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
20
|
Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178:113961. [PMID: 34481030 DOI: 10.1016/j.addr.2021.113961] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles containing biologically active molecules. They are important mediators of intercellular communication and can be exploited therapeutically by various bioengineering approaches. To accurately determine the therapeutic potential of EVs in pre-clinical and clinical settings, dependable dosing strategies are of utmost importance. However, the field suffers from inconsistencies comprising all areas of EV production and characterisation. Therefore, a standardised and well-defined process in EV quantification, key to reliable therapeutic EV dosing, remains to be established. Here, we examined 64 pre-clinical studies for EV-based therapeutics with respect to their applied EV dosing strategies. We identified variations in effective dosing strategies irrespective of the applied EV purification method and cell source. Moreover, we found dose discrepancies depending on the disease model, where EV doses were selected without accounting for published EV pharmacokinetics or biodistribution patterns. We therefore propose to focus on qualitative aspects when dosing EV-based therapeutics, such as the potency of the therapeutic cargo entity. This will ensure batch-to-batch reliability and enhance reproducibility between applications. Furthermore, it will allow for the successful benchmarking of EV-based therapeutics compared to other nanoparticle drug delivery systems, such as viral vector-based or lipid-based nanoparticle approaches.
Collapse
|
21
|
Wang J, Wuethrich A, Lobb RJ, Antaw F, Sina AAI, Lane RE, Zhou Q, Zieschank C, Bell C, Bonazzi VF, Aoude LG, Everitt S, Yeo B, Barbour AP, Möller A, Trau M. Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types via an Ultrasensitive Chip. ACS Sens 2021; 6:3182-3194. [PMID: 34264628 DOI: 10.1021/acssensors.1c00358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying small extracellular vesicle (sEV) subpopulations based on their different molecular signatures could potentially reveal the functional roles in physiology and pathology. However, it is a challenge to achieve this aim due to the nano-sized dimensions of sEVs, low quantities of biological cargo each sEV carries, and our incomplete knowledge of identifying features capable of separating heterogeneous sEV subpopulations. Here, a sensitive, multiplexed, and nano-mixing-enhanced sEV subpopulation characterization platform (ESCP) is proposed to precisely determine the sEV phenotypic heterogeneity and understand the role of sEV heterogeneity in cancer progression and metastasis. The ESCP utilizes spatially patterned anti-tetraspanin-functionalized micro-arrays for sEV subpopulation sorting and nanobarcode-based surface-enhanced Raman spectroscopy for multiplexed read-outs. An ESCP has been used for investigating sEV phenotypic heterogeneity in terms of canonical sEV tetraspanin molecules and cancer-associated protein biomarkers in both cancer cell line models and cancer patient samples. Our data explicitly demonstrate the selective enrichment of tetraspanins and cancer-associated protein biomarkers, in particular sEV subpopulations. Therefore, it is believed that the ESCP could enable the evaluation and broader application of sEV subpopulations as potential diagnostic disease biomarkers.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiach Antaw
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chloe Zieschank
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Caroline Bell
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Vanessa F. Bonazzi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Lauren G. Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sarah Everitt
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Belinda Yeo
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
- Austin Health, Heidelberg, Victoria 3084, Australia
| | - Andrew P. Barbour
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Queensland Melanoma Project, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Misbah I, Ohannesian N, Qiao Y, Lin SH, Shih WC. Exploring the synergy of radiative coupling and substrate undercut in arrayed gold nanodisks for economical, ultra-sensitive label-free biosensing. IEEE SENSORS JOURNAL 2021; 21:23971-23978. [PMID: 34970084 PMCID: PMC8713518 DOI: 10.1109/jsen.2021.3111125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a cost-effective, high-performance platform for nanoplasmonic biosensing. By substrate undercut, the electric field distribution around the nanodisks has been restored to as if the nanodisks were surrounded by a single medium, thereby provides analyte accessibility to otherwise buried enhanced electric field. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography. The LSPR blue-shifting behavior synergistically contributed by radiative coupling and substrate undercut have been investigated for the first time, which culminates in a remarkable refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU. The synergy also improves surface sensitivity to monolayer neutravidin-biotin binding from 7.4 nm to 20.3 nm with the limit of detection (LOD) of neutravidin at 50 fM, which is among the best label-free results reported to date on this specific surface binding reaction. As a potential cancer diagnostic application, extracellular vesicles such as exosomes excreted by cancer and normal cells were measured with a LOD within 112-600 (exosomes/μL), which would be sufficient in many clinical applications. Using CD9, CD63, and CD81 antibodies, label-free profiling has shown increased expression of all three surface antigens in cancer-derived exosomes. This work demonstrates, for the first time, strong synergy of arrayed radiative coupling and substrate undercut can enable economical, ultrasensitive biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care applications.
Collapse
Affiliation(s)
| | | | - Yawei Qiao
- University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Steven H Lin
- University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | | |
Collapse
|
23
|
Gheorghiu AA, Muguet I, Chakiris J, Chan KM, Priest C, Macgregor M. Plasma Deposited Polyoxazoline Films Integration Into Spiral Microfluidics for the Targeted Capture of Size Selected Cells. Front Chem 2021; 9:690781. [PMID: 34095091 PMCID: PMC8172585 DOI: 10.3389/fchem.2021.690781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Biomolecules readily and irreversibly bind to plasma deposited Polyoxazoline thin films in physiological conditions. The unique reactivity of these thin films toward antibodies is driving the development of immunosensing platforms for applications in cancer diagnostics. However, in order for these coatings to be used as advanced immunosensors, they need to be incorporated into microfluidic devices that are sealed via plasma bonding. In this work, the thickness, chemistry and reactivity of the polyoxazoline films were assessed following plasma activation. Films deposited from methyl and isopropenyl oxazoline precursors were integrated into spiral microfluidic devices and biofunctionalized with prostate cancer specific antibodies. Using microbeads as model particles, the design of the spiral microfluidic was optimised to enable the size-based isolation of cancer cells. The device was tested with a mixed cell suspension of healthy and malignant prostate cells. The results showed that, following size-specific separation in the spiral, selective capture was achieved on the immunofunctionalised PPOx surface. This proof of concept study demonstrates that plasma deposited polyoxazoline can be used for immunosensing in plasma bonded microfluidic devices.
Collapse
Affiliation(s)
| | - Ines Muguet
- École Nationale Supérieure de Chimie, de Biologie et de Physique de Bordeaux, Bordeaux INP, Pessac, France
| | - James Chakiris
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Kit Man Chan
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Melanie Macgregor
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
24
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
25
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
26
|
Botha J, Pugsley HR, Handberg A. Conventional, High-Resolution and Imaging Flow Cytometry: Benchmarking Performance in Characterisation of Extracellular Vesicles. Biomedicines 2021; 9:biomedicines9020124. [PMID: 33513846 PMCID: PMC7911094 DOI: 10.3390/biomedicines9020124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry remains a commonly used methodology due to its ability to characterise multiple parameters on single particles in a high-throughput manner. In order to address limitations with lacking sensitivity of conventional flow cytometry to characterise extracellular vesicles (EVs), novel, highly sensitive platforms, such as high-resolution and imaging flow cytometers, have been developed. We provided comparative benchmarks of a conventional FACS Aria III, a high-resolution Apogee A60 Micro-PLUS and the ImageStream X Mk II imaging flow cytometry platform. Nanospheres were used to systematically characterise the abilities of each platform to detect and quantify populations with different sizes, refractive indices and fluorescence properties, and the repeatability in concentration determinations was reported for each population. We evaluated the ability of the three platforms to detect different EV phenotypes in blood plasma and the intra-day, inter-day and global variabilities in determining EV concentrations. By applying this or similar methodology to characterise methods, researchers would be able to make informed decisions on choice of platforms and thereby be able to match suitable flow cytometry platforms with projects based on the needs of each individual project. This would greatly contribute to improving the robustness and reproducibility of EV studies.
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical Biochemistry, Aalborg University Hospital, North Denmark Region, DK-9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark
- Correspondence:
| | | | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, North Denmark Region, DK-9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|
27
|
DeCastro J, Littig J, Chou PP, Mack-Onyeike J, Srinivasan A, Conboy MJ, Conboy IM, Aran K. The Microfluidic Toolbox for Analyzing Exosome Biomarkers of Aging. Molecules 2021; 26:535. [PMID: 33498573 PMCID: PMC7864353 DOI: 10.3390/molecules26030535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
As the fields of aging and neurological disease expand to liquid biopsies, there is a need to identify informative biomarkers for the diagnosis of neurodegeneration and other age-related disorders such as cancers. A means of high-throughput screening of biomolecules relevant to aging can facilitate this discovery in complex biofluids, such as blood. Exosomes, the smallest of extracellular vesicles, are found in many biofluids and, in recent years, have been found to be excellent candidates as liquid biopsy biomarkers due to their participation in intercellular communication and various pathologies such as cancer metastasis. Recently, exosomes have emerged as novel biomarkers for age-related diseases. Hence, the study of exosomes, their protein and genetic cargo can serve as early biomarkers for age-associated pathologies, especially neurodegenerative diseases. However, a disadvantage of exosome studies includes a lack in standardization of isolating, detecting, and profiling exosomes for downstream analysis. In this review, we will address current techniques for high-throughput isolation and detection of exosomes through various microfluidic and biosensing strategies and how they may be adapted for the detection of biomarkers of age-associated disorders.
Collapse
Affiliation(s)
- Jonalyn DeCastro
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA 91711, USA; (J.D.); (J.L.); (J.M.-O.)
| | - Joshua Littig
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA 91711, USA; (J.D.); (J.L.); (J.M.-O.)
| | | | - Jada Mack-Onyeike
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA 91711, USA; (J.D.); (J.L.); (J.M.-O.)
| | - Amrita Srinivasan
- Claremont McKenna College, The Claremont Colleges, Claremont, CA 91711, USA;
| | - Michael J. Conboy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; (M.J.C.); (I.M.C.)
| | - Irina M. Conboy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; (M.J.C.); (I.M.C.)
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA 91711, USA; (J.D.); (J.L.); (J.M.-O.)
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; (M.J.C.); (I.M.C.)
| |
Collapse
|
28
|
Wang Y, Zhang Q, Yuan W, Wang Y, Loghry HJ, Zhao Z, Kimber MJ, Dong L, Lu M. Hyperspectral imaging-based exosome microarray for rapid molecular profiling of extracellular vesicles. LAB ON A CHIP 2021; 21:196-204. [PMID: 33289759 PMCID: PMC7785694 DOI: 10.1039/d0lc01006e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
One of the challenges of exploiting extracellular vesicles (EVs) as a disease biomarker is to differentiate EVs released by similar cell types or phenotypes. This paper reports a high-throughput and label-free EV microarray technology to differentiate EVs by simultaneous characterization of a panel of EV membrane proteins. The EsupplV microarray platform, which consists of an array of antibodies printed on a photonic crystal biosensor and a microscopic hyperspectral imaging technique, can rapidly assess the binding of the EV membrane proteins with their corresponding antibodies. The EV microarray assay requires only a 2 μL sample volume and a detection time of less than 2 h. The EV microarray assay was validated by not only quantifying seven membrane proteins carried by macrophage-derived EVs but also distinguishing the EVs secreted by three macrophage phenotypes. In particular, the EV microarray technology can generate a molecular fingerprint of target EVs that can be used to identify the EVs' parental cells, and thus has utility for basic science research as well as for point-of-care disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Wang Yuan
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Yixuan Wang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Hannah J. Loghry
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Zijian Zhao
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Michael J. Kimber
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
29
|
Orally Administered 5-aminolevulinic Acid for Isolation and Characterization of Circulating Tumor-Derived Extracellular Vesicles in Glioblastoma Patients. Cancers (Basel) 2020; 12:cancers12113297. [PMID: 33171819 PMCID: PMC7695169 DOI: 10.3390/cancers12113297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background: In glioblastoma (GB), tissue is required for accurate diagnosis and subtyping. Tissue can be obtained through resection or (stereotactic) biopsy, but these invasive procedures provide risks for patients. Extracellular vesicles (EVs) are small, cell-derived vesicles that contain miRNAs, proteins, and lipids, and possible candidates for liquid biopsies. GB-derived EVs can be found in the blood of patients, but it is difficult to distinguish them from circulating non-tumor EVs. 5-aminolevulinic acid (5-ALA) is orally administered to GB patients to facilitate tumor visualization and maximal resection, as it is metabolized to fluorescent protoporphyrin IX (PpIX) that accumulates in glioma cells. In this study, we assessed whether PpIX accumulates in GB-derived EVs and whether these EVs could be isolated and characterized to enable a liquid biopsy in GB. Methods: EVs were isolated from the conditioned media of U87 cells treated with 5-ALA by differential ultracentrifugation. Blood samples were collected and processed from healthy controls and patients undergoing 5-ALA guided surgery for GB. High-resolution flow cytometry (hFC) enabled detection and sorting of PpIX-positive EVs, which were subsequently analyzed by digital droplet PCR (ddPCR). Results: PpIX-positive EVs could be detected in conditioned cell culture media as well as in patient samples after administration of 5-ALA. By using hFC, we could sort the PpIX-positive EVs for further analysis with ddPCR, which indicated the presence of EVs and GB-associated miRNAs. Conclusion: GB-derived EVs can be isolated from the plasma of GB patients by using 5-ALA induced fluorescence. Although many challenges remain, our findings show new possibilities for the development of blood-based liquid biopsies in GB patients.
Collapse
|
30
|
Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, Wang X. Cancer-Associated Fibroblasts-Derived Exosomes Suppress Immune Cell Function in Breast Cancer via the miR-92/PD-L1 Pathway. Front Immunol 2020; 11:2026. [PMID: 33162971 PMCID: PMC7581790 DOI: 10.3389/fimmu.2020.02026] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component in the tumor microenvironment and have been reported to contribute to tumor progression through many mechanisms; however, the detailed mechanism underlying the immune-suppression effect of CAFs is not clearly defined. In this study, human breast cancer-derived CAFs were cultured, and CAF-derived exosomes in a culture medium were isolated. Using a miRNA profiles assay, we identify a significantly higher level of microRNA-92 isolated in CAFs exosomes. After treatment by CAF-derived exosomes, breast cancer cells express higher programmed cell death receptor ligand 1 (PD-L1), accompanied with increased miR-92 expression. Increased PD-L1 expression, which was induced by CAF-derived exosomes, significantly promotes apoptosis and impaired proliferation of T cells. The underlying mechanism of this effect was studied, proliferation and migration of breast cancer cells were increased after the transfection of miR-92, LATS2 was recognized as a target gene of miR-92, and further confirmed by a luciferase assay. Immunoprecipitation showed that LATS2 can interact with YAP1, chromatin immunoprecipitation confirmed that after nuclear translocation YAP1 could bind to the enhancer region of PD-L1 to promotes transcription activity. Furthermore, the animal study confirmed that CAFs significantly promoted tumor progression and impaired the function of tumor-infiltrated immune cells in vivo. Our data revealed a novel mechanism that can induce immune suppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Ren
- Department of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
32
|
Zhang W, Jiang L, Diefenbach RJ, Campbell DH, Walsh BJ, Packer NH, Wang Y. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. ACS Sens 2020; 5:764-771. [PMID: 32134252 DOI: 10.1021/acssensors.9b02377] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer.
Collapse
Affiliation(s)
- Wei Zhang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lianmei Jiang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Russell J. Diefenbach
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | - Bradley J. Walsh
- Minomic International Ltd, Macquarie Park, New South Wales 2113, Australia
| | - Nicolle H. Packer
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuling Wang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
33
|
Lia G, Di Vito C, Cerrano M, Brunello L, Calcaterra F, Tapparo M, Giaccone L, Mavilio D, Bruno B. Extracellular Vesicles After Allogeneic Hematopoietic Cell Transplantation: Emerging Role in Post-Transplant Complications. Front Immunol 2020; 11:422. [PMID: 32265915 PMCID: PMC7100658 DOI: 10.3389/fimmu.2020.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the cellular crosstalk by transferring bioactive molecules through biological barriers from a cell to another, thus influencing recipient cell functions and phenotype. Therefore, EVs are increasingly being explored as biomarkers of disease progression or response to therapy and as potential therapeutic agents in different contexts including in hematological malignancies. Recently, an EV role has emerged in allogeneic hematopoietic cell transplantation (allo-HCT) as well. Allogeneic hematopoietic cell transplantation often represents the only curative option in several hematological disorders, but it is associated with potentially life-threatening complications that can have a significant impact on clinical outcomes. The most common complications have been well-established and include graft-versus-host disease and infections. Furthermore, relapse remains an important cause of treatment failure. The aim of this review is to summarize the current knowledge, the potential applications, and clinical relevance of EVs in allo-HCT. Herein, we will mainly focus on the immune-modulating properties of EVs, in particular those derived from mesenchymal stromal cells, as potential therapeutic strategy to improve allo-HCT outcome. Moreover, we will briefly describe the main findings on EVs as biomarkers to monitor graft-versus-host disease onset and tumor relapse.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marco Cerrano
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lucia Brunello
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Abstract
Extracellular vesicles (EVs) play an important role in cell-to-cell communication by carrying molecular messages that reflect physiological and pathological conditions of the parent cells. EVs have been identified in all body fluids; and among them, urine stands out as a sample that is easy and inexpensive to obtain and can be collected over time to monitor changes. Various protocols have been established to study urinary extracellular vesicles (UEVs) and they have shown great potential as a biomarker source for clinical applications, not only for urological, but also non-urological diseases. Due to the high variability and low reproducibility of pre-analytical and analytical methods for UEVs, establishing a standardized protocol remains a challenge in the field of diagnosis. Here, we review UEV studies and present the techniques that are most commonly used, those that have been applied as new developments, and those that have the most potential for future applications. The workflow procedures from the sampling step to the qualitative and quantitative analysis steps are summarized along with advantages and disadvantages of the methodologies, in order to give consideration for choosing the most promising and suitable method to analyze human UEVs.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,Japan Science and Technology Agency (JST), PRESTO.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
35
|
Suthar J, Parsons ES, Hoogenboom BW, Williams GR, Guldin S. Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2020; 92:4082-4093. [PMID: 31995983 PMCID: PMC7145312 DOI: 10.1021/acs.analchem.9b05736] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are endocytic lipid-membrane bound bodies with the potential to be used as biomarkers in cancer and neurodegenerative disease. The limitations and scarcity of current exosome characterization approaches have led to a growing demand for translational techniques, capable of determining their molecular composition and physical properties in physiological fluids. Here, we investigate label-free immunosensing, using a quartz crystal microbalance with dissipation monitoring (QCM-D), to detect exosomes by exploiting their surface protein profile. Exosomes expressing the transmembrane protein CD63 were isolated by size-exclusion chromatography from cell culture media. QCM-D sensors functionalized with anti-CD63 antibodies formed a direct immunoassay toward CD63-positive exosomes in 75% v/v serum, exhibiting a limit-of-detection of 2.9 × 108 and 1.4 × 108 exosome sized particles (ESPs)/mL for frequency and dissipation response, respectively, i.e., clinically relevant concentrations. Our proof-of-concept findings support the adoption of dual-mode acoustic analysis of exosomes, leveraging both frequency and dissipation monitoring for use in bioanalytical characterization.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Edward S. Parsons
- London
Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Bart W. Hoogenboom
- London
Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
- Department
of Physics and Astronomy, University College
London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gareth R. Williams
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
36
|
Zendrini A, Paolini L, Busatto S, Radeghieri A, Romano M, Wauben MHM, van Herwijnen MJC, Nejsum P, Borup A, Ridolfi A, Montis C, Bergese P. Augmented COlorimetric NANoplasmonic (CONAN) Method for Grading Purity and Determine Concentration of EV Microliter Volume Solutions. Front Bioeng Biotechnol 2020; 7:452. [PMID: 32117903 PMCID: PMC7028770 DOI: 10.3389/fbioe.2019.00452] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
This protocol paper describes how to assign a purity grade and to subsequently titrate extracellular vesicle (EV) solutions of a few microliters in volume by microplate COlorimetric NANoplasmonic (CONAN) assay. The CONAN assay consists of a solution of gold nanoparticles (AuNPs) into which the EV preparation is added. The solution turns blue if the EV preparation is pure, whereas it stays red if soluble exogenous single and aggregated proteins (SAPs; often referred to as protein contaminants) are present. The color change is visible by the naked eye or can be quantified by UV-Vis spectroscopy, providing an index of purity (a unique peculiarity to date). The assay specifically targets SAPs, and not the EV-related proteins, with a detection limit <50 ng/μl (an order of magnitude higher resolution than that of the Bradford protein assay). For pure solutions, the assay also allows for determining the EV number, as the color shift is linearly dependent on the AuNP/EV molar ratio. Instead, it automatically reports if the solution bears SAP contaminants, thus avoiding counting artifacts. The CONAN assay proves to be robust and reliable and displays very interesting performances in terms of cost (inexpensive reagents, run by standard microplate readers), working volumes (1–2 μl of sample required), and time (full procedure takes <1 h). The assay is applicable to all classes of natural and artificial lipid microvesicles and nanovesicles.
Collapse
Affiliation(s)
- Andrea Zendrini
- Department of Animal Science, Food and Nutrition-Università Cattolica del Sacro Cuore, Piacenza, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Florence, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Sara Busatto
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.,Department of Transplantation, Mayo Clinic, Jacksonville, FL, United States
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Miriam Romano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Marca H M Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Martijn J C van Herwijnen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne Borup
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrea Ridolfi
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.,Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Costanza Montis
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Paolo Bergese
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Florence, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
37
|
Wang J, Wuethrich A, Sina AAI, Lane RE, Lin LL, Wang Y, Cebon J, Behren A, Trau M. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. SCIENCE ADVANCES 2020; 6:eaax3223. [PMID: 32133394 PMCID: PMC7043913 DOI: 10.1126/sciadv.aax3223] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/10/2019] [Indexed: 05/13/2023]
Abstract
Monitoring targeted therapy in real time for cancer patients could provide vital information about the development of drug resistance and improve therapeutic outcomes. Extracellular vesicles (EVs) have recently emerged as a promising cancer biomarker, and EV phenotyping shows high potential for monitoring treatment responses. Here, we demonstrate the feasibility of monitoring patient treatment responses based on the plasma EV phenotypic evolution using a multiplex EV phenotype analyzer chip (EPAC). EPAC incorporates the nanomixing-enhanced microchip and the multiplex surface-enhanced Raman scattering (SERS) nanotag system for direct EV phenotyping without EV enrichment. In a preclinical model, we observe the EV phenotypic heterogeneity and different phenotypic responses to the treatment. Furthermore, we successfully detect cancer-specific EV phenotypes from melanoma patient plasma. We longitudinally monitor the EV phenotypic evolution of eight melanoma patients receiving targeted therapy and find specific EV profiles involved in the development of drug resistance, reflecting the potential of EV phenotyping for monitoring treatment responses.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L. Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Dermatology Research Centre, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yuling Wang
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
38
|
Zhang Y, Wang D, Yue S, Lu Y, Yang C, Fang J, Xu Z. Sensitive Multicolor Visual Detection of Exosomes via Dual Signal Amplification Strategy of Enzyme-Catalyzed Metallization of Au Nanorods and Hybridization Chain Reaction. ACS Sens 2019; 4:3210-3218. [PMID: 31820935 DOI: 10.1021/acssensors.9b01644] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exosomes as nanosized vesicles have been recognized as potential noninvasive biomarkers for early cancer diagnosis. Herein, we presented a sensitive multicolor visual method for exosome detection based on enzyme-induced silver deposition on gold nanorods (Au NRs). To achieve highly sensitive determination of exosomes, hybridization chain reaction (HCR) was employed to introduce more alkaline phosphatase (ALP) for signal amplification. First, exosomes were captured by magnetic bead-labeled CD63 aptamer, and, then, cholesterol-modified DNA probes were spontaneously inserted into the exosomal lipid membrane. The ends of the DNA probes act as the initiator to trigger the HCR for signal amplification. Finally, with the help of HCR, increased sites led to enhanced ALP loading and thus boosted the ascorbic acid generation. Silver ions were reduced by ascorbic acid, and silver shells were formed on Au NRs, giving rise to the blue shift of the longitudinal localized surface plasmon resonance peak. Correspondingly, the concentration of exosomes can be obviously distinguished with naked eyes via the vivid color variation. Due to the dual signal amplification of HCR and metallization of Au NRs, highly sensitive detection for exosomes were realized with detection limits as low as 1.6 × 102 particles/μL by UV-vis spectroscopy and 9 × 103 particles/μL by naked eyes. Compared to the reported colorimetric methods for exosome quantification, visualization based on plentiful color tonalities is the most captivating merit of our approach, and HCR-induced signal amplification highlights the virtue of the strategy. The applicability of the method was validated by the analysis of clinical samples.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Danni Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Shuai Yue
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yanbing Lu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
39
|
Kim DH, Kothandan VK, Kim HW, Kim KS, Kim JY, Cho HJ, Lee YK, Lee DE, Hwang SR. Noninvasive Assessment of Exosome Pharmacokinetics In Vivo: A Review. Pharmaceutics 2019; 11:E649. [PMID: 31817039 PMCID: PMC6956244 DOI: 10.3390/pharmaceutics11120649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, intraluminal vesicles that contain informative DNA, RNA, proteins, and lipid membranes derived from the original donor cells, have recently been introduced to therapy and diagnosis. With their emergence as an alternative to cell therapy and having undergone clinical trials, proper analytical standards for evaluating their pharmacokinetics must now be established. Molecular imaging techniques such as fluorescence imaging, magnetic resonance imaging, and positron emission tomography (PET) are helpful to visualizing the absorption, distribution, metabolism, and excretion of exosomes. After exosomes labelled with a fluorescer or radioisotope are administered in vivo, they are differentially distributed according to the characteristics of each tissue or lesion, and real-time biodistribution of exosomes can be noninvasively monitored. Quantitative analysis of exosome concentration in biological fluid or tissue samples is also needed for the clinical application and industrialization of exosomes. In this review, we will discuss recent pharmacokinetic applications to exosomes, including labelling methods for in vivo imaging and analytical methods for quantifying exosomes, which will be helpful for evaluating pharmacokinetics of exosomes and improving exosome development and therapy.
Collapse
Affiliation(s)
- Do Hee Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Hye Won Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ki Seung Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ji Young Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Hyeon Jin Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea;
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
40
|
Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. ACTA ACUST UNITED AC 2019; 27:533-539. [PMID: 31317441 DOI: 10.1007/s40199-019-00280-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exosomes are natural nanoparticles that are involved in intercellular communication via transferring molecular information between cells. Recently, exosomes have been considered for exploitation as novel drug delivery systems due to their specific properties for carrying specific molecules and surface proteins. METHODS In this study, U-87 cell derived exosomes have been investigated for delivery of a potent chemotherapeutic agent, paclitaxel (PTX). Two methods of loading were utilized to incorporate PTX in exosomes and the exosomes pharmaceutical and cytotoxic characterizations were determined. RESULTS The drug loaded and empty exosomes were found to have particle size of 50-100 nm and zeta potential of ≈ - 20 mV. Loading capacity of 7.4 ng and 9.2 ng PTX into 1 μg of exosome total protein were also measured for incubation and sonication methods, respectively. Incorporation of PTX into exosomes significantly increased its cytotoxicity against U-87 cell line (59.92% cell viability) while it was found that the empty exosomes exhibited cell viability of 91.98%. CONCLUSIONS Loading method could affect the loading capacity of exosomes and their encapsulated chemotherapeutic molecule showed higher cytotoxicity into exosomes. These results promise exosomes as appropriate drug delivery system for glioblastoma multiform (GBM) treatment.
Collapse
|
41
|
Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic Technology for Clinical Applications of Exosomes. MICROMACHINES 2019; 10:mi10060392. [PMID: 31212754 PMCID: PMC6631586 DOI: 10.3390/mi10060392] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Exosomes, a type of nanovesicle, are distinct cellular entities specifically capable of carrying various cargos between cells. It has been hypothesized that exosomes, as an enriched source of biomolecules, may serve as biomarkers for various diseases. This review introduces general aspects of exosomes, presents the challenges in exosome research, discusses the potential of exosomes as biomarkers, and describes the contribution of microfluidic technology to enable their isolation and analysis for diagnostic and disease monitoring. Additionally, clinical applications of exosomes for diagnostic purposes are also summarized.
Collapse
Affiliation(s)
- Florina S Iliescu
- School of Applied Science, Republic Polytechnic Singapore, Singapore 738964, Singapore.
| | - Danilo Vrtačnik
- Laboratory of Microsensor Structures and Electronics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Pavel Neuzil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Central European Institute of Technology, Brno University of Technology, Brno 613 00, Czech Republic.
- Department of Microelectronics, Faculty of Electrical Engineering, Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore.
- Academy of Romanian Scientists, Bucharest 050094, Romania.
| |
Collapse
|
42
|
Cavallaro S, Horak J, Hååg P, Gupta D, Stiller C, Sahu SS, Görgens A, Gatty HK, Viktorsson K, El Andaloussi S, Lewensohn R, Karlström AE, Linnros J, Dev A. Label-Free Surface Protein Profiling of Extracellular Vesicles by an Electrokinetic Sensor. ACS Sens 2019; 4:1399-1408. [PMID: 31020844 DOI: 10.1021/acssensors.9b00418] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Small extracellular vesicles (sEVs) generated from the endolysosomal system, often referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics, as they carry valuable biological information and reflect their cells of origin. Herein, we propose a simple and inexpensive electrical method for label-free detection and profiling of sEVs in the size range of exosomes. The detection method is based on the electrokinetic principle, where the change in the streaming current is monitored as the surface markers of the sEVs interact with the affinity reagents immobilized on the inner surface of a silica microcapillary. As a proof-of-concept, we detected sEVs derived from the non-small-cell lung cancer (NSCLC) cell line H1975 for a set of representative surface markers, such as epidermal growth factor receptor (EGFR), CD9, and CD63. The detection sensitivity was estimated to be ∼175000 sEVs, which represents a sensor surface coverage of only 0.04%. We further validated the ability of the sensor to measure the expression level of a membrane protein by using sEVs displaying artificially altered expressions of EGFR and CD63, which were derived from NSCLC and human embryonic kidney (HEK) 293T cells, respectively. The analysis revealed that the changes in EGFR and CD63 expressions in sEVs can be detected with a sensitivity in the order of 10% and 3%, respectively, of their parental cell expressions. The method can be easily parallelized and combined with existing microfluidic-based EV isolation technologies, allowing for rapid detection and monitoring of sEVs for cancer diagnosis.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 16440 Kista, Sweden
| | - Josef Horak
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology/Pathology, Karolinska Institutet, Karolinska University Hospital (Theme, Cancer; Patient Area, Pelvis), Akademiska stråket 1, 171 64 Solna, Stockholm, Sweden
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Evox Therapeutics Limited, Oxford OX4 4HG, United Kingdom
| | - Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Siddharth S. Sahu
- Department of Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, Uppsala SE-751-21, Sweden
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Evox Therapeutics Limited, Oxford OX4 4HG, United Kingdom
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hithesh K. Gatty
- Department of Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, Uppsala SE-751-21, Sweden
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Karolinska University Hospital (Theme, Cancer; Patient Area, Head and Neck, Lung, and Skin), Akademiska stråket 1, 171 64 Solna, Stockholm, Sweden
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Evox Therapeutics Limited, Oxford OX4 4HG, United Kingdom
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet, Karolinska University Hospital (Theme, Cancer; Patient Area, Head and Neck, Lung, and Skin), Akademiska stråket 1, 171 64 Solna, Stockholm, Sweden
| | - Amelie E. Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 16440 Kista, Sweden
| | - Apurba Dev
- Department of Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, Uppsala SE-751-21, Sweden
| |
Collapse
|
43
|
Kalimuthu K, Kwon WY, Park KS. A simple approach for rapid and cost-effective quantification of extracellular vesicles using a fluorescence polarization technique. J Biol Eng 2019; 13:31. [PMID: 31015861 PMCID: PMC6469078 DOI: 10.1186/s13036-019-0160-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound phospholipid vesicles actively secreted by all cells. As they carry specific markers expressed by their parental cells, EVs are utilized to identify specific cells via liquid biopsy. To facilitate EV-based clinical diagnosis, a fast and reliable method to count EVs is critical. We developed a method for rapid and cost-effective quantification of EVs which relies on the fluorescence polarization (FP) detection of lipophilic fluorescein probe, 5-dodecanoylamino fluorescein (C12-FAM). The alkyl tail of C12-FAM is specifically incorporated into the EVs, producing high FP values due to a slow diffusional motion. We quantified EVs derived from two cell lines, HT29 and TCMK1 using the new strategy, with good sensitivity that was at par with the commercial method. The new method involves minimal complexity and hands-on time. In addition, FP signaling is inherently ratiometric and is robust against environmental noise.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
44
|
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 2019; 1871:342-360. [DOI: 10.1016/j.bbcan.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/09/2023]
|
45
|
Sina AAI, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem 2019; 411:1311-1318. [PMID: 30719562 DOI: 10.1007/s00216-019-01608-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
The development of a sensitive and specific detection platform for exosomes is highly desirable as they are believed to transmit vital tumour-specific information (mRNAs, microRNAs, and proteins) to remote cells for secondary metastasis. Herein, we report a simple method for the real-time and label-free detection of clinically relevant exosomes using a surface plasmon resonance (SPR) biosensor. Our method shows high specificity in detecting BT474 breast cancer cell-derived exosomes particularly from complex biological samples (e.g. exosome spiked in serum). This approach exhibits high sensitivity by detecting as low as 8280 exosomes/μL which may potentially be suitable for clinical analysis. We believe that this label-free and real-time method along with the high specificity and sensitivity may potentially be useful for clinical settings.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ramanathan Vaidyanathan
- Biomedical Institute for Global Health Research & Technology, National University of Singapore, Singapore, 119228, Singapore
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
46
|
Swarnakar NK, Venkatesan N, Betageri G. Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a Comprehensive Review. AAPS PharmSciTech 2018; 20:16. [PMID: 30569266 DOI: 10.1208/s12249-018-1239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation. This review covers comprehensive discussion on in vitro characterization techniques such as solubility, drug entrapment, thermal characterization, dissolution, and digestion of lipid-based formulations.
Collapse
|
47
|
Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani G, Mortazavi S, Mozafari M, Rasti B, Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4:e01088. [PMID: 30603716 PMCID: PMC6307095 DOI: 10.1016/j.heliyon.2018.e01088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023] Open
Abstract
There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
Collapse
Affiliation(s)
- M. Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Kalantari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Raji
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - H. Samareh Fekri
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - R. Saber
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - G.P. Asnani
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune 411 048, (Savitribai Phule Pune University), Maharashtra, India
| | - S.M. Mortazavi
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - B. Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - A. Taheriazam
- Department of Orthopaedics, Tehran Medical Sciences Branch IAU, Azad University, 19168 93813 Tehran, Iran
| |
Collapse
|
48
|
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, et alThéry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DCI, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AGE, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li ITS, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SLN, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen ENM, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BCH, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IKH, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KMA, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PRM, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BWM, van der Grein SG, Van Deun J, van Herwijnen MJC, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MHM, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7:1535750. [PMID: 30637094 PMCID: PMC6322352 DOI: 10.1080/20013078.2018.1535750] [Show More Authors] [Citation(s) in RCA: 7519] [Impact Index Per Article: 1074.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/04/2022] Open
Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Elena Aikawa
- Brigham and Women’s Hospital, Center for Interdisciplinary Cardiovascular Sciences, Boston, MA, USA
- Harvard Medical School, Cardiovascular Medicine, Boston, MA, USA
| | - Maria Jose Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain
| | | | | | - Anna Antoniou
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University Hospital Bonn (UKB), Bonn, Germany
| | - Tanina Arab
- Université de Lille, INSERM, U-1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Lille, France
| | - Fabienne Archer
- University of Lyon, INRA, EPHE, UMR754 Viral Infections and Comparative Pathology, Lyon, France
| | - Georgia K Atkin-Smith
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - D Craig Ayre
- Atlantic Cancer Research Institute, Moncton, Canada
- Mount Allison University, Department of Chemistry and Biochemistry, Sackville, Canada
| | - Jean-Marie Bach
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Daniel Bachurski
- University of Cologne, Department of Internal Medicine I, Cologne, Germany
| | - Hossein Baharvand
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
- University of Science and Culture, ACECR, Department of Developmental Biology, Tehran, Iran
| | - Leonora Balaj
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | | | - Natalie N Bauer
- University of South Alabama, Department of Pharmacology, Center for Lung Biology, Mobile, AL, USA
| | - Amy A Baxter
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mary Bebawy
- University of Technology Sydney, Discipline of Pharmacy, Graduate School of Health, Sydney, Australia
| | | | - Apolonija Bedina Zavec
- National Institute of Chemistry, Department of Molecular Biology and Nanobiotechnology, Ljubljana, Slovenia
| | - Abderrahim Benmoussa
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | | | - Paolo Bergese
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Ewa Bielska
- University of Birmingham, Institute of Microbiology and Infection, Birmingham, UK
| | | | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| | - Eric Boilard
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Wilfrid Boireau
- FEMTO-ST Institute, UBFC, CNRS, ENSMM, UTBM, Besançon, France
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Francesc E Borràs
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Germans Trias i Pujol University Hospital, Nephrology Service, Badalona, Spain
- Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology & Immunology, Barcelona, Spain
| | - Steffi Bosch
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Chantal M Boulanger
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xandra Breakefield
- Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Department of Neurology and Radiology, Boston, MA, USA
| | - Andrew M Breglio
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Meadhbh Á Brennan
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, MA, USA
- Université de Nantes, INSERM UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissues, PhyOS, Nantes, France
| | - David R Brigstock
- Nationwide Children’s Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux, Bordeaux, France
| | - Marike LD Broekman
- Haaglanden Medical Center, Department of Neurosurgery, The Hague, The Netherlands
- Leiden University Medical Center, Department of Neurosurgery, Leiden, The Netherlands
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Jacqueline F Bromberg
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York City, NY, USA
- Weill Cornell Medicine, Department of Medicine, New York City, NY, USA
| | | | - Shilpa Buch
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Amy H Buck
- University of Edinburgh, Institute of Immunology & Infection Research, Edinburgh, UK
| | - Dylan Burger
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Sara Busatto
- Mayo Clinic, Department of Transplantation, Jacksonville, FL, USA
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Dominik Buschmann
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Benedetta Bussolati
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Edit I Buzás
- MTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - James Bryan Byrd
- University of Michigan, Department of Medicine, Ann Arbor, MI, USA
| | - Giovanni Camussi
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - David RF Carter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Sarah Caruso
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Lawrence W Chamley
- University of Auckland, Department of Obstetrics and Gynaecology, Auckland, New Zealand
| | - Yu-Ting Chang
- National Taiwan University Hospital, Department of Internal Medicine, Taipei, Taiwan
| | - Chihchen Chen
- National Tsing Hua University, Department of Power Mechanical Engineering, Hsinchu, Taiwan
- National Tsing Hua University, Institute of Nanoengineering and Microsystems, Hsinchu, Taiwan
| | - Shuai Chen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, Dummerstorf, Germany
| | - Lesley Cheng
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | | | - Aled Clayton
- Cardiff University, School of Medicine, Cardiff, UK
| | | | - Alex Cocks
- Cardiff University, School of Medicine, Cardiff, UK
| | - Emanuele Cocucci
- The Ohio State University, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Epithelial Biology Center, Department of Medicine, Nashville, TN, USA
| | | | - Yvonne Couch
- University of Oxford, Radcliffe Department of Medicine, Acute Stroke Programme - Investigative Medicine, Oxford, UK
| | - Frank AW Coumans
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Beth Coyle
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Rossella Crescitelli
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | | | | | - Saumya Das
- Massachusetts General Hospital, Boston, MA, USA
| | - Amrita Datta Chaudhuri
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | | | - Eliezer F De Santana
- The Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Olivier De Wever
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Hernando A del Portillo
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), PVREX group, Badalona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, PVREX Group, Barcelona, Spain
| | - Tanguy Demaret
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Sarah Deville
- Universiteit Hasselt, Diepenbeek, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Andrew Devitt
- Aston University, School of Life & Health Sciences, Birmingham, UK
| | - Bert Dhondt
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University Hospital, Department of Urology, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | | | | | - Vincenza Dolo
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Ana Paula Dominguez Rubio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Massimo Dominici
- TPM of Mirandola, Mirandola, Italy
- University of Modena and Reggio Emilia, Division of Oncology, Modena, Italy
| | - Mauricio R Dourado
- University of Campinas, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, Brazil
- University of Oulu, Faculty of Medicine, Cancer and Translational Medicine Research Unit, Oulu, Finland
| | - Tom AP Driedonks
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | - Heather M Duncan
- McGill University, Division of Experimental Medicine, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, Canada
| | - Ramon M Eichenberger
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | - Karin Ekström
- University of Gothenburg, Institute of Clinical Sciences at Sahlgrenska Academy, Department of Biomaterials, Gothenburg, Sweden
| | - Samir EL Andaloussi
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Stockholm, Sweden
| | | | - Uta Erdbrügger
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Exosomes Laboratory & Metabolomics Platform, Derio, Spain
- IKERBASQUE Research Science Foundation, Bilbao, Spain
| | - Farah Fatima
- University of São Paulo, Ribeirão Preto Medical School, Department of Pathology and Forensic Medicine, Ribeirão Preto, Brazil
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Miguel Flores-Bellver
- University of Colorado, School of Medicine, Department of Ophthalmology, Cell Sight-Ocular Stem Cell and Regeneration Program, Aurora, CO, USA
| | - András Försönits
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Fabia Fricke
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Applied Tumor Biology, Heidelberg, Germany
- University Hospital Heidelberg, Institute of Pathology, Applied Tumor Biology, Heidelberg, Germany
| | - Gregor Fuhrmann
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Susanne Gabrielsson
- Karolinska Institute, Department of Medicine Solna, Division for Immunology and Allergy, Stockholm, Sweden
| | - Ana Gámez-Valero
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Universitat Autònoma de Barcelona, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Department of Pathology, Barcelona, Spain
| | | | - Kathrin Gärtner
- Helmholtz Center Munich German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Raphael Gaudin
- INSERM U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Yong Song Gho
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - Bernd Giebel
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Caroline Gilbert
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Mario Gimona
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
| | - Ilaria Giusti
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Deborah CI Goberdhan
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - André Görgens
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Clinical Research Center, Department of Laboratory Medicine, Stockholm, Sweden
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Sharon M Gorski
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - David W Greening
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Julia Christina Gross
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Gopal N Gupta
- Loyola University Chicago, Department of Urology, Maywood, IL, USA
| | - Dakota Gustafson
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Aase Handberg
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
- Aalborg University, Clinical Institute, Aalborg, Denmark
| | - Reka A Haraszti
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | | | - Hargita Hegyesi
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - An Hendrix
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Andrew F Hill
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Fred H Hochberg
- Scintillon Institute, La Jolla, CA, USA
- University of California, San Diego, Department of Neurosurgery, La Jolla, CA, USA
| | - Karl F Hoffmann
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth, United Kingdom
| | - Beth Holder
- Imperial College London, London, UK
- MRC The Gambia, Fajara, The Gambia
| | | | - Baharak Hosseinkhani
- Hasselt University, Biomedical Research Institute (BIOMED), Department of Medicine and Life Sciences, Hasselt, Belgium
| | - Guoku Hu
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Yiyao Huang
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Veronica Huber
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | | | | | - Tsuneya Ikezu
- Boston University School of Medicine, Boston, MA, USA
| | - Jameel M Inal
- University of Hertfordshire, School of Life and Medical Sciences, Biosciences Research Group, Hatfield, UK
| | - Mustafa Isin
- Istanbul University Oncology Institute, Basic Oncology Department, Istanbul, Turkey
| | - Alena Ivanova
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Hannah K Jackson
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Soren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Section 4242 - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Institute of Clinical Medicine, Copenhagen, Denmark
| | - Steven M Jay
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, USA
| | - Muthuvel Jayachandran
- Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | | | - Lanzhou Jiang
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Suzanne M Johnson
- University of Manchester, Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester, UK
| | - Jennifer C Jones
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Ambrose Jong
- Children’s Hospital of Los Angeles, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Tijana Jovanovic-Talisman
- City of Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, Duarte, CA, USA
| | - Stephanie Jung
- German Research Center for Environmental Health, Institute for Virology, Munich, Germany
| | - Raghu Kalluri
- University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Metastasis Research Center, Houston, TX, USA
| | - Shin-ichi Kano
- The Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Sukhbir Kaur
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | - Yumi Kawamura
- National Cancer Center Research Institute, Tokyo, Japan
- University of Tsukuba, Tsukuba, Japan
| | - Evan T Keller
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Urology, Ann Arbor, MI, USA
| | - Delaram Khamari
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Elena Khomyakova
- École normale supérieure, Paris, France
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia Khvorova
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | - Peter Kierulf
- Oslo University Hospital, Department of Medical Biochemistry, Blood Cell Research Group, Oslo, Norway
| | - Kwang Pyo Kim
- Kyung Hee University, Department of Applied Chemistry, Yongin, Korea
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | | | - David J Klinke
- West Virginia University, Department of Chemical and Biomedical Engineering and WVU Cancer Institute, Morgantown, WV, USA
- West Virginia University, Department of Microbiology Immunology and Cell Biology, Morgantown, WV, USA
| | - Miroslaw Kornek
- German Armed Forces Central Hospital, Department of General, Visceral and Thoracic Surgery, Koblenz, Germany
- Saarland University Medical Center, Department of Medicine II, Homburg, Germany
| | - Maja M Kosanović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Árpád Ferenc Kovács
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Susanne Krasemann
- University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany
| | - Mirja Krause
- Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Gina D Kusuma
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sören Kuypers
- Hasselt University, Biomedical Research Institute (BIOMED), Hasselt, Belgium
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Scott M Langevin
- Cincinnati Cancer Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lucia R Languino
- Thomas Jefferson University, Sidney Kimmel Medical School, Department of Cancer Biology, Philadelphia, PA, USA
| | - Joanne Lannigan
- University of Virginia, Flow Cytometry Core, School of Medicine, Charlottesville, VA, USA
| | - Cecilia Lässer
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Louise C Laurent
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, La Jolla, CA, USA
| | - Gregory Lavieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | | | - Soazig Le Lay
- INSERM U1063, Université d’Angers, CHU d’Angers, Angers, France
| | - Myung-Shin Lee
- Eulji University, School of Medicine, Daejeon, South Korea
| | | | - Debora S Lemos
- Federal University of Paraná, Department of Genetics, Human Molecular Genetics Laboratory, Curitiba, Brazil
| | - Metka Lenassi
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | | | - Isaac TS Li
- University of British Columbia Okanagan, Kelowna, Canada
| | - Ke Liao
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Sten F Libregts
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Department of Medicine, Cambridge NIHR BRC Cell Phenotyping Hub, Cambridge, UK
| | - Erzsebet Ligeti
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Rebecca Lim
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sai Kiang Lim
- Institute of Medical Biology (IMB), Agency for Science and Technology (A*STAR), Singapore
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Karen Linnemannstöns
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alicia Llorente
- Oslo University Hospital-The Norwegian Radium Hospital, Institute for Cancer Research, Department of Molecular Cell Biology, Oslo, Norway
| | - Catherine A Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Magdalena J Lorenowicz
- Utrecht University, University Medical Center Utrecht, Center for Molecular Medicine & Regenerative Medicine Center, Utrecht, The Netherlands
| | - Ákos M Lörincz
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Jan Lötvall
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Jason Lovett
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Michelle C Lowry
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Xavier Loyer
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Quan Lu
- Harvard University, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barbara Lukomska
- Mossakowski Medical Research Centre, NeuroRepair Department, Warsaw, Poland
| | - Taral R Lunavat
- K.G. Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sybren LN Maas
- Utrecht University, University Medical Center Utrecht, Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, Utrecht, The Netherlands
- Utrecht University, University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | | | - Antonio Marcilla
- Universitat de València, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Àrea de Parasitologia, Valencia, Spain
- Universitat de València, Health Research Institute La Fe, Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Valencia, Spain
| | - Jacopo Mariani
- Università degli Studi di Milano, Department of Clinical Sciences and Community Health, EPIGET LAB, Milan, Italy
| | | | | | | | | | | | - Mathilde Mathieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Suresh Mathivanan
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Marco Maugeri
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | | | - Mark J McVey
- SickKids Hospital, Department of Anesthesia and Pain Medicine, Toronto, Canada
- University of Toronto, Department of Anesthesia, Toronto, Canada
| | - David G Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, USA
| | - Katie L Meehan
- The School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Inge Mertens
- University of Antwerp, Centre for Proteomics, Antwerp, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Malene Møller Jørgensen
- Aalborg University Hospital, Department of Clinical Immunology, Aalborg, Denmark
- EVSEARCH.DK, Denmark
| | - Aizea Morales-Kastresana
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), NARILIS, Namur, Belgium
- Université Catholique de Louvain, CHU UCL Namur, Hematology-Hemostasis Laboratory, Yvoir, Belgium
| | - Maurizio Muraca
- University of Padova, Department of Women’s and Children’s Health, Padova, Italy
| | - Luca Musante
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Veronika Mussack
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Dillon C Muth
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Kathryn H Myburgh
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Tanbir Najrana
- Brown University, Women and Infants Hospital, Providence, RI, USA
| | - Muhammad Nawaz
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | - Irina Nazarenko
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Peter Nejsum
- Aarhus University, Department of Clinical Medicine, Aarhus, Denmark
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), Paris, France
| | - Tommaso Neri
- University of Pisa, Centro Dipartimentale di Biologia Cellulare Cardio-Respiratoria, Pisa, Italy
| | - Rienk Nieuwland
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia, Rio de Janeiro, Brazil
| | | | - Esther NM Nolte-’t Hoen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Nicole Noren Hooten
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Lorraine O’Driscoll
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Tina O’Grady
- University of Liège, GIGA-R(MBD), PSI Laboratory, Liège, Belgium
| | - Ana O’Loghlen
- Queen Mary University of London, Blizard Institute, Epigenetics & Cellular Senescence Group, London, UK
| | - Takahiro Ochiya
- National Cancer Center Research Institute, Division of Molecular and Cellular Medicine, Tokyo, Japan
| | - Martin Olivier
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Department of Nephrology and Hypertension, Madrid, Spain
- Spanish Kidney Research Network, REDINREN, Madrid, Spain
- Universidad Autónoma de Madrid, School of Medicine, Department of Medicine, Madrid, Spain
| | - Luis A Ortiz
- Graduate School of Public Health at the University of Pittsburgh, Division of Occupational and Environmental Medicine, Pittsburgh, PA, USA
| | | | - Ole Østergaard
- Statens Serum Institut, Department of Autoimmunology and Biomarkers, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Matias Ostrowski
- University of Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Jaesung Park
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - D. Michiel Pegtel
- Amsterdam University Medical Centers, Department of Pathology, Amsterdam, The Netherlands
| | - Hector Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, Madrid, Spain
| | - Francesca Perut
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Bologna, Italy
| | - Michael W Pfaffl
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Donald G Phinney
- The Scripps Research Institute-Scripps Florida, Department of Molecular Medicine, Jupiter, FL, USA
| | - Bartijn CH Pieters
- Radboud University Medical Center, Department of Rheumatology, Nijmegen, The Netherlands
| | - Ryan C Pink
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - David S Pisetsky
- Duke University Medical Center, Departments of Medicine and Immunology, Durham, NC, USA
- Durham VAMC, Medical Research Service, Durham, NC, USA
| | | | - Iva Polakovicova
- Pontificia Universidad Católica de Chile, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Pontificia Universidad Católica de Chile, Faculty of Medicine, Department of Hematology-Oncology, Santiago, Chile
| | - Ivan KH Poon
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Bonita H Powell
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Lynn Pulliam
- University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Peter Quesenberry
- The Warren Alpert Medical School of Brown University, Department of Medicine, Providence, RI, USA
| | - Annalisa Radeghieri
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Robert L Raffai
- Department of Veterans Affairs, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Stefania Raimondo
- University of Palermo, Department of Biopathology and Medical Biotechnologies, Palermo, Italy
| | - Janusz Rak
- McGill University, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Marcel I Ramirez
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Federal de Paraná, Paraná, Brazil
| | - Graça Raposo
- Institut Curie, CNRS UMR144, PSL Research University, Paris, France
| | - Morsi S Rayyan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neta Regev-Rudzki
- Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel
| | - Franz L Ricklefs
- University Medical Center Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany
| | - Paul D Robbins
- University of Minnesota Medical School, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | - David D Roberts
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | | | - Eva Rohde
- Paracelsus Medical University, Department of Transfusion Medicine, Salzburg, Austria
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Sophie Rome
- University of Lyon, Lyon-Sud Faculty of Medicine, CarMeN Laboratory (UMR INSERM 1060-INRA 1397), Pierre-Bénite, France
| | - Kasper MA Rouschop
- Maastricht University, GROW, School for Oncology and Developmental Biology, Maastricht Radiation Oncology (MaastRO) Lab, Maastricht, The Netherlands
| | - Aurelia Rughetti
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy
| | | | - Paula Saá
- American Red Cross, Scientific Affairs, Gaithersburg, MD, USA
| | - Susmita Sahoo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Cardiology, New York City, NY, USA
| | - Edison Salas-Huenuleo
- Advanced Center for Chronic Diseases, Santiago, Chile
- University of Chile, Faculty of Chemical and Pharmaceutical Science, Laboratory of Nanobiotechnology and Nanotoxicology, Santiago, Chile
| | - Catherine Sánchez
- Clínica las Condes, Extracellular Vesicles in Personalized Medicine Group, Santiago, Chile
| | - Julie A Saugstad
- Oregon Health & Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Meike J Saul
- Technische Universität Darmstadt, Department of Biology, Darmstadt, Germany
| | - Raymond M Schiffelers
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Raphael Schneider
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
- University of Toronto, Department of Medicine, Division of Neurology, Toronto, Canada
| | - Tine Hiorth Schøyen
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Eriomina Shahaj
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | - Shivani Sharma
- University of California, Los Angeles, California NanoSystems Institute, Los Angeles, CA, USA
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Olga Shatnyeva
- AstraZeneca, Discovery Sciences, IMED Biotech Unit, Gothenburg, Sweden
| | - Faezeh Shekari
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
| | - Ganesh Vilas Shelke
- University of Gothenburg, Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Cancer Center, Gothenburg, Sweden
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans’ Medical Center, Temple, TX, USA
- Texas A&M University College of Medicine, Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine, College Station, TX, USA
| | | | - Pia R-M Siljander
- University of Helsinki, EV Core Facility, Helsinki, Finland
- University of Helsinki, Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, EV group, Helsinki, Finland
| | - Andreia M Silva
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- University of Porto, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Orman L Snyder
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, USA
| | | | - Barbara W Sódar
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Carolina Soekmadji
- QIMR Berghofer Medical Research Institute, Herston, Australia
- The University of Queensland, Brisbane, Australia
| | - Javier Sotillo
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | | | - Willem Stoorvogel
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Shannon L Stott
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Massachusetts General Cancer Center, Boston, MA, USA
| | - Erwin F Strasser
- FAU Erlangen-Nuremberg, Transfusion and Haemostaseology Department, Erlangen, Germany
| | - Simon Swift
- University of Auckland, Department of Molecular Medicine and Pathology, Auckland, New Zealand
| | - Hidetoshi Tahara
- Hiroshima University, Institute of Biomedical & Health Sciences, Department of Cellular and Molecular Biology, Hiroshima, Japan
| | - Muneesh Tewari
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
- University of Michigan, Department of Internal Medicine - Hematology/Oncology Division, Ann Arbor, MI, USA
| | - Kate Timms
- University of Manchester, Manchester, UK
| | - Swasti Tiwari
- Georgetown University, Department of Medicine, Washington, DC, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India
| | - Rochelle Tixeira
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mercedes Tkach
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Wei Seong Toh
- National University of Singapore, Faculty of Dentistry, Singapore
| | - Richard Tomasini
- INSERM U1068, Aix Marseille University, CNRS UMR7258, Marseille, France
| | | | - Juan Pablo Tosar
- Institut Pasteur de Montevideo, Functional Genomics Unit, Montevideo, Uruguay
- Universidad de la República, Faculty of Science, Nuclear Research Center, Analytical Biochemistry Unit, Montevideo, Uruguay
| | | | - Lorena Urbanelli
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Perugia, Italy
| | - Pieter Vader
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Bas WM van Balkom
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Jan Van Deun
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Martijn JC van Herwijnen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | | | - Martin E van Royen
- Department of Pathology, Erasmus MC, Erasmus Optical Imaging Centre, Rotterdam, The Netherlands
| | | | - M Helena Vasconcelos
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- University of Porto, Faculty of Pharmacy (FFUP), Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ivan J Vechetti
- University of Kentucky, College of Medicine, Department of Physiology, Lexington, KY, USA
| | - Tiago D Veit
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Brazil
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- The University of Melbourne, The Department of Medicine, Melbourne, Australia
| | - Émilie Velot
- UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Beate Vestad
- Oslo University Hospital Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Regional Research Network on Extracellular Vesicles, RRNEV, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Jose L Viñas
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Tamás Visnovitz
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Krisztina V Vukman
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Jessica Wahlgren
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden
| | - Dionysios C Watson
- Case Western Reserve University, Department of Medicine, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA
| | - Marca HM Wauben
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Alissa Weaver
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN, USA
| | | | - Viktoria Weber
- Danube University Krems, Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Krems an der Donau, Austria
| | - Ann M Wehman
- University of Würzburg, Rudolf Virchow Center, Würzburg, Germany
| | - Daniel J Weiss
- The University of Vermont Medical Center, Department of Medicine, Burlington, VT, USA
| | - Joshua A Welsh
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Sebastian Wendt
- University Hospital RWTH Aachen, Department of Thoracic and Cardiovascular Surgery, Aachen, Germany
| | - Asa M Wheelock
- Karolinska Institute, Department of Medicine and Center for Molecular Medicine, Respiratory Medicine Unit, Stockholm, Sweden
| | - Zoltán Wiener
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Leonie Witte
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Joy Wolfram
- Chinese Academy of Sciences, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, USA
- Mayo Clinic, Department of Transplantation Medicine/Department of Physiology and Biomedical Engineering, Jacksonville, FL, USA
| | - Angeliki Xagorari
- George Papanicolaou Hospital, Public Cord Blood Bank, Department of Haematology - BMT Unit, Thessaloniki, Greece
| | - Patricia Xander
- Universidade Federal de São Paulo Campus Diadema, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, São Paulo, Brazil
| | - Jing Xu
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - Xiaomei Yan
- Xiamen University, Department of Chemical Biology, Xiamen, China
| | - María Yáñez-Mó
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Madrid, Spain
| | - Hang Yin
- Tsinghua University, School of Pharmaceutical Sciences, Beijing, China
| | - Yuana Yuana
- Technical University Eindhoven, Faculty Biomedical Technology, Eindhoven, The Netherlands
| | - Valentina Zappulli
- University of Padova, Department of Comparative Biomedicine and Food Science, Padova, Italy
| | - Jana Zarubova
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, BIOCEV, Vestec, Czech Republic
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, Prague, Czech Republic
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, CA, USA
| | - Vytautas Žėkas
- Vilnius University, Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius, Lithuania
| | - Jian-ye Zhang
- Guangzhou Medical University, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, China
| | - Zezhou Zhao
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Lei Zheng
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
| | | | - Antje M Zickler
- Karolinska Institute, Clinical Research Center, Unit for Molecular Cell and Gene Therapy Science, Stockholm, Sweden
| | - Pascale Zimmermann
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- KU Leuven (Leuven University), Department of Human Genetics, Leuven, Belgium
| | - Angela M Zivkovic
- University of California, Davis, Department of Nutrition, Davis, CA, USA
| | | | - Ewa K Zuba-Surma
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| |
Collapse
|
49
|
Wang Y, Yuan W, Kimber M, Lu M, Dong L. Rapid Differentiation of Host and Parasitic Exosome Vesicles Using Microfluidic Photonic Crystal Biosensor. ACS Sens 2018; 3:1616-1621. [PMID: 30160476 DOI: 10.1021/acssensors.8b00360] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parasite extracellular vesicles (EVs) are potential biomarkers that could be exploited for the diagnosis of infectious disease. This paper reports a rapid bioassay to discriminate parasite and host EVs. The EV detection assay utilizes a label-free photonic crystal (PC) biosensor to detect the EVs using a host-specific transmembrane protein (CD63), which is present on EV secreted by host cells (modeled by murine macrophage cell line J774A.1) but is not expressed on EV secreted by parasitic nematodes such as the gastrointestinal nematode Ascaris suum. The surface of PC is functionalized to recognize CD63, and is sensitive to the changes in refractive index caused by the immobilization of EVs. The biosensor demonstrates a detection limit of 2.18 × 109 EVs/mL and a capability to characterize the affinity constants of antibody-host EV bindings. The discrimination of murine host EVs from parasite EVs indicates the capability of the sensor to differentiate EVs from different origins. The label-free, rapid EV assay could be used to detection parasite infection and facilitate the exosome-based clinic diagnosis and exosome research.
Collapse
|
50
|
Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 2018; 7:14. [PMID: 29855735 PMCID: PMC5981152 DOI: 10.1186/s40169-018-0192-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid-bound particles containing nucleic acid and protein cargo which are excreted from cells under a variety of normal and pathological conditions. EVs have garnered substantial research interest in recent years, due to their potential utility as circulating biomarkers for a variety of diseases, including numerous types of cancer. The following review will discuss the current understanding of the form and function of EVs, their specific role in cancer pathogenesis and their potential for non-invasive disease diagnosis and/or monitoring. This review will also highlight several key issues for this field, including the importance of implementing robust and reproducible sample handling protocols, and the challenge of extracting an EV-specific biomarker signal from a complex biological background.
Collapse
Affiliation(s)
- R E Lane
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - D Korbie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - M M Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - M Trau
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|