1
|
Suda N, Bartolomé A, Liang J, Son J, Yagishita Y, Siebel C, Accili D, Ding H, Pajvani UB. β-cell Jagged1 is sufficient but not necessary for islet Notch activity and insulin secretory defects in obese mice. Mol Metab 2024; 81:101894. [PMID: 38311286 PMCID: PMC10877406 DOI: 10.1016/j.molmet.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Notch signaling, re-activated in β cells from obese mice and causal to β cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic (β-Jag1TG) and loss-of-function (iβ-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of β cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Collapse
Affiliation(s)
- Nina Suda
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Jiani Liang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoko Yagishita
- Department of Medicine, Columbia University, New York, NY, USA
| | - Christian Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Fadzeyeva E, Locatelli CA, Trzaskalski NA, Nguyen MA, Capozzi ME, Vulesevic B, Morrow NM, Ghorbani P, Hanson AA, Lorenzen-Schmidt I, Doyle MA, Seymour R, Varin EM, Fullerton MD, Campbell JE, Mulvihill EE. Pancreas-derived DPP4 is not essential for glucose homeostasis under metabolic stress. iScience 2023; 26:106748. [PMID: 37216093 PMCID: PMC10192926 DOI: 10.1016/j.isci.2023.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to β cell communication is becoming increasingly clear; thus, our objective was to determine if β cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using β cell double incretin receptor knockout mice, β cell- and pancreas-specific Dpp4-/- mice, we reveal that β cell incretin receptors are necessary for DPP4 inhibitor effects. However, although β cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Evgenia Fadzeyeva
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Cassandra A.A. Locatelli
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Natasha A. Trzaskalski
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - My-Anh Nguyen
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Megan E. Capozzi
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Branka Vulesevic
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Nadya M. Morrow
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Peyman Ghorbani
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
| | - Antonio A. Hanson
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Ilka Lorenzen-Schmidt
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Richard Seymour
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Elodie M. Varin
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Morgan D. Fullerton
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Erin E. Mulvihill
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
- Montreal Diabetes Research Group, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
4
|
Lacombe J, Guo K, Bonneau J, Faubert D, Gioanni F, Vivoli A, Muir SM, Hezzaz S, Poitout V, Ferron M. Vitamin K-dependent carboxylation regulates Ca 2+ flux and adaptation to metabolic stress in β cells. Cell Rep 2023; 42:112500. [PMID: 37171959 DOI: 10.1016/j.celrep.2023.112500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molecular mechanism remains unknown. Here, we show that mouse β cells lacking γ-carboxylation fail to adapt their insulin secretion in the context of age-related insulin resistance or diet-induced β cell stress. In human islets, γ-carboxylase expression positively correlates with improved insulin secretion in response to glucose. We identify endoplasmic reticulum Gla protein (ERGP) as a γ-carboxylated ER-resident Ca2+-binding protein expressed in β cells. Mechanistically, γ-carboxylation of ERGP protects cells against Ca2+ overfilling by diminishing STIM1 and Orai1 interaction and restraining store-operated Ca2+ entry. These results reveal a critical role of vitamin K-dependent carboxylation in regulation of Ca2+ flux in β cells and in their capacity to adapt to metabolic stress.
Collapse
Affiliation(s)
- Julie Lacombe
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Kevin Guo
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jessica Bonneau
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Florian Gioanni
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Alexis Vivoli
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Sarah M Muir
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Soraya Hezzaz
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Castell AL, Goubault C, Ethier M, Fergusson G, Tremblay C, Baltz M, Dal Soglio D, Ghislain J, Poitout V. β Cell mass expansion during puberty involves serotonin signaling and determines glucose homeostasis in adulthood. JCI Insight 2022; 7:160854. [PMID: 36107617 PMCID: PMC9675460 DOI: 10.1172/jci.insight.160854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023] Open
Abstract
Puberty is associated with transient insulin resistance that normally recedes at the end of puberty; however, in overweight children, insulin resistance persists, leading to an increased risk of type 2 diabetes. The mechanisms whereby pancreatic β cells adapt to pubertal insulin resistance, and how they are affected by the metabolic status, have not been investigated. Here, we show that puberty is associated with a transient increase in β cell proliferation in rats and humans of both sexes. In rats, β cell proliferation correlated with a rise in growth hormone (GH) levels. Serum from pubertal rats and humans promoted β cell proliferation, suggesting the implication of a circulating factor. In pubertal rat islets, expression of genes of the GH/serotonin (5-hydroxytryptamine [5-HT]) pathway underwent changes consistent with a proliferative effect. Inhibition of the pro-proliferative 5-HT receptor isoform HTR2B blocked the increase in β cell proliferation in pubertal islets ex vivo and in vivo. Peripubertal metabolic stress blunted β cell proliferation during puberty and led to altered glucose homeostasis later in life. This study identifies a role of GH/GH receptor/5-HT/HTR2B signaling in the control of β cell mass expansion during puberty and identifies a mechanistic link between pubertal obesity and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Anne-Laure Castell
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| | - Clara Goubault
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, University of Montreal, Quebec, Canada
| | - Mélanie Ethier
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marie Baltz
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Dorothée Dal Soglio
- CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Medicine and
| |
Collapse
|
6
|
Nova1 or Bim Deficiency in Pancreatic β-Cells Does Not Alter Multiple Low-Dose Streptozotocin-Induced Diabetes and Diet-Induced Obesity in Mice. Nutrients 2022; 14:nu14183866. [PMID: 36145242 PMCID: PMC9500891 DOI: 10.3390/nu14183866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
The loss of functional pancreatic β-cell mass is an important hallmark of both type 1 and type 2 diabetes. The RNA-binding protein NOVA1 is expressed in human and rodent pancreatic β-cells. Previous in vitro studies indicated that NOVA1 is necessary for glucose-stimulated insulin secretion and its deficiency-enhanced cytokine-induced apoptosis. Moreover, Bim, a proapoptotic protein, is differentially spliced and potentiates apoptosis in NOVA1-deficient β-cells in culture. We generated two novel mouse models by Cre-Lox technology lacking Nova1 (βNova1-/-) or Bim (βBim-/-) in β-cells. To test the impact of Nova1 or Bim deletion on β-cell function, mice were subjected to multiple low-dose streptozotocin (MLD-STZ)-induced diabetes or high-fat diet-induced insulin resistance. β-cell-specific Nova1 or Bim deficiency failed to affect diabetes development in response to MLD-STZ-induced β-cell dysfunction and death evidenced by unaltered blood glucose levels and pancreatic insulin content. In addition, body composition, glucose and insulin tolerance test, and pancreatic insulin content were indistinguishable between control and βNova1-/- or βBim-/- mice on a high fat diet. Thus, Nova1 or Bim deletion in β-cells does not impact on glucose homeostasis or diabetes development in mice. Together, these data argue against an in vivo role for the Nova1-Bim axis in β-cells.
Collapse
|
7
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
8
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
9
|
Chen M, Tian X, Xu L, Wu R, He H, Zhu H, Xu W, Wei CJ. Membrane tethering of CreER decreases uninduced cell labeling and cytotoxicity while maintaining recombination efficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1078-1091. [PMID: 35228901 PMCID: PMC8851158 DOI: 10.1016/j.omtn.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.
Collapse
Affiliation(s)
- Mianqiao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Xiong Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haoming He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
- Corresponding author Chi-ju Wei, PhD, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
10
|
Glycerol-3-phosphate phosphatase operates a glycerol shunt in pancreatic β-cells that controls insulin secretion and metabolic stress. Mol Metab 2022; 60:101471. [PMID: 35272070 PMCID: PMC8972011 DOI: 10.1016/j.molmet.2022.101471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The recently identified glycerol-3-phosphate (Gro3P) phosphatase (G3PP) in mammalian cells, encoded by the PGP gene, was shown to regulate glucose, lipid and energy metabolism by hydrolyzing Gro3P and to control glucose-stimulated insulin secretion (GSIS) in β-cells, in vitro. However, whether G3PP regulates β-cell function and insulin secretion in vivo is not known. Methods We now examined the role of G3PP in the control of insulin secretion in vivo, β-cell function and glucotoxicity in inducible β-cell specific G3PP-KO (BKO) mice. Inducible BKO mice were generated by crossing floxed-G3PP mice with Mip-Cre-ERT (MCre) mice. All the in vivo studies were done using BKO and control mice fed normal diet and the ex vivo studies were done using pancreatic islets from these mice. Results BKO mice, compared to MCre controls, showed increased body weight, adiposity, fed insulinemia, enhanced in vivo GSIS, reduced plasma triglycerides and mild glucose intolerance. Isolated BKO mouse islets incubated at high (16.7 mM), but not at low or intermediate glucose (3 and 8 mM), showed elevated GSIS, Gro3P content as well as increased levels of metabolites and signaling coupling factors known to reflect β-cell activation for insulin secretion. BKO islets also showed reduced glycerol release and increased O2 consumption and ATP production at high glucose only. BKO islets chronically exposed to elevated glucose levels showed increased apoptosis, reduced insulin content and decreased mRNA expression of β-cell differentiation markers, Pdx-1, MafA and Ins-2. Conclusions The results demonstrate that β-cells are endowed with a “glycerol shunt”, operated by G3PP that regulates β-cell metabolism, signaling and insulin secretion in vivo, primarily at elevated glucose concentrations. We propose that the glycerol shunt plays a role in preventing insulin hypersecretion and excess body weight gain and contributes to β-cell mass preservation in the face of hyperglycemia. G3PP operates a glycerol shunt in β-cells to remove excess glucose as glycerol. Inducible β-cell specific G3PP-KO (BKO) mice show hyperinsulinemia. BKO mice show enhanced body weight and glucose induced insulin secretion. BKO isolated islets show elevated insulin secretion only at high glucose. Chronic exposure of BKO isolated islets to high glucose enhances glucotoxicity.
Collapse
|
11
|
Skovsø S, Panzhinskiy E, Kolic J, Cen HH, Dionne DA, Dai XQ, Sharma RB, Elghazi L, Ellis CE, Faulkner K, Marcil SAM, Overby P, Noursadeghi N, Hutchinson D, Hu X, Li H, Modi H, Wildi JS, Botezelli JD, Noh HL, Suk S, Gablaski B, Bautista A, Kim R, Cras-Méneur C, Flibotte S, Sinha S, Luciani DS, Nislow C, Rideout EJ, Cytrynbaum EN, Kim JK, Bernal-Mizrachi E, Alonso LC, MacDonald PE, Johnson JD. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun 2022; 13:735. [PMID: 35136059 PMCID: PMC8826929 DOI: 10.1038/s41467-022-28039-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
Collapse
Affiliation(s)
- Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Elghazi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cara E Ellis
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Faulkner
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A M Marcil
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daria Hutchinson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Honey Modi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J Diego Botezelli
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hye Lim Noh
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian Gablaski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Stephane Flibotte
- UBC Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan S Luciani
- BC Children's Hospital Research Institute, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth J Rideout
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Jason K Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, Miami, FL, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Jouvet N, Bouyakdan K, Campbell SA, Baldwin C, Townsend SE, Gannon MA, Poitout V, Alquier T, Estall JL. The Tetracycline-Controlled Transactivator (Tet-On/Off) System in β-Cells Reduces Insulin Expression and Secretion in Mice. Diabetes 2021; 70:2850-2859. [PMID: 34610983 PMCID: PMC8660978 DOI: 10.2337/db21-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Controllable genetic manipulation is an indispensable tool in research, greatly advancing our understanding of cell biology and physiology. However in β-cells, transgene silencing, low inducibility, ectopic expression, and off-targets effects are persistent challenges. In this study, we investigated whether an inducible Tetracycline (Tet)-Off system with β-cell-specific mouse insulin promoter (MIP)-itTA-driven expression of tetracycline operon (TetO)-CreJaw/J could circumvent previous issues of specificity and efficacy. Following assessment of tissue-specific gene recombination, β-cell architecture, in vitro and in vivo glucose-stimulated insulin secretion, and whole-body glucose homeostasis, we discovered that expression of any tetracycline-controlled transactivator (e.g., improved itTA, reverse rtTA, or tTA) in β-cells significantly reduced Insulin gene expression and decreased insulin content. This translated into lower pancreatic insulin levels and reduced insulin secretion in mice carrying any tTA transgene, independent of Cre recombinase expression or doxycycline exposure. Our study echoes ongoing challenges faced by fundamental researchers working with β-cells and highlights the need for consistent and comprehensive controls when using the tetracycline-controlled transactivator systems (Tet-On or Tet-Off) for genome editing.
Collapse
Affiliation(s)
- Nathalie Jouvet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Khalil Bouyakdan
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Scott A Campbell
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Cindy Baldwin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Maureen A Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Vincent Poitout
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Montreal Diabetes Research Centre, Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Daniels Gatward LF, Kennard MR, Smith LIF, King AJF. The use of mice in diabetes research: The impact of physiological characteristics, choice of model and husbandry practices. Diabet Med 2021; 38:e14711. [PMID: 34614258 DOI: 10.1111/dme.14711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is characterised by hyperglycaemia, which results from an absolute or relative lack of insulin. Chronic and acute hyperglycaemia are associated with a range of health complications and an overall increased risk of mortality. Mouse models are vital in understanding the pathogenesis of this disease and its complications, as well as for developing new diabetes therapeutics. However, for experimental questions to be suitably tested, it is critical that factors inherent to the animal model are considered, as these can have profound impacts on experimental outcome, data reproducibility and robustness. In this review, we discuss key considerations relating to model choice, physiological characteristics (such as age, sex and genetic background) and husbandry practices and explore the impact of these on common experimental readouts used in preclinical diabetes research.
Collapse
|
14
|
Wisinski JA, Reuter A, Peter DC, Schaid MD, Fenske RJ, Kimple ME. Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic dysfunction in a non-obese mouse model of insulin resistance. Am J Physiol Endocrinol Metab 2021; 321:E479-E489. [PMID: 34229444 PMCID: PMC8560379 DOI: 10.1152/ajpendo.00051.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their β-cell dysfunction. In this work, we aimed to test the impact of β-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in β-cell fractional area or markers of β-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to β-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating β-cell-specific knockouts.
Collapse
Affiliation(s)
- Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-LaCrosse, La Crosse, Wisconsin
| | - Austin Reuter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
15
|
Schaschkow A, Pang L, Vandenbempt V, Elvira B, Litwak SA, Vekeriotaite B, Maillard E, Vermeersch M, Paula FMM, Pinget M, Perez-Morga D, Gough DJ, Gurzov EN. STAT3 Regulates Mitochondrial Gene Expression in Pancreatic β-Cells and Its Deficiency Induces Glucose Intolerance in Obesity. Diabetes 2021; 70:2026-2041. [PMID: 34183374 DOI: 10.2337/db20-1222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/20/2021] [Indexed: 11/13/2022]
Abstract
Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-β1H cells, confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-β1H cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. Our study postulates STAT3 as a novel regulator of β-cell function in obesity.
Collapse
Affiliation(s)
- Anaïs Schaschkow
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lokman Pang
- Department of Medicine, The University of Melbourne, Parkville, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Elisa Maillard
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Flavia M M Paula
- ULB-Center for Diabetes Research, Université libre de Bruxelles, Brussels, Belgium
| | - Michel Pinget
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - David Perez-Morga
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Science and Translational Medicine, Monash University, Melbourne, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
- Department of Medicine, The University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
17
|
Peyot ML, Roubtsova A, Lussier R, Chamberland A, Essalmani R, Murthy Madiraju SR, Seidah NG, Prentki M, Prat A. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158968. [PMID: 33992809 DOI: 10.1016/j.bbalip.2021.158968] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in β-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and β-cell function. We generated the first β-cell-specific KO of PCSK9 (βKO). PCSK9 mRNA and protein expression were reduced by 48% and 78% in βKO islets, respectively, indicating that β-cells constitute a major site of PCSK9 expression. In islets, loss of β-cell PCSK9 resulted in unchanged LDLR protein levels, but reduced LDLR mRNA, indicating that cholesterol internalization is enhanced and that β-cell PCSK9 promotes LDLR degradation. In contrast, whole body PCSK9 KO mice exhibited 2-fold higher LDLR protein levels in islets and a stable expression of cholesterogenic genes. Whole body KO and βKO mice presented normal glucose tolerance, insulin release in response to glucose load and insulin sensitivity. Ex vivo glucose-stimulated insulin secretion in presence or absence of fatty acids was similar in WT and KO islets. Like KO mice, individuals carrying loss-of-function PCSK9 variants may be protected from cholesterol-induced toxicity due to reduced circulating cholesterol levels. Using both whole body KO or βKO models, our data demonstrate that PCSK9 deletion in mouse does not have any toxic effect on β-cell function and glucose homeostasis.
Collapse
Affiliation(s)
- Marie-Line Peyot
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Roxane Lussier
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Ann Chamberland
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - S R Murthy Madiraju
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Marc Prentki
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada.
| |
Collapse
|
18
|
Wang SW, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Fu JQ, Zhang F. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153454. [PMID: 33663922 DOI: 10.1016/j.phymed.2020.153454] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND The damage of pancreatic β cells is a major pathogenesis of the development and progression of type 2 diabetes and there is still no effective therapy to protect pancreatic β cells clinically. In our previous study, we found that Quzhou Fructus Aurantii (QFA), which is rich in flavanones, had the protective effect of pancreatic β cells in diabetic mice. However, the underlying mechanism is still unclear. PURPOSE In the current study, we administered naringenin and hesperetin, two major active components of QFA, to protect pancreatic β cells and to investigate the underlying molecular mechanism focusing on the epigenetic modifications. METHODS We used diabetic db/db mouse and INS-1 pancreatic β cell line as in vivo and in vitro models to investigate the protective effect of naringenin and hesperetin on pancreatic β cells under high glucose environment and the related mechanism. The phenotypic changes were evaluatedby immunostaining and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-seq and ChIP-qPCR, flow cytometry and lentivirus infection. RESULTS We found that naringenin and hesperetin had an inhibitory effect on histone acetylation. We showed that naringenin and hesperetin protected pancreatic β cells in vivo and in vitro, and this effect was independent of their direct antioxidant capacity. The further study found that the inhibition of thioredoxin-interacting protein (Txnip) expression regulated by histone acetylation was critical for the protective role of naringenin and hesperetin. Mechanistically, the histone acetylation inhibition by naringenin and hesperetin was achieved through regulating AMPK-mediated p300 inactivation. CONCLUSION These findings highlight flavanones and the phytomedicine rich in flavanones as important dietary supplements in protecting pancreatic β cells in advanced diabetes. In addition, targeting histone acetylation by phytomedicine is a potential strategy to delay the development and progression of diabetes.
Collapse
Affiliation(s)
- Si-Wei Wang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Hao Sheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Feng Bai
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Yuan-Yuan Weng
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Xue-Yu Fan
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Fang Zheng
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Jing-Qi Fu
- School of Public Health, China Medical University, Shenyang 110122, China.
| | - Feng Zhang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China.
| |
Collapse
|
19
|
Ikushima YM, Awazawa M, Kobayashi N, Osonoi S, Takemiya S, Kobayashi H, Suwanai H, Morimoto Y, Soeda K, Adachi J, Muratani M, Charron J, Mizukami H, Takahashi N, Ueki K. MEK/ERK Signaling in β-Cells Bifunctionally Regulates β-Cell Mass and Glucose-Stimulated Insulin Secretion Response to Maintain Glucose Homeostasis. Diabetes 2021; 70:1519-1535. [PMID: 33906910 DOI: 10.2337/db20-1295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
In diabetic pathology, insufficiency in β-cell mass, unable to meet peripheral insulin demand, and functional defects of individual β-cells in production of insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of db/db mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β-cells through deletion of Mek1 and Mek2, glucose intolerance aggravates under high-fat diet-feeding conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β-cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β-cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β-cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.
Collapse
Affiliation(s)
- Yoshiko Matsumoto Ikushima
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seiichi Takemiya
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Morimoto
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kotaro Soeda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Coppola I, Brouwers B, Meulemans S, Ramos-Molina B, Creemers JWM. Differential Effects of Furin Deficiency on Insulin Receptor Processing and Glucose Control in Liver and Pancreatic β Cells of Mice. Int J Mol Sci 2021; 22:6344. [PMID: 34198511 PMCID: PMC8231939 DOI: 10.3390/ijms22126344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
The insulin receptor (IR) is critically involved in maintaining glucose homeostasis. It undergoes proteolytic cleavage by proprotein convertases, which is an essential step for its activation. The importance of the insulin receptor in liver is well established, but its role in pancreatic β cells is still controversial. In this study, we investigated the cleavage of the IR by the proprotein convertase FURIN in β cells and hepatocytes, and the contribution of the IR in pancreatic β cells and liver to glucose homeostasis. β-cell-specific Furin knockout (βFurKO) mice were glucose intolerant, but liver-specific Furin knockout (LFurKO) mice were normoglycemic. Processing of the IR was blocked in βFurKO cells, but unaffected in LFurKO mice. Most strikingly, glucose homeostasis in β-cell-specific IR knockout (βIRKO) mice was normal in younger mice (up to 20 weeks), and only mildly affected in older mice (24 weeks). In conclusion, FURIN cleaves the IR non-redundantly in β cells, but redundantly in liver. Furthermore, we demonstrated that the IR in β cells plays a limited role in glucose homeostasis.
Collapse
Affiliation(s)
- Ilaria Coppola
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
- Obesity and Metabolism Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - John W. M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| |
Collapse
|
21
|
β Cell GHS-R Regulates Insulin Secretion and Sensitivity. Int J Mol Sci 2021; 22:ijms22083950. [PMID: 33920473 PMCID: PMC8069226 DOI: 10.3390/ijms22083950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Growth hormone secretagogue receptor (GHS-R) is widely known to regulate food intake and adiposity, but its role in glucose homeostasis is unclear. In this study, we investigated the expression of GHS-R in mouse pancreatic islets and its role in glycemic regulation. We used Ghsr-IRES-tauGFP mice, with Green Fluorescent Protein (GFP) as a surrogate for GHS-R, to demonstrate the GFP co-localization with insulin and glucagon expression in pancreatic islets, confirming GHS-R expression in β and α cells. We then generated β-cell-specific GHSR-deleted mice with MIP-Cre/ERT and validated that GHS-R suppression was restricted to the pancreatic islets. MIP-Cre/ERT;Ghsrf/f mice showed normal energy homeostasis with similar body weight, body composition, and indirect calorimetry profile. Interestingly, MIP-Cre/ERT;Ghsrf/f mice exhibited an impressive phenotype in glucose homeostasis. Compared to controls, MIP-Cre/ERT;Ghsrf/f mice showed lower fasting blood glucose and insulin; reduced first-phase insulin secretion during a glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test in vivo. The isolated pancreatic islets of MIP-Cre/ERT;Ghsrf/f mice also showed reduced insulin secretion during GSIS ex vivo. Further, MIP-Cre/ERT;Ghsrf/f mice exhibited improved insulin sensitivity during insulin tolerance tests (ITT). Overall, our results confirmed GHS-R expression in pancreatic β and α cells; GHS-R cell-autonomously regulated GSIS and modulated systemic insulin sensitivity. In conclusion, β cell GHS-R was an important regulator of glucose homeostasis, and GHS-R antagonists may have therapeutic potential for Type 2 Diabetes.
Collapse
|
22
|
CDK2 limits the highly energetic secretory program of mature β cells by restricting PEP cycle-dependent K ATP channel closure. Cell Rep 2021; 34:108690. [PMID: 33503433 PMCID: PMC7882066 DOI: 10.1016/j.celrep.2021.108690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Hallmarks of mature β cells are restricted proliferation and a highly energetic secretory state. Paradoxically, cyclin-dependent kinase 2 (CDK2) is synthesized throughout adulthood, its cytosolic localization raising the likelihood of cell cycle-independent functions. In the absence of any changes in β cell mass, maturity, or proliferation, genetic deletion of Cdk2 in adult β cells enhanced insulin secretion from isolated islets and improved glucose tolerance in vivo. At the single β cell level, CDK2 restricts insulin secretion by increasing KATP conductance, raising the set point for membrane depolarization in response to activation of the phosphoenolpyruvate (PEP) cycle with mitochondrial fuels. In parallel with reduced β cell recruitment, CDK2 restricts oxidative glucose metabolism while promoting glucose-dependent amplification of insulin secretion. This study provides evidence of essential, non-canonical functions of CDK2 in the secretory pathways of quiescent β cells. Despite loss of proliferative capacity with age, mature β cells continually synthesize CDK2. Sdao et al. demonstrate that CDK2 depletion in adult β cells improves glucose tolerance in vivo. By augmenting PEP cycle-dependent KATP channel closure, CDK2 inactivation lowers the set point for membrane depolarization, augmenting oxidative metabolism and insulin secretion.
Collapse
|
23
|
Mosleh E, Ou K, Haemmerle MW, Tembo T, Yuhas A, Carboneau BA, Townsend SE, Bosma KJ, Gannon M, O’Brien RM, Stoffers DA, Golson ML. Ins1-Cre and Ins1-CreER Gene Replacement Alleles Are Susceptible To Silencing By DNA Hypermethylation. Endocrinology 2020; 161:5817889. [PMID: 32267917 PMCID: PMC7354059 DOI: 10.1210/endocr/bqaa054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Targeted gene ablation studies of the endocrine pancreas have long suffered from suboptimal Cre deleter strains. In many cases, Cre lines purportedly specific for beta cells also displayed expression in other islet endocrine cells or in a subset of neurons in the brain. Several pancreas and endocrine Cre lines have experienced silencing or mosaicism over time. In addition, many Cre transgenic constructs were designed to include the hGH mini-gene, which by itself increases beta-cell replication and decreases beta-cell function. More recently, driver lines with Cre or CreER inserted into the Ins1 locus were generated, with the intent of producing β cell-specific Cre lines with faithful recapitulation of insulin expression. These lines were bred in multiple labs to several different mouse lines harboring various lox alleles. In our hands, the ability of the Ins1-Cre and Ins1-CreER lines to delete target genes varied from that originally reported, with both alleles displaying low levels of expression, increased levels of methylation compared to the wild-type allele, and ultimately inefficient or absent target deletion. Thus, caution is warranted in the interpretation of results obtained with these genetic tools, and Cre expression and activity should be monitored regularly when using these lines.
Collapse
Affiliation(s)
- Elham Mosleh
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristy Ou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teguru Tembo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Yuhas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bethany A Carboneau
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veteran Affairs, Nashville, Tennessee
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L Golson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Correspondence: Maria L. Golson, PhD, 5501 Hopkins Bayview Circle, Baltimore, MD 21224. E-mail:
| |
Collapse
|
24
|
Estall JL, Screaton RA. Of Mice and Men, Redux: Modern Challenges in β Cell Gene Targeting. Endocrinology 2020; 161:5839917. [PMID: 32422652 PMCID: PMC7357958 DOI: 10.1210/endocr/bqaa078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Jennifer L Estall
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Correspondence: Jennifer L. Estall, PhD, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada. E-mail:
| | - Robert A Screaton
- Department of Biochemistry, Sunnybrook Research Institute and University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Yang W, Jiang Y, Wang Y, Zhang T, Liu Q, Wang C, Swisher G, Wu N, Chao C, Prasadan K, Gittes GK, Xiao X. Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Res Care 2020; 8:e000921. [PMID: 32144129 PMCID: PMC7059504 DOI: 10.1136/bmjdrc-2019-000921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Pancreatic beta cells proliferate in response to metabolic requirements during pregnancy, while failure of this response may cause gestational diabetes. A member of the vascular endothelial growth factor family, placental growth factor (PlGF), typically plays a role in metabolic disorder and pathological circumstance. The expression and function of PlGF in the endocrine pancreas have not been reported and are addressed in the current study. RESEARCH DESIGN AND METHODS PlGF levels in beta cells were determined by immunostaining or ELISA in purified beta cells in non-pregnant and pregnant adult mice. An adeno-associated virus (AAV) serotype 8 carrying a shRNA for PlGF under the control of a rat insulin promoter (AAV-rat insulin promoter (RIP)-short hairpin small interfering RNA for PlGF (shPlGF)) was prepared and infused into mouse pancreas through the pancreatic duct to specifically knock down PlGF in beta cells, and its effects on beta-cell growth were determined by beta-cell proliferation, beta-cell mass and insulin release. A macrophage-depleting reagent, clodronate, was coapplied into AAV-treated mice to study crosstalk between beta cells and macrophages. RESULTS PlGF is exclusively produced by beta cells in the adult mouse pancreas. Moreover, PlGF expression in beta cells was significantly increased during pregnancy. Intraductal infusion of AAV-RIP-shPlGF specifically knocked down PlGF in beta cells, resulting in compromised beta-cell proliferation, reduced growth in beta-cell mass and impaired glucose tolerance during pregnancy. Mechanistically, PlGF depletion in beta cells reduced islet infiltration of trophic macrophages, which appeared to be essential for gestational beta-cell growth. CONCLUSIONS Our study suggests that increased expression of PlGF in beta cells may trigger gestational beta-cell growth through recruited macrophages.
Collapse
Affiliation(s)
- Weixia Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Endocrinology, the First Affiliated Hospital of NanChang University, Nanchang, China
| | - Chaoban Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatric Endocrinology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Grant Swisher
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nannan Wu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Chelsea Chao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Smith LIF, Hill TG, Bowe JE. Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System. Methods Mol Biol 2020; 2128:181-205. [PMID: 32180194 DOI: 10.1007/978-1-0716-0385-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.
Collapse
Affiliation(s)
- Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK.
| | - Thomas G Hill
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
27
|
Bowe JE, Hill TG, Hunt KF, Smith LI, Simpson SJ, Amiel SA, Jones PM. A role for placental kisspeptin in β cell adaptation to pregnancy. JCI Insight 2019; 4:124540. [PMID: 31619585 PMCID: PMC6824306 DOI: 10.1172/jci.insight.124540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. Kisspeptin has been shown to stimulate insulin release, through its receptor, GPR54. The placenta releases high levels of kisspeptin into the maternal circulation, suggesting a role in modulating the islet adaptation to pregnancy. In the present study we show that pharmacological blockade of endogenous kisspeptin in pregnant mice resulted in impaired glucose homeostasis. This glucose intolerance was due to a reduced insulin response to glucose as opposed to any effect on insulin sensitivity. A β cell–specific GPR54-knockdown mouse line was found to exhibit glucose intolerance during pregnancy, with no phenotype observed outside of pregnancy. Furthermore, in pregnant women circulating kisspeptin levels significantly correlated with insulin responses to oral glucose challenge and were significantly lower in women with gestational diabetes (GDM) compared with those without GDM. Thus, kisspeptin represents a placental signal that plays a physiological role in the islet adaptation to pregnancy, maintaining maternal glucose homeostasis by acting through the β cell GPR54 receptor. Our data suggest reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β cell compensation, may be a factor in the development of GDM in humans. Placental kisspeptin regulates islet adaptation to pregnancy that is necessary for preventing gestational diabetes in mice and humans.
Collapse
|
28
|
Rosselot C, Kumar A, Lakshmipathi J, Zhang P, Lu G, Katz LS, Prochownik EV, Stewart AF, Lambertini L, Scott DK, Garcia-Ocaña A. Myc Is Required for Adaptive β-Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes 2019; 68:1934-1949. [PMID: 31292135 PMCID: PMC6754239 DOI: 10.2337/db18-1368] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
Failure to expand pancreatic β-cells in response to metabolic stress leads to excessive workload resulting in β-cell dysfunction, dedifferentiation, death, and development of type 2 diabetes. In this study, we demonstrate that induction of Myc is required for increased pancreatic β-cell replication and expansion during metabolic stress-induced insulin resistance with short-term high-fat diet (HFD) in young mice. β-Cell-specific Myc knockout mice fail to expand adaptively and show impaired glucose tolerance and β-cell dysfunction. Mechanistically, PKCζ, ERK1/2, mTOR, and PP2A are key regulators of the Myc response in this setting. DNA methylation analysis shows hypomethylation of cell cycle genes that are Myc targets in islets from young mice fed with a short-term HFD. Importantly, DNA hypomethylation of Myc response elements does not occur in islets from 1-year-old mice fed with a short-term HFD, impairing both Myc recruitment to cell cycle regulatory genes and β-cell replication. We conclude that Myc is required for metabolic stress-mediated β-cell expansion in young mice, but with aging, Myc upregulation is not sufficient to induce β-cell replication by, at least partially, an epigenetically mediated resistance to Myc action.
Collapse
Affiliation(s)
- Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anil Kumar
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jayalakshmi Lakshmipathi
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pili Zhang
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Geming Lu
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S Katz
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh Medical Center, Hillman Cancer Center, and Pittsburgh Liver Research Center, Pittsburgh, PA
| | - Andrew F Stewart
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luca Lambertini
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K Scott
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
29
|
Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, MacDonald PE, Merrins MJ, D'Alessio DA, Campbell JE. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 2019; 4:126742. [PMID: 30720465 DOI: 10.1172/jci.insight.126742] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Paracrine interactions between pancreatic islet cells have been proposed as a mechanism to regulate hormone secretion and glucose homeostasis. Here, we demonstrate the importance of proglucagon-derived peptides (PGDPs) for α to β cell communication and control of insulin secretion. Signaling through this system occurs through both the glucagon-like peptide receptor (Glp1r) and glucagon receptor (Gcgr). Loss of PGDPs, or blockade of their receptors, decreases insulin secretion in response to both metabolic and nonmetabolic stimulation of mouse and human islets. This effect is due to reduced β cell cAMP and affects the quantity but not dynamics of insulin release, indicating that PGDPs dictate the magnitude of insulin output in an isolated islet. In healthy mice, additional factors that stimulate cAMP can compensate for loss of PGDP signaling; however, input from α cells is essential to maintain glucose tolerance during the metabolic stress induced by high-fat feeding. These findings demonstrate an essential role for α cell regulation of β cells, raising the possibility that abnormal paracrine signaling contributes to impaired insulin secretion in diabetes. Moreover, these findings support reconsideration of the role for α cells in postprandial glucose control.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sara E Encisco
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackenzie D Martin
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Alberta, Canada
| | - Justin L Jaffe
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Reilly W Coch
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and
| | - Jonathan M Haldeman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
30
|
Stancill JS, Osipovich AB, Cartailler JP, Magnuson MA. Transgene-associated human growth hormone expression in pancreatic β-cells impairs identification of sex-based gene expression differences. Am J Physiol Endocrinol Metab 2019; 316:E196-E209. [PMID: 30532991 PMCID: PMC6397359 DOI: 10.1152/ajpendo.00229.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent protein reporter genes are widely used to identify and sort murine pancreatic β-cells. In this study, we compared use of the MIP-GFP transgene, which exhibits aberrant expression of human growth hormone (hGH), with a newly derived Ins2Apple allele that lacks hGH expression on the expression of sex-specific genes. β-Cells from MIP-GFP transgenic mice exhibit changes in the expression of 7,733 genes, or greater than half of their transcriptome, compared with β-cells from Ins2Apple/+ mice. To determine how these differences might affect a typical differential gene expression study, we analyzed the effect of sex on gene expression using both reporter lines. Six hundred fifty-seven differentially expressed genes were identified between male and female β-cells containing the Ins2Apple allele. Female β-cells exhibit higher expression of Xist, Tmed9, Arpc3, Eml2, and several islet-enriched transcription factors, including Nkx2-2 and Hnf4a, whereas male β-cells exhibited a generally higher expression of genes involved in cell cycle regulation. In marked contrast, the same male vs. female comparison of β-cells containing the MIP-GFP transgene revealed only 115 differentially expressed genes, and comparison of the 2 lists of differentially expressed genes revealed only 17 that were common to both analyses. These results indicate that 1) male and female β-cells differ in their expression of key transcription factors and cell cycle regulators and 2) the MIP-GFP transgene may attenuate sex-specific differences that distinguish male and female β-cells, thereby impairing the identification of sex-specific variations.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | | | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
31
|
Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 2019; 225:e13101. [PMID: 29791774 DOI: 10.1111/apha.13101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signalling network in islets involving 5-HT is being unravelled. With more than fourteen different 5-HT receptors expressed in human islets and receptor-independent mechanisms in insulin-producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of type 2 diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signalling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homoeostasis. In this review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas.
Collapse
Affiliation(s)
- L. R. Cataldo Bascuñan
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - C. Lyons
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - H. Bennet
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - I. Artner
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - M. Fex
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| |
Collapse
|
32
|
Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest 2018; 129:268-280. [PMID: 30375986 DOI: 10.1172/jci98098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific-deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Collapse
Affiliation(s)
- Alberto Bartolome
- Department of Medicine, Columbia University, New York, New York, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lori Sussel
- Department of Pediatrics, University of Colorado, Denver, Colorado, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
33
|
de Faudeur G, Brouwers B, Schuit F, Creemers JWM, Ramos-Molina B. Transgenic Artifacts Caused by Passenger Human Growth Hormone. Trends Endocrinol Metab 2018; 29:670-674. [PMID: 29921469 DOI: 10.1016/j.tem.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
The minigene encoding human growth hormone (hGH) has been incorporated into over 300 transgenic mouse lines to improve transgene expression. However, unexpected and functional hGH expression can drastically alter physiology. We list here the mouse lines in which ectopic hGH has been confirmed, and we provide a wiki for lines awaiting analysis.
Collapse
Affiliation(s)
- Geoffroy de Faudeur
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; These authors contributed equally
| | - Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Metabolic Research Laboratories, Wellcome Trust Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK; These authors contributed equally
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Sun J, Mao L, Yang H, Ren D. Critical role for the Tsc1-mTORC1 pathway in β-cell mass in Pdx1-deficient mice. J Endocrinol 2018; 238:151-163. [PMID: 29875165 PMCID: PMC6030447 DOI: 10.1530/joe-18-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
Abstract
Mutations in the pancreatic duodenal homeobox (PDX1) gene are associated with diabetes in humans. Pdx1-haploinsufficient mice also develop diabetes, but the molecular mechanism is unknown. To this end, we knocked down Pdx1 gene expression in mouse MIN6 insulinoma cells. Pdx1 suppression not only increased apoptotic cell death but also decreased cell proliferation, which was associated with a decrease in activity of mechanistic target of rapamycin complex 1 (mTORC1). We found that in Pdx1-deficient mice, tuberous sclerosis 1 (Tsc1) ablation in pancreatic β-cells restores β-cell mass, increases β-cell proliferation and size, decreases the number of TUNEL-positive cells and restores glucose tolerance after glucose challenge. In addition, Tsc1 ablation in pancreatic β-cells increases phosphorylation of initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation and 40S ribosomal protein S6, two downstream targets of mTORC1 indicating that Tsc1 mediates mTORC1 downregulation induced by Pdx1 suppression. These results suggest that the Tsc1-mTORC1 pathway plays an important role in mediating the decrease in β-cell proliferation and growth and the reduction in β-cell mass that occurs in Pdx1-deficient diabetes. Thus, mTORC1 may be target for therapeutic interventions in diabetes associated with reductions in β-cell mass.
Collapse
Affiliation(s)
- Juan Sun
- Department of MedicineThe University of Chicago, Chicago, Illinois, USA
| | - Liqun Mao
- Department of MedicineThe University of Chicago, Chicago, Illinois, USA
| | - Hongyan Yang
- Department of GynecologyKey Research Laboratory of Gynecology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Decheng Ren
- Department of MedicineThe University of Chicago, Chicago, Illinois, USA
- Department of GynecologyKey Research Laboratory of Gynecology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Al Batran R, Gopal K, Martin MD, Ho KL, Almutairi M, Aburasayn H, Eaton F, Campbell JE, Ussher JR. Skeletal muscle-specific Cre recombinase expression, controlled by the human α-skeletal actin promoter, improves glucose tolerance in mice fed a high-fat diet. Diabetologia 2018; 61:1849-1855. [PMID: 29858650 DOI: 10.1007/s00125-018-4643-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Cre-loxP systems are frequently used in mouse genetics as research tools for studying tissue-specific functions of numerous genes/proteins. However, the expression of Cre recombinase in a tissue-specific manner often produces undesirable changes in mouse biology that can confound data interpretation when using these tools to generate tissue-specific gene knockout mice. Our objective was to characterise the actions of Cre recombinase in skeletal muscle, and we anticipated that skeletal muscle-specific Cre recombinase expression driven by the human α-skeletal actin (HSA) promoter would influence glucose homeostasis. METHODS Eight-week-old HSA-Cre expressing mice and their wild-type littermates were fed a low- or high-fat diet for 12 weeks. Glucose homeostasis (glucose/insulin tolerance testing) and whole-body energy metabolism (indirect calorimetry) were assessed. We also measured circulating insulin levels and the muscle expression of key regulators of energy metabolism. RESULTS Whereas tamoxifen-treated HSA-Cre mice fed a low-fat diet exhibited no alterations in glucose homeostasis, we observed marked improvements in glucose tolerance in tamoxifen-treated, but not corn-oil-treated, HSA-Cre mice fed a high-fat diet vs their wild-type littermates. Moreover, Cre dissociation from heat shock protein 90 and translocation to the nucleus was only seen following tamoxifen treatment. These improvements in glucose tolerance were not due to improvements in insulin sensitivity/signalling or enhanced energy metabolism, but appeared to stem from increases in circulating insulin. CONCLUSIONS/INTERPRETATION The intrinsic glycaemia phenotype in the HSA-Cre mouse necessitates the use of HSA-Cre controls, treated with tamoxifen, when using Cre-loxP models to investigate skeletal muscle-specific gene/protein function and glucose homeostasis.
Collapse
Affiliation(s)
- Rami Al Batran
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Kim L Ho
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Malak Almutairi
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Hanin Aburasayn
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | - John R Ussher
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, Butcher SM, Fine NH, Blandino-Rosano M, Sure VN, Yu S, Zhang R, Münzberg H, Jacobson DA, Katakam PV, Hodson DJ, Bernal-Mizrachi E, Zsombok A, Mauvais-Jarvis F. Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 2018; 3:98607. [PMID: 29925687 PMCID: PMC6124401 DOI: 10.1172/jci.insight.98607] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022] Open
Abstract
Androgen excess predisposes women to type 2 diabetes (T2D), but the mechanism of this is poorly understood. We report that female mice fed a Western diet and exposed to chronic androgen excess using dihydrotestosterone (DHT) exhibit hyperinsulinemia and insulin resistance associated with secondary pancreatic β cell failure, leading to hyperglycemia. These abnormalities are not observed in mice lacking the androgen receptor (AR) in β cells and partially in neurons of the mediobasal hypothalamus (MBH) as well as in mice lacking AR selectively in neurons. Accordingly, i.c.v. infusion of DHT produces hyperinsulinemia and insulin resistance in female WT mice. We observe that acute DHT produces insulin hypersecretion in response to glucose in cultured female mouse and human pancreatic islets in an AR-dependent manner via a cAMP- and mTOR-dependent pathway. Acute DHT exposure increases mitochondrial respiration and oxygen consumption in female cultured islets. As a result, chronic DHT exposure in vivo promotes islet oxidative damage and susceptibility to additional stress induced by streptozotocin via AR in β cells. This study suggests that excess androgen predisposes female mice to T2D following AR activation in neurons, producing peripheral insulin resistance, and in pancreatic β cells, promoting insulin hypersecretion, oxidative injury, and secondary β cell failure.
Collapse
Affiliation(s)
- Guadalupe Navarro
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Allard
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Jamie J. Morford
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Weiwei Xu
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Suhuan Liu
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adrien J.R. Molinas
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Sierra M. Butcher
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Nicholas H.F. Fine
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Venkata N. Sure
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Sangho Yu
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Rui Zhang
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Heike Münzberg
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - David J. Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrea Zsombok
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, and
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
- Tulane Brain Institute and
- Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
37
|
Garibay D, Lou J, Lee SA, Zaborska KE, Weissman MH, Sloma E, Donahue L, Miller AD, White AC, Michael MD, Sloop KW, Cummings BP. β Cell GLP-1R Signaling Alters α Cell Proglucagon Processing after Vertical Sleeve Gastrectomy in Mice. Cell Rep 2018; 23:967-973. [PMID: 29694904 PMCID: PMC5983903 DOI: 10.1016/j.celrep.2018.03.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes high rates of type 2 diabetes remission and remarkable increases in postprandial glucagon-like peptide-1 (GLP-1) secretion. GLP-1 plays a critical role in islet function by potentiating glucose-stimulated insulin secretion; however, the mechanisms remain incompletely defined. Therefore, we applied a murine VSG model to an inducible β cell-specific GLP-1 receptor (GLP-1R) knockout mouse model to investigate the role of the β cell GLP-1R in islet function. Our data show that loss of β cell GLP-1R signaling decreases α cell GLP-1 expression after VSG. Furthermore, we find a β cell GLP-1R-dependent increase in α cell expression of the prohormone convertase required for the production of GLP-1 after VSG. Together, the findings herein reveal two concepts. First, our data support a paracrine role for α cell-derived GLP-1 in the metabolic benefits observed after VSG. Second, we have identified a role for the β cell GLP-1R as a regulator of α cell proglucagon processing.
Collapse
Affiliation(s)
- Darline Garibay
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jon Lou
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Seon A Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Karolina E Zaborska
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Margot H Weissman
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Erica Sloma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Leanne Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - M Dodson Michael
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
39
|
Alquier T, Poitout V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia 2018; 61:526-538. [PMID: 29143855 PMCID: PMC5805661 DOI: 10.1007/s00125-017-4495-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Mice are the most commonly used species in preclinical research on the pathophysiology of metabolic diseases. Although they are extremely useful for identifying pathways, mechanisms and genes regulating glucose and energy homeostasis, the specificities of the various mouse models and methodologies used to investigate a metabolic phenotype can have a profound impact on experimental results and their interpretation. This review aims to: (1) describe the most commonly used experimental tests to assess glucose and energy homeostasis in mice; (2) provide some guidelines regarding the design, analysis and interpretation of these tests, as well as for studies using genetic models; and (3) identify important caveats and confounding factors that must be taken into account in the interpretation of findings.
Collapse
Affiliation(s)
- Thierry Alquier
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Vincent Poitout
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
40
|
Trinder M, Zhou L, Oakie A, Riopel M, Wang R. β-cell insulin receptor deficiency during in utero development induces an islet compensatory overgrowth response. Oncotarget 2018; 7:44927-44940. [PMID: 27384998 PMCID: PMC5216695 DOI: 10.18632/oncotarget.10342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/12/2016] [Indexed: 12/11/2022] Open
Abstract
The presence of insulin receptor (IR) on β-cells suggests that insulin has an autocrine/paracrine role in the regulation of β-cell function. It has previously been reported that the β-cell specific loss of IR (βIRKO) leads to the development of impaired glycemic regulation and β-cell death in mice. However, temporally controlled βIRKO induced during the distinct transitions of fetal pancreas development has yet to be investigated. We hypothesized that the presence of IR on β-cells during the 2nd transition phase of the fetal murine pancreas is required for maintaining normal islet development.We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase IR knockout (MIP-βIRKO) mouse model to investigate the loss of β-cell IR during pancreatic development at embryonic day (e) 13, a phase of endocrine proliferation and β-cell fate determination. Fetal pancreata examined at e19-20 showed significantly reduced IR levels in the β-cells of MIP-βIRKO mice. Morphologically, MIP-βIRKO pancreata exhibited significantly enlarged islet size with increased β-cell area and proliferation. MIP-βIRKO pancreata also displayed significantly increased Igf-2 protein level and Akt activity with a reduction in phospho-p53 when compared to control littermates. Islet vascular formation and Vegf-a protein level was significantly increased in MIP-βIRKO pancreata.Our results demonstrate a developmental role for the β-cell IR, whereby its loss leads to an islet compensatory overgrowth, and contributes further information towards elucidating the temporally sensitive signaling during β-cell commitment.
Collapse
Affiliation(s)
- Mark Trinder
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangyi Zhou
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Amanda Oakie
- Children's Health Research Institute, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Matthew Riopel
- Children's Health Research Institute, London, Ontario, Canada
| | - Rennian Wang
- Children's Health Research Institute, London, Ontario, Canada.,Departments of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Xiao X, Guo P, Shiota C, Zhang T, Coudriet GM, Fischbach S, Prasadan K, Fusco J, Ramachandran S, Witkowski P, Piganelli JD, Gittes GK. Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 2018; 22:78-90.e4. [PMID: 29304344 PMCID: PMC5757249 DOI: 10.1016/j.stem.2017.11.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
Successful strategies for treating type 1 diabetes need to restore the function of pancreatic beta cells that are destroyed by the immune system and overcome further destruction of insulin-producing cells. Here, we infused adeno-associated virus carrying Pdx1 and MafA expression cassettes through the pancreatic duct to reprogram alpha cells into functional beta cells and normalized blood glucose in both beta cell-toxin-induced diabetic mice and in autoimmune non-obese diabetic (NOD) mice. The euglycemia in toxin-induced diabetic mice and new insulin+ cells persisted in the autoimmune NOD mice for 4 months prior to reestablishment of autoimmune diabetes. This gene therapy strategy also induced alpha to beta cell conversion in toxin-treated human islets, which restored blood glucose levels in NOD/SCID mice upon transplantation. Hence, this strategy could represent a new therapeutic approach, perhaps complemented by immunosuppression, to bolster endogenous insulin production. Our study thus provides a potential basis for further investigation in human type 1 diabetes.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Gina M Coudriet
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
42
|
Sabatini PV, Speckmann T, Nian C, Glavas MM, Wong CK, Yoon JS, Kin T, Shapiro AMJ, Gibson WT, Verchere CB, Lynn FC. Neuronal PAS Domain Protein 4 Suppression of Oxygen Sensing Optimizes Metabolism during Excitation of Neuroendocrine Cells. Cell Rep 2018; 22:163-174. [PMID: 29298418 DOI: 10.1016/j.celrep.2017.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Depolarization of neuroendocrine cells results in calcium influx, which induces vesicle exocytosis and alters gene expression. These processes, along with the restoration of resting membrane potential, are energy intensive. We hypothesized that cellular mechanisms exist to maximize energy production during excitation. Here, we demonstrate that NPAS4, an immediate early basic helix-loop-helix (bHLH)-PAS transcription factor, acts to maximize energy production by suppressing hypoxia-inducible factor 1α (HIF1α). As such, knockout of Npas4 from insulin-producing β cells results in reduced OXPHOS, loss of insulin secretion, β cell dedifferentiation, and type 2 diabetes. NPAS4 plays a similar role in the nutrient-sensing cells of the hypothalamus. Its knockout here results in increased food intake, reduced locomotor activity, and elevated peripheral glucose production. In conclusion, NPAS4 is critical for the coordination of metabolism during the stimulation of electrically excitable cells; its loss leads to the defects in cellular metabolism that underlie the cellular dysfunction that occurs in metabolic disease.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chi Kin Wong
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ji Soo Yoon
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Tatsuya Kin
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - William T Gibson
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Bergeron V, Ghislain J, Vivot K, Tamarina N, Philipson LH, Fielitz J, Poitout V. Deletion of Protein Kinase D1 in Pancreatic β-Cells Impairs Insulin Secretion in High-Fat Diet-Fed Mice. Diabetes 2018; 67:71-77. [PMID: 29038309 PMCID: PMC5741145 DOI: 10.2337/db17-0982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022]
Abstract
Ββ-Cell adaptation to insulin resistance is necessary to maintain glucose homeostasis in obesity. Failure of this mechanism is a hallmark of type 2 diabetes (T2D). Hence, factors controlling functional β-cell compensation are potentially important targets for the treatment of T2D. Protein kinase D1 (PKD1) integrates diverse signals in the β-cell and plays a critical role in the control of insulin secretion. However, the role of β-cell PKD1 in glucose homeostasis in vivo is essentially unknown. Using β-cell-specific, inducible PKD1 knockout mice (βPKD1KO), we examined the role of β-cell PKD1 under basal conditions and during high-fat feeding. βPKD1KO mice under a chow diet presented no significant difference in glucose tolerance or insulin secretion compared with mice expressing the Cre transgene alone; however, when compared with wild-type mice, both groups developed glucose intolerance. Under a high-fat diet, deletion of PKD1 in β-cells worsened hyperglycemia, hyperinsulinemia, and glucose intolerance. This was accompanied by impaired glucose-induced insulin secretion both in vivo in hyperglycemic clamps and ex vivo in isolated islets from high-fat diet-fed βPKD1KO mice without changes in islet mass. This study demonstrates an essential role for PKD1 in the β-cell adaptive secretory response to high-fat feeding in mice.
Collapse
Affiliation(s)
- Valérie Bergeron
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Kevin Vivot
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Jens Fielitz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
44
|
Ramzy A, Mojibian M, Kieffer TJ. Insulin-Deficient Mouse β-Cells Do Not Fully Mature but Can Be Remedied Through Insulin Replacement by Islet Transplantation. Endocrinology 2018; 159:83-102. [PMID: 29029025 DOI: 10.1210/en.2017-00263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
Insulin receptor (IR) insufficiency in β-cells leads to impaired insulin secretion and reduced β-cell hyperplasia in response to hyperglycemia. Selective IR deficiency in β-cells in later embryological development may lead to compensatory β-cell hyperplasia. Although these findings suggest insulin signaling on the β-cell is important for β-cell function, they are confounded by loss of signaling by the insulinlike growth factors through the IR. To determine whether insulin itself is necessary for β-cell development and maturation, we performed a characterization of pancreatic islets in mice with deletions of both nonallelic insulin genes (Ins1-/-Ins2-/-). We immunostained neonatal Ins1-/-Ins2-/- and Ins1+/+Ins2+/+ pancreata and performed quantitative polymerase chain reaction on isolated neonatal islets. Insulin-deficient islets had reduced expression of factors normally expressed in maturing β-cells, including muscoloaponeurotic fibrosarcoma oncogene homolog A, homeodomain transcription factor 6.1, and glucose transporter 2. Ins1-/-Ins2-/-β-cells expressed progenitor factors associated with stem cells or dedifferentiated β-cells, including v-myc avian myolocytomatosis viral oncogene lung carcinoma derived and homeobox protein NANOG. We replaced insulin by injection or islet transplantation to keep mice alive into adulthood to determine whether insulin replacement was sufficient for the completed maturation of insulin-deficient β-cells. Short-term insulin glargine (Lantus®) injections partially rescued the β-cell phenotype, whereas long-term replacement of insulin by isogenic islet transplantation supported the formation of more mature β-cells. Our findings suggest that tightly regulated glycemia, insulin species, or other islet factors are necessary for β-cell maturation.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Jouvet N, Estall JL. The pancreas: Bandmaster of glucose homeostasis. Exp Cell Res 2017; 360:19-23. [DOI: 10.1016/j.yexcr.2017.03.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
|
46
|
Navarro G, Abdolazimi Y, Zhao Z, Xu H, Lee S, Armstrong NA, Annes JP. Genetic Disruption of Adenosine Kinase in Mouse Pancreatic β-Cells Protects Against High-Fat Diet-Induced Glucose Intolerance. Diabetes 2017; 66:1928-1938. [PMID: 28468960 PMCID: PMC5482077 DOI: 10.2337/db16-0816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/24/2017] [Indexed: 01/03/2023]
Abstract
Islet β-cells adapt to insulin resistance through increased insulin secretion and expansion. Type 2 diabetes typically occurs when prolonged insulin resistance exceeds the adaptive capacity of β-cells. Our prior screening efforts led to the discovery that adenosine kinase (ADK) inhibitors stimulate β-cell replication. Here, we evaluated whether ADK disruption in mouse β-cells affects β-cell mass and/or protects against high-fat diet (HFD)-induced glucose dysregulation. Mice targeted at the Adk locus were bred to Rip-Cre and Ins1-Cre/ERT1Lphi mice to enable constitutive (βADKO) and conditional (iβADKO) disruption of ADK expression in β-cells, respectively. Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion (GSIS) were longitudinally monitored in normal chow (NC)-fed and HFD-fed mice. In addition, β-cell mass and replication were measured by immunofluorescence-based islet morphometry. NC-fed adult βADKO and iβADKO mice displayed glucose tolerance, insulin tolerance and β-cell mass comparable to control animals. By contrast, HFD-fed βADKO and iβADKO animals had improved glucose tolerance and increased in vivo GSIS. Improved glucose handling was associated with increased β-cell replication and mass. We conclude that ADK expression negatively regulates the adaptive β-cell response to HFD challenge. Therefore, modulation of ADK activity is a potential strategy for enhancing the adaptive β-cell response.
Collapse
Affiliation(s)
- Guadalupe Navarro
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| | - Yassan Abdolazimi
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| | - Zhengshan Zhao
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| | - Haixia Xu
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Sooyeon Lee
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| | - Neali A Armstrong
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA
| |
Collapse
|
47
|
Staels W, Heremans Y, Leuckx G, Van Gassen N, Salinno C, De Groef S, Cools M, Keshet E, Dor Y, Heimberg H, De Leu N. Conditional islet hypovascularisation does not preclude beta cell expansion during pregnancy in mice. Diabetologia 2017; 60:1051-1056. [PMID: 28299380 DOI: 10.1007/s00125-017-4243-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Endothelial-endocrine cell interactions and vascular endothelial growth factor (VEGF)-A signalling are deemed essential for maternal islet vascularisation, glucose control and beta cell expansion during mouse pregnancy. The aim of this study was to assess whether pregnancy-associated beta cell expansion was affected under conditions of islet hypovascularisation. METHODS Soluble fms-like tyrosine kinase 1 (sFLT1), a VEGF-A decoy receptor, was conditionally overexpressed in maternal mouse beta cells from 1.5 to 14.5 days post coitum. Islet vascularisation, glycaemic control, beta cell proliferation, individual beta cell size and total beta cell volume were assessed in both pregnant mice and non-pregnant littermates. RESULTS Conditional overexpression of sFLT1 in beta cells resulted in islet hypovascularisation and glucose intolerance in both pregnant and non-pregnant mice. In contrast to non-pregnant littermates, glucose intolerance in pregnant mice was transient. sFLT1 overexpression did not affect pregnancy-associated changes in beta cell proliferation, individual beta cell size or total beta cell volume. CONCLUSIONS/INTERPRETATION Reduced intra-islet VEGF-A signalling results in maternal islet hypovascularisation and impaired glycaemic control but does not preclude beta cell expansion during mouse pregnancy.
Collapse
Affiliation(s)
- Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Department of Paediatrics, Division of Paediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gunter Leuckx
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Naomi Van Gassen
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ciro Salinno
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sofie De Groef
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Martine Cools
- Department of Paediatrics, Division of Paediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium.
- Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium.
| |
Collapse
|
48
|
Fenske RJ, Cadena MT, Harenda QE, Wienkes HN, Carbajal K, Schaid MD, Laundre E, Brill AL, Truchan NA, Brar H, Wisinski J, Cai J, Graham TE, Engin F, Kimple ME. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice. Endocrinology 2017; 158:1645-1658. [PMID: 28419211 PMCID: PMC5460933 DOI: 10.1210/en.2016-1700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Female
- GTP-Binding Protein alpha Subunits/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Streptozocin
Collapse
Affiliation(s)
- Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Mark T. Cadena
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quincy E. Harenda
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Haley N. Wienkes
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Kathryn Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michael D. Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Erin Laundre
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Allison L. Brill
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Nathan A. Truchan
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Harpreet Brar
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jaclyn Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jinjin Cai
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Timothy E. Graham
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Feyza Engin
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
49
|
Panaro BL, Flock GB, Campbell JE, Beaudry JL, Cao X, Drucker DJ. β-Cell Inactivation of Gpr119 Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation. Diabetes 2017; 66:1626-1635. [PMID: 28254842 PMCID: PMC5860191 DOI: 10.2337/db17-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/06/2023]
Abstract
GPR119 was originally identified as an orphan β-cell receptor; however, subsequent studies demonstrated that GPR119 also regulates β-cell function indirectly through incretin hormone secretion. We assessed the importance of GPR119 for β-cell function in Gpr119-/- mice and in newly generated Gpr119βcell-/- mice. Gpr119-/- mice displayed normal body weight and glucose tolerance on a regular chow (RC) diet. After high-fat feeding, Gpr119-/- mice exhibited reduced fat mass, decreased levels of circulating adipokines, improved insulin sensitivity, and better glucose tolerance. Unexpectedly, oral and intraperitoneal glucose tolerance and the insulin response to glycemic challenge were not perturbed in Gpr119βcell-/- mice on RC and high-fat diets. Moreover, islets from Gpr119-/- and Gpr119βcell-/- mice exhibited normal insulin responses to glucose and β-cell secretagogues. Furthermore, the selective GPR119 agonist AR231453 failed to directly enhance insulin secretion from perifused islets. In contrast, AR231453 increased plasma glucagon-like peptide 1 (GLP-1) and insulin levels and improved glucose tolerance in wild-type and Gpr119βcell-/- mice. These findings demonstrate that β-cell GPR119 expression is dispensable for the physiological control of insulin secretion and the pharmacological response to GPR119 agonism, findings that may inform the lack of robust efficacy in clinical programs assessing GPR119 agonists for the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Brandon L Panaro
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Grace B Flock
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Extensive phenotypic characterization of a new transgenic mouse reveals pleiotropic perturbations in physiology due to mesenchymal hGH minigene expression. Sci Rep 2017; 7:2397. [PMID: 28546545 PMCID: PMC5445072 DOI: 10.1038/s41598-017-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.
Collapse
|