1
|
Klivleyeva N, Saktaganov N, Glebova T, Lukmanova G, Ongarbayeva N, Webby R. Influenza A Viruses in the Swine Population: Ecology and Geographical Distribution. Viruses 2024; 16:1728. [PMID: 39599843 PMCID: PMC11598916 DOI: 10.3390/v16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the efforts of practical medicine and virology, influenza viruses remain the most important pathogens affecting human and animal health. Swine are exposed to infection with all types of influenza A, B, C, and D viruses. Influenza viruses have low pathogenicity for swine, but in the case of co-infection with other pathogens, the outcome can be much more serious, even fatal. Having a high zoonotic potential, swine play an important role in the ecology and spread of influenza to humans. In this study, we review the state of the scientific literature on the zoonotic spread of swine influenza A viruses among humans, their circulation in swine populations worldwide, reverse zoonosis from humans to swine, and their role in interspecies transmission. The analysis covers a long period to trace the ecology and evolutionary history of influenza A viruses in swine. The following databases were used to search the literature: Scopus, Web of Science, Google Scholar, and PubMed. In this review, 314 papers are considered: n = 107 from Asia, n = 93 from the U.S., n = 86 from Europe, n = 20 from Africa, and n = 8 from Australia. According to the date of publication, they are conditionally divided into three groups: contemporary, released from 2011 to the present (n = 121); 2000-2010 (n = 108); and 1919-1999 (n = 85).
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nurbol Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Tatyana Glebova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Galina Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nuray Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| |
Collapse
|
2
|
Kirby MK, Shu B, Keller MW, Wilson MM, Rambo-Martin BL, Jang Y, Liddell J, Salinas Duron E, Nolting JM, Bowman AS, Davis CT, Wentworth DE, Barnes JR. Discriminating North American Swine Influenza Viruses with a Portable, One-Step, Triplex Real-Time RT-PCR Assay, and Portable Sequencing. Viruses 2024; 16:1557. [PMID: 39459891 PMCID: PMC11512246 DOI: 10.3390/v16101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (β), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential.
Collapse
Affiliation(s)
- Marie K. Kirby
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Bo Shu
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Matthew W. Keller
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Malania M. Wilson
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Benjamin L. Rambo-Martin
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Yunho Jang
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Jimma Liddell
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Eduardo Salinas Duron
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
- Chippewa Government Solutions (CGS), Sault Tribe Incorporated (STI), Cherokee Nation Operational Solutions (CNOS), Sault Sainte Marie, MI 49783, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - C. Todd Davis
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - David E. Wentworth
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - John R. Barnes
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| |
Collapse
|
3
|
Kim SC, Lee TG, Na EJ, Moon SH, Kim HJ, Jeong CG, Choi YK, Oh Y, Lee CY, Oem JK, Kim WI, Cho HS. Major Shift of Influenza A Virus of Swine (IAV-S) by Human-to-Swine Spillover of the 2009 Pandemic Virus in Korea. Transbound Emerg Dis 2024; 2024:6366170. [PMID: 40303172 PMCID: PMC12016703 DOI: 10.1155/2024/6366170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 05/02/2025]
Abstract
The 2009 influenza A H1N1 pandemic (pdm09) originated from the influenza A virus of swine (IAV-S) through multiple reassortment events with avian and human IAVs. The pdm09 reportedly reintroduced the virus to pigs, contributing to the evolution and diversity of IAV-S through frequent reassortment and drifts. Surveillance and whole-genome sequencing of IAV-S from conventional pig farms in Korea during 2021-2022 revealed that the genetic diversity of H1 and H3 IAV-S was continuously enriched after human-to-swine spillover of pdm09 viruses with long-term maintenance, persistence, and reassortment of virus lineages. Evidence of additional human-to-swine spillover of viruses that are different from the 2009 virus but close to that of the recent H1N1pdm09 human vaccine was identified in this study. The identification of swine-adapted pdm09 viruses, which have accumulated amino acid mutations with potentially altered antigenicity and a unique potential N-glycosylation site within the haemagglutinin (HA) gene, suggests the distinctive evolution of spillover pdm09 viruses in swine. The genetic constellation of the recently emerging Eurasian avian-like swine lineage and the preexisting classical swine lineage H1 viruses in Korea has been expanded through reassortment with cocirculating pdm09 viruses and/or H3N2 IAV-S harboring the pdm09 M gene (H3N2pM). Collectively, after the major shift of Korean IAV-S from the classical swine lineage to the pdm09 lineage in 2009, the frequent spillover of pdm09 viruses and the circulation of IAV-S harboring pdm09 gene segments led to the continuous diversification of IAV-S through antigenic drift and shift, raising concerns about the potential reintroduction of these viruses to humans.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Taek Geun Lee
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Eun-Jee Na
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Sung-Hyun Moon
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Hwan-Ju Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Chang-Gi Jeong
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research InstituteChungbuk National University, Cheongju 28644, Republic of Korea
- Center for Study of Emerging and Re-Emerging VirusesKorea Virus Research InstituteInstitute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary ScienceKangwon National University, Chuncheon 24341, Republic of Korea
| | - Chung-Young Lee
- Department of MicrobiologySchool of MedicineKyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ku Oem
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Ho-Seong Cho
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
4
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
5
|
Griffin EF, Tompkins SM. Fitness Determinants of Influenza A Viruses. Viruses 2023; 15:1959. [PMID: 37766365 PMCID: PMC10535923 DOI: 10.3390/v15091959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models. Genetic components of the pdmH1N1 virus currently circulate in the swine population, reassorting with endemic swine viruses that co-circulate and occasionally spillover into humans. This is evidenced by the regular detection of variant swine IAVs in humans associated with state fairs and other intersections of humans and swine. Defining genetic changes that support species adaptation, virulence, and cross-species transmission, as well as mutations that enhance or attenuate these features, will improve our understanding of influenza biology. It aids in surveillance and virus risk assessment and guides the establishment of counter measures for emerging viruses. Here, we review the current understanding of the determinants of specific IAV phenotypes, focusing on the fitness, transmission, and virulence determinants that have been identified in swine IAVs and/or in relation to the 2009 pdmH1N1 virus.
Collapse
Affiliation(s)
- Emily Fate Griffin
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, GA 30602, USA
| |
Collapse
|
6
|
Rabalski L, Kosinski M, Cybulski P, Stadejek T, Lepek K. Genetic Diversity of Type A Influenza Viruses Found in Swine Herds in Northwestern Poland from 2017 to 2019: The One Health Perspective. Viruses 2023; 15:1893. [PMID: 37766299 PMCID: PMC10536349 DOI: 10.3390/v15091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.
Collapse
Affiliation(s)
- Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Pulawy, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Krzysztof Lepek
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
7
|
Junqueira DM, Tochetto C, Anderson TK, Gava D, Haach V, Cantão ME, Baker ALV, Schaefer R. Human-to-swine introductions and onward transmission of 2009 H1N1 pandemic influenza viruses in Brazil. Front Microbiol 2023; 14:1243567. [PMID: 37614592 PMCID: PMC10442540 DOI: 10.3389/fmicb.2023.1243567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Once established in the human population, the 2009 H1N1 pandemic virus (H1N1pdm09) was repeatedly introduced into swine populations globally with subsequent onward transmission among pigs. Methods To identify and characterize human-to-swine H1N1pdm09 introductions in Brazil, we conducted a large-scale phylogenetic analysis of 4,141 H1pdm09 hemagglutinin (HA) and 3,227 N1pdm09 neuraminidase (NA) gene sequences isolated globally from humans and swine between 2009 and 2022. Results Phylodynamic analysis revealed that during the period between 2009 and 2011, there was a rapid transmission of the H1N1pdm09 virus from humans to swine in Brazil. Multiple introductions of the virus were observed, but most of them resulted in self-limited infections in swine, with limited onward transmission. Only a few sustained transmission clusters were identified during this period. After 2012, there was a reduction in the number of human-to-swine H1N1pdm09 transmissions in Brazil. Discussion The virus underwent continuous antigenic drift, and a balance was established between swine-to-swine transmission and extinction, with minimal sustained onward transmission from humans to swine. These results emphasize the dynamic interplay between human-to-swine transmission, antigenic drift, and the establishment of swine-to-swine transmission in shaping the evolution and persistence of H1N1pdm09 in swine populations.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Laboratório de Bioinformática e Evolução de Vírus, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Tavis K. Anderson
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | | | - Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | | |
Collapse
|
8
|
Moraes DCA, L. Vincent Baker A, Wang X, Zhu Z, Berg E, Trevisan G, Zhang J, Jayaraman S, Linhares DCL, Gauger PC, S. Silva G. Veterinarian perceptions and practices in prevention and control of influenza virus in the Midwest United States swine farms. Front Vet Sci 2023; 10:1089132. [PMID: 36816189 PMCID: PMC9936088 DOI: 10.3389/fvets.2023.1089132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus (IAV) is an endemic respiratory pathogen affecting swine worldwide and is a public health concern as a zoonotic pathogen. Veterinarians may respond to IAV infection in swine with varied approaches depending on their perception of its economic impact on human and animal health. This study considered three primary veterinary practice categories: swine exclusive veterinary practitioner, large animal practitioner, which corresponds to veterinarians that work predominantly with food animals including but not exclusively porcine, and mixed animal practitioner, which corresponds to veterinarians working with companion and food animals. This survey aimed to assess U.S. veterinarian perceptions, biosecurity practices, and control methods for IAV in swine. In this study, 54.5% (188/345) of the veterinarians that were targeted responded to all portions of the survey. The study results presented different perceptions regarding IAV among veterinarians in different types of veterinary practices and the current IAV mitigation practices implemented in swine farms based on strategic decisions. Collectively, this study also revealed the veterinarians' perceptions that IAV as a health problem in swine is increasing, IAV has a moderate economic impact, and there is a high level of concern regarding IAV circulating in swine. These findings highlight the need for IAV surveillance data, improved vaccine strategies, as well as important opportunities regarding methods of control and biosecurity. Additionally, results of this survey suggest biosecurity practices associated with the veterinarian's swine operations and prevention of zoonotic diseases can be strengthened through annual IAV vaccination of humans and support of sick leave policies for farm workers.
Collapse
Affiliation(s)
- Daniel C. A. Moraes
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Xin Wang
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Zhengyuan Zhu
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Emily Berg
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Giovani Trevisan
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Swaminathan Jayaraman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Gustavo S. Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States,*Correspondence: Gustavo S. Silva ✉
| |
Collapse
|
9
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
10
|
Eurasian Avian-like M1 Plays More Important Role than M2 in Pathogenicity of 2009 Pandemic H1N1 Influenza Virus in Mice. Viruses 2021; 13:v13122335. [PMID: 34960604 PMCID: PMC8707482 DOI: 10.3390/v13122335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.
Collapse
|
11
|
Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, Wan XF. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog 2021; 17:e1009962. [PMID: 34618879 PMCID: PMC8525756 DOI: 10.1371/journal.ppat.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cheng Gao
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lynden Voth
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Xiu-Feng Wan
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
McBride DS, Perofsky AC, Nolting JM, Nelson MI, Bowman AS. Tracing the Source of Influenza A Virus Zoonoses in Interconnected Circuits of Swine Exhibitions. J Infect Dis 2021; 224:458-468. [PMID: 33686399 PMCID: PMC7989509 DOI: 10.1093/infdis/jiab122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Since 2011, influenza A viruses circulating in US swine exhibited at county fairs are associated with >460 zoonotic infections, presenting an ongoing pandemic risk. Swine "jackpot shows" that occur before county fairs each summer intermix large numbers of exhibition swine from diverse geographic locations. We investigated the role of jackpot shows in influenza zoonoses. METHODS We collected snout wipe or nasal swab samples from 17 009 pigs attending 350 national, state, and local swine exhibitions across 8 states during 2016-2018. RESULTS Influenza was detected in 13.9% of swine sampled at jackpot shows, and 76.3% of jackpot shows had at least 1 pig test positive. Jackpot shows had 4.3-fold higher odds of detecting at least 1 influenza-positive pig compared to county fairs. When influenza was detected at a county fair, almost half of pigs tested positive, clarifying why zoonotic infections occur primarily at county fairs. CONCLUSIONS The earlier timing of jackpot shows and long-distance travel for repeated showing of individual pigs provide a pathway for the introduction of influenza into county fairs. Mitigation strategies aimed at curtailing influenza at jackpot shows are likely to have downstream effects on disease transmission at county fairs and zoonoses.
Collapse
Affiliation(s)
- Dillon S McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Everett HE, Nash B, Londt BZ, Kelly MD, Coward V, Nunez A, van Diemen PM, Brown IH, Brookes SM. Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses. Emerg Infect Dis 2021; 26:273-281. [PMID: 31961298 PMCID: PMC6986826 DOI: 10.3201/eid2602.190486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Influenza A(H1N1)pdm09 (pH1N1) virus has become established in swine in the United Kingdom and currently co-circulates with previously enzootic swine influenza A virus (IAV) strains, including avian-like H1N1 and human-like H1N2 viruses. During 2010, a swine influenza A reassortant virus, H1N2r, which caused mild clinical disease in pigs in the United Kingdom, was isolated. This reassortant virus has a novel gene constellation, incorporating the internal gene cassette of pH1N1-origin viruses and hemagglutinin and neuraminidase genes of swine IAV H1N2 origin. We investigated the pathogenesis and infection dynamics of the H1N2r isolate in pigs (the natural host) and in ferrets, which represent a human model of infection. Clinical and virologic parameters were mild in both species and both intraspecies and interspecies transmission was observed when initiated from either infected pigs or infected ferrets. This novel reassortant virus has zoonotic and reverse zoonotic potential, but no apparent increased virulence or transmissibility, in comparison to pH1N1 viruses.
Collapse
|
14
|
Zhang C, Cui H, Wang Z, Dong S, Zhang C, Li J, Meng K, Sun Y, Liu J, Guo Z, Chen L. Pathogenicity and transmissibility assessment of two strains of human influenza virus isolated in China in 2018. J Int Med Res 2021; 49:300060520982832. [PMID: 33472481 PMCID: PMC7829534 DOI: 10.1177/0300060520982832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Influenza season occurs every year in China, but its presentation was unusual in the period from December 2017 to early 2018. During this period, influenza activity was increasing across the country and was much greater than during the same period in previous years, with great harm to people's health. METHODS In this study, we isolated two human influenza virus strains-A/Hebei/F076/2018(H1N1) and B/Hebei/16275B/2018-from patients with severe influenza in Hebei, China, during the flu season in January 2018, and explored their genetic characteristics, pathogenicity, and transmissibility. RESULTS A/Hebei/F076/2018(H1N1) belongs to the human-like H1N1 influenza virus lineage, whereas B/Hebei/16275B/2018 belongs to the Victoria lineage and is closely related to the World Health Organization reference strain B/Brisbane/60/2008. Pathogenicity tests revealed that A/Hebei/F076/2018(H1N1) replicated much more strongly in mice, with mice exhibiting 40% mortality, whereas B/Hebei/16275B/2018 was not lethal. Both viruses could be transmitted through direct contact and by the aerosol route between guinea pigs, but the H1N1 strain exhibited higher airborne transmissibility. CONCLUSIONS These results may contribute to the monitoring of influenza mutation and the prevention of an influenza outbreak.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhongyi Wang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Chunmao Zhang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Jiaming Li
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Keyin Meng
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Yucheng Sun
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhendong Guo
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| |
Collapse
|
15
|
Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020; 288:198118. [PMID: 32798539 PMCID: PMC7587018 DOI: 10.1016/j.virusres.2020.198118] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Since swine influenza virus was first isolated in 1930, it has become endemic in pigs worldwide. Although large amount of swine influenza vaccines has been used in swine industry, swine influenza still cannot be efficiently controlled and has been an important economic disease for swine industry. The high diversity and varied distribution of different subtypes and genotypes of swine influenza viruses circulating in pigs globally is a major challenge to produce broadly effective vaccines and control disease. Importantly, swine influenza virus is able to cross species barrier to infect humans and even caused influenza pandemic in 2009. Herein, current status and challenge of swine influenza viruses is reviewed and discussed.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
16
|
Henao-Kaffure L, Hernández-Álvarez M. Flu pandemic, world power, and contemporary capitalism: building a historical-critical perspective. Int J Public Health 2020; 65:1003-1009. [PMID: 32712691 DOI: 10.1007/s00038-020-01441-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES To present a historical-critical analysis of the configuration process of the 2009-2010 flu pandemic in order to show the relationships between this process and the organization of world power, and to promote social and political mobilization. METHODS Primary and secondary sources on the dynamics of the 2009-2010 flu pandemic were studied. The sources were validated by plausibility assessment and historiographical analysis. From a historical-territorial and critical approach, the relations between the world configuration of the pandemic and the economic, political, and ideological power relations of contemporary capitalism were identified. RESULTS It is revealed that the expanding monopoly of the pig industry provided favorable conditions for the evolutionary explosion of the influenza A(H1N1) virus. The World Health Organization (WHO) made decisions that were inclined toward the economic interests of the pig and pharmaceutical industries within the framework of financial-cognitive capitalism. CONCLUSIONS The modes of conduct of these institutions and companies materialized the world relations of economic, political, and ideological power of our time, which determined the configuration process of the pandemic. The worldwide spreading of the virus is barely a trail of the process.
Collapse
|
17
|
Hu M, Yang G, DeBeauchamp J, Crumpton JC, Kim H, Li L, Wan XF, Kercher L, Bowman AS, Webster RG, Webby RJ, Russell CJ. HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. eLife 2020; 9:56236. [PMID: 32602461 PMCID: PMC7326494 DOI: 10.7554/elife.56236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jeri Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Hyunsuh Kim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States.,Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, United States.,Bond Life Sciences Center, University of Missouri, Columbia, United States.,Department of Electrical Engineering Computer Science, College of Engineering, University of Missouri, Columbia, United States.,MU Informatics Institute, University of Missouri, Columbia, United States
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, United States
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
18
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
19
|
Nirmala J, Perez A, Culhane MR, Allerson MW, Sreevatsan S, Torremorell M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound Emerg Dis 2020; 68:62-75. [PMID: 32187882 DOI: 10.1111/tbed.13529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.
Collapse
Affiliation(s)
| | - Andres Perez
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Matthew W Allerson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
20
|
Zell R, Groth M, Krumbholz A, Lange J, Philipps A, Dürrwald R. Displacement of the Gent/1999 human-like swine H1N2 influenza A virus lineage by novel H1N2 reassortants in Germany. Arch Virol 2019; 165:55-67. [PMID: 31696308 DOI: 10.1007/s00705-019-04457-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
Abstract
A swine influenza survey was conducted between 2003 and 2015 in Germany. During this period, 8122 snout swabs or other respiratory specimens from pigs of 5178 herds, mainly from Germany, were investigated for the presence of swine influenza A virus (S-IAV). In total, 1310 S-IAV isolates were collected. Of this collection, the complete genome of 267 H1N2 S-IAV isolates was sequenced and phylogenetically analyzed. The data demonstrate the incursion of human-like swine H1N2 viruses (Gent/1999-like) in 2000 and prevalent circulation until 2010. From 2008 onward, a sustained and broad change of the genetic constellation of the swine H1N2 subtype commenced. The Gent/1999-like swine H1N2 viruses ceased and several new swine H1N2 reassortants emerged and became prevalent in Germany. Of these, the upsurge of the Diepholz/2008-like, Emmelsbuell/2009-like and Papenburg/2010-like viruses is notable. The data reveal the importance of reassortment events in S-IAV evolution. The strong circulation of S-IAV of different lineages in the swine population throughout the year underlines that pigs are important reservoir hosts.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.
| | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andi Krumbholz
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Institute of Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Jeannette Lange
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Anja Philipps
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Thermo Fisher Scientific GENEART GmbH, 93059, Regensburg, Germany
| | - Ralf Dürrwald
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
21
|
Borkenhagen LK, Salman MD, Ma MJ, Gray GC. Animal influenza virus infections in humans: A commentary. Int J Infect Dis 2019; 88:113-119. [PMID: 31401200 DOI: 10.1016/j.ijid.2019.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
Here we review evidence for influenza A viruses (IAVs) moving from swine, avian, feline, equine, and canine species to infect humans. We review case reports, sero-epidemiological, archeo-epidemiological, environmental, and historical studies and consider trends in livestock farming. Although this focused review is not systematic, the aggregated data point to industrialized swine farming as the most likely source of future pandemic viruses, yet IAV surveillance on such farms is remarkably sparse. We recommend increased biosafety and biosecurity training for farm administrators and swine workers with One Health-oriented virus surveillance throughout industrialized farming and meat production lines. Collaborative partnerships with human medical researchers could aid in efforts to mitigate emerging virus threats by offering new surveillance and diagnostic technologies to livestock farming industries.
Collapse
Affiliation(s)
- Laura K Borkenhagen
- Division of Infectious Diseases, School of Medicine, & Global Health Institute, Duke University, Durham, NC, USA
| | - Mo D Salman
- Animal Population Health Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine, & Global Health Institute, Duke University, Durham, NC, USA; Global Health Research Center, Duke Kunshan University, Kunshan, China; Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore.
| |
Collapse
|
22
|
Cao Z, Zeng W, Hao X, Huang J, Cai M, Zhou P, Zhang G. Continuous evolution of influenza A viruses of swine from 2013 to 2015 in Guangdong, China. PLoS One 2019; 14:e0217607. [PMID: 31323023 PMCID: PMC6641472 DOI: 10.1371/journal.pone.0217607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/16/2019] [Indexed: 01/03/2023] Open
Abstract
Southern China is considered an important source of influenza virus pandemics because of the large, diverse viral reservoirs in poultry and swine. To examine the trend in influenza A virus of swine (IAV-S), an active surveillance program has been conducted from 2013 to 2015 in Guangdong, China. The phylogenetic analyses showed that the external genes of the isolates were assigned to the Eurasian avian-like swine (EA) H1N1 and/or human-like H3N2 lineages with multiple substitutions, indicating a notable genetic shift. Moreover, the internal genes derived from different origins (PB2, PB1, PA, NP: pdm/09 (pandemic influenza virus 2009)-origin, M: pdm/09- or EA-origin, NS: North American Triple Reassortant (TR)-origin have become the dominant backbone of IAV-S in southern China. According to the origins of the eight gene segments, the isolates can be categorized into five genotypes. The results of mice experiment showed that the YJ4 (genotype 1) and DG2 (genotype 4) are the most pathogenic to mice, and the viruses are observed in kidneys and brains, indicating the systemic infection. The alterations of the IAV-S gene composition supported the continued implementation of the intensive surveillance of IAV-S and the greater attention focused on potential shifts toward transmission to humans.
Collapse
Affiliation(s)
- Zhenpeng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junming Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengkai Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- * E-mail: (GZ); (PZ)
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- * E-mail: (GZ); (PZ)
| |
Collapse
|
23
|
Integration analysis of a miRNA-mRNA expression in A549 cells infected with a novel H3N2 swine influenza virus and the 2009 H1N1 pandemic influenza virus. INFECTION GENETICS AND EVOLUTION 2019; 74:103922. [PMID: 31207403 DOI: 10.1016/j.meegid.2019.103922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Swine are reservoirs for anthropogenic/zoonotic influenza viruses, and the prevalence and repeated introduction of the 2009 H1N1 pandemic influenza virus (pdm/09) into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. However, studies aiming to identify miRNAs involved in the transfer of novel swine influenza virus infection to human cells are rare. In this investigation, from the view of small RNA, microarrays and high-throughput sequencing were used to detect differentially expressed miRNAs and mRNAs after human lung epithelial cells were infected with the following three stains of influenza viruses: a novel H3N2 swine influenza virus reassorted with pdm/09 fragments, pdm/09 and classical swine influenza virus. A miRNA-mRNA interaction map was generated to show the correlation between miRNAs related to infection by the viruses with human infective potential/capability. The expression of 4 miRNAs (hsa-miR-96-5p, hsa-miR-140-5p, hsa-miR-30a-3p and hsa-miR-582-5p) and 5 relevant mRNAs (RCC1, ERVFRD-1, RANBP1, SCARB2 and RPS29) was determined. The integration analysis indicated that these candidates have rarely been reported to be associated with influenza virus. Focusing on miRNA expression changes could reveal novel reassortant viruses with human infective potential that may provide insight into future pandemics.
Collapse
|
24
|
|
25
|
Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology 2019; 532:30-38. [PMID: 31003122 DOI: 10.1016/j.virol.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
We performed swine influenza virus (SIV) surveillance in Midwest USA and isolated 100 SIVs including endemic and reassortant H1 and H3 viruses with 2009 pandemic H1N1 genes. To determine virus evolution when different genotypes and subtypes of influenza A viruses circulating in the same swine herd, a virus survival experiment was conducted in pigs mimicking field situations. Five different SIVs were used to infect five pigs individually, then two groups of sentinel pigs were introduced to investigate virus transmission. Results showed that each virus replicated efficiently in lungs of each infected pig, but only reassortant H3N2 and H1N2v viruses transmitted to the primary contact pigs. Interestingly, the parental H1N2v was the majority of virus detected in the second group of sentinel pigs. These data indicate that the H1N2v seems to be more viable in swine herds than other SIV genotypes, and reassortment can enhance viral fitness and transmission.
Collapse
|
26
|
Spatiotemporal Distribution and Evolution of the A/H1N1 2009 Pandemic Influenza Virus in Pigs in France from 2009 to 2017: Identification of a Potential Swine-Specific Lineage. J Virol 2018; 92:JVI.00988-18. [PMID: 30258006 DOI: 10.1128/jvi.00988-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 01/29/2023] Open
Abstract
The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.
Collapse
|
27
|
Zeller MA, Anderson TK, Walia RW, Vincent AL, Gauger PC. ISU FLUture: a veterinary diagnostic laboratory web-based platform to monitor the temporal genetic patterns of Influenza A virus in swine. BMC Bioinformatics 2018; 19:397. [PMID: 30382842 PMCID: PMC6211438 DOI: 10.1186/s12859-018-2408-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/03/2018] [Indexed: 01/25/2023] Open
Abstract
Background Influenza A Virus (IAV) causes respiratory disease in swine and is a zoonotic pathogen. Uncontrolled IAV in swine herds not only affects animal health, it also impacts production through increased costs associated with treatment and prevention efforts. The Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) diagnoses influenza respiratory disease in swine and provides epidemiological analyses on samples submitted by veterinarians. Description To assess the incidence of IAV in swine and inform stakeholders, the ISU FLUture website was developed as an interactive visualization tool that allows the exploration of the ISU VDL swine IAV aggregate data in the clinical diagnostic database. The information associated with diagnostic cases has varying levels of completeness and is anonymous, but minimally contains: sample collection date, specimen type, and IAV subtype. Many IAV positive samples are sequenced, and in these cases, the hemagglutinin (HA) sequence and genetic classification are completed. These data are collected and presented on ISU FLUture in near real-time, and more than 6,000 IAV positive diagnostic cases and their epidemiological and evolutionary information since 2003 are presented to date. The database and web interface provides rapid and unique insight into the trends of IAV derived from both large- and small-scale swine farms across the United States of America. Conclusion ISU FLUture provides a suite of web-based tools to allow stakeholders to search for trends and correlations in IAV case metadata in swine from the ISU VDL. Since the database infrastructure is updated in near real-time and is integrated within a high-volume veterinary diagnostic laboratory, earlier detection is now possible for emerging IAV in swine that subsequently cause vaccination and control challenges. The access to real-time swine IAV data provides a link with the national USDA swine IAV surveillance system and allows veterinarians to make objective decisions regarding the management and control of IAV in swine. The website is publicly accessible at http://influenza.cvm.iastate.edu. Electronic supplementary material The online version of this article (10.1186/s12859-018-2408-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael A Zeller
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rasna W Walia
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, 1575 Vet Med, 1850 Christensen Dr, Ames, IA, 50011-1134, USA.
| |
Collapse
|
28
|
Kaplan BS, Souza CK, Gauger PC, Stauft CB, Robert Coleman J, Mueller S, Vincent AL. Vaccination of pigs with a codon-pair bias de-optimized live attenuated influenza vaccine protects from homologous challenge. Vaccine 2018; 36:1101-1107. [PMID: 29366707 DOI: 10.1016/j.vaccine.2018.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 11/16/2022]
Abstract
Influenza A virus (IAV) in swine constitutes a major economic burden for producers as well as a potential threat to public health. Whole inactivated virus vaccines (WIV) are the predominant countermeasure employed to control IAV in swine herds in the United States despite the superior protection, and diminished adverse effects, induced by live attenuated influenza vaccines (LAIV). A major hurdle for the development of LAIV exists in achieving the proper level of attenuation while maintaining immunogenicity. Using Synthetic Attenuated Virus Engineering (SAVE) to introduce codon-pair bias de-optimization (CPBD) into the hemagglutinin (HA) and neuraminidase (NA) gene segments of pandemic H1N1 IAV, a novel LAIV was produced and evaluated for attenuation, immunogenicity, and efficacy in pigs. The CPBD LAIV induced inappreciable pathology following intranasal administration yet induced robust serum and mucosal antibody titers. CPBD LAIV vaccinated pigs challenged with wild-type virus showed protection from disease and virus detection, highlighted by the absence of detectable virus titers in the nasal passages and lungs. These results demonstrate the efficacy of a LAIV designed by SAVE codon de-optimization in pigs, providing support for the continued development of CPBD LAIV for use in swine.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Phillip C Gauger
- Dept. of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA.
| |
Collapse
|
29
|
Fan S, Wang Y, Wang X, Huang L, Zhang Y, Liu X, Zhu W. Analysis of the affinity of influenza A virus protein epitopes for swine MHC I by a modified in vitro refolding method indicated cross-reactivity between swine and human MHC I specificities. Immunogenetics 2018; 70:671-680. [PMID: 29992375 DOI: 10.1007/s00251-018-1070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022]
Abstract
In vitro refolding assays can be used to investigate the affinity and stability of the binding of epitope peptides to major histocompatibility complex (MHC) class I molecules, which are key factors in the presentation of peptides to cytotoxic T lymphocytes (CTLs). The recognition of peptide epitopes by CTLs is crucial for protection against influenza A virus (IAV) infection. The peptide-binding motif of the swine SLA-3*hs0202 molecule has been previously reported and partly overlaps with the binding motif of the most abundant human MHC allele, HLA-A*0201. In this study, we screened all the protein sequences of the swine-origin epidemic IAV strain A/Beijing/01/2009 (H1N1), and a total of 73 9-mer epitope peptides were predicted to fit the consensus motif of the swine SLA-3*hs0202 or HLA-A*0201 molecule. Then, 14 peptides were selected, and their affinities to SLA-3*hs0202 were tested by a modified in vitro refolding assay. Our results show that ten epitopes could tolerate gel filtration, indicating that these epitopes formed stable or partly stable complexes with SLA-3*hs0202. Eight out of the ten epitopes have been previously reported as HLA-A2-restricted epitopes, which implied cross-reactivity between swine and human MHC I specificities. Furthermore, the modified mini-system refolding method could be applied for the screening of peptides because the refolding efficiency remained almost unchanged with the positive peptide (HA-KMN9) subjected to size-exclusion chromatography and Resource Q anion-exchange chromatography. The results presented here provide new insight into the development of epitope-based vaccines to control IAV and increase our understanding of swine molecular immunology.
Collapse
Affiliation(s)
- Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China. .,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China.
| | - Yongli Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xian Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Wenshuai Zhu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| |
Collapse
|
30
|
Fan S, Wang Y, Wang X. X-ray Crystallographic Characterization of the Swine MHC I Molecule SLA-3*0202 Complexed with IAV-HA Nonapeptide. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s106377451803032x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Rajao DS, Anderson TK, Kitikoon P, Stratton J, Lewis NS, Vincent AL. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology 2018; 518:45-54. [PMID: 29453058 PMCID: PMC8608352 DOI: 10.1016/j.virol.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission.
Collapse
Affiliation(s)
- Daniela S Rajao
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Jered Stratton
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA
| | - Nicola S Lewis
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, PO Box 70, Ames, IA 50010, USA.
| |
Collapse
|
32
|
Meseko C, Globig A, Ijomanta J, Joannis T, Nwosuh C, Shamaki D, Harder T, Hoffman D, Pohlmann A, Beer M, Mettenleiter T, Starick E. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci Rep 2018; 8:5900. [PMID: 29651056 PMCID: PMC5897404 DOI: 10.1038/s41598-018-24371-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Avian influenza viruses (AIV) potentially transmit to swine as shown by experiments, where further reassortment may contribute to the generation of pandemic strains. Associated risks of AIV inter-species transmission are greater in countries like Nigeria with recurrent epidemics of highly pathogenic AI (HPAI) in poultry and significant pig population. Analysis of 129 tracheal swab specimens collected from apparently healthy pigs at slaughterhouse during presence of HPAI virus H5N1 in poultry in Nigeria for influenza A by RT-qPCR yielded 43 positive samples. Twenty-two could be determined by clade specific RT-qPCR as belonging to the H5N1 clade 2.3.2.1c and confirmed by partial hemagglutinin (HA) sequence analysis. In addition, 500 swine sera were screened for antibodies against influenza A virus nucleoprotein and H5 HA using competition ELISAs and hemagglutination inhibition (HI) tests. Serologically, 222 (44.4%) and 42 (8.4%) sera were positive for influenza A virus NP and H5 antibodies, respectively. Sera reacted to H5N1 and A/H1N1pdm09 strains by HI suggesting exposure of the Nigerian domestic pig population to these viruses. We report for the first time in Nigeria, exposure of domestic pigs to H5N1 virus. This poses potential public health and pandemic risk due to interspecies transmission of avian and human influenza viruses.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria.
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
| | - Anja Globig
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Jeremiah Ijomanta
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Tony Joannis
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Chika Nwosuh
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - David Shamaki
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Donata Hoffman
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
33
|
Rech RR, Gava D, Silva MC, Fernandes LT, Haach V, Ciacci-Zanella JR, Schaefer R. Porcine respiratory disease complex after the introduction of H1N1/2009 influenza virus in Brazil. Zoonoses Public Health 2018; 65:e155-e161. [PMID: 29139241 DOI: 10.1111/zph.12424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/05/2025]
Abstract
From 2009 to 2015, 74 lungs from suckling (6.8%), nursing (70.3%), fattening (20.3%) pigs and pregnant sows (2.7%) with respiratory signs from pig farms in Southern Brazil were submitted to a diagnostic laboratory for necropsy and/or histologic examination and screening for respiratory agents by RT-qPCR, immunohistochemistry (IHC), virus isolation (VI) and subtyping for influenza A virus (IAV), IHC and nested PCR for Mycoplasma hyopneumoniae (Mhyo), PCR for porcine circovirus 2 (PCV2), RT-qPCR for porcine reproductive and respiratory syndrome virus (PRRSV) and bacterial culture. All lung samples were positive for IAV using RT-qPCR. Seventy-two lungs had histologic lesions associated with acute to subacute IAV infection characterized by necrotizing bronchiolitis/bronchitis or bronchointerstitial pneumonia with lymphocytic peribronchiolitis and bronchiolar/bronchial hyperplasia, respectively. Forty-nine lungs (66.2%) were positive by IHC for IAV nucleoprotein. The H1N1/2009 was the most common subtype and the only IAV detected in 58.1% of lungs, followed by H1N2 (9.5%) and H3N2 (6.8%). Coinfection of IAV and Mhyo was seen in 23 (31%) cases. Although 14.9% of the lungs were positive for PCV2 using PCR, no suggestive lesions of PCV2 disease were observed. Porcine reproductive and respiratory syndrome virus (PRRSV) was not detected, consistent with the PRRS-free status of Brazil. Secondary bacterial infections (8/38) were associated with suppurative bronchopneumonia and/or pleuritis. Primary IAV infection with Mhyo coinfection was the most common agents found in porcine respiratory disease complex (PRDC) in pigs in Southern Brazil.
Collapse
Affiliation(s)
- R R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - D Gava
- Embrapa Suínos e Aves, Concórdia, SC, Brazil
| | - M C Silva
- Qualem Laboratorio Veterinário, Santa Maria, RS, Brazil
| | | | - V Haach
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - R Schaefer
- Embrapa Suínos e Aves, Concórdia, SC, Brazil
| |
Collapse
|
34
|
Molecular detection of influenza A(H1N1)pdm09 viruses with M genes from human pandemic strains among Nigerian pigs, 2013-2015: implications and associated risk factors. Epidemiol Infect 2017; 145:3345-3360. [PMID: 29166978 DOI: 10.1017/s0950268817002503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the post-pandemic period, influenza A(H1N1)pdm09 virus has been detected in swine populations in different parts of the world. This study was conducted to determine the presence and spatial patterns of this human pandemic virus among Nigerian pigs and identify associated risk factors. Using a two-stage stratified random sampling method, nasal swab specimens were obtained from pigs in Ibadan, Nigeria during the 2013-2014 and 2014-2015 influenza seasons, and the virus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Purified RT-PCR products were sequenced in both directions, and sequences were aligned using MUSCLE. Phylogenetic analysis was conducted in MEGA6. Purely spatial scan statistics and a spatial lag regression model were used to identify spatial clusters and associated risk factors. The virus was detected in both seasons, with an overall prevalence of 8·7%. Phylogenetic analyses revealed that the M genes were similar to those of pandemic strains which circulated in humans prior to and during the study. Cluster analysis revealed a significant primary spatial cluster (RR = 4·71, LLR = 5·66, P = 0·0046), while 'hours spent with pigs (R 2 = 0·90, P = 0·0018)' and 'hours spent with pigs from different farms (R 2 = 0·91, P = 0·0001)' were identified as significant risk factors (P < 0·05). These findings reveal that there is considerable risk of transmission of the pandemic virus, either directly from pig handlers or through fomites, to swine herds in Ibadan, Nigeria. Active circulation of the virus among Nigerian pigs could enhance its reassortment with endemic swine influenza viruses. Campaigns for adoption of biosecurity measures in West African piggeries and abattoirs should be introduced and sustained in order to prevent the emergence of a new influenza epicentre in the sub-region.
Collapse
|
35
|
Nelson MI, Culhane MR, Trovão NS, Patnayak DP, Halpin RA, Lin X, Shilts MH, Das SR, Detmer SE. The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States. J Gen Virol 2017; 98:2663-2675. [PMID: 29058649 DOI: 10.1099/jgv.0.000924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.,Icahn School of Medicine at Mount Sinai University, New York, USA
| | | | | | - Xudong Lin
- J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H Shilts
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Suman R Das
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
36
|
Longitudinal study of influenza A virus circulation in a nursery swine barn. Vet Res 2017; 48:63. [PMID: 29017603 PMCID: PMC5634873 DOI: 10.1186/s13567-017-0466-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
Commercial production of swine often involves raising animals in large groups through the use of multi-stage production systems. In such systems, pigs can experience different degrees of contact with animals of the same or different ages. Population size and degree of contact can greatly influence transmission of endemic pathogens, including influenza A virus (IAV). IAV can display high genetic variability, which can further complicate population-level patterns. Yet, the IAV transmission in large multi-site swine production systems has not been well studied. The objectives of this study were to describe the IAV circulation in a multi-source nursery facility and identify factors associated with infection in nursery pigs. Pigs from five sow herds were mixed in one all-in/all-out nursery barn, with 81 and 75 pigs included in two longitudinal studies. Virus isolation was performed in Madin-Darby canine kidney cells and serology was performed using hemagglutination inhibition assays. Risk factor analysis for virological positivity was conducted using logistic regression and stratified Cox’s regression for recurrent events. In Study 1, at ≈30 days post-weaning, 100% of pigs were positive, with 43.2% of pigs being positive recurrently over the entire study period. In study 2, 48% of pigs were positive at the peak of the outbreak, and 10.7% were positive recurrently over the entire study period. The results suggest that IAV can circulate during the nursery phase in an endemic pattern and that the likelihood of recurrent infections was associated in a non-linear way with the level of heterologous (within-subtype) maternal immunity (p < 0.05). High within-pen intracluster correlation coefficients (> 0.75) were also observed for the majority of sampling times suggesting that pen-level factors played a role in infection dynamics in this study.
Collapse
|
37
|
Wu Y, Yang D, Xu B, Liang W, Sui J, Chen Y, Yang H, Chen H, Wei P, Qiao C. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice. Antiviral Res 2017; 147:29-36. [PMID: 28941982 DOI: 10.1016/j.antiviral.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Abstract
Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Cross Protection
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/standards
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Swine
- Swine Diseases/prevention & control
- Turbinates/virology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Yunpu Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dawei Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bangfeng Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenhua Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jinyu Sui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
38
|
Diaz A, Marthaler D, Corzo C, Muñoz-Zanzi C, Sreevatsan S, Culhane M, Torremorell M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci Rep 2017; 7:11886. [PMID: 28928365 PMCID: PMC5605543 DOI: 10.1038/s41598-017-11272-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Cesar Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Claudia Muñoz-Zanzi
- School of Public Health, University of Minnesota, Minneapolis, 55454, United States of America
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America.
| |
Collapse
|
39
|
Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses. Appl Environ Microbiol 2017; 83:AEM.01346-17. [PMID: 28733290 DOI: 10.1128/aem.01346-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs.IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs. Our findings suggest that feral swine have been infected with IAVs at low levels and could serve as hosts for the generation of novel IAVs at the interface of feral swine, wild birds, domestic swine, and humans.
Collapse
|
40
|
Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. J Virol 2017; 91:JVI.00745-17. [PMID: 28659482 PMCID: PMC5571239 DOI: 10.1128/jvi.00745-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 02/08/2023] Open
Abstract
Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.
Collapse
|
41
|
Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ. Summary of Notifiable Infectious Diseases and Conditions - United States, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 64:1-143. [PMID: 28796757 DOI: 10.15585/mmwr.mm6453a1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Summary of Notifiable Infectious Diseases and Conditions - United States, 2015 (hereafter referred to as the summary) contains the official statistics, in tabular and graphical form, for the reported occurrence of nationally notifiable infectious diseases and conditions in the United States for 2015. Unless otherwise noted, data are final totals for 2015 reported as of June 30, 2016. These statistics are collected and compiled from reports sent by U.S. state and territories, New York City, and District of Columbia health departments to the National Notifiable Diseases Surveillance System (NNDSS), which is operated by CDC in collaboration with the Council of State and Territorial Epidemiologists (CSTE). This summary is available at https://www.cdc.gov/MMWR/MMWR_nd/index.html. This site also includes summary publications from previous years.
Collapse
Affiliation(s)
- Deborah A Adams
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Kimberly R Thomas
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Ruth Ann Jajosky
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Loretta Foster
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Gitangali Baroi
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Pearl Sharp
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Diana H Onweh
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Alan W Schley
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Willie J Anderson
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | | |
Collapse
|
42
|
Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice. Viruses 2017; 9:v9080209. [PMID: 28786930 PMCID: PMC5580466 DOI: 10.3390/v9080209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs—8C4, 8C6, and 9D6—have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.
Collapse
|
43
|
Gao S, Anderson TK, Walia RR, Dorman KS, Janas-Martindale A, Vincent AL. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. J Gen Virol 2017; 98:2001-2010. [PMID: 28758634 DOI: 10.1099/jgv.0.000885] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transmission of influenza A virus (IAV) from humans to swine occurs with relative frequency and is a critical contributor to swine IAV diversity. Subsequent to the introduction of these human seasonal lineages, there is often reassortment with endemic viruses and antigenic drift. To address whether particular genome constellations contributed to viral persistence following the introduction of the 2009 H1N1 human pandemic virus to swine in the USA, we collated and analysed 616 whole genomes of swine H1 isolates. For each gene, sequences were aligned, the best-known maximum likelihood phylogeny was inferred, and each virus was assigned a clade based upon its evolutionary history. A time-scaled Bayesian approach was implemented for the haemagglutinin (HA) gene to determine the patterns of genetic diversity over time. From these analyses, we observed an increase in genome diversity across all H1 lineages and clades, with the H1-γ and H1-δ1 genetic clades containing the greatest number of unique genome patterns. We documented 74 genome patterns from 2009 to 2016, of which 3 genome patterns were consistently detected at a significantly higher level than others across the entire time period. Eight genome patterns increased significantly, while five genome patterns were shown to decline in detection over time. Viruses with genome patterns identified as persisting in the US swine population may possess a greater capacity to infect and transmit in swine. This study highlights the emerging genetic diversity of US swine IAV from 2009 to 2016, with implications for swine and public health and vaccine control efforts.
Collapse
Affiliation(s)
- Shibo Gao
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rasna R Walia
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Karin S Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
44
|
Virological Surveillance of Influenza A Subtypes Isolated in 2014 from Clinical Outbreaks in Canadian Swine. Viruses 2017; 9:v9030055. [PMID: 28335552 PMCID: PMC5371810 DOI: 10.3390/v9030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022] Open
Abstract
Influenza A viruses (IAVs) are respiratory pathogens associated with an acute respiratory disease that occurs year-round in swine production. It is currently one of the most important pathogens in swine populations, with the potential to infect other host species including humans. Ongoing research indicates that the three major subtypes of IAV—H1N1, H1N2, and H3N2—continue to expand in their genetic and antigenic diversity. In this study, we conducted a comprehensive genomic analysis of 16 IAVs isolated from different clinical outbreaks in Alberta, Manitoba, Ontario, and Saskatchewan in 2014. We also examined the genetic basis for probable antigenic differences among sequenced viruses. On the basis of phylogenetic analysis, all 13 Canadian H3N2 viruses belonged to cluster IV, eight H3N2 viruses were part of the IV-C cluster, and one virus belonged to the IV-B and one to the IV-D cluster. Based on standards used in this study, three H3N2 viruses could not be clearly classified into any currently established group within cluster IV (A to F). Three H1N2 viruses were part of the H1α cluster.
Collapse
|
45
|
Rajão DS, Walia RR, Campbell B, Gauger PC, Janas-Martindale A, Killian ML, Vincent AL. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs. J Virol 2017; 91:e01763-16. [PMID: 27928015 PMCID: PMC5286888 DOI: 10.1128/jvi.01763-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage and viral shedding. These results highlight the vast genetic diversity of H3N2 circulating in U.S. swine after 2009, with important implications for the control of IAV for the swine industry. Because H1N1pdm09 is also highly adapted to humans, these swine viruses pose a potential risk to public health if swine-adapted viruses with H1N1pdm09 genes also have an increased risk for human infection.
Collapse
Affiliation(s)
- Daniela S Rajão
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Rasna R Walia
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Brian Campbell
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Alicia Janas-Martindale
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
46
|
|
47
|
Swine and Avian Influenza Outbreaks in Recent Times. EMERGING ZOONOSES 2017. [PMCID: PMC7119929 DOI: 10.1007/978-3-319-50890-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza A is a zoonotic virus and wild waterfowls are the main reservoir of avian influenza viruses, which are precursors of human influenza A viruses. Through mutations and gene reassortment, some strains of avian influenza viruses establish stable lineages in poultry species, pigs, horses, and humans. The first zoonotic influenza pandemic of the twenty-first century, the swine H1N1 pandemic of 2009, originated from Mexico, and fortunately the virus was only of modest virulence. However, lessons have been learned on the shortcomings of the global preparedness for influenza pandemic, and this should be considered as a valuable experience for the preparation of the next major outbreak. Of more concern is the emergence of the highly pathogenic avian influenza A [H5N1], ongoing since 1996, and the low pathogenic avian influenza A [H7N9], since 2013, which have crossed the species barrier to humans in China. Risks of a H5N1 pandemic appear to be receding with declining human cases, and the H7N9 influenza virus is now the leading candidate as the next pandemic influenza virus. However, influenza pandemics are unpredictable in their timing, specific strain of virus, and origin. Most experts predict that the next influenza pandemic will arise from Asia, especially China, and will be directly of avian origin. Continued influenza surveillance in animals and humans globally with prompt reporting to the WHO and the World Animal Health Organization with sharing of data promptly between countries is essential. Long-term solutions to prevent cross-species transmission of zoonotic influenza viruses to humans and development of more effective, longer-lasting vaccines against emerging avian influenza viruses are needed. Currently there is no evidence of an impending zoonotic or avian influenza pandemic, and the viruses of interest, H5N1 and H7N9 avian influenza A viruses, have not mutated to allow for easy transmission to humans nor human to human.
Collapse
|
48
|
Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies. Comp Immunol Microbiol Infect Dis 2016; 50:110-115. [PMID: 28131371 DOI: 10.1016/j.cimid.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/16/2022]
Abstract
Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans.
Collapse
|
49
|
Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S. J Virol 2016; 91:JVI.01490-16. [PMID: 27795418 DOI: 10.1128/jvi.01490-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022] Open
Abstract
Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.
Collapse
|
50
|
Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, Thai PD, Nguyen TD, Nguyen DT, Nguyen DK, Do HT, Le TQA, Hua PT, Van Vo H, Nguyen DT, Nguyen DH, Uchida Y, Saito R, Saito T. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res 2016; 12:227. [PMID: 27724934 PMCID: PMC5057248 DOI: 10.1186/s12917-016-0844-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. Results From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that “having more than 1,000 pigs” was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. Conclusions We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0844-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Phuong Duy Thai
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tho Dang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duy Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Dung Kim Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hoa Thi Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Thi Quynh Anh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Phan Truong Hua
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Diep Thi Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Dang Hoang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Yuko Uchida
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Saito
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|