1
|
Zafer M, Tavaglione F, Romero-Gómez M, Loomba R. Review Article: GLP-1 Receptor Agonists and Glucagon/GIP/GLP-1 Receptor Dual or Triple Agonists-Mechanism of Action and Emerging Therapeutic Landscape in MASLD. Aliment Pharmacol Ther 2025; 61:1872-1888. [PMID: 40364529 DOI: 10.1111/apt.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily managed through diet and lifestyle modifications. However, these behavioural interventions alone may not achieve disease regression or remission, and maintaining long-term adherence is challenging. Incretin mimetics and other gastrointestinal hormones targeting the pleiotropic pathophysiological pathways underlying MASLD have now emerged as promising disease-modifying therapies. AIMS This is a comprehensive review summarising the role of glucagon-like peptide-1 (GLP-1) receptor agonists and glucagon/glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor dual or triple agonists in the treatment of metabolic dysfunction-associated steatohepatitis (MASH). METHODS Only clinical trials with endpoints assessed by liver histology were included for a robust evaluation of therapeutic efficacy. RESULTS Recent evidence from phase 2 clinical trials for MASH demonstrated that pharmacological agents based on GLP-1 receptor agonism are effective in improving disease activity. Additionally, tirzepatide and survodutide showed potential clinical benefits in reducing fibrosis. Other cardiometabolic benefits observed include weight loss and improvements in glycaemic control and lipid profile. Adherence to treatment may be limited by gastrointestinal side effects, though they were found to be generally mild to moderate in severity. An interim analysis of the semaglutide phase 3 trial confirmed its efficacy in improving steatohepatitis and demonstrated its potential to improve fibrosis. CONCLUSIONS GLP-1 receptor agonists, alone or in combination with GIP and/or glucagon receptor agonists, represent promising, effective pharmacotherapies for the treatment of MASLD/MASH. Larger and longer-duration clinical trials are needed to further evaluate the efficacy and safety of GIP receptor and glucagon receptor agonism.
Collapse
Affiliation(s)
- Maryam Zafer
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Federica Tavaglione
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and Ciberehd, Virgen Del Rocío University Hospital, Institute of Biomedicine of Seville (CSIC/HUVR/US), University of Seville, Seville, Spain
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
- School of Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2025; 45:29-65. [PMID: 39139038 PMCID: PMC11638809 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Jessica A. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Mau T. Nguyen
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Richard Le
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Christina A. Bursill
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chinmay S. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Department of EndocrinologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Adam J. Nelson
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Peter J. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
5
|
Tran DT, Yeung ESH, Hong LYQ, Kaur H, Advani SL, Liu Y, Syeda MZ, Batchu SN, Advani A. Finerenone attenuates downregulation of the kidney GLP-1 receptor and glucagon receptor and cardiac GIP receptor in mice with comorbid diabetes. Diabetol Metab Syndr 2024; 16:283. [PMID: 39582036 PMCID: PMC11587750 DOI: 10.1186/s13098-024-01525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Several new treatments have recently been shown to have heart and kidney protective benefits in people with diabetes. Because these treatments were developed in parallel, it is unclear how the different molecular pathways affected by the therapies may overlap. Here, we examined the effects of the mineralocorticoid receptor antagonist finerenone in mice with comorbid diabetes, focusing on the regulation of expression of the glucagon-like peptide-1 receptor (GLP-1R), gastric inhibitory polypeptide receptor (GIPR) and glucagon receptor (GCGR), which are targets of approved or investigational therapies in diabetes. METHODS Male C57BL/6J mice were fed a high fat diet for 26 weeks. Twelve weeks into the high fat diet feeding period, mice received an intraperitoneal injection of streptozotocin before being followed for the remaining 14 weeks (DMHFD mice). After 26 weeks, mice were fed a high fat diet containing finerenone (100 mg/kg diet) or high fat diet alone for a further 2 weeks. Cell culture experiments were performed in primary vascular smooth muscle cells (VSMCs), NRK-49 F fibroblasts, HK-2 cells, and MDCK cells. RESULTS DMHFD mice developed albuminuria, glomerular mesangial expansion, and diastolic dysfunction (decreased E/A ratio). Glp1r and Gcgr were predominantly expressed in arteriolar VSMCs and distal nephron structures of mouse kidneys respectively, whereas Gipr was the predominant of the three transcripts in mouse hearts. Kidney Glp1r and Gcgr and cardiac Gipr mRNA levels were reduced in DMHFD mice and this reduction was negated or attenuated with finerenone. Mechanistically, finerenone attenuated upregulation of the profibrotic growth factor Ccn2 in DMHFD kidneys, whereas recombinant CCN2 downregulated Glp1r and Gcgr in VSMCs and MDCK cells respectively. CONCLUSIONS Through its anti-fibrotic actions, finerenone reverses Glp1r and Gcgr downregulation in the diabetic kidney. Both finerenone and GLP-1R agonists have proven cardiorenal benefits, whereas receptor co-agonists are approved or under development. The current findings provide preclinical rationale for the combined use of finerenone with the GLP-1R agonist family. They also provide mechanism of action insights into the potential benefit of finerenone in people with diabetes for whom GLP-1R agonists or co-agonists may not be indicated.
Collapse
Affiliation(s)
- Duc Tin Tran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Emily S H Yeung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Lisa Y Q Hong
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Madiha Zahra Syeda
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
6
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
7
|
Ruska Y, Csibi A, Dorogházi B, Szilvásy-Szabó A, Mohácsik P, Környei Z, Dénes Á, Kádár A, Puskár Z, Hrabovszky E, Gereben B, Wittmann G, Fekete C. Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice. Sci Rep 2024; 14:14403. [PMID: 38909126 PMCID: PMC11193760 DOI: 10.1038/s41598-024-65442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.
Collapse
Affiliation(s)
- Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Andrea Csibi
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Kádár
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| |
Collapse
|
8
|
Sabadell-Basallote J, Astiarraga B, Castaño C, Ejarque M, Repollés-de-Dalmau M, Quesada I, Blanco J, Núñez-Roa C, Rodríguez-Peña MM, Martínez L, De Jesus DF, Marroquí L, Bosch R, Montanya E, Sureda FX, Tura A, Mari A, Kulkarni RN, Vendrell J, Fernández-Veledo S. SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes. J Clin Invest 2024; 134:e173214. [PMID: 38713514 PMCID: PMC11178533 DOI: 10.1172/jci173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Pancreatic β cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here, we report that succinate receptor 1 (SUCNR1) is expressed in β cells and is upregulated in hyperglycemic states in mice and humans. We found that succinate acted as a hormone-like metabolite and stimulated insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human β cells. Mice with β cell-specific Sucnr1 deficiency exhibited impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance showed an enhanced nutrition-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.
Collapse
Affiliation(s)
- Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brenno Astiarraga
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Castaño
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Repollés-de-Dalmau
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | - Catalina Núñez-Roa
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - M-Mar Rodríguez-Peña
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Martínez
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Marroquí
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Ramon Bosch
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Histological, Cytological and Digitization Studies Platform, Pathology Department, Hospital Verge de la Cinta, Tortosa, Spain
| | - Eduard Montanya
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), and Universitat de Barcelona, Barcelona, Spain
| | | | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
9
|
Shilleh AH, Viloria K, Broichhagen J, Campbell JE, Hodson DJ. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides 2024; 175:171179. [PMID: 38360354 DOI: 10.1016/j.peptides.2024.171179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.
Collapse
Affiliation(s)
- Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Katrina Viloria
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jonathan E Campbell
- Duke Molecular Physiology Institute, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - David J Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, Kang Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur J Pharmacol 2023; 960:176115. [PMID: 37866740 DOI: 10.1016/j.ejphar.2023.176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Naringenin is a citrus flavonoid that potently improves metabolic parameters in animal models of metabolic disorders, such as type 2 diabetes. Estrogen receptor (ER) activation promotes β cell function and survival, thereby improving systemic glucose metabolism. In this study, we used a luciferase reporter assay, isolated rat islets and a diabetic rat model to investigate the effects of naringenin on ER signaling and the underlying mechanism of naringenin-mediated improvement of islet function in diabetes. Naringenin specifically activated ERβ without affecting the activity of ERα, G protein-coupled estrogen receptor (GPER) or estrogen-related receptor (ERR) α/β/γ. Additionally, treatment with naringenin enhanced glucose-stimulated insulin secretion in isolated rat islets. This effect was abrogated by PHTPP, an ERβ antagonist. Transcriptomic analysis revealed that naringenin upregulated the expression of genes, such as Pdx1 and Mafa, which are closely linked to improved β-cell function. In consistence, single administration of naringenin to normal rats elevated plasma insulin levels and improved glucose responses. These beneficial effects were blocked by PHTPP. In streptozocin-nicotinamide induced diabetic rats, treatment for 2 weeks with naringenin alone, but not in combination with PHTPP, significantly restored pancreatic β cell mass and improved glucose metabolism. Collectively, these data support that naringenin specifically activate ERβ to improve insulin secretion in the primary rat islets. Furthermore, naringenin administration also protected β cell function and reversed glucose dysregulation in diabetic rats. These beneficial effects are at least partially dependent on the ERβ pathway.
Collapse
Affiliation(s)
- Peibin Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaojing Zhang
- Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
11
|
Reimann F. Dorothy Hodgkin lecture 2023: The enteroendocrine system-Sensors in your guts. Diabet Med 2023; 40:e15212. [PMID: 37638546 PMCID: PMC10946932 DOI: 10.1111/dme.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Glucagon-like peptide-1 (GLP-1)-based medication is now widely employed in the treatment of type 2 diabetes and obesity. Like other gut hormones, GLP-1 is released from eneteroendocrine cells after a meal and in this review, based on the Dorothy Hodgkin lecture delivered during the annual meeting of Diabetes UK in 2023, I argue that there is sufficient spare capacity of GLP-1 and other gut hormone expressing cells that could be recruited therapeutically. Years of research has revealed several receptors expressed in enteroendocrine cells that could be targeted to stimulate hormone release: although from this research it seems unlikely to find agents that selectively boost GLP-1, release of a mixture of hormones might be the more desirable outcome anyway, given the recent promising results of new peptides combining GLP1-receptor with other gut hormone receptor activation. Alternatively, the fact that GLP-1 and peptideYY (PYY) expressing cells are found in greater density in the ileum might be exploited by increasing the delivery of chyme to the distal small intestine.
Collapse
Affiliation(s)
- Frank Reimann
- Department of Clinical BiochemistryInstitute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of CambridgeCambridgeUK
| |
Collapse
|
12
|
Zaïmia N, Obeid J, Varrault A, Sabatier J, Broca C, Gilon P, Costes S, Bertrand G, Ravier MA. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep 2023; 42:113326. [PMID: 37897727 DOI: 10.1016/j.celrep.2023.113326] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease β-arrestin 2 (ARRB2) levels in human islets. In mouse β cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.
Collapse
Affiliation(s)
- Nour Zaïmia
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Joelle Obeid
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Annie Varrault
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète, et Nutrition, Brussels, Belgium
| | - Safia Costes
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
13
|
Tian F, Chen T, Xu W, Fan Y, Feng X, Huang Q, Chen J. Curcumin Compensates GLP-1 Deficiency via the Microbiota-Bile Acids Axis and Modulation in Functional Crosstalk between TGR5 and FXR in ob/ob Mice. Mol Nutr Food Res 2023; 67:e2300195. [PMID: 37712101 DOI: 10.1002/mnfr.202300195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Indexed: 09/16/2023]
Abstract
SCOPE Glucagon-like peptide-1 (GLP-1) deficiency occurs in obesity-related pathologies due to defects in the intestinal lumen. And expanding the L-cell population has emerged as a promising avenue to elevate GLP-1 secretion to tackle metabolic disorders. Curcumin (Cur), the principal active component of spice turmeric, possesses well-established anti-obesity properties. To clarify, the study investigates whether Cur promotes GLP-1 secretion built upon the L-cell expansion. METHODS AND RESULTS Cur (60 mg kg-1 ) is administered orally to male ob/ob mice for 8 weeks. Cur ameliorates obesity and impaires glucose tolerance through increasing energy expenditure in ob/ob mice, accompanied by the maintenance of crypt architecture and gut permeability. It refines the microbial structure and bile acid (BA) profiles, resulting in deoxycholic acid (DCA) accumulation by weakening the enrichment of Lactobacillus. Further analyses show radically different properties of Cur on the intestine function of TGR5 and FXR (i.e., activation and repression). Cur amplifies L-cell number to promote GLP-1 secretion in ob/ob mice. CONCLUSIONS The findings suggest that Cur may act as a natural TGR5 agonist and FXR antagonist to improve obesity by enhancing GLP-1 release from L-cell expansion via the gut microbiota-BAs-TGR5/FXR axis, and it may serve as a promising therapeutic agent to compensate obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Fengyuan Tian
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Tianxi Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Yichang Fan
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Xiaohong Feng
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Qi Huang
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Jie Chen
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| |
Collapse
|
14
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
15
|
Pandey S, Mangmool S, Madreiter-Sokolowski CT, Wichaiyo S, Luangmonkong T, Parichatikanond W. Exendin-4 protects against high glucose-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y neuroblastoma cells through GLP-1 receptor/Epac/Akt signaling. Eur J Pharmacol 2023:175896. [PMID: 37391007 DOI: 10.1016/j.ejphar.2023.175896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Mitochondrial dysfunction under diabetic condition leads to the development and progression of neurodegenerative complications. Recently, the beneficial effects of glucagon-like peptide-1 (GLP-1) receptor agonists on diabetic neuropathies have been widely recognized. However, molecular mechanisms underlying the neuroprotective effects of GLP-1 receptor agonists against high glucose (HG)-induced neuronal damages is not completely elucidated. Here, we investigated the underlying mechanisms of GLP-1 receptor agonist treatment against oxidative stress, mitochondrial dysfunction, and neuronal damages under HG-conditions mimicking a diabetic hyperglycemic state in SH-SY5Y neuroblastoma cells. We revealed that treatment with exendin-4, a GLP-1 receptor agonist, not only increased the expression of survival markers, phospho-Akt/Akt and Bcl-2, but also decreased the expression of pro-apoptotic marker, Bax, and reduced the levels of reactive oxygen species (ROS) defense markers (catalase, SOD-2, and HO-1) under HG conditions. The expressions of mitochondrial function associated genes, MCU and UCP3, and mitochondrial fission genes, DRP1 and FIS1, were decreased by exendin-4 compared to non-treated levels, while the protein expression levels of mitochondrial homeostasis regulators, Parkin and PINK1, were enhanced. In addition, blockade of Epac and Akt activities was able to antagonize these neuroprotective effects of exendin-4. Collectively, we demonstrated that stimulation of GLP-1 receptor propagates a neuroprotective cascade against the oxidative stresses and mitochondrial dysfunctions as well as augments survival through the Epac/Akt-dependent pathway. Therefore, the revealed mechanisms underlying GLP-1 receptor pathway by preserving mitochondrial homeostasis would be a therapeutic candidate to alleviate neuronal dysfunctions and delay the progression of diabetic neuropathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
16
|
Ma B, Wang X, Ren H, Li Y, Zhang H, Yang M, Li J. High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist. BMC Cancer 2023; 23:594. [PMID: 37370018 PMCID: PMC10304216 DOI: 10.1186/s12885-023-11077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. METHODS We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People's Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. RESULTS BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. CONCLUSIONS BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.
Collapse
Affiliation(s)
- Bingwei Ma
- Colorectal Cancer Central, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
- Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Hui Ren
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingying Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haijiao Zhang
- Department of Gastrointestinal Surgery, Huadong Hospital affiliated with Fudan University, 221 West Yanan Road, Shanghai, 200040, China
| | - Muqing Yang
- Department of General Surgery, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiyu Li
- Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
17
|
Wibawa IDN, Mariadi IK, Somayana G, Krisnawardani Kumbara CIY, Sindhughosa DA. Diabetes and fatty liver: Involvement of incretin and its benefit for fatty liver management. World J Diabetes 2023; 14:549-559. [PMID: 37273247 PMCID: PMC10237000 DOI: 10.4239/wjd.v14.i5.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Fatty liver disease is defined as liver condition characterized by hepatic steatosis, closely related to pathological conditions in type 2 diabetes and obesity. The high prevalence of fatty liver disease in obese patients with type 2 diabetes reached 70%, reflecting the importance of these conditions with fatty liver. Although the exact pathological mechanism of fatty liver disease, specifically non-alcoholic fatty liver disease (NAFLD) remains not completely revealed, insulin resistance is suggested as the major mechanism that bridged the development of NAFLD. Indeed, loss of the incretin effect leads to insulin resistance. Since incretin is closely related to insulin resistance and the resistance of insulin associated with the development of fatty liver disease, this pathway suggested a potential me-chanism that explains the association between type 2 diabetes and NAFLD. Furthermore, recent studies indicated that NAFLD is associated with impaired glucagon-like peptide-1, resulting in decreased incretin effect. Nevertheless, improving the incretin effect becomes a reasonable approach to manage fatty liver disease. This review elucidates the involvement of incretin in fatty liver disease and recent studies of incretin as the management for fatty liver disease.
Collapse
Affiliation(s)
- I Dewa Nyoman Wibawa
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | - I Ketut Mariadi
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | - Gde Somayana
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | | | - Dwijo Anargha Sindhughosa
- Internal Medicine Resident, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| |
Collapse
|
18
|
Artasensi A, Mazzolari A, Pedretti A, Vistoli G, Fumagalli L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules 2023; 28:molecules28073094. [PMID: 37049856 PMCID: PMC10095867 DOI: 10.3390/molecules28073094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are major public health concerns associated with serious morbidity and increased mortality. Both obesity and T2DM are strongly associated with adiposopathy, a term that describes the pathophysiological changes of the adipose tissue. In this review, we have highlighted adipose tissue dysfunction as a major factor in the etiology of these conditions since it promotes chronic inflammation, dysregulated glucose homeostasis, and impaired adipogenesis, leading to the accumulation of ectopic fat and insulin resistance. This dysfunctional state can be effectively ameliorated by the loss of at least 15% of body weight, that is correlated with better glycemic control, decreased likelihood of cardiometabolic disease, and an improvement in overall quality of life. Weight loss can be achieved through lifestyle modifications (healthy diet, regular physical activity) and pharmacotherapy. In this review, we summarized different effective management strategies to address weight loss, such as bariatric surgery and several classes of drugs, namely metformin, GLP-1 receptor agonists, amylin analogs, and SGLT2 inhibitors. These drugs act by targeting various mechanisms involved in the pathophysiology of obesity and T2DM, and they have been shown to induce significant weight loss and improve glycemic control in obese individuals with T2DM.
Collapse
|
19
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
20
|
Jansen TJP, Brom M, Boss M, Buitinga M, Tack CJ, van Meijel LA, de Galan BE, Gotthardt M. Importance of beta cell mass for glycaemic control in people with type 1 diabetes. Diabetologia 2023; 66:367-375. [PMID: 36394644 PMCID: PMC9669532 DOI: 10.1007/s00125-022-05830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell mass in the balance of glucose control and hypoglycaemic burden in people with type 1 diabetes is unclear. We applied positron emission tomography (PET) imaging with radiolabelled exendin to compare beta cell mass among people with type 1 diabetes and either low glucose variability (LGV) or high glucose variability (HGV). METHODS All participants with either LGV (n=9) or HGV (n=7) underwent a mixed-meal tolerance test to determine beta cell function and wore a blinded continuous glucose monitor for a week. After an i.v. injection with [68Ga]Ga-NODAGA-exendin-4, PET images were acquired for the quantification of pancreatic uptake of radiolabelled exendin. The mean standardised uptake value (SUVmean) of the pancreas was used to determine the amount of beta cell mass. RESULTS Participants with LGV had lower HbA1c (46.0 mmol/mol [44.5-52.5] [6.4% (6.3-7)] vs 80 mmol/mol [69.0-110] [9.5% (8.5-12.2)], p=0.001) and higher time in range (TIR) (75.6% [73.5-90.3] vs 38.7% [25.1-48.5], p=0.002) than those with HGV. The SUVmean of the pancreas was higher for the LGV than for the HGV group (5.1 [3.6-5.6] vs 2.9 [2.1-3.4], p=0.008). The AUCC-peptide:AUCglucose ratio was numerically, but not statistically, higher in the LGV compared with the HGV group (2.7×10-2 [6.2×10-4-5.3×10-2] vs 9.3×10-4 [4.7×10-4-5.2×10-3], p=0.21). SUVmean correlated with the AUCC-peptide:AUCglucose ratio (Pearson r=0.64, p=0.01), as well as with the TIR (r=0.64, p=0.01) and the SD of interstitial glucose levels (r=-0.66, p=0.007). CONCLUSION/INTERPRETATION Our data show higher beta cell mass in people with type 1 diabetes and LGV than in those with HGV, independent of beta cell function.
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - Cees J Tack
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lian A van Meijel
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maxima Medical Center, Veldhoven, the Netherlands
| | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Chu L, Terasaki M, Mattsson CL, Teinturier R, Charbord J, Dirice E, Liu KC, Miskelly MG, Zhou Q, Wierup N, Kulkarni RN, Andersson O. In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chem Biol 2022; 29:1368-1380.e5. [PMID: 35998625 PMCID: PMC9557248 DOI: 10.1016/j.chembiol.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/27/2022] [Accepted: 07/27/2022] [Indexed: 02/02/2023]
Abstract
Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
Collapse
Affiliation(s)
- Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michishige Terasaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Teinturier
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael G Miskelly
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Pujadas G, Baggio LL, Kaur KD, McLean BA, Cao X, Drucker DJ. Genetic disruption of the Gipr in Apoe -/- mice promotes atherosclerosis. Mol Metab 2022; 65:101586. [PMID: 36055579 PMCID: PMC9478451 DOI: 10.1016/j.molmet.2022.101586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain. METHODS Atherosclerosis and related metabolic phenotypes were studied in Apoe-/-:Gipr-/- mice and in Gipr+/+ and Gipr-/- mice treated with an adeno-associated virus expressing PCSK9 (AAV-PCSK9). Bone marrow transplantation (BMT) studies were carried out using donor marrow from Apoe-/-:Gipr-/-and Apoe-/-:Gipr+/+mice transplanted into Apoe-/-:Gipr-/- recipient mice. Experimental endpoints included the extent of aortic atherosclerosis and inflammation, body weight, glucose tolerance, and circulating lipid levels, the proportions and subsets of circulating leukocytes, and tissue gene expression profiles informing lipid and glucose metabolism, and inflammation. RESULTS Body weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe-/-:Gipr-/- mice and trended higher in Gipr-/- mice with atherosclerosis induced by AAV-PCSK9. Levels of mRNA transcripts for genes contributing to inflammation were increased in the aortae of Apoe-/-:Gipr-/- mice and expression of a subset of inflammation-related hepatic genes were increased in Gipr-/- mice treated with AAV-PCSK9. BMT experiments did not reveal marked atherosclerosis, failing to implicate bone marrow derived GIPR + cells in the control of atherosclerosis or aortic inflammation. CONCLUSIONS Loss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel J. Drucker
- Corresponding author. LTRI, Mt. Sinai Hospital 600 University Ave Mailbox 39, TCP5-1004 Toronto ON M5G 1X5 Canada.
| |
Collapse
|
23
|
Bourouh C, Courty E, Rolland L, Pasquetti G, Gromada X, Rabhi N, Carney C, Moreno M, Boutry R, Caron E, Benfodda Z, Meffre P, Kerr-Conte J, Pattou F, Froguel P, Bonnefond A, Oger F, Annicotte JS. The transcription factor E2F1 controls the GLP-1 receptor pathway in pancreatic β cells. Cell Rep 2022; 40:111170. [PMID: 35947949 DOI: 10.1016/j.celrep.2022.111170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022] Open
Abstract
The glucagon-like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential in type 2 diabetes (T2D) treatment, notably by improving β cell functions. The cell-cycle regulator and transcription factor E2f1 is involved in glucose homeostasis by modulating β cell mass and function. Here, we report that β cell-specific genetic ablation of E2f1 (E2f1β-/-) impairs glucose homeostasis associated with decreased expression of the Glp-1 receptor (Glp1r) in E2f1β-/- pancreatic islets. Pharmacological inhibition of E2F1 transcriptional activity in nondiabetic human islets decreases GLP1R levels and blunts the incretin effect of GLP1R agonist exendin-4 (ex-4) on insulin secretion. Overexpressing E2f1 in pancreatic β cells increases Glp1r expression associated with enhanced insulin secretion mediated by ex-4. Interestingly, ex-4 induces retinoblastoma protein (pRb) phosphorylation and E2f1 transcriptional activity. Our findings reveal critical roles for E2f1 in β cell function and suggest molecular crosstalk between the E2F1/pRb and GLP1R signaling pathways.
Collapse
Affiliation(s)
- Cyril Bourouh
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Emilie Courty
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France; Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France
| | - Laure Rolland
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France; Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France
| | - Gianni Pasquetti
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, 59000 Lille, France
| | - Xavier Gromada
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Charlène Carney
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Maeva Moreno
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Raphaël Boutry
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Emilie Caron
- Université de Lille, INSERM, CHU Lille, U1172-LilNCog - Lille Neuroscience & Cognition - EGID - DISTALZ, 59000 Lille, France
| | - Zohra Benfodda
- Université de Nîmes, UPR CHROME, 30021 Nîmes Cedex 1, France
| | - Patrick Meffre
- Université de Nîmes, UPR CHROME, 30021 Nîmes Cedex 1, France
| | - Julie Kerr-Conte
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, 59000 Lille, France
| | - François Pattou
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, 59000 Lille, France
| | - Philippe Froguel
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Amélie Bonnefond
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Frédérik Oger
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France
| | - Jean-Sébastien Annicotte
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1283 - UMR 8199 - EGID, 59000 Lille, France; Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France.
| |
Collapse
|
24
|
Miura H, Muramae N, Mori K, Otsui K, Sakaguchi K. Successful Resolution of Glucose Toxicity With the Use of Fixed-Ratio Combination Injection of Basal Insulin and Short-Acting Glucagon-Like Peptide 1 (GLP-1) Receptor Agonist. Cureus 2022; 14:e25889. [PMID: 35844351 PMCID: PMC9277572 DOI: 10.7759/cureus.25889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic hyperglycemia leads to a decrease in glucose-stimulated insulin secretion and an increase in insulin resistance. Resolving these glucose toxicities is pivotal in type 2 diabetes therapy because the decline in insulin secretion and insulin sensitivity causes further hyperglycemia. Conventionally, multiple daily insulin injection therapy was applied in such a situation. However, it could not be easily introduced, especially in outpatients. We present a case involving the successful resolution of glucose toxicity easily, immediately, and safely by using a fixed-ratio combination (FRC) injection of basal insulin and short-acting glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RA). Additionally, we discuss the advantages of this new injection therapy.
Collapse
|
25
|
Nakamura A. Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Pancreatic β-Cell Mass and Function. Int J Mol Sci 2022; 23:ijms23095104. [PMID: 35563495 PMCID: PMC9105075 DOI: 10.3390/ijms23095104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors (SGLT2is) not only have antihyperglycemic effects and are associated with a low risk of hypoglycemia but also have protective effects in organs, including the heart and kidneys. The pathophysiology of diabetes involves chronic hyperglycemia, which causes excessive demands on pancreatic β-cells, ultimately leading to decreases in β-cell mass and function. Because SGLT2is ameliorate hyperglycemia without acting directly on β-cells, they are thought to prevent β-cell failure by reducing glucose overload in this cell type. Several studies have shown that treatment with an SGLT2i increases β-cell proliferation and/or reduces β-cell apoptosis, resulting in the preservation of β-cell mass in animal models of diabetes. In addition, many clinical trials have shown that that SGLT2is improve β-cell function in individuals with type 2 diabetes. In this review, the preclinical and clinical data regarding the effects of SGLT2is on pancreatic β-cell mass and function are summarized and the protective effect of SGLT2is in β-cells is discussed.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
26
|
Molecular Mechanism of Pancreatic β-Cell Failure in Type 2 Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10040818. [PMID: 35453568 PMCID: PMC9030375 DOI: 10.3390/biomedicines10040818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Various important transcription factors in the pancreas are involved in the process of pancreas development, the differentiation of endocrine progenitor cells into mature insulin-producing pancreatic β-cells and the preservation of mature β-cell function. However, when β-cells are continuously exposed to a high glucose concentration for a long period of time, the expression levels of several insulin gene transcription factors are substantially suppressed, which finally leads to pancreatic β-cell failure found in type 2 diabetes mellitus. Here we show the possible underlying pathway for β-cell failure. It is likely that reduced expression levels of MafA and PDX-1 and/or incretin receptor in β-cells are closely associated with β-cell failure in type 2 diabetes mellitus. Additionally, since incretin receptor expression is reduced in the advanced stage of diabetes mellitus, incretin-based medicines show more favorable effects against β-cell failure, especially in the early stage of diabetes mellitus compared to the advanced stage. On the other hand, many subjects have recently suffered from life-threatening coronavirus infection, and coronavirus infection has brought about a new and persistent pandemic. Additionally, the spread of coronavirus infection has led to various limitations on the activities of daily life and has restricted economic development worldwide. It has been reported recently that SARS-CoV-2 directly infects β-cells through neuropilin-1, leading to apoptotic β-cell death and a reduction in insulin secretion. In this review article, we feature a possible molecular mechanism for pancreatic β-cell failure, which is often observed in type 2 diabetes mellitus. Finally, we are hopeful that coronavirus infection will decline and normal daily life will soon resume all over the world.
Collapse
|
27
|
Chung CH, Chung SD, Cheng YH, Yang CP, Chien CT. RETRACTED: Long-Lasting Exendin-4-Loaded PLGA Nanoparticles Ameliorate Cerebral Ischemia/Reperfusion Damage in Diabetic Rats. J Pers Med 2022; 12:390. [PMID: 35330390 PMCID: PMC8951777 DOI: 10.3390/jpm12030390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Exendin-4 (Ex-4) is an incretin mimetic agent approved for diabetes treatment and neuronal protection. However, the required frequent injections restrict its clinical application. We prepared Ex-4-loaded poly(d,l-lactide-co-glycolide) nanoparticles (PEx-4) and investigated their effect on cerebral ischemia/reperfusion (IR) injury associated with micturition center damage-induced cystopathy in diabetic rats. Using ten minutes of bilateral carotid artery occlusion combined with hemorrhage-induced hypotension of the IR model in streptozotocin-induced type 1 diabetic (T1DM) Wistar rats, we compared the effects of Ex-4 and PEx-4 on prefrontal cortex edema, voiding function and oxidative stress including cerebral spinal fluid (CSF) reference H2O2 (RH2O2) and HOCl (RHOCl) levels, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pyroptosis signaling in brain and bladder by Western blot and immunohistochemistry. Single injection of PEx-4 displayed higher CSF antioxidant activity and a long-lasting hypoglycemic effect compared to Ex-4 in rats. T1DM and IR primarily enhanced CSF RH2O2, and pIRE-1/caspase-12/pJNK/CHOP-mediated ER stress, caspase-3/PARP-mediated apoptosis, Beclin-1/LC3B-mediated autophagy and caspase-1/IL-1β-mediated pyroptosis signaling in the damaged brains. Our data further evidenced that PEx-4 were more efficient than Ex-4 in attenuating IR-evoked prefrontal cortex edema, the impairment in micturition center and the enhanced level of CSF RH2O2 and HOCl, ER stress, apoptosis, autophagy and pyroptosis parameters in the damaged brains, but had less of an effect on IR-induced voiding dysfunction in bladders of T1DM rats. In summary, PEx-4 with stronger antioxidant activity and long-lasting bioavailability may efficiently confer therapeutic efficacy to ameliorate IR-evoked brain damage through the inhibitory action on oxidative stress, ER stress, apoptosis, autophagy and pyroptosis signaling in diabetic rats.
Collapse
Affiliation(s)
- Cheng-Hsun Chung
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Nursing, College of Healthcare & Management, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- General Education Center, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, No. 117, Shatian Road, Shalu District, Taichung City 433, Taiwan
- Department of Nutrition, Huang-Kuang University, Taichung 433, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| |
Collapse
|
28
|
Skovsø S, Panzhinskiy E, Kolic J, Cen HH, Dionne DA, Dai XQ, Sharma RB, Elghazi L, Ellis CE, Faulkner K, Marcil SAM, Overby P, Noursadeghi N, Hutchinson D, Hu X, Li H, Modi H, Wildi JS, Botezelli JD, Noh HL, Suk S, Gablaski B, Bautista A, Kim R, Cras-Méneur C, Flibotte S, Sinha S, Luciani DS, Nislow C, Rideout EJ, Cytrynbaum EN, Kim JK, Bernal-Mizrachi E, Alonso LC, MacDonald PE, Johnson JD. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun 2022; 13:735. [PMID: 35136059 PMCID: PMC8826929 DOI: 10.1038/s41467-022-28039-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
Collapse
Affiliation(s)
- Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Elghazi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cara E Ellis
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Faulkner
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A M Marcil
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daria Hutchinson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Honey Modi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J Diego Botezelli
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hye Lim Noh
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian Gablaski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Stephane Flibotte
- UBC Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan S Luciani
- BC Children's Hospital Research Institute, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth J Rideout
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Jason K Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, Miami, FL, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Li YX, Cheng KC, Liu IM, Niu HS. Myricetin Increases Circulating Adropin Level after Activation of Glucagon-like Peptide 1 (GLP-1) Receptor in Type-1 Diabetic Rats. Pharmaceuticals (Basel) 2022; 15:ph15020173. [PMID: 35215286 PMCID: PMC8877079 DOI: 10.3390/ph15020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Myricetin is a common plant-derived flavonoid, considered an agonist of glucagon-like peptide 1 (GLP-1) receptor. It improves glycemic control and helps reduce body weight in diabetic subjects. The potential mechanisms of action of myricetin in this context might be enhancing the secretion of β-endorphin (BER) to activate peripheral μ-opioid receptors. Moreover, adropin is a nutritionally regulated peptide hormone, which regulates energy metabolism, and plays a role in ameliorating diabetes. Because their mechanisms of insulin sensitivity are closely related, we hypothesized that myricetin may interact with adropin and plasma BER. The present study investigated the glucose-lowering effect of acute and chronic treatments of myricetin in type-1 diabetic rats. Plasma BER and adropin levels were determined by enzyme-linked immunosorbent assay (ELISA). The secretion of BER was measured in rats who received adrenalectomy. The changes in adropin gene (Enho) or mRNA level of GLP-1 receptor were measured using qPCR analysis. The results showed that myricetin dose-dependently increased plasma BER and adropin levels like the reduction of hyperglycemia after bolus injection as acute treatment. In addition, these effects of myricetin were inhibited by the antagonist of GLP-1 receptor. Moreover, in HepG2 cell line, myricetin induced GLP-1 receptor activation, which modulated the expression of adropin. In diabetic rats, the plasma adropin increased by myricetin is mainly through endogenous β-endorphin after activation of GLP-1 receptor via bolus injection as acute treatment. Additionally, chronic treatment with myricetin increased adropin secretion in diabetic rats. In conclusion, our results provide a new finding that activation of opioid μ-receptor in the liver may enhance circulating adropin in animals.
Collapse
Affiliation(s)
- Ying-Xiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
- Correspondence:
| |
Collapse
|
30
|
Takeshita Y, Kita Y, Tanaka T, Goto H, Nakano Y, Teramura C, Enyama Y, Takamura T. Insulin-GLP-1 receptor agonist relay and GLP-1 receptor agonist first regimens in individuals with type 2 diabetes: a randomized, open-label trial study. J Diabetes Investig 2022; 13:965-974. [PMID: 35034428 PMCID: PMC9153847 DOI: 10.1111/jdi.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Glucagon‐like peptide‐1 receptor agonists (GLP‐1 RA) might be less effective in patients with severe hyperglycemia, because hyperglycemia downregulated the GLP‐1 receptor in an animal study. To examine this hypothesis clinically, we compared the glucose‐lowering effects of GLP‐1 receptor agonist liraglutide with and without prior glycemic control. Materials and Methods In an open‐label, parallel trial, participants with poorly controlled type 2 diabetes were recruited and randomized to receive once‐daily insulin therapy, degludec (Insulin–GLP‐1 RA relay group, mean 16.8 ± 11.4 IU/day), for 12 weeks and then liraglutide for 12 weeks or subcutaneous injections of GLP‐1 RA, liraglutide (GLP‐1 RA first group, 0.9 mg), for 24 weeks. The primary efficacy end‐points consisted of changes in the levels of fasting plasma glucose and glycated hemoglobin (HbA1c). Results The median fasting plasma glucose and HbA1c before the study were 210.0 mg/dL and 9.8%, respectively. The levels of fasting plasma glucose and HbA1c significantly decreased in the Insulin–GLP‐1 RA relay group (P < 0.001) and GLP‐1 RA first group (P < 0.001) by week 24, although no intergroup differences were observed. The reduction of HbA1c in the Insulin–GLP‐1 RA relay group tended to be larger than that in the GLP‐1 RA first group in the lowest CPR (C‐peptide immunoreactivity) quartile (P = 0.072). The adverse events consisted of gastrointestinal problems, followed by hypoglycemia. Conclusions The GLP‐1 receptor agonist is overall effective without prior glycemic control with insulin in participants with poorly controlled type 2 diabetes. However, in participants with insulinopenic type 2 diabetes, prior glycemic control with insulin might overcome glucose toxicity‐induced GLP‐1 resistance.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuki Kita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Chisato Teramura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasufumi Enyama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | | |
Collapse
|
31
|
Hunt JE, Holst JJ, Jepsen SL. Glucose- and Bile Acid-Stimulated Secretion of Gut Hormones in the Isolated Perfused Intestine Is Not Impaired in Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2022; 13:884501. [PMID: 35600607 PMCID: PMC9114496 DOI: 10.3389/fendo.2022.884501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Decreased circulating levels of food-intake-regulating gut hormones have been observed in type 2 diabetes and obesity. However, it is still unknown if this is due to decreased secretion from the gut mucosal cells or due to extra-intestinal processing of hormones. METHODS We measured intestinal hormone content and assessed morphological differences in the intestinal mucosa by histology and immunohistochemistry. Secretion of hormones and absorption of glucose and bile acids (BA) were assessed in isolated perfused mouse intestine. RESULTS GIP (glucose-dependent insulinotropic polypeptide) and SS (somatostatin) contents were higher in the duodenum of control mice (p < 0.001, and <0.01). Duodenal GLP-1 (glucagon-like peptide-1) content (p < 0.01) and distal ileum PYY content were higher in DIO mice (p < 0.05). Villus height in the jejunum, crypt depth, and villus height in the ileum were increased in DIO mice (p < 0.05 and p = 0.001). In the distal ileum of DIO mice, more immunoreactive GLP-1 and PYY cells were observed (p = 0.01 and 0.007). There was no difference in the absorption of glucose and bile acids. Distal secretion of SS tended to be higher in DIO mice (p < 0.058), whereas no difference was observed for the other hormones in response to glucose or bile acids. CONCLUSION Our data suggest that differences regarding production and secretion are unlikely to be responsible for the altered circulating gut hormone levels in obesity, since enteroendocrine morphology and hormone secretion capacity were largely unaffected in DIO mice.
Collapse
Affiliation(s)
- Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L. Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Sara L. Jepsen,
| |
Collapse
|
32
|
Qi L, Wei Q, Ni M, Liu D, Bao J, Lv Y, Xia H, Wang Q, Wang L, Su J, Sj P, Li L. Pancreatic and gut hormone responses to mixed meal test in post-chronic pancreatitis diabetes mellitus. DIABETES & METABOLISM 2021; 48:101316. [PMID: 34929379 DOI: 10.1016/j.diabet.2021.101316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE . - More than one-third of chronic pancreatitis patients will eventually develop diabetes, recently classified as post-chronic pancreatitis diabetes mellitus (PPDM-C). This study was aimed to investigate the pancreatic and gut hormone responses to a mixed meal test in PPDM-C patients, compared with non-diabetic chronic pancreatitis (CP), and type 2 diabetes patients or healthy controls. DESIGN AND METHODS .- Sixteen patients with PPDM-C, 12 with non-diabetic CP as well as 10 with type 2 diabetes and healthy controls were recruited. All participants underwent mixed meal tests, and blood samples were collected for measurements of blood glucose, C-peptide, insulin, glucagon, pancreatic polypeptide (PP), ghrelin, peptide YY, glucagon like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP). Indices of insulin sensitivity and secretion were calculated. Repeated measures analysis of variance was performed. RESULTS . - Participants with PPDM-C exhibited decreases in both fasting and postprandial responses of C-peptide (P < 0.001), insulin (P < 0.001), ghrelin (P < 0.001) and PYY (P = 0.006) compared to participants with type 2 diabetes and healthy controls. Patients with CP showed blunted glucagon, PP and incretin reactions, while the responses were increased in patients with PPDM-C compared to controls. The level of insulin sensitivity was higher for PPDM-C than type 2 diabetes (P < 0.01), however the indices for early/late-phase and overall insulin secretion (P < 0.01) were lower. CONCLUSIONS .- Patients with PPDM-C are characterized by decreased C-peptide, insulin, ghrelin and PYY responses, and similar levels of glucagon, PP, GIP and GLP-1 compared to those with type 2 diabetes. The above findings, when confirmed in a larger population, may prove helpful to establish the diagnosis of PPDM-C, and should promote study on underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Pancreas, Southeast University, Nanjing, China
| | - Muhan Ni
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dechen Liu
- Institute of Pancreas, Southeast University, Nanjing, China; Department of Clinical Science and Research, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiantong Bao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingqi Lv
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hong Xia
- Department of Endocrinology, Jintan District People's Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Qian Wang
- Department of Endocrinology, Jintan District People's Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Lei Wang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Jianhua Su
- Jintan District People's Hospital Affiliated to Jiangsu University, Changzhou, China.
| | - Pandol Sj
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Pancreas, Southeast University, Nanjing, China.
| |
Collapse
|
33
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
34
|
Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochem Biophys Res Commun 2021; 578:84-90. [PMID: 34547628 DOI: 10.1016/j.bbrc.2021.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
Dual agonists that can activate both the glucagon-like peptide-1 receptor (GLP-1R) and the gastric inhibitory polypeptide receptor (GIPR) have demonstrated high efficacy for the treatment of metabolic disease. Peptide-19 is a prototypical dual agonist that has high potency at both GLP-1R and GIPR but has a distinct signalling profile relative to the native peptides at the cognate receptors. In this study, we solved the structure of peptide-19 bound to the GLP-1R in complex with Gs protein, and compared the structure and dynamics of this complex to that of published structures of GLP-1R:Gs in complex with other receptor agonists. Unlike other peptide-bound receptor complexes, peptide-19:GLP-1R:Gs demonstrated a more open binding pocket where transmembrane domain (TM) 6, TM7 and the interconnecting extracellular loop 3 (ECL3) were located away from the peptide, with no interactions between peptide-19 and TM6/ECL3. Analysis of conformational variance of the complex revealed that peptide-19 was highly dynamic and underwent binding and unbinding motions facilitated by the more open TM binding pocket. Both the consensus structure of the GLP-1R complex with peptide-19 and the dynamics of this complex were distinct from previously described GLP-1R structures providing unique insights into the mode of GLP-1R activation by this dual agonist.
Collapse
|
35
|
Jetton TL, Flores-Bringas P, Leahy JL, Gupta D. SetD7 (Set7/9) is a novel target of PPARγ that promotes the adaptive pancreatic β-cell glycemic response. J Biol Chem 2021; 297:101250. [PMID: 34592314 PMCID: PMC8526774 DOI: 10.1016/j.jbc.2021.101250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of functional pancreatic β-cell mass leads to type 2 diabetes (T2D), attributable to modified β-cell-dependent adaptive gene expression patterns. SetD7 is a histone methyltransferase enriched in pancreatic islets that mono- and dimethylates histone-3-lysine-4 (H3K4), promoting euchromatin modifications, and also maintains the regulation of key β-cell function and survival genes. However, the transcriptional regulation of this important epigenetic modifier is unresolved. Here we identified the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARγ) as a major transcriptional regulator of SetD7 and provide evidence for direct binding and functionality of PPARγ in the SetD7 promoter region. Furthermore, constitutive shRNA-mediated PPARγ knockdown in INS-1 β-cells or pancreas-specific PPARγ deletion in mice led to downregulation of SetD7 expression as well as its nuclear enrichment. The relevance of the SetD7-PPARγ interaction in β-cell adaptation was tested in normoglycemic 60% partial pancreatectomy (Px) and hyperglycemic 90% Px rat models. Whereas a synergistic increase in islet PPARγ and SetD7 expression was observed upon glycemic adaptation post-60% Px, in hyperglycemic 90% Px rats, islet PPARγ, and PPARγ targets SetD7 and Pdx1 were downregulated. PPARγ agonist pioglitazone treatment in 90% Px rats partially restored glucose homeostasis and β-cell mass and enhanced expression of SetD7 and Pdx1. Collectively, these data provide evidence that the SetD7-PPARγ interaction serves as an important element of the adaptive β-cell response.
Collapse
Affiliation(s)
- Thomas L Jetton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricio Flores-Bringas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - John L Leahy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
36
|
Hanawa Y, Higashiyama M, Kurihara C, Tanemoto R, Ito S, Mizoguchi A, Nishii S, Wada A, Inaba K, Sugihara N, Horiuchi K, Okada Y, Narimatsu K, Komoto S, Tomita K, Hokari R. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J Gastroenterol Hepatol 2021; 36:3140-3148. [PMID: 34368996 DOI: 10.1111/jgh.15654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM The artificial sweetener acesulfame potassium (ACK) is officially approved as safe for intake and has been used in processed foods. However, ACKs have been reported to induce metabolic syndrome, along with alteration of the gut microbiota in mice. In recent years, studies have suggested that this artificial sweetener promotes myeloperoxidase reactivity in Crohn's disease-like ileitis. We aimed to investigate the effect of ACK on the intestinal mucosa and gut microbiota of normal mice. METHODS Acesulfame potassium was administered to C57BL/6J mice (8 weeks old) via free drinking. Intestinal damage was evaluated histologically, and messenger RNA (mRNA) levels of TNF-α, IFN-γ, IL1-β, MAdCAM-1, GLP1R, and GLP2R were determined with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Immunohistochemistry was performed to examine the expression of MAdCAM-1 in the small intestine. The composition of gut microbiota was assessed using high-throughput sequencing. We performed intravital microscopic observation to examine if ACK altered lymphocyte migration to the intestinal microvessels. RESULTS Acesulfame potassium increased the expression of proinflammatory cytokines, decreased the expression of GLP-1R and GLP-2R, and induced small intestinal injury with an increase in intestinal permeability, and ACK treatment induced microbial changes, but the transfer of feces alone from ACK mice did not reproduce intestinal damage in recipient mice. ACK treatment significantly increased the migration of lymphocytes to intestinal microvessels. CONCLUSION Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. Massive use of non-caloric artificial sweeteners may not be as safe as we think.
Collapse
Affiliation(s)
- Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
37
|
Rosenberg J, Jacob J, Desai P, Park J, Donovan L, Kim JY. Incretin Hormones: Pathophysiological Risk Factors and Potential Targets for Type 2 Diabetes. J Obes Metab Syndr 2021; 30:233-247. [PMID: 34521773 PMCID: PMC8526293 DOI: 10.7570/jomes21053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted metabolic disorder associated with distinctive pathophysiological disturbances. One of the pathophysiological risk factors observed in T2D is dysregulation of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Both hormones stimulate insulin secretion by acting postprandially on pancreatic β-cell receptors. Oral glucose administration stimulates increased insulin secretion in comparison with isoglycemic intravenous glucose administration, a phenomenon known as the incretin effect. While the evidence for incretin defects in individuals with T2D is growing, the etiology behind this attenuated incretin effect in T2D is not clearly understood. Given their central role in T2D pathophysiology, incretins are promising targets for T2D therapeutics. The present review synthesizes the recent attempts to explain the biological importance of incretin hormones and explore potential pharmacological approaches that target the incretins.
Collapse
Affiliation(s)
- Jared Rosenberg
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Jordan Jacob
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Priya Desai
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Jeremy Park
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Lorin Donovan
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Joon Young Kim
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
38
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
39
|
Mesto N, Bailbe D, Eskandar M, Pommier G, Gil S, Tolu S, Movassat J, Tourrel-Cuzin C. Involvement of P2Y signaling in the restoration of glucose-induced insulin exocytosis in pancreatic β cells exposed to glucotoxicity. J Cell Physiol 2021; 237:881-896. [PMID: 34435368 DOI: 10.1002/jcp.30564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Purinergic P2Y receptors, by binding adenosine triphosphate (ATP), are known for enhancing glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. However, the impact of these receptors in the actin dynamics and insulin granule exocytosis in these cells is not established, neither in normal nor in glucotoxic environment. In this study, we investigate the involvement of P2Y receptors on the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β cells exposed to normal or glucotoxic environment and their role in GSIS. Our results show that the activation of P2Y purinergic receptors by ATP or its agonist increase the insulin granules exocytosis and the reorganization of the subcortical actin network and participate in the potentiation of GSIS. In addition, their activation in INS-1832/13 β-cells, with impaired insulin secretion following exposure to elevated glucose levels, restores GSIS competence through the distal steps of insulin exocytosis. These results are confirmed ex vivo by perifusion experiments on islets from type 2 diabetic (T2D) Goto-Kakizaki (GK) rats. Indeed, the P2Y receptor agonist restores the altered GSIS, which is normally lost in this T2D animal model. Moreover, we observed an improvement of the glucose tolerance, following the acute intraperitoneal injection of the P2Y agonist concomitantly with glucose, in diabetic GK rats. All these data provide new insights into the unprecedented therapeutic role of P2Y purinergic receptors in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Nour Mesto
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Danielle Bailbe
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Myriam Eskandar
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Gaëlle Pommier
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Stéphanie Gil
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France.,Université de Paris, UFR Sciences du Vivant (SDV), Paris, France
| | - Stefania Tolu
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Jamileh Movassat
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Cécile Tourrel-Cuzin
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| |
Collapse
|
40
|
Fushimi Y, Obata A, Sanada J, Nogami Y, Ikeda T, Yamasaki Y, Obata Y, Shimoda M, Nakanishi S, Mune T, Kaku K, Kaneto H. Early combination therapy of empagliflozin and linagliptin exerts beneficial effects on pancreatic β cells in diabetic db/db mice. Sci Rep 2021; 11:16120. [PMID: 34373487 PMCID: PMC8352868 DOI: 10.1038/s41598-021-94896-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Effects of combination therapy of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor on β-cells are still unclear, although combination agent of these two drugs has become common in clinical practice. Therefore, we aimed to elucidate the effects of DPP-4 inhibitor and/or SGLT2 inhibitor on β-cell mass and function and compared their effects between in an early and advanced phase of diabetes. We used 7-week-old db/db mice as an early phase and 16-week-old mice as an advanced phase and treated them for 2 weeks with oral administration of linagliptin, empagliflozin, linagliptin + empagliflozin (L + E group), and 0.5% carboxymethylcellulose (Cont group). Blood glucose levels in Empa and L + E group were significantly lower than Cont group after treatment. In addition, β-cell mass in L + E group was significantly larger than Cont group only in an early phase, accompanied by increased Ki67-positive β-cell ratio. In isolated islets, mRNA expression levels of insulin and its transcription factors were all significantly higher only in L + E group in an early phase. Furthermore, mRNA expression levels related to β-cell differentiation and proliferation were significantly increased only in L + E group in an early phase. In conclusion, combination of DPP-4 inhibitor and SGLT2 inhibitor exerts more beneficial effects on β-cell mass and function, especially in an early phase of diabetes rather than an advanced phase.
Collapse
Affiliation(s)
- Yoshiro Fushimi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | - Junpei Sanada
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuka Nogami
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoko Ikeda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuki Yamasaki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, 701-0193, Japan
| | - Yoshiyuki Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| |
Collapse
|
41
|
Favorable Effects of GLP-1 Receptor Agonist against Pancreatic β-Cell Glucose Toxicity and the Development of Arteriosclerosis: "The Earlier, the Better" in Therapy with Incretin-Based Medicine. Int J Mol Sci 2021; 22:ijms22157917. [PMID: 34360682 PMCID: PMC8348147 DOI: 10.3390/ijms22157917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Fundamental pancreatic β-cell function is to produce and secrete insulin in response to blood glucose levels. However, when β-cells are chronically exposed to hyperglycemia in type 2 diabetes mellitus (T2DM), insulin biosynthesis and secretion are decreased together with reduced expression of insulin transcription factors. Glucagon-like peptide-1 (GLP-1) plays a crucial role in pancreatic β-cells; GLP-1 binds to the GLP-1 receptor (GLP-1R) in the β-cell membrane and thereby enhances insulin secretion, suppresses apoptotic cell death and increase proliferation of β-cells. However, GLP-1R expression in β-cells is reduced under diabetic conditions and thus the GLP-1R activator (GLP-1RA) shows more favorable effects on β-cells at an early stage of T2DM compared to an advanced stage. On the other hand, it has been drawing much attention to the idea that GLP-1 signaling is important in arterial cells; GLP-1 increases nitric oxide, which leads to facilitation of vascular relaxation and suppression of arteriosclerosis. However, GLP-1R expression in arterial cells is also reduced under diabetic conditions and thus GLP-1RA shows more protective effects on arteriosclerosis at an early stage of T2DM. Furthermore, it has been reported recently that administration of GLP-1RA leads to the reduction of cardiovascular events in various large-scale clinical trials. Therefore, we think that it would be better to start GLP-1RA at an early stage of T2DM for the prevention of arteriosclerosis and protection of β-cells against glucose toxicity in routine medical care.
Collapse
|
42
|
Abu-Samak MS, Hasoun LZ, Barham A, Mohammad BA, Mosleh I, Aljaberi A, Awwad SH. The supplementary effects of omega-3 fatty acid alone and in a combination with vitamin D3 on serum leptin levels: A randomized clinical trial on men and women with vitamin D deficiency. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e64422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: This randomized clinical trial (RCT) was designed to assess the effect of VD3, n-3FA, and their combination on serum leptin levels in people with vitamin D deficiency (VDD).
Subjects and methods: One hundred and forty six participants, were randomly assigned into four groups supplemented with the dose of 50,000 IU VD3 taken weekly (D), 300 mg n-3FA taken daily (Om), and their combination (D+Om) or control (C) for eight weeks. Fasting baseline and follow-up (10 weeks; 8 weeks supplementation plus washout period of 2 weeks) of serum 25 hydroxyvitamin D (25OHD), leptin, glucose, triglycerides (TG), parathyroid hormone (PTH), calcium, and phosphorus were assayed. A paired T-test was used to assess the changes in serum leptin levels over of the follow-up period.
Results: Significant increase in follow-up serum leptin (10.62 ± 7.18 to 14.42 ± 8.29 ng/mL, P = 0.002) and TG (154 ± 84.4 to 200.1 ± 79, P = 0.015) levels were observed in n-3-FA supplemented group. Combination therapy (VD3 plus n-3 FA) significantly increased serum 25OHD (13.49 ± 4.64 to 37.09 ± 11.13 ng/mL, P < 0.001), TG levels (114.3 ± 57.3 to 139.1 ± 60.7 mg/mL, P = 0.007) and insignificantly serum leptin (6.74 ± 4.87 to 8.01 ± 6.77 ng/mL, P = 0.269).
Conclusion: Our study referred that notable elevation in leptin and TG levels might be linked to leptin resistance. However, further RCTs are required to clarify possible consequences resulted from the extensive administration of n-3FA supplements and their combinations with high doses of VD3 supplements on humans’ health.
Collapse
|
43
|
Pan X, Li C, Gao H. High Glucose Attenuates Cardioprotective Effects of Glucagon-Like Peptide-1 Through Induction of Mitochondria Dysfunction via Inhibition of β-Arrestin-Signaling. Front Physiol 2021; 12:648399. [PMID: 34054568 PMCID: PMC8155506 DOI: 10.3389/fphys.2021.648399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
An increased vulnerability has been detected after ischemia/reperfusion injury in cardiomyocytes in diabetic patients. Glucagon-like peptide-1 (GLP-1) has been proven to have a notable cardioprotective effect in cardiomyocytes. However, in diabetic patients, the cardioprotective effects of GLP-1 are compromised, which is called GLP-1 resistance. β-arrestin is one of the two main downstream effectors of GLP-1 and β-arrestin signaling pathway exerts cardioprotective effects upon activation of GLP-1R. Our hypothesis is that the increased vulnerability of cardiomyocytes in diabetic patients is partly due to disruption of the β-arrestin signaling pathway. To test this, we analyzed cardiomyocyte viability and survival in high glucose and normal glucose condition after hypoxia/reoxygenation injury in vitro, additional GLP-1 was used to determine whether β-arrestin signaling pathway was involved. We also investigated the role of mitochondrial dysfunction in GLP-1 resistance. Our results showed that cardioprotective effects of GLP-1 were reduced in high glucose cultured H9C2 cells compared to normal glucose cultured H9C2, verifying the existence of GLP-1 resistance in high glucose cultured H9C2 cells. Further study suggested that β-arrestin plays a key role in GLP-1 resistance: β-arrestin expression is notably downregulated in high glucose condition and cardioprotective effects of GLP-1 can be diminished by downregulation of β-arrestin in normal glucose condition while upregulation of β-arrestin can restore cardioprotective effects of GLP-1 in high glucose condition. Then we explore how β-arrestin affects the cardioprotective effects of GLP-1 and found that β-arrestin exerts cardioprotective effects by improving mitochondria quality control via the PI3K/Akt signaling pathway. Thus, our study found out a new mechanism of GLP-1 resistance of cardiomyocytes in high glucose conditions that impaired β-arrestin expression, caused mitochondria dysfunction and eventually cell death. Our study provided a new perspective in treating myocardial ischemia/reperfusion injury in diabetic patients.
Collapse
Affiliation(s)
- Xietian Pan
- Department of Cardiology, People's Liberation Army General Hospital, Beijing, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
44
|
Grau-Bové C, Ginés I, Beltrán-Debón R, Terra X, Blay MT, Pinent M, Ardévol A. Glucagon Shows Higher Sensitivity than Insulin to Grapeseed Proanthocyanidin Extract (GSPE) Treatment in Cafeteria-Fed Rats. Nutrients 2021; 13:nu13041084. [PMID: 33810265 PMCID: PMC8066734 DOI: 10.3390/nu13041084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
The endocrine pancreas plays a key role in metabolism. Procyanidins (GSPE) targets β-cells and glucagon-like peptide-1 (GLP-1)-producing cells; however, there is no information on the effects of GSPE on glucagon. We performed GSPE preventive treatments administered to Wistar rats before or at the same time as they were fed a cafeteria diet during 12 or 17 weeks. We then measured the pancreatic function and GLP-1 production. We found that glucagonemia remains modified by GSPE pre-treatment several weeks after the treatment has finished. The animals showed a higher GLP-1 response to glucose stimulation, together with a trend towards a higher GLP-1 receptor expression in the pancreas. When the GSPE treatment was administered every second week, the endocrine pancreas behaved differently. We show here that glucagon is a more sensitive parameter than insulin to GSPE treatments, with a secretion that is highly linked to GLP-1 ileal functionality and dependent on the type of treatment.
Collapse
|
45
|
Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History. Int J Mol Sci 2021; 22:ijms22052596. [PMID: 33807522 PMCID: PMC7962041 DOI: 10.3390/ijms22052596] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.
Collapse
|
46
|
Mao D, Cao H, Shi M, Wang CC, Kwong J, Li JJX, Hou Y, Ming X, Lee HM, Tian XY, Wong CK, Chow E, Kong APS, Lui VWY, Chan PKS, Chan JCN. Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study. EBioMedicine 2021; 65:103242. [PMID: 33684886 PMCID: PMC7938253 DOI: 10.1016/j.ebiom.2021.103242] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) increases the risk of many types of cancer. Dysregulation of proteasome-related protein degradation leads to tumorigenesis, while Exendin-4, a glucagon-like peptide 1 receptor (GLP-1R) agonist, possesses anti-cancer effects. METHODS We explored the co-expression of proteasome alpha 2 subunit (PSMA2) and GLP-1R in the Cancer Genome Atlas (TCGA) database and human cervical cancer specimens, supplemented by in vivo and in vitro studies using multiple cervical cancer cell lines. FINDINGS PSMA2 expression was increased in 12 cancer types in TCGA database and cervical cancer specimens from patients with T2D (T2D vs non-T2D: 3.22 (95% confidence interval CI: 1.38, 5.05) vs 1.00 (0.66, 1.34) fold change, P = 0.01). psma2-shRNA decreased cell proliferation in vitro, and tumour volume and Ki67 expression in vivo. Exendin-4 decreased psma2 expression, tumour volume and Ki67 expression in vivo. There was no change in GLP-1R expression in 12 cancer types in TCGA database. However, GLP-1R expression (T2D vs non-T2D: 5.49 (3.0, 8.1) vs 1.00 (0.5, 1.5) fold change, P < 0.001) was increased and positively correlated with PSMA2 expression in T2D-related (r = 0.68) but not in non-T2D-related cervical cancer specimens. This correlation was corroborated by in vitro experiments where silencing glp-1r decreased psma2 expression. Exendin-4 attenuated phospho-p65 and -IκB expression in the NF-κB pathway. INTERPRETATION PSMA2 and GLP-1R expression in T2D-related cervical cancer specimens was increased and positively correlated, suggesting hyperglycaemia might promote cancer growth by increasing PSMA2 expression which could be attenuated by Exendin-4. FUNDING This project was supported by Postdoctoral Fellowship Scheme, Direct Grant, Diabetes Research and Education Fund from the Chinese University of Hong Kong (CUHK).
Collapse
Affiliation(s)
- Dandan Mao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joshua Jing Xi Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yong Hou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xing Ming
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| |
Collapse
|
47
|
Oduori OS, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H, Sakai S, Minami K, Chanclon B, Guida C, Kothegala L, Tolö J, Maejima Y, Yokoi N, Minami Y, Miki T, Rorsman P, Seino S. Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 2021; 130:6639-6655. [PMID: 33196462 DOI: 10.1172/jci140046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic β cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to β cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of β cells due to genetic (β cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse β cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in β cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.
Collapse
Affiliation(s)
- Okechi S Oduori
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Murao
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Haiqiang Dou
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shihomi Sakai
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohtaro Minami
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Belen Chanclon
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lakshmi Kothegala
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Tolö
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miki
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
48
|
Guimarães M, Pereira SS, Monteiro MP. From Entero-Endocrine Cell Biology to Surgical Interventional Therapies for Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:273-297. [PMID: 32016913 DOI: 10.1007/5584_2020_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal. .,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
49
|
Sanada J, Obata A, Obata Y, Fushimi Y, Shimoda M, Kohara K, Nakanishi S, Mune T, Kaku K, Kaneto H. Dulaglutide exerts beneficial anti atherosclerotic effects in ApoE knockout mice with diabetes: the earlier, the better. Sci Rep 2021; 11:1425. [PMID: 33446799 PMCID: PMC7809053 DOI: 10.1038/s41598-020-80894-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
There has been no report about the mechanism for anti-atherosclerotic effects of dulaglutide (Dula) and/or about the difference of its effectiveness between in an early and a late phase of diabetes. To address such questions, streptozotocin (STZ) was intraperitoneally injected to ApoE knockout mice at 8 weeks of age. Either Dula or vehicle was administered to STZ-induced diabetic ApoE knockout mice from 10 to 18 weeks of age as an early intervention group and from 18 to 26 weeks as a late intervention group. Next, non-diabetic ApoE knockout mice without STZ injection were subcutaneously injected with either Dula or vehicle. In an early intervention group, atherosclerotic lesion in aortic arch and Mac-2 and CD68-positive areas in aortic root were significantly smaller in Dula group. In abdominal aorta, expression levels of some villain factors were lower in Dula group. In a late intervention group, there were no immunohistological differences in aortic root and expression levels of various factors between two groups. Furthermore, even in non-diabetic ApoE knockout mice, expression levels of inflammatory and macrophage markers were reduced by treatment with Dula. Taken together, Dula exerts more beneficial anti-atherosclerotic effects in an early phase of diabetes rather than in a late phase.
Collapse
Affiliation(s)
- Junpei Sanada
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | - Yoshiyuki Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiro Fushimi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kenji Kohara
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| |
Collapse
|
50
|
Notable Underlying Mechanism for Pancreatic β-Cell Dysfunction and Atherosclerosis: Pleiotropic Roles of Incretin and Insulin Signaling. Int J Mol Sci 2020; 21:ijms21249444. [PMID: 33322512 PMCID: PMC7763860 DOI: 10.3390/ijms21249444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Under healthy conditions, pancreatic β-cells produce and secrete the insulin hormone in response to blood glucose levels. Under diabetic conditions, however, β-cells are compelled to continuously secrete larger amounts of insulin to reduce blood glucose levels, and thereby, the β-cell function is debilitated in the long run. In the diabetic state, expression levels of insulin gene transcription factors and incretin receptors are downregulated, which we think is closely associated with β-cell failure. These data also suggest that it would be better to use incretin-based drugs at an early stage of diabetes when incretin receptor expression is preserved. Indeed, it was shown that incretin-based drugs exerted more protective effects on β-cells at an early stage. Furthermore, it was shown recently that endothelial cell dysfunction was also associated with pancreatic β-cell dysfunction. After ablation of insulin signaling in endothelial cells, the β-cell function and mass were substantially reduced, which was also accompanied by reduced expression of insulin gene transcription factors and incretin receptors in β-cells. On the other hand, it has been drawing much attention that incretin plays a protective role against the development of atherosclerosis. Many basic and clinical data have underscored the importance of incretin in arteries. Furthermore, it was shown recently that incretin receptor expression was downregulated in arteries under diabetic conditions, which likely diminishes the protective effects of incretin against atherosclerosis. Furthermore, a series of large-scale clinical trials (SPAED-A, SPIKE, LEADER, SUSTAIN-6, REWIND, PIONEER trials) have shown that various incretin-related drugs have beneficial effects against atherosclerosis and subsequent cardiovascular events. These data strengthen the hypothesis that incretin plays an important role in the arteries of humans, as well as rodents.
Collapse
|