1
|
Moraes DCA, Cezar GA, Magalhães ES, Nicolino RR, Rupasinghe K, Chandra S, Silva GS, Almeida MN, Crim B, Burrough ER, Gauger PC, Madson D, Thomas J, Zeller MA, Main R, Thurn M, Lages P, Corzo CA, Sturos M, Naikare H, McGaughey R, Matias Ferreyra F, Retallick J, Gebhardt J, McReynolds S, Greseth J, Kersey D, Clement T, Pillatzki A, Christopher-Hennings J, Thompson BS, Prarat M, Summers D, Bowen C, Boyle J, Hendrix K, Lyons J, Werling K, Arruda AG, Schwartz M, Yeske P, Murray D, Mason B, Schneider P, Copeland S, Dufresne L, Boykin D, Fruge C, Hollis W, Robbins RC, Petznick T, Kuecker K, Glowzenski L, Niederwerder M, Linhares DCL, Trevisan G. Macroepidemiological trends of Influenza A virus detection through reverse transcription real-time polymerase chain reaction (RT-rtPCR) in porcine samples in the United States over the last 20 years. Front Vet Sci 2025; 12:1572237. [PMID: 40343366 PMCID: PMC12061026 DOI: 10.3389/fvets.2025.1572237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Influenza A virus (IAV) in swine is a major respiratory pathogen with global significance. This study aimed to characterize the macroepidemiological patterns of IAV detection using reverse transcription real-time polymerase chain reaction (RT-rtPCR) assays, including subtype identification, in samples submitted between January 2004 and December 2024 to veterinary diagnostic laboratories (VDLs) participating in the Swine Disease Reporting System (SDRS). A secondary objective was establishing an IAV monitoring capability to inform stakeholders of weekly changes in IAV detection patterns. Of the 372,659 samples submitted, 31% tested positive for IAV RNA via RT-rtPCR. The most frequent sample types were oral fluids (44.1%) and lung tissue (38.7%). Submissions from the wean-to-market category had a higher positivity rate (34.4%) than those from the adult/sow farm category (26.9%). IAV detection followed a seasonal pattern, with peaks in spring and fall and lower positivity rates in summer. Of the total of 118,490 samples tested for IAV subtyping using RT-rtPCR, the most frequently detected subtypes were H1N1 (33.1%), H3N2 (25.5%), H1N2 (24.3%), H3N1 (0.2%), mixed subtypes (5.4%), and partial subtype detection (11.5%). Mixed IAV subtypes were detected in individual samples-including lung tissue, nasal swabs, and bronchoalveolar lavage-indicating co-infection with two or more IAV strains. For IAV forecasting, a combined model using dynamic regression and a neural network outperformed individual models in 2023, achieving the lowest root mean square error (RMSE) and an improved overall skill score. This study highlights the importance of using laboratory submission data for IAV surveillance and macroepidemiological analysis. The findings provide valuable insights into IAV dynamics and highlight the need for standardized monitoring systems in VDLs to enhance understanding of IAV in swine populations across the United States.
Collapse
Affiliation(s)
- Daniel C. A. Moraes
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Guilherme A. Cezar
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Edison S. Magalhães
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Rafael R. Nicolino
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Kinath Rupasinghe
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Srijita Chandra
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Gustavo S. Silva
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Marcelo N. Almeida
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Bret Crim
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Eric R. Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Darin Madson
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Joseph Thomas
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Michael A. Zeller
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Mary Thurn
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Paulo Lages
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Cezar A. Corzo
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Mattew Sturos
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Hemant Naikare
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Rob McGaughey
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Franco Matias Ferreyra
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jordan Gebhardt
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Sara McReynolds
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jon Greseth
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | - Darren Kersey
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | - Travis Clement
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | - Angela Pillatzki
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | - Jane Christopher-Hennings
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | | | - Melanie Prarat
- Ohio Animal Disease and Diagnostic Laboratory, Reynoldsburg, OH, United States
| | - Dennis Summers
- Ohio Animal Disease and Diagnostic Laboratory, Reynoldsburg, OH, United States
| | - Craig Bowen
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Joseph Boyle
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Kenitra Hendrix
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - James Lyons
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Kelli Werling
- Indiana State Board of Animal Health, Indianapolis, IN, United States
| | - Andreia G. Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Mark Schwartz
- Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms Inc., Sleepy Eye, MN, United States
| | - Paul Yeske
- Swine Vet Center, St. Peter, MN, United States
| | | | - Brigitte Mason
- Country View Family Farms, Middletown, PA, United States
| | - Peter Schneider
- Innovative Agriculture Solutions, LLC, Waterloo, IA, United States
| | | | | | | | | | - William Hollis
- Carthage Veterinary Service LTD, Carthage, IL, United States
| | | | | | | | | | | | - Daniel C. L. Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Hatuwal B, Goel V, Deliberto TJ, Lowe J, Emch M, Webby RJ, Wan XF. Spatial patterns of influenza A virus spread across compartments in commercial swine farms in the United States. Emerg Microbes Infect 2024; 13:2400530. [PMID: 39221652 PMCID: PMC11445930 DOI: 10.1080/22221751.2024.2400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Multiple genetic variants of H1 and H3 influenza A viruses (IAVs) circulate concurrently in US swine farms. Understanding the spatial transmission patterns of IAVs among these farms is crucial for developing effective control strategies and mitigating the emergence of novel IAVs. In this study, we analysed 1909 IAV genomic sequences from 785 US swine farms, representing 33 farming systems across 12 states, primarily in the Midwest from 2004 to 2023. Bayesian phylogeographic analyses were performed to identify the dispersal patterns of both H1 and H3 virus genetic lineages and to elucidate their spatial migration patterns within and between different systems. Our results showed that both intra-system and inter-system migrations occurred between the swine farms, with intra-system migrations being more frequent. However, migration rates for H1 and H3 IAVs were similar between intra-system and inter-system migration events. Spatial migration patterns aligned with expected pig movement across different compartments of swine farming systems. Sow-Farms were identified as key sources of viruses, with bi-directional migration observed between these farms and other parts of the system, including Wean-to-Finish and Gilt-Development-Units. High intra-system migration was detected across farms in the same region, while spread to geographically distant intra- and inter-system farms was less frequent. These findings suggest that prioritizing resources towards systems frequently confronting influenza problems and targeting pivotal source farms, such as sow farms, could be an effective strategy for controlling influenza in US commercial swine operations.
Collapse
Affiliation(s)
- Bijaya Hatuwal
- Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Varun Goel
- Department of Geography, University of South Carolina, Columbia, SC, USA
- Carolina Population Center, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Jim Lowe
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Emch
- Carolina Population Center, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina School, Chapel Hill, NC, USA
- Department of Geography and Environment, University of North Carolina, Chapel Hill, NC, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Pittman Ratterree DC, Dass SC, Ndeffo-Mbah ML. Mechanistic Models of Influenza Transmission in Commercial Swine Populations: A Systematic Review. Pathogens 2024; 13:746. [PMID: 39338936 PMCID: PMC11434764 DOI: 10.3390/pathogens13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine-avian (n = 3), and swine-human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.
Collapse
Affiliation(s)
- Dana C. Pittman Ratterree
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Sapna Chitlapilly Dass
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
4
|
Kontowicz E, Moreno-Madriñan M, Clarke Z, Ragland D, Beauvais W. Risk assessment of influenza transmission between workers and pigs on US indoor hog growing units. Prev Vet Med 2024; 230:106232. [PMID: 39053175 DOI: 10.1016/j.prevetmed.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024]
Abstract
On pig farms ample opportunity exists for pig-to-human and human-to-pig (cross-species) influenza transmission. The purpose of this study was to assess the risks of cross-species influenza transmission within an indoor pig grower unit in the United States and to prioritize data gaps. Using the World Organization for Animal Health risk assessment framework we evaluated influenza transmission across two risk pathways: 1. What is the likelihood that based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one hog becomes infected with an influenza virus associated with swine (either H1N1, H3N2, or H1N2) [step 1a] and that at least one worker becomes infected as a result [step 1b] and that the worker develops symptoms [step 1c]? And 2. What is the likelihood that, based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one worker becomes infected with an influenza virus associated with people (either H1N1, H3N2, or H1N2) [step 2a] and that at least one pig becomes infected as a result [step 2b] and that the pig(s) develop(s) symptoms [step 2c]? Semi-quantitative probability and uncertainty assessments were based on literature review including passive and active influenza surveillance data. We assumed a typical pig-grower farm has capacity for 4,000 pigs, two workers, and minimal influenza control measures. Probability and uncertainty categories were assessed for each risk step and the combined risk pathway. The combined risk assessment for risk pathway one was estimated to be Very Low for H1N1 and H1N2 with an overall High level of uncertainty. The combined risk assessment for risk pathway two was estimated to be Extremely Low for H1N1 and H3N2 with a High degree of uncertainty. Scenario analyses in which influenza control measures were assumed to be implemented separately (implementing vaccinating sows, mass vaccinating incoming pigs or improved personal protective equipment adherence) showed no reduction in the combined risk category. When implementing three influenza control methods altogether, the combined risk could be reduced to Extremely Low for risk pathway one and remained Extremely Low for risk pathway two. This work highlights that multiple influenza control methods are needed to reduce the risks of inter-species influenza transmission on swine farms.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Max Moreno-Madriñan
- Global Health Program, DePauw University, Greencastle 46135, Indiana; Department of Global Health, Indiana University, Indianapolis 46202, Indiana
| | - Zenobya Clarke
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Wendy Beauvais
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana.
| |
Collapse
|
5
|
Tapia R, Brito B, Saavedra M, Mena J, García-Salum T, Rathnasinghe R, Barriga G, Tapia K, García V, Bucarey S, Jang Y, Wentworth D, Torremorell M, Neira V, Medina RA. Novel influenza A viruses in pigs with zoonotic potential, Chile. Microbiol Spectr 2024; 12:e0218123. [PMID: 38446039 PMCID: PMC10986610 DOI: 10.1128/spectrum.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.
Collapse
Affiliation(s)
| | - Bárbara Brito
- Universidad de Chile, Santiago, Chile
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Technology Sydney, Sydney, New South Wales, Australia
| | - Marco Saavedra
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Mena
- Universidad de Chile, Santiago, Chile
| | - Tamara García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raveen Rathnasinghe
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Barriga
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Tapia
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Yunho Jang
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - David Wentworth
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | | | - Rafael A. Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Experimental Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Niang MN, Fall G, Fall M, Dia N. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms 2023; 11:1961. [PMID: 37630521 PMCID: PMC10459748 DOI: 10.3390/microorganisms11081961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.
Collapse
Affiliation(s)
- Mamadou Malado Jallow
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar BP 220, Senegal;
| | - Amary Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Ndiendé Koba Ndiaye
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Davy Kiori
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Sara Sy
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Déborah Goudiaby
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Mbayame Ndiaye Niang
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Gamou Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Malick Fall
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Ndongo Dia
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| |
Collapse
|
7
|
Rahe MC, Michael A, Piñeyro PE, Groeltz-Thrush J, Derscheid RJ. Porcine Astrovirus 4 Detection in Lesions of Epitheliotropic Viral Infection in the Porcine Respiratory Tract. Transbound Emerg Dis 2023; 2023:9113355. [PMID: 40303813 PMCID: PMC12017072 DOI: 10.1155/2023/9113355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2025]
Abstract
Astroviruses infect mammals and birds resulting in either gastroenteritis, neurologic disease, or asymptomatic infection. Porcine astrovirus 4 (PoAstV4) has previously been detected in the upper respiratory tract of pigs with clinical respiratory disease; however, proof of respiratory tract infection and association of the virus with respiratory pathology have not been shown. In this retrospective study of young pigs with clinical respiratory disease of unknown etiology, PoAstV4 was detected with RNA in situ hybridization in lesions consistent with epitheliotropic viral infection in 85 of 117 pigs. This is the first report associating an astrovirus with respiratory pathology.
Collapse
|
8
|
Kontowicz E, Moreno-Madriñan M, Ragland D, Beauvais W. A stochastic compartmental model to simulate intra- and inter-species influenza transmission in an indoor swine farm. PLoS One 2023; 18:e0278495. [PMID: 37141248 PMCID: PMC10159208 DOI: 10.1371/journal.pone.0278495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Common in swine production worldwide, influenza causes significant clinical disease and potential transmission to the workforce. Swine vaccines are not universally used in swine production, due to their limited efficacy because of continuously evolving influenza viruses. We evaluated the effects of vaccination, isolation of infected pigs, and changes to workforce routine (ensuring workers moved from younger pig batches to older pig batches). A Susceptible-Exposed-Infected-Recovered model was used to simulate stochastic influenza transmission during a single production cycle on an indoor hog growing unit containing 4000 pigs and two workers. The absence of control practices resulted in 3,957 pigs [0-3971] being infected and a 0.61 probability of workforce infection. Assuming incoming pigs had maternal-derived antibodies (MDAs), but no control measures were applied, the total number of infected pigs reduced to 1 [0-3958] and the probability of workforce infection was 0.25. Mass vaccination (40% efficacious) of incoming pigs also reduced the total number of infected pigs to 2362 [0-2374] or 0 [0-2364] in pigs assumed to not have MDAs and have MDAs, respectively. Changing the worker routine by starting with younger to older pig batches, reduced the number of infected pigs to 996 [0-1977] and the probability of workforce infection (0.22) in pigs without MDAs. In pigs with MDAs the total number of infected pigs was reduced to 0 [0-994] and the probability of workforce infection was 0.06. All other control practices alone, showed little improvement in reducing total infected pigs and the probability of workforce infection. Combining all control strategies reduced the total number of infected pigs to 0 or 1 with a minimal probability of workforce infection (<0.0002-0.01). These findings suggest that non-pharmaceutical interventions can reduce the impact of influenza on swine production and workers when efficacious vaccines are unavailable.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Max Moreno-Madriñan
- Global Health Program, DePauw University, Greencastle, Indiana
- Department of Global Health, Indiana University, Indianapolis, Indiana
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Wendy Beauvais
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| |
Collapse
|
9
|
Moore TC, Fong J, Rosa Hernández AM, Pogreba-Brown K. CAFOs, novel influenza, and the need for One Health approaches. One Health 2021; 13:100246. [PMID: 33997233 PMCID: PMC8091921 DOI: 10.1016/j.onehlt.2021.100246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/18/2022] Open
Abstract
Concentrated animal feeding operations (CAFOs) present highly efficient means of meeting food demands. CAFOs create unique conditions that can affect the health and environment of animals and humans within and outside operations, leading to potential epidemiological concerns that scale with operational size. One such arena meriting further investigation is their possible contribution to novel influenzas. CAFOs present opportunities for cross-species transmission of influenza as demonstrated by reports of swine flu and avian influenza outbreaks. Conditions and pathways leading to novel influenza strains are complex and require varied prevention and intervention approaches. Current challenges for prevention of respiratory viruses entering or leaving swine and poultry CAFOs are multifaceted and include adherence of personal safety measures, lack of training and safety provisions for personnel, and incomplete standardized federal, state, and/or county regulation and enforcement coverage across agricultural systems. This report acknowledges that any proposed CAFO-associated influenza intervention should be cross-organizational, and no single intervention should be expected to provide full resolution. Proposed interventions affect multiple components of the One Health triad, and include seasonal human influenza immunization, PPE regulation and adherence, alternative waste management, general biosecurity standardization and an industry best practices incentive program. Due to the complexity of this problem, multiple anticipated communication, enforcement, and logistical challenges may hinder the full implementation of proposed solutions. General and operation-specific (swine and poultry) biosecurity practices may mitigate some of the risks associated with influenza virus reassortment across species. Education and advocacy can help protect workers, communities, veterinarians and consumers from CAFO-associated influenza virus. To achieve this, there must be more complete communication between CAFOs, governing agencies, health services, animal services, researchers, and consumers to better explore the potential health outcomes associated with CAFOs.
Collapse
Affiliation(s)
- Thomas C. Moore
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Joseph Fong
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Ayeisha M. Rosa Hernández
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Kristen Pogreba-Brown
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| |
Collapse
|
10
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
11
|
Senthilkumar D, Kulkarni DD, Venkatesh G, Gupta V, Patel P, Dixit M, Singh B, Bhatia S, Tosh C, Dubey SC, Singh VP. Widespread Prevalence of Antibodies Against Swine Influenza A (pdm H1N1 09) Virus in Pigs of Eastern Uttar Pradesh, India. Curr Microbiol 2021; 78:2753-2761. [PMID: 34037823 PMCID: PMC8150629 DOI: 10.1007/s00284-021-02520-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/26/2021] [Indexed: 10/25/2022]
Abstract
Swine influenza virus (SIV) belongs to family Orthomyxoviridae and can cause acute respiratory infection in pigs. Several pandemic H1N1 human fatal influenza cases were reported in India. Though pigs are predisposed to both avian and human influenza virus infections with the potential to generate novel reassortants, there are only a few reports of SIV in Indian pigs. We conducted a serological survey to assess the status of H1N1 infection in pigs of various states in India, between 2009 and 2016. Based on Haemagglutination inhibition (HI) assay, seroprevalence rate of H1N1 virus ranged between 5.2% (2009) and 36.3% (2011). Widespread prevalence of antibody was observed in eastern Uttar Pradesh from 6.2 to 37.5% during the study period. Co-circulation of seasonal H1N1 virus along with pandemic H1N1 virus was indicated by the presence of specific antibodies against seasonal H1N1 virus in eastern part of Uttar Pradesh. Seroprevalence rate in pigs and influenza infection trend in human shows the possible spill over transmission of influenza to pigs from human. Hence, besides serological surveillance, continuous and systematic molecular surveillance should be implemented in pig population to reduce/quantify the risk and emergence of pandemic influenza.
Collapse
Affiliation(s)
- Dhanapal Senthilkumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India.
| | - Diwakar D Kulkarni
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Govindarajulu Venkatesh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Vandana Gupta
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Priyanka Patel
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Manu Dixit
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Bharti Singh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Chakradhar Tosh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Shiv Chandra Dubey
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038737. [PMID: 31988203 PMCID: PMC7919397 DOI: 10.1101/cshperspect.a038737] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species. Transmission of distinct human seasonal lineages to pigs, followed by sustained within-host transmission and rapid adaptation and evolution, represent a considerable challenge for pig health and production. Consequently, although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, extensive diversity can be found in the hemagglutinin (HA) and neuraminidase (NA) genes, as well as the remaining six genes. We review the complicated global epidemiology of IAV in swine and the inextricably entangled implications for public health and influenza pandemic planning.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Divya Venkatesh
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| |
Collapse
|
13
|
Bakre AA, Jones LP, Kyriakis CS, Hanson JM, Bobbitt DE, Bennett HK, Todd KV, Orr-Burks N, Murray J, Zhang M, Steinhauer DA, Byrd-Leotis L, Cummings RD, Fent J, Coffey T, Tripp RA. Molecular epidemiology and glycomics of swine influenza viruses circulating in commercial swine farms in the southeastern and midwest United States. Vet Microbiol 2020; 251:108914. [PMID: 33181438 DOI: 10.1016/j.vetmic.2020.108914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.
Collapse
Affiliation(s)
| | - Les P Jones
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Jarod M Hanson
- Department of Infectious Diseases, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Kyle V Todd
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Jackelyn Murray
- Department of Infectious Diseases, Athens, GA, United States
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | | | | | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, United States
| | - Joseph Fent
- Smithfield Foods, Rose Hill, NC, United States
| | | | - Ralph A Tripp
- Department of Infectious Diseases, Athens, GA, United States.
| |
Collapse
|
14
|
Ayim-Akonor M, Mertens E, May J, Harder T. Exposure of domestic swine to influenza A viruses in Ghana suggests unidirectional, reverse zoonotic transmission at the human-animal interface. Zoonoses Public Health 2020; 67:697-707. [PMID: 32710707 DOI: 10.1111/zph.12751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Influenza A viruses (IAVs) have both zoonotic and anthroponotic potential and are of public and veterinary importance. Swine are intermediate hosts and 'mixing vessels' for generating reassortants, progenies of which may harbour pandemic propensity. Swine handlers are at the highest risk of becoming infected with IAVs from swine but there is little information on the ecology of IAVs at the human-animal interface in Africa. We analysed and characterized nasal and throat swabs from swine and farmers respectively, for IAVs using RT-qPCR, from swine farms in the Ashanti region, Ghana. Sera were also analysed for IAVs antibodies and serotyped using ELISA and HI assays. IAV was detected in 1.4% (n = 17/1,200) and 2.0% (n = 2/99) of swine and farmers samples, respectively. Viral subtypes H3N2 and H1N1pdm09 were found in human samples. All virus-positive swine samples were subtyped as H1N1pdm09 phylogenetically clustering closely with H1N1pdm09 that circulated among humans during the study period. Phenotypic markers that confer sensitivity to Oseltamivir were found. Serological prevalence of IAVs in swine and farmers by ELISA was 3.2% (n = 38/1,200) and 18.2% (n = 18/99), respectively. Human H1N1pdm09 and H3N2 antibodies were found in both swine and farmers sera. Indigenous swine influenza A viruses and/or antibodies were not detected in swine or farmers samples. Majority (98%, n = 147/150) of farmers reported of not wearing surgical mask and few (4%, n = 6) reported to wear gloves when working. Most (n = 74, 87.7%) farmers reported of working on the farm when experiencing influenza-like illness. Poor husbandry and biosafety practices of farmers could facilitate virus transmission across the human-swine interface. Farmers should be educated on the importance of good farm practices to mitigate influenza transmission at the human-animal interface.
Collapse
Affiliation(s)
- Matilda Ayim-Akonor
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Animal Health and Food Safety, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Eva Mertens
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Timm Harder
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
15
|
Chamba Pardo FO, W Allerson M, R Culhane M, B Morrison R, R Davies P, Perez A, Torremorell M. Effect of influenza A virus sow vaccination on infection in pigs at weaning: A prospective longitudinal study. Transbound Emerg Dis 2020; 68:183-193. [PMID: 32652870 DOI: 10.1111/tbed.13688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Although vaccination is the main measure to control influenza A virus (IAV) in swine, there is limited information on the efficacy of sow vaccination on reducing IAV infections in pigs at weaning. We assessed the effect of sow vaccination on IAV infection in pigs at weaning in a cohort of 52 breeding herds studied prospectively. Herds were voluntarily enrolled according to their IAV history, sow vaccination protocol and monitored during six months (prospective longitudinal study). On each herd, nasal swabs were collected monthly from 30 pigs at weaning and tested for IAV by RT-PCR. IAV was detected in 25% (75/305) of sampling events. Of 9,150 nasal swab pools (3 individual nasal swabs/pool), 15% (458/3050) of pools tested IAV positive. IAV infections in pigs at weaning were lower in vaccinated herds compared to non-vaccinated ones. Moreover, no significant differences were seen between prefarrow and whole herd protocols, or the use of commercial versus autogenous IAV vaccines. Prefarrow and whole herd vaccination protocols reduced the odds of groups testing IAV positive at weaning in comparison with no vaccination. Our results are relevant when considering implementation of sow vaccination to control influenza infections in pigs at weaning and, hence, minimize transmission to growing pigs and other farms.
Collapse
Affiliation(s)
- Fabian O Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Marie R Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Peter R Davies
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
16
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
17
|
Guagliardo SAJ, Roy SL, Ruiz-Tiben E, Zirimwabagabo H, Romero M, Chop E, Ouakou PT, Hopkins DR, Weiss AJ. Guinea worm in domestic dogs in Chad: A description and analysis of surveillance data. PLoS Negl Trop Dis 2020; 14:e0008207. [PMID: 32463811 PMCID: PMC7255611 DOI: 10.1371/journal.pntd.0008207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/10/2020] [Indexed: 11/19/2022] Open
Abstract
After a ten-year absence of reported Guinea worm disease in Chad, human cases were rediscovered in 2010, and canine cases were first recorded in 2012. In response, active surveillance for Guinea worm in both humans and animals was re-initiated in 2012. As of 2018, the Chad Guinea Worm Eradication Program (CGWEP) maintains an extensive surveillance system that operates in 1,895 villages, and collects information about worms, hosts (animals and humans), and animal owners. This report describes in detail the CGWEP surveillance system and explores epidemiological trends in canine Guinea worm cases during 2015-2018. Our results showed an increased in the number of canine cases detected by the system during the period of interest. The proportion of worms that were contained (i.e., water contamination was prevented) improved significantly over time, from 72.8% in 2015 to 85.7% in 2018 (Mantel-Haenszel chi-square = 253.3, P < 0.0001). Additionally, approximately 5% of owners of infected dogs reported that the dog had a Guinea worm-like infection earlier that year; 12.6% had a similar worm in a previous year. The proportion of dogs with a history of infection in a previous year increased over time (Mantel-Haenszel chi-square = 18.8, P < 0.0001). Canine cases were clustered in space and time: most infected dogs (80%) were from the Chari Baguirmi (38.1%) and Moyen Chari Regions (41.9%), and for each year the peak month of identified canine cases was June, with 78.5% occurring during March through August. Findings from this report evoke additional questions about why some dogs are repeatedly infected. Our results may help to target interventions and surveillance efforts in terms of space, time, and dogs susceptible to recurrent infection, with the ultimate goal of Guinea worm eradication.
Collapse
Affiliation(s)
- Sarah Anne J. Guagliardo
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Sharon L. Roy
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ernesto Ruiz-Tiben
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Hubert Zirimwabagabo
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Mario Romero
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Elisabeth Chop
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Donald R. Hopkins
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Adam J. Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Nirmala J, Perez A, Culhane MR, Allerson MW, Sreevatsan S, Torremorell M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound Emerg Dis 2020; 68:62-75. [PMID: 32187882 DOI: 10.1111/tbed.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.
Collapse
Affiliation(s)
| | - Andres Perez
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Matthew W Allerson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
19
|
Pepin KM, Pedersen K, Wan XF, Cunningham FL, Webb CT, Wilber MQ. Individual-Level Antibody Dynamics Reveal Potential Drivers of Influenza A Seasonality in Wild Pig Populations. Integr Comp Biol 2020; 59:1231-1242. [PMID: 31251341 DOI: 10.1093/icb/icz118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Swine are important in the ecology of influenza A virus (IAV) globally. Understanding the ecological role of wild pigs in IAV ecology has been limited because surveillance in wild pigs is often for antibodies (serosurveillance) rather than IAVs, as in humans and domestic swine. As IAV antibodies can persist long after an infection, serosurveillance data are not necessarily indicative of current infection risk. However, antibody responses to IAV infections cause a predictable antibody response, thus time of infection can be inferred from antibody levels in serological samples, enabling identification of risk factors of infection at estimated times of infection. Recent work demonstrates that these quantitative antibody methods (QAMs) can accurately recover infection dates, even when individual-level variation in antibody curves is moderately high. Also, the methodology can be implemented in a survival analysis (SA) framework to reduce bias from opportunistic sampling. Here we integrated QAMs and SA and applied this novel QAM-SA framework to understand the dynamics of IAV infection risk in wild pigs seasonally and spatially, and identify risk factors. We used national-scale IAV serosurveillance data from 15 US states. We found that infection risk was highest during January-March (54% of 61 estimated peaks), with 24% of estimated peaks occurring from May to July, and some low-level of infection risk occurring year-round. Time-varying IAV infection risk in wild pigs was positively correlated with humidity and IAV infection trends in domestic swine and humans, and did not show wave-like spatial spread of infection among states, nor more similar levels of infection risk among states with more similar meteorological conditions. Effects of host sex on IAV infection risk in wild pigs were generally not significant. Because most of the variation in infection risk was explained by state-level factors or infection risk at long-distances, our results suggested that predicting IAV infection risk in wild pigs is complicated by local ecological factors and potentially long-distance translocation of infection. In addition to revealing factors of IAV infection risk in wild pigs, our framework is broadly applicable for quantifying risk factors of disease transmission using opportunistic serosurveillance sampling, a common methodology in wildlife disease surveillance. Future research on the factors that determine individual-level antibody kinetics will facilitate the design of serosurveillance systems that can extract more accurate estimates of time-varying disease risk from quantitative antibody data.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Fort Collins, CO 80521-2154, USA
| | - Kerri Pedersen
- USDA-APHIS, Wildlife Services, 920 Main Campus Drive, Suite 200, Raleigh, NC 27606, USA
| | - Xiu-Feng Wan
- Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Fred L Cunningham
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Mississippi Field Station, MS 39762, USA
| | - Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Q Wilber
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Fort Collins, CO 80521-2154, USA.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Tapia R, Torremorell M, Culhane M, Medina RA, Neira V. Antigenic characterization of novel H1 influenza A viruses in swine. Sci Rep 2020; 10:4510. [PMID: 32161289 PMCID: PMC7066140 DOI: 10.1038/s41598-020-61315-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 01/20/2023] Open
Abstract
Novel H1N2 influenza A viruses (IAVs) in swine have been identified in Chile co-circulating with pandemic H1N1 2009-like (A(H1N1)pdm09-like) viruses. The objective of this study was to characterize antigenically the swine H1 IAVs circulating in Chile. Genetic analysis based on the HA1 domain and antigenic analysis by hemagglutination inhibition assay were carried out. Three antigenic clusters were identified, named Chilean H1 A (ChH1A), Chilean H1 B (ChH1B), and A(H1N1)pdm09-like. The antigenic sites of ChH1A and ChH1B strains were 10–60% distant from those of commercial vaccine strains at the amino acid sequence level. Antigenic variants were identified within the clusters ChH1A and A(H1N1)pdm09-like. Substitutions in the main antigenic sites (E153G in Sa, Q193H in Sb, D168N in Ca1, P137S in Ca2, and F71L in Cb) were detected in variants from the ChH1A cluster, whereas only a single substitution in antigenic site Sa (G155E) was detected in variants from A(H1N1)pdm09-like cluster, which confirms the importance to carrying out antigenic analyses in addition to genetic analyses to evaluate control measures such as vaccination. These results highlight the need to update vaccines for swine in Chile and the importance of continued surveillance to determine the onward transmission of antigenic variants in Chilean pig populations.
Collapse
Affiliation(s)
- Rodrigo Tapia
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808, Chile
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, USA
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, USA
| | - Rafael A Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile. .,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808, Chile.
| |
Collapse
|
21
|
Abstract
Influenza A viruses (IAVs) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs and humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. Bidirection transmission of IAV between pigs and people has altered the evolutionary dynamics of IAV, and a "One Health" approach is required to ameliorate morbidity and mortality in both hosts and improve control strategies. Although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, considerable diversity can be found not only in the hemagglutinin (HA) and neuraminidase (NA) genes but in the remaining six genes as well. Human and swine IAVs have demonstrated a particular propensity for interspecies transmission, leading to regular and sometimes sustained incursions from man to pig and vice versa. The diversity of IAVs in swine remains a critical challenge in the diagnosis and control of this important pathogen for swine health and in turn contributes to a significant public health risk.
Collapse
Affiliation(s)
- Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA.
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
22
|
Vinson H, Singh G, Pillatzki A, Webb B, Nelson E, Ramamoorthy S. Delivery of a thermo-enzymatically treated influenza vaccine using pulmonary surfactant in pigs. Vet Microbiol 2019; 239:108492. [PMID: 31767065 DOI: 10.1016/j.vetmic.2019.108492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Accepted: 10/27/2019] [Indexed: 01/24/2023]
Abstract
Swine influenza A virus (IAV-S) infections are a major cause of economic losses for the swine industry. The vast genetic and antigenic diversity often results in mismatch between the vaccine and field strains, necessitating frequent updates of vaccines. Inactivated IAV-S vaccines are of questionable efficacy. Intra-nasally administered live vaccines are more effective but are associated with safety concerns. The objective of this study was to develop a first-generation vaccine which combines the safety and efficacy advantages of inactivated and attenuated vaccines respectively. The approach targeted fragmentation of viral nucleic acids while preserving structure. Hence, cultures of influenza A/CA/04/09 H1N1 were exposed to 44 °C for 10 min. to reversibly denature the capsid, followed by RNase treatment to digest the genomic RNA and then refolded at lower temperatures. As targeted, treated virions retained an intact structure and were not detected in the first passage in infected cells. To improve intra-nasal delivery of the vaccine antigen, the vaccine antigen was delivered in porcine lung surfactant. Both the treated vaccine alone or vaccine in combination with the surfactant elicited strong anti-HA and virus neutralizing antibodies, protection against viral shedding and lung lesions in 3-week-old piglets. There were no significant differences between the groups. Vaccine viral replication was not detected in the vaccinated pigs. The described approach can advance current immunization practices against swine influenza viruses due to the relative simplicity, high efficacy and safety and ease of adaptation to newly emerging field strains.
Collapse
Affiliation(s)
- Heather Vinson
- Department of Microbiological Sciences, N. Dakota State University, Fargo, ND, United States
| | - Gagandeep Singh
- Department of Microbiological Sciences, N. Dakota State University, Fargo, ND, United States
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, S. Dakota State University, Brookings, SD, United States
| | - Brett Webb
- Veterinary Diagnostic Laboratory, N. Dakota State University, Fargo, ND, United States
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, S. Dakota State University, Brookings, SD, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, N. Dakota State University, Fargo, ND, United States.
| |
Collapse
|
23
|
Lauterbach SE, Nelson SW, Robinson ME, Lorbach JN, Nolting JM, Bowman AS. Assessing exhibition swine as potential disseminators of infectious disease through the detection of five respiratory pathogens at agricultural exhibitions. Vet Res 2019; 50:63. [PMID: 31533860 PMCID: PMC6749708 DOI: 10.1186/s13567-019-0684-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Widespread geographic movement and extensive comingling of exhibition swine facilitates the spread and transmission of infectious pathogens. Nasal samples were collected from 2862 pigs at 102 exhibitions and tested for five pathogens. At least one pathogen was molecularly detected in pigs at 63 (61.8%) exhibitions. Influenza A virus was most prevalent and was detected in 498 (17.4%) samples. Influenza D virus was detected in two (0.07%) samples. More than one pathogen was detected in 165 (5.8%) samples. Influenza A virus remains a top threat to animal and human health, but other pathogens may be disseminated through the exhibition swine population.
Collapse
Affiliation(s)
- Sarah E Lauterbach
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH, 43210, USA
| | - Sarah W Nelson
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH, 43210, USA
| | - Meghann E Robinson
- Health Science District, University of California Davis, 1 Garrod Drive, Davis, CA, 95616, USA
| | - Josh N Lorbach
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH, 43210, USA
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH, 43210, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Walia RR, Anderson TK, Vincent AL. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016. Influenza Other Respir Viruses 2019; 13:262-273. [PMID: 29624873 PMCID: PMC6468071 DOI: 10.1111/irv.12559] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine inform control efforts and improve animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing the hemagglutinin (HA) and neuraminidase (NA) genes at a minimum, and sharing these data publicly. OBJECTIVES In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. METHODS A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. RESULTS The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. CONCLUSIONS These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns.
Collapse
Affiliation(s)
- Rasna R. Walia
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Tavis K. Anderson
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Amy L. Vincent
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| |
Collapse
|
25
|
Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology 2019; 532:30-38. [PMID: 31003122 DOI: 10.1016/j.virol.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
We performed swine influenza virus (SIV) surveillance in Midwest USA and isolated 100 SIVs including endemic and reassortant H1 and H3 viruses with 2009 pandemic H1N1 genes. To determine virus evolution when different genotypes and subtypes of influenza A viruses circulating in the same swine herd, a virus survival experiment was conducted in pigs mimicking field situations. Five different SIVs were used to infect five pigs individually, then two groups of sentinel pigs were introduced to investigate virus transmission. Results showed that each virus replicated efficiently in lungs of each infected pig, but only reassortant H3N2 and H1N2v viruses transmitted to the primary contact pigs. Interestingly, the parental H1N2v was the majority of virus detected in the second group of sentinel pigs. These data indicate that the H1N2v seems to be more viable in swine herds than other SIV genotypes, and reassortment can enhance viral fitness and transmission.
Collapse
|
26
|
Li Y, Edwards J, Wang Y, Zhang G, Cai C, Zhao M, Huang B, Robertson ID. Prevalence, distribution and risk factors of farmer reported swine influenza infection in Guangdong Province, China. Prev Vet Med 2019; 167:1-8. [PMID: 31027710 DOI: 10.1016/j.prevetmed.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023]
Abstract
A cross-sectional study was undertaken to better understand the husbandry, management and biosecurity practices of pig farms in Guangdong Province (GD), China to identify risk factors for farmer reported swine influenza (SI) on their farms. Questionnaires were administered to 153 owners/managers of piggeries (average of 7 from each of the 21 prefectures in GD). Univariable and multivariable logistic regression analyses were used to identify risk factors for farmer reported SI in piggeries during the six months preceding the questionnaire administration. The ability of wild birds to enter piggeries (OR 2.50, 95% CI: 1.01-6.16), the presence of poultry on a pig-farm (OR 3.24, 95% CI: 1.52-6.94) and no biosecurity measures applied to workers before entry to the piggery (OR 2.65, 95% CI: 1.04-6.78) were found to increase the likelihood of SI being reported by farmers in a multivariable logistic regression model. The findings of this study highlight the importance of understanding the local pig industry and the practices adopted when developing control measures to reduce the risk of SI to pig farms.
Collapse
Affiliation(s)
- Y Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.
| | - J Edwards
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Y Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - G Zhang
- South China Agriculture University, Guangzhou, Guangdong, PR China
| | - C Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - M Zhao
- Department of Agriculture of Guangdong Province, Guangzhou, Guangdong, PR China
| | - B Huang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - I D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
27
|
Chamba Pardo FO, Wayne S, Culhane MR, Perez A, Allerson M, Torremorell M. Effect of strain-specific maternally-derived antibodies on influenza A virus infection dynamics in nursery pigs. PLoS One 2019; 14:e0210700. [PMID: 30640929 PMCID: PMC6331129 DOI: 10.1371/journal.pone.0210700] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022] Open
Abstract
Reducing the number of influenza A virus (IAV) infected pigs at weaning is critical to minimize IAV spread to other farms. Sow vaccination is a common measure to reduce influenza levels at weaning. However, the impact of maternally-derived antibodies on IAV infection dynamics in growing pigs is poorly understood. We evaluated the effect of maternally-derived antibodies at weaning on IAV prevalence at weaning, time of influenza infection, number of weeks that pigs tested IAV positive, and estimated quantity of IAV in nursery pigs. We evaluated 301 pigs within 10 cohorts for their influenza serological (seroprevalence estimated by hemagglutination inhibition (HI) test) and virological (prevalence) status. Nasal swabs were collected weekly and pigs were bled 3 times throughout the nursery period. There was significant variability in influenza seroprevalence, HI titers and influenza prevalence after weaning. Increase in influenza seroprevalence at weaning was associated with low influenza prevalence at weaning and delayed time to IAV infection throughout the nursery. Piglets with IAV HI titers of 40 or higher at weaning were also less likely to test IAV positive at weaning, took longer to become infected, tested IAV RT-PCR positive for fewer weeks, and had higher IAV RT-PCR cycle threshold values compared to piglets with HI titers less than 40. Our findings suggest that sow vaccination or infection status that results in high levels of IAV strain-specific maternally-derived antibodies may help to reduce IAV circulation in both suckling and nursery pigs.
Collapse
Affiliation(s)
| | - Spencer Wayne
- Health Services, Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Marie Rene Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Matthew Allerson
- Health and Research Division, Holden Farms Inc., Northfield, MN, United States of America
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chamba Pardo FO, Schelkopf A, Allerson M, Morrison R, Culhane M, Perez A, Torremorell M. Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning. Prev Vet Med 2018; 161:33-40. [PMID: 30466656 DOI: 10.1016/j.prevetmed.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Breed-to-wean pig farms play an important role in spreading influenza A virus (IAV) because suckling piglets maintain, diversify and transmit IAV at weaning to other farms. Understanding the nature and extent of which farm factors drive IAV infection in piglets is a prerequisite to reduce the burden of influenza in swine. We evaluated the association between IAV infection in piglets at weaning and farm factors including farm features, herd management practices and gilt- and piglet-specific management procedures performed at the farm. Voluntarily enrolled breed-to-wean farms (n = 83) agreed to share IAV diagnostic testing and farm data from July 2011 through March 2017 including data obtained via the administration of a survey. There were 23% IAV RT-PCR positive samples of the 12,814 samples submitted for IAV testing within 2989 diagnostic submissions with 30% positive submissions. Among all the factors evaluated (n = 24), and considering the season-adjusted multivariable analysis, only sow IAV vaccination and gilt IAV status at entry significantly reduced (p-value<0.05) IAV infections in piglets at weaning. Results from this study indicate that veterinarians and producers could manage these identified factors to reduce the burden of influenza in piglets prior to wean and perhaps, reduce the spread of IAV to other farms and people.
Collapse
Affiliation(s)
- Fabian Orlando Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Adam Schelkopf
- Health Department, Pipestone Veterinary Services, 1300 South Highway 75, PO Box 188, Pipestone, MN 56164, USA.
| | - Matthew Allerson
- Health and Research Department, Holden Farms Inc., 457 375th street, Dennison, MN 55018, USA.
| | - Robert Morrison
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Marie Culhane
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
29
|
Kaplan BS, Souza CK, Gauger PC, Stauft CB, Robert Coleman J, Mueller S, Vincent AL. Vaccination of pigs with a codon-pair bias de-optimized live attenuated influenza vaccine protects from homologous challenge. Vaccine 2018; 36:1101-1107. [PMID: 29366707 DOI: 10.1016/j.vaccine.2018.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 11/16/2022]
Abstract
Influenza A virus (IAV) in swine constitutes a major economic burden for producers as well as a potential threat to public health. Whole inactivated virus vaccines (WIV) are the predominant countermeasure employed to control IAV in swine herds in the United States despite the superior protection, and diminished adverse effects, induced by live attenuated influenza vaccines (LAIV). A major hurdle for the development of LAIV exists in achieving the proper level of attenuation while maintaining immunogenicity. Using Synthetic Attenuated Virus Engineering (SAVE) to introduce codon-pair bias de-optimization (CPBD) into the hemagglutinin (HA) and neuraminidase (NA) gene segments of pandemic H1N1 IAV, a novel LAIV was produced and evaluated for attenuation, immunogenicity, and efficacy in pigs. The CPBD LAIV induced inappreciable pathology following intranasal administration yet induced robust serum and mucosal antibody titers. CPBD LAIV vaccinated pigs challenged with wild-type virus showed protection from disease and virus detection, highlighted by the absence of detectable virus titers in the nasal passages and lungs. These results demonstrate the efficacy of a LAIV designed by SAVE codon de-optimization in pigs, providing support for the continued development of CPBD LAIV for use in swine.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Phillip C Gauger
- Dept. of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA.
| |
Collapse
|
30
|
Neira V, Allerson M, Corzo C, Culhane M, Rendahl A, Torremorell M. Detection of influenza A virus in aerosols of vaccinated and non-vaccinated pigs in a warm environment. PLoS One 2018; 13:e0197600. [PMID: 29782527 PMCID: PMC5962048 DOI: 10.1371/journal.pone.0197600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
The 2009 influenza pandemic, the variant H3N2v viruses in agricultural fairs and the zoonotic poultry H5N9 infections in China have highlighted the constant threat that influenza A viruses (IAV) present to people and animals. In this study we evaluated the effect of IAV vaccination on aerosol shedding in pigs housed in warm environmental conditions. Thirty-six, three-week old weaned pigs were obtained from an IAV negative herd and were randomly allocated to one of 4 groups: 1) a homologous vaccine group, 2) a heterologous multivalent vaccine group, 3) a heterologous monovalent group and, 4) a non-vaccinated group. After vaccination pigs were challenged with the triple reassortant A/Sw/IA/00239/04 H1N1 virus. Environmental temperature and relative humidity were recorded throughout the study. Nasal swabs, oral fluids and air samples were collected daily. All samples were tested by RRT-PCR and virus isolation was attempted on positive samples. Average temperature and relative humidity throughout the study were 27°C (80°F) and 53%, respectively. A significantly higher proportion of infected pigs was detected in the non-vaccinated than in the vaccinated group. Lower levels of nasal virus shedding were found in vaccinated groups compared to non-vaccinated group and IAV was not detected in air samples of any of the vaccinated groups. In contrast, positive air samples were detected in the non-vaccinated group at 1, 2 and 3 days post infection although the overall levels were considered low most likely due to the elevated environmental temperature. In conclusion, both the decrease in shedding and the increase in environmental temperature may have contributed to the inability to detect airborne IAV in vaccinated pigs.
Collapse
Affiliation(s)
- Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Matt Allerson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Cesar Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Aaron Rendahl
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
31
|
Takemae N, Tsunekuni R, Uchida Y, Ito T, Saito T. Experimental infection of pigs with H1 and H3 influenza A viruses of swine by using intranasal nebulization. BMC Vet Res 2018; 14:115. [PMID: 29587842 PMCID: PMC5870511 DOI: 10.1186/s12917-018-1434-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/16/2018] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Experimental infection of pigs via direct intranasal or intratracheal inoculation has been mainly used to study the infectious process of influenza A viruses of swine (IAVs-S). Nebulization is known to be an alternative method for inoculating pigs with IAVs-S, because larger quantities of virus potentially can be delivered throughout the respiratory tract. However, there is very little data on the experimental infection of pigs by inhalation using nebulizer. In the current study, we used intranasal nebulization to inoculate pigs with 9 different IAVs-S-3 H1N1, 2 H1N2, and 4 H3N2 strains. We then assessed the process of infection by evaluating the clinical signs, nasal and oral viral shedding, and seroconversion rates of the pigs inoculated. RESULTS Lethargy and sneezing were the predominant clinical signs among pigs inoculated with 7 of the 9 strains evaluated; the remaining 2 strains (1 H1N1 and 1 H1N2 isolate) failed to induce any clinical signs throughout the experiments. Significantly increased rectal temperatures were observed with an H1N1 or H3N2 strains between 1 and 3 days post-inoculation (dpi). In addition, patterns of nasal viral shedding differed among the strains: nasal viral shedding began on 1 dpi for 6 strains, with all 9 viruses being shed from 2 to 5 dpi. The detection of viral shedding was less sensitive from oral samples than nasal secretions. Viral shedding was not detected in either nasal or oral swabs after 10 dpi. According to hemagglutination-inhibition assays, all inoculated pigs had seroconverted to the inoculating virus by 14 dpi, with titers ranging from 10 to 320. CONCLUSIONS Our current findings show that intranasal nebulization successfully established IAV-S infections in pigs and demonstrate that clinical signs, viral shedding, and host immune responses varied among the strains inoculated.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori, 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu, 501-1112, Japan.
| |
Collapse
|
32
|
Nelson MI, Culhane MR, Trovão NS, Patnayak DP, Halpin RA, Lin X, Shilts MH, Das SR, Detmer SE. The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States. J Gen Virol 2017; 98:2663-2675. [PMID: 29058649 DOI: 10.1099/jgv.0.000924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.,Icahn School of Medicine at Mount Sinai University, New York, USA
| | | | | | - Xudong Lin
- J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H Shilts
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Suman R Das
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
33
|
Molecular epidemiology of swine influenza A viruses in the Southeastern United States, highlights regional differences in circulating strains. Vet Microbiol 2017; 211:174-179. [PMID: 29102115 DOI: 10.1016/j.vetmic.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
Swine influenza A virus (IAV) can cause widespread respiratory disease with high morbidity, low mortality, and have a substantial economic impact to the swine industry. Swine infection may contribute to pandemic IAV given their susceptibility to both avian and human IAVs. Currently, three IAV subtypes (H1N1, H3N2 and H1N2) circulate in swine in North America frequently combining gene segments from avian or human viruses. This study investigated the prevalence of IAV in commercial swine herds. A total of 1878 oral fluid samples were collected from pigs of all ages from 201 commercial farms located in North Carolina and South Carolina. Sixty-eight oral fluid samples from 35 farms were positive by MP gene PCR with an overall IAV-positivity of 3.6%. On the herd level, the percentage of IAV positivity was 17.4%. Fifty-six viruses were subtyped, while 12 were partly subtyped or not subtyped at all. Using de novo assembly, complete sequences were obtained for 59 HA genes. The majority of IAVs subtyped had an H1 HA demonstrating a considerable prevalence over H3 viruses. Furthermore, only six out of eleven HA types were detected which has implications for the selection of vaccines used by swine producers in the region.
Collapse
|
34
|
Pitzer VE, Aguas R, Riley S, Loeffen WLA, Wood JLN, Grenfell BT. High turnover drives prolonged persistence of influenza in managed pig herds. J R Soc Interface 2017; 13:rsif.2016.0138. [PMID: 27358277 PMCID: PMC4938081 DOI: 10.1098/rsif.2016.0138] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 11/16/2022] Open
Abstract
Pigs have long been hypothesized to play a central role in the emergence of novel human influenza A virus (IAV) strains, by serving as mixing vessels for mammalian and avian variants. However, the key issue of viral persistence in swine populations at different scales is ill understood. We address this gap using epidemiological models calibrated against seroprevalence data from Dutch finishing pigs to estimate the ‘critical herd size’ (CHS) for IAV persistence. We then examine the viral phylogenetic evidence for persistence by comparing human and swine IAV. Models suggest a CHS of approximately 3000 pigs above which influenza was likely to persist, i.e. orders of magnitude lower than persistence thresholds for IAV and other acute viruses in humans. At national and regional scales, we found much stronger empirical signatures of prolonged persistence of IAV in swine compared with human populations. These striking levels of persistence in small populations are driven by the high recruitment rate of susceptible piglets, and have significant implications for management of swine and for overall patterns of genetic diversity of IAV.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA
| | - Ricardo Aguas
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Willie L A Loeffen
- Department of Virology, Central Veterinary Institute, part of Wageningen UR, Lelystad 8200AB, The Netherlands
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan T Grenfell
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
35
|
Chamba Pardo FO, Alba-Casals A, Nerem J, Morrison RB, Puig P, Torremorell M. Influenza Herd-Level Prevalence and Seasonality in Breed-to-Wean Pig Farms in the Midwestern United States. Front Vet Sci 2017; 4:167. [PMID: 29075636 PMCID: PMC5641542 DOI: 10.3389/fvets.2017.00167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 01/30/2023] Open
Abstract
Influenza is a costly disease for pig producers and understanding its epidemiology is critical to control it. In this study, we aimed to estimate the herd-level prevalence and seasonality of influenza in breed-to-wean pig farms, evaluate the correlation between influenza herd-level prevalence and meteorological conditions, and characterize influenza genetic diversity over time. A cohort of 34 breed-to-wean farms with monthly influenza status obtained over a 5-year period in piglets prior to wean was selected. A farm was considered positive in a given month if at least one oral fluid tested influenza positive by reverse transcriptase polymerase chain reaction. Influenza seasonality was assessed combining autoregressive integrated moving average (ARIMA) models with trigonometric functions as covariates. Meteorological conditions were gathered from local land-based weather stations, monthly aggregated and correlated with influenza herd-level prevalence. Influenza herd-level prevalence had a median of 28% with a range from 7 to 57% and followed a cyclical pattern with levels increasing during fall, peaking in both early winter (December) and late spring (May), and decreasing in summer. Influenza herd-level prevalence was correlated with mean outdoor air absolute humidity (AH) and temperature. Influenza genetic diversity was substantial over time with influenza isolates belonging to 10 distinct clades from which H1 delta 1 and H1 gamma 1 were the most common. Twenty-one percent of farms had three different clades co-circulating over time, 18% of farms had two clades, and 41% of farms had one clade. In summary, our study showed that influenza had a cyclical pattern explained in part by air AH and temperature changes over time, and highlighted the importance of active surveillance to identify high-risk periods when strategic control measures for influenza could be implemented.
Collapse
Affiliation(s)
| | - Ana Alba-Casals
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Joel Nerem
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
36
|
Diaz A, Marthaler D, Corzo C, Muñoz-Zanzi C, Sreevatsan S, Culhane M, Torremorell M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci Rep 2017; 7:11886. [PMID: 28928365 PMCID: PMC5605543 DOI: 10.1038/s41598-017-11272-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Cesar Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Claudia Muñoz-Zanzi
- School of Public Health, University of Minnesota, Minneapolis, 55454, United States of America
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America.
| |
Collapse
|
37
|
Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. J Virol 2017; 91:JVI.00745-17. [PMID: 28659482 PMCID: PMC5571239 DOI: 10.1128/jvi.00745-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 02/08/2023] Open
Abstract
Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.
Collapse
|
38
|
Gao S, Anderson TK, Walia RR, Dorman KS, Janas-Martindale A, Vincent AL. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. J Gen Virol 2017; 98:2001-2010. [PMID: 28758634 DOI: 10.1099/jgv.0.000885] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transmission of influenza A virus (IAV) from humans to swine occurs with relative frequency and is a critical contributor to swine IAV diversity. Subsequent to the introduction of these human seasonal lineages, there is often reassortment with endemic viruses and antigenic drift. To address whether particular genome constellations contributed to viral persistence following the introduction of the 2009 H1N1 human pandemic virus to swine in the USA, we collated and analysed 616 whole genomes of swine H1 isolates. For each gene, sequences were aligned, the best-known maximum likelihood phylogeny was inferred, and each virus was assigned a clade based upon its evolutionary history. A time-scaled Bayesian approach was implemented for the haemagglutinin (HA) gene to determine the patterns of genetic diversity over time. From these analyses, we observed an increase in genome diversity across all H1 lineages and clades, with the H1-γ and H1-δ1 genetic clades containing the greatest number of unique genome patterns. We documented 74 genome patterns from 2009 to 2016, of which 3 genome patterns were consistently detected at a significantly higher level than others across the entire time period. Eight genome patterns increased significantly, while five genome patterns were shown to decline in detection over time. Viruses with genome patterns identified as persisting in the US swine population may possess a greater capacity to infect and transmit in swine. This study highlights the emerging genetic diversity of US swine IAV from 2009 to 2016, with implications for swine and public health and vaccine control efforts.
Collapse
Affiliation(s)
- Shibo Gao
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rasna R Walia
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Karin S Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
39
|
Karnbunchob N, Omori R, Tessmer HL, Ito K. Tracking the Evolution of Polymerase Genes of Influenza A Viruses during Interspecies Transmission between Avian and Swine Hosts. Front Microbiol 2017; 7:2118. [PMID: 28082971 PMCID: PMC5183616 DOI: 10.3389/fmicb.2016.02118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine.
Collapse
Affiliation(s)
- Nipawit Karnbunchob
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido UniversitySapporo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Heidi L Tessmer
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| |
Collapse
|
40
|
Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies. Comp Immunol Microbiol Infect Dis 2016; 50:110-115. [PMID: 28131371 DOI: 10.1016/j.cimid.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/16/2022]
Abstract
Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans.
Collapse
|
41
|
Gerber PF, Dawson L, Strugnell B, Burgess R, Brown H, Opriessnig T. Using oral fluids samples for indirect influenza A virus surveillance in farmed UK pigs. Vet Med Sci 2016; 3:3-12. [PMID: 29067204 PMCID: PMC5645835 DOI: 10.1002/vms3.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/06/2016] [Accepted: 11/01/2016] [Indexed: 12/03/2022] Open
Abstract
Influenza A virus (IAV) is economically important in pig production and has broad public health implications. In Europe, active IAV surveillance includes demonstration of antigen in nasal swabs and/or demonstration of antibodies in serum (SER) samples; however, collecting appropriate numbers of individual pig samples can be costly and labour‐intensive. The objective of this study was to compare the probability of detecting IAV antibody positive populations using SER versus oral fluid (OF) samples. Paired pen samples, one OF and 5–14 SER samples, were collected cross‐sectional or longitudinally. A commercial nucleoprotein (NP)‐based blocking ELISA was used to test 244 OF and 1004 SER samples from 123 pens each containing 20–540 pigs located in 27 UK herds. Overall, the IAV antibody detection rate was higher in SER samples compared to OFs under the study conditions. Pig age had a significant effect on the probability of detecting positive pens. For 3–9‐week‐old pigs the probability of detecting IAV antibody positive samples in a pen with 95% confidence intervals was 40% (23–60) for OF and 61% (0.37–0.80) for SER (P = 0.04), for 10–14‐week‐old pigs it was 19% (8–40) for OF and 93% (0.71–0.99) for SER (P < 0.01), and for 18–20‐week‐old pigs it was 67% (41–85) for OF and 81% (0.63–0.91) for SER (P = 0.05). Collecting more than one OF sample in pens with more than 25 less than 18‐week‐old pigs should be further investigated in the future to elucidate the suitability of OF for IAV surveillance in herds with large pen sizes.
Collapse
Affiliation(s)
- Priscilla F Gerber
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK
| | - Lorna Dawson
- School of AgricultureFood and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| | - Ben Strugnell
- Evidence-based Veterinary Consultancy (EBVC) Ltd.Rural Enterprise CentreRedhillsPenrithCumbriaUK
| | - Robert Burgess
- Evidence-based Veterinary Consultancy (EBVC) Ltd.Rural Enterprise CentreRedhillsPenrithCumbriaUK
| | - Helen Brown
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianScotlandUK.,Department of Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
42
|
Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, Thai PD, Nguyen TD, Nguyen DT, Nguyen DK, Do HT, Le TQA, Hua PT, Van Vo H, Nguyen DT, Nguyen DH, Uchida Y, Saito R, Saito T. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res 2016; 12:227. [PMID: 27724934 PMCID: PMC5057248 DOI: 10.1186/s12917-016-0844-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. Results From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that “having more than 1,000 pigs” was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. Conclusions We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0844-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Phuong Duy Thai
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tho Dang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duy Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Dung Kim Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hoa Thi Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Thi Quynh Anh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Phan Truong Hua
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Diep Thi Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Dang Hoang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Yuko Uchida
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Saito
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
43
|
The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus. J Virol 2016; 90:8266-80. [PMID: 27384658 DOI: 10.1128/jvi.01002-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) of the H3 subtype is an important respiratory pathogen that affects both humans and swine. Vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA) is the primary method used to control disease. However, due to antigenic drift, vaccine strains must be periodically updated. Six of the 7 positions previously identified in human seasonal H3 (positions 145, 155, 156, 158, 159, 189, and 193) were also indicated in swine H3 antigenic evolution. To experimentally test the effect on virus antigenicity of these 7 positions, substitutions were introduced into the HA of an isogenic swine lineage virus. We tested the antigenic effect of these introduced substitutions by using hemagglutination inhibition (HI) data with monovalent swine antisera and antigenic cartography to evaluate the antigenic phenotype of the mutant viruses. Combinations of substitutions within the antigenic motif caused significant changes in antigenicity. One virus mutant that varied at only two positions relative to the wild type had a >4-fold reduction in HI titers compared to homologous antisera. Potential changes in pathogenesis and transmission of the double mutant were evaluated in pigs. Although the double mutant had virus shedding titers and transmissibility comparable to those of the wild type, it caused a significantly lower percentage of lung lesions. Elucidating the antigenic effects of specific amino acid substitutions at these sites in swine H3 IAV has important implications for understanding IAV evolution within pigs as well as for improved vaccine development and control strategies in swine. IMPORTANCE A key component of influenza virus evolution is antigenic drift mediated by the accumulation of amino acid substitutions in the hemagglutinin (HA) protein, resulting in escape from prior immunity generated by natural infection or vaccination. Understanding which amino acid positions of the HA contribute to the ability of the virus to avoid prior immunity is important for understanding antigenic evolution and informs vaccine efficacy predictions based on the genetic sequence data from currently circulating strains. Following our previous work characterizing antigenic phenotypes of contemporary wild-type swine H3 influenza viruses, we experimentally validated that substitutions at 6 amino acid positions in the HA protein have major effects on antigenicity. An improved understanding of the antigenic diversity of swine influenza will facilitate a rational approach for selecting more effective vaccine components to control the circulation of influenza in pigs and reduce the potential for zoonotic viruses to emerge.
Collapse
|
44
|
Kaplan BS, DeBeauchamp J, Stigger-Rosser E, Franks J, Crumpton JC, Turner J, Darnell D, Jeevan T, Kayali G, Harding A, Webby RJ, Lowe JF. Influenza Virus Surveillance in Coordinated Swine Production Systems, United States. Emerg Infect Dis 2016; 21:1834-6. [PMID: 26402228 PMCID: PMC4593420 DOI: 10.3201/eid2110.140633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012–September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.
Collapse
|
45
|
Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities. PLoS One 2016; 11:e0146616. [PMID: 26757362 PMCID: PMC4710569 DOI: 10.1371/journal.pone.0146616] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 01/26/2023] Open
Abstract
Indirect transmission of influenza A virus (IAV) in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98) of oral fluid, 38% (32/84) of pen railing and 43% (35/82) of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2). Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.
Collapse
|
46
|
Bliss N, Nelson SW, Nolting JM, Bowman AS. Prevalence of Influenza A Virus in Exhibition Swine during Arrival at Agricultural Fairs. Zoonoses Public Health 2016; 63:477-85. [PMID: 26750204 DOI: 10.1111/zph.12252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/28/2022]
Abstract
The exhibition swine at agricultural fairs provides a critical human-swine interface that allows for the bidirectional transmission of influenza A virus (IAV). Previous IAV surveillance at the end of fairs has resulted in frequent detection of IAV-infected swine; little is known, however, about the frequency with which swine arrive at fairs already infected with IAV. We investigated the IAV prevalence among exhibition swine entering fairs to better understand the epidemiology of IAV in this unique human-swine interface. In 2014, snout wipes were collected from 3547 swine during the first day of nine agricultural exhibitions in Indiana and Ohio. Samples were screened for IAV using rRT-PCR and positive samples were inoculated into cultured cells for virus isolation. The overall IAV prevalence detected among swine arriving at exhibitions was 5.3% (188/3547) via rRT-PCR and 1.5% (53/3547) via virus isolation, with IAV being detected and recovered from swine at 5 of the 9 exhibitions. Within the fairs with IAV-positive swine, the individual exhibition IAV prevalence ranged from 0.2% (1/523) to 34.4% (144/419) using rRT-PCR and 0.2% (1/523) to 10.3% (43/419) with virus isolation. Single IAV subtypes were detected at three of the fairs but subtype diversity was detected among the pigs at two fairs as both H1N1 and H3N2 were recovered from incoming swine. At two of the exhibitions, a temporal relationship was observed between the order of the individual swine in sampling and the associated IAV rRT-PCR results, indicating the fomite transmission of IAV through common contact surfaces may occur. With the knowledge that a small proportion of swine arrive at fairs shedding IAV, resources should be directed towards preventive strategies focused on limiting transmission during fairs to protect swine and humans during exhibitions.
Collapse
Affiliation(s)
- N Bliss
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - S W Nelson
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - J M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - A S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Nolting JM, Szablewski CM, Edwards JL, Nelson SW, Bowman AS. Nasal Wipes for Influenza A Virus Detection and Isolation from Swine. J Vis Exp 2015:e53313. [PMID: 26709840 DOI: 10.3791/53313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Surveillance for influenza A viruses in swine is critical to human and animal health because influenza A virus rapidly evolves in swine populations and new strains are continually emerging. Swine are able to be infected by diverse lineages of influenza A virus making them important hosts for the emergence and maintenance of novel influenza A virus strains. Sampling pigs in diverse settings such as commercial swine farms, agricultural fairs, and live animal markets is important to provide a comprehensive view of currently circulating IAV strains. The current gold-standard ante-mortem sampling technique (i.e. collection of nasal swabs) is labor intensive because it requires physical restraint of the pigs. Nasal wipes involve rubbing a piece of fabric across the snout of the pig with minimal to no restraint of the animal. The nasal wipe procedure is simple to perform and does not require personnel with professional veterinary or animal handling training. While slightly less sensitive than nasal swabs, virus detection and isolation rates are adequate to make nasal wipes a viable alternative for sampling individual pigs when low stress sampling methods are required. The proceeding protocol outlines the steps needed to collect a viable nasal wipe from an individual pig.
Collapse
Affiliation(s)
| | | | - Jody L Edwards
- Department of Veterinary Preventive Medicine, The Ohio State University
| | - Sarah W Nelson
- Department of Veterinary Preventive Medicine, The Ohio State University
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University;
| |
Collapse
|
48
|
Hollenbeck JE. Interaction of the role of Concentrated Animal Feeding Operations (CAFOs) in Emerging Infectious Diseases (EIDS). INFECTION GENETICS AND EVOLUTION 2015; 38:44-46. [PMID: 26656834 PMCID: PMC7106093 DOI: 10.1016/j.meegid.2015.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023]
Abstract
Most significant change in the evolution of the influenza virus is the rapid growth of the Concentrated Animal Feeding Operations (CAFOs) on a global scale. These industrial agricultural operations have the potential of housing thousands of animals in a relatively small area. Emerging Infectious Diseases (EIDs) event can be considered as a shift in the pathogen–host–environment interplay characteristics described by Engering et al. (2013). These changes in the host–environment and the disease ecology are key to creating novel transmission patterns and selection of novel pathogens with a modification of genetic traits. With the development of CAFOs throughout the world, the need for training of animal caretakers to observe, identify, treat, vaccinate and cull if necessary is important to safeguard public health. The best defense against another pandemic of Emerging Infectious Diseases (EIDs) is the constant monitoring of the livestock and handlers of CAFOs and the live animal markets. These are the most likely epicenter of the next pandemic. Most significant change in the evolution of airborne virus evolution is the rapid growth of the Concentrated Animal Feeding Operations. Changes in the host–environment and the disease ecology are creating novel transmission patterns and selection of genetic traits. The best defense against pandemic of Emerging Infectious Diseases (EIDs) is the constant monitoring of CAFOs.
Collapse
|
49
|
Nitipong H, Douglas M, Matteo C, Montserrat T, Meggan EC, Benjamin H, John D. Bayesian estimation to test accuracy for influenza A infection via respiratory clinical signs in the absence of a gold standard. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jvmah2015.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
50
|
Decorte I, Steensels M, Lambrecht B, Cay AB, De Regge N. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine. PLoS One 2015; 10:e0139586. [PMID: 26431039 PMCID: PMC4592207 DOI: 10.1371/journal.pone.0139586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.
Collapse
Affiliation(s)
- Inge Decorte
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Mieke Steensels
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Bénédicte Lambrecht
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Ann Brigitte Cay
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Nick De Regge
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
- * E-mail:
| |
Collapse
|