1
|
Rodriguez‐Valencia V, Olive M, Le Goff G, Faisse M, Paupy C, Roiz D. Lower Bird Evenness and Diversity Are Associated With Higher Usutu Prevalence in Culex pipiens Mosquitoes. Zoonoses Public Health 2025; 72:359-368. [PMID: 39963005 PMCID: PMC12016009 DOI: 10.1111/zph.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The mosquito-transmitted Usutu virus has spread in the last few years, becoming endemic in several areas of Europe, such as in the southern French region of the Camargue. Our aim was to study the relationships between the presence of the viral agent in Culex mosquitoes and the structure of bird communities in the context of the dilution effect. METHODS We carried out mosquito and bird censuses in several selected localities across a land-use gradient and screened mosquito pools for flaviviruses. We focused on exploring how host bird diversity, richness, abundance and evenness were associated with Usutu detection in Cx. pipiens. RESULTS Usutu virus was detected in seven pools of Cx. pipiens, and phylogenetic analysis identified Usutu lineage Africa 3, confirming its circulation. The probability of detection in mosquitoes is associated with areas with lower bird evenness and diversity but higher bird abundance and richness and higher Cx. pipiens abundances. CONCLUSIONS Bird evenness was the variable with the greatest explanatory power, being negatively related to the probability of detecting Usutu in Cx. pipiens, supporting a dilution effect. These results will help us better understand the relationships between bird community structure and the risk of Usutu mosquito-borne disease.
Collapse
Affiliation(s)
- Victor Rodriguez‐Valencia
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- International Joint Laboratory ELDORADO, IRD/UNAMMéridaMexico
| | - Marie‐Marie Olive
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- ASTRE, Cirad, INRAE. Universite de MontpellierMontpellierFrance
| | | | - Marine Faisse
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
| | | | - David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- International Joint Laboratory ELDORADO, IRD/UNAMMéridaMexico
| |
Collapse
|
2
|
Gonzalez G, Migné CV, Duvignaud A, Martin-Latil S, Bigeard C, Touzet T, Fontaine A, Zientara S, de Lamballerie X, Malvy D. Paradigm Shift Toward "One Health" Monitoring of Culex-Borne Arbovirus Circulation in France: The 2022 Inaugural Spotlight on West Nile and Usutu Viruses in Nouvelle-Aquitaine. Open Forum Infect Dis 2025; 12:ofaf243. [PMID: 40352627 PMCID: PMC12062881 DOI: 10.1093/ofid/ofaf243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Global changes have profoundly altered the interactions between pathogens and their hosts, accelerating the emergence of infectious diseases. Monitoring vector-borne infectious diseases is therefore challenging and requires an upgrading of the detection system relying mainly nowadays on passive surveillance and reactive measures when a human case is diagnosed. West Nile virus (WNV) and Usutu virus are 2 zoonotic orthoflaviviruses, maintained between bird populations and mosquitoes, threatening public and veterinary health in Europe. In 2022, WNV unexpectedly emerged on the Atlantic coast of France in equids. Following this emergence, a consortium of national and local actors from the Nouvelle-Aquitaine region conducted crucial operational research, integrating environmental and animal data to make timely evidence-based and territorialized decisions to better assess the risk to human health. The proposal outlines the creation of a novel collaborative effort uniting experts from veterinary, human, and environmental health, as well as policy-makers. This partnership aims to establish a sustainable framework to address persistent knowledge gaps in our comprehension of arboviral disease emergence. By integrating diverse scientific disciplines with institutional decision-making processes, the initiative seeks to enhance our understanding of the complex factors contributing to the emergence and spread of arboviral diseases.
Collapse
Affiliation(s)
- Gaëlle Gonzalez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Camille Victoire Migné
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alexandre Duvignaud
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, Bordeaux, France
- National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Sandra Martin-Latil
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clément Bigeard
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, Bordeaux, France
- National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
- Direction Départementale de la Protection Des Populations (DDPP) de la Gironde
| | - Thierry Touzet
- Direction Départementale de la Protection Des Populations (DDPP) de la Gironde
| | - Albin Fontaine
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Virologie, Marseille, France
| | - Stephan Zientara
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Denis Malvy
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, Bordeaux, France
- National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Rocha RF, Coimbra LD, Fontoura MA, Ribeiro G, Sotorilli GE, Gomes GF, Borin A, Felipe J, Slowikowski E, Greison WSS, Cunha TM, Marques PE, Vieira PMM, Marques RE. Usutu virus-induced meningoencephalitis in immunocompetent mice is characterized by the recruitment of mononuclear cells and a proinflammatory T helper 1 response. J Virol 2025; 99:e0172424. [PMID: 39907280 PMCID: PMC11915786 DOI: 10.1128/jvi.01724-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Usutu virus (USUV) is an arbovirus and has emerged as a potential cause of encephalitis in humans and other vertebrates. The increasing detection of USUV in mosquitoes and birds across Africa and Central Europe, along with the lack of specific treatments or vaccines for many encephalitic orthoflaviviruses, underscores the need for focused research. In this study, we developed a USUV infection model in immunocompetent C57BL/6 mice (8-12 weeks old) to characterize disease development and associated inflammatory mechanisms. Mice were intracranially infected with 104 PFU of USUV, leading to neurological symptoms such as hunched posture, paralysis, conjunctivitis, and eventual death by day 6 post-infection. Meningeal cell infiltration and microglia activation were most prevalent in mouse brains; however, neuronal loss was not observed at the peak of the disease, which coincided with increased viral load and leukocyte infiltration. The immune response in the brain was marked by the systematic recruitment and activation of macrophages, neutrophils, and T lymphocytes. A noticeable shift was seen in CD4+ T cells toward T helper 1 (Th1) polarization, which corroborates a massive increase in the expression of Th1-associated cytokines and chemokines at the peak of infection, indicative of an augmented proinflammatory state. Additionally, a rise in regulatory T cells was observed, peaking on day 6 post-infection. These findings highlight the dynamic nature of the host response to USUV infection, enhance our understanding of the disease pathogenesis, and address the scarcity of immunocompetent experimental models for the investigation of neglected emerging flaviviruses.IMPORTANCEMosquito-borne viruses, including USUV, are maintained in nature through complex cycles involving arthropod vectors and vertebrate hosts. A comprehensive understanding of USUV biology and host-pathogen interactions is crucial for developing effective treatments, which necessitates reliable experimental models (G. J. Sips, J. Wilschut, and J. M. Smit, Rev Med Virol 22:69-87, 2012, https://doi.org/10.1002/rmv.712; T. C. Pierson and M. S. Diamond, Nat Microbiol 5:796-812, 2020, https://doi.org/10.1038/s41564-020-0714-0). The establishment of a USUV infection model in immunocompetent adult mice brings new perspectives on the inflammatory component of viral encephalitis, which is difficult to study in mice lacking antiviral interferon responses. Moreover, USUV is an emerging viral disease lacking therapeutic and preventive measures. The interplay of USUV pathogenesis and the host's immune response indicates that lymphocytes and monocytes participate in USUV infection in this model and could be explored in search of treatments targeting immunopathogenic processes triggered by infection.
Collapse
Affiliation(s)
- Rebeca Froes Rocha
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Laís D. Coimbra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Marina A. Fontoura
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Ribeiro
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giuliana Eboli Sotorilli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Alexandre Borin
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Jaqueline Felipe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Emily Slowikowski
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Flanders, Belgium
| | - Wilias Silva Santos Greison
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Pedro Elias Marques
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Flanders, Belgium
| | - Pedro M. M. Vieira
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Bogdanic M, Savic V, Klobucar A, Barbic L, Sabadi D, Tomljenovic M, Madic J, Hruskar Z, Curman Posavec M, Santini M, Stevanovic V, Petrinic S, Antolasic L, Milasincic L, Al-Mufleh M, Roncevic D, Vilibic-Cavlek T. The Re-Emergence of Neuroinvasive Flaviviruses in Croatia During the 2022 Transmission Season. Microorganisms 2024; 12:2210. [PMID: 39597599 PMCID: PMC11596621 DOI: 10.3390/microorganisms12112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(Re-)emerging arboviruses, such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Usutu virus (USUV), are continuously increasing in incidence. We analyzed the epidemiological characteristics of flavivirus infections in humans, sentinel animals, and mosquitoes detected in the 2022 transmission season in Croatia. From April to November 2022, 110 hospitalized patients with neuroinvasive diseases (NID) were tested for the presence of arboviruses. RT-qPCR was used to detect TBEV, WNV, and USUV RNA. An ELISA and virus neutralization tests were used for the detection of flavivirus antibodies. TBEV infection was confirmed in 22 patients with NID. WNV NID was detected in six patients. TBE showed male predominance (81.8%; male-to-female ratio of 4.5:1). All but one WNV patients were males. TBE occurred from April to August, with the majority of patients (83.3%) being detected during the May-June-July period. WNV infections were recorded in August and September. In addition to human cases, asymptomatic WNV infections (IgM positive) were reported in 10 horses. For the first time in Croatia, WNV NID was observed in one horse that presented with neurological symptoms. Furthermore, USUV was confirmed in one dead blackbird that presented with neurological symptoms. A total of 1984 mosquitoes were collected in the City of Zagreb. Two Ae. albopictus pools tested positive for flavivirus RNA: one collected in July (USUV) and the other collected in August (WNV). A phylogenetic analysis of detected human and avian strains confirmed WNV lineage 2 and the USUV Europe 2 lineage. The presented results confirm the endemic presence of neuroinvasive flaviviruses in continental Croatia. The continuous monitoring of virus circulation in humans, sentinel animals, and mosquitoes is needed to reduce the disease burden.
Collapse
Affiliation(s)
- Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia;
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Morana Tomljenovic
- Department of Epidemiology, Primorje-Gorski Kotar Teaching Institute of Public Health, 51000 Rijeka, Croatia; (M.T.); (D.R.)
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Josip Madic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Marcela Curman Posavec
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Marija Santini
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department for Infections in Immunocompromised Patients, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Suncica Petrinic
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Ljiljana Antolasic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Ljiljana Milasincic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Mahmoud Al-Mufleh
- Department of Infectious Diseases, County Hospital Cakovec, 40000 Cakovec, Croatia;
| | - Dobrica Roncevic
- Department of Epidemiology, Primorje-Gorski Kotar Teaching Institute of Public Health, 51000 Rijeka, Croatia; (M.T.); (D.R.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Chen J, Zhang Y, Zhang X, Zhang M, Yin X, Zhang L, Peng C, Fu B, Fang L, Liu W. Epidemiology and Ecology of Usutu Virus Infection and Its Global Risk Distribution. Viruses 2024; 16:1606. [PMID: 39459938 PMCID: PMC11512428 DOI: 10.3390/v16101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-transmitted flavivirus with increasing incidence of human infection and geographic expansion, thus posing a potential threat to public health. In this study, we established a comprehensive spatiotemporal database encompassing USUV infections in vectors, animals, and humans worldwide by an extensive literature search. Based on this database, we characterized the geographic distribution and epidemiological features of USUV infections. By employing boosted regression tree (BRT) models, we projected the distributions of three main vectors (Culex pipiens, Aedes albopictus, and Culiseta longiareolata) and three main hosts (Turdus merula, Passer domesticus, and Ardea cinerea) to obtain the mosquito index and bird index. These indices were further incorporated as predictors into the USUV infection models. Through an ensemble learning model, we achieved a decent model performance, with an area under the curve (AUC) of 0.992. The mosquito index contributed significantly, with relative contributions estimated at 25.51%. Our estimations revealed a potential exposure area for USUV spanning 1.80 million km2 globally with approximately 1.04 billion people at risk. This can guide future surveillance efforts for USUV infections, especially for countries located within high-risk areas and those that have not yet conducted surveillance activities.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Yuanyuan Zhang
- Department of Disease Control and Prevention, No. 926 Hospital of Joint Logistics Support Force, Kaiyuan 661600, China;
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Xiaohong Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Lei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Cong Peng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Bokang Fu
- School of Public Health, Anhui Medical University, Hefei 230022, China;
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| |
Collapse
|
6
|
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging arbovirus that has led to epizootic outbreaks in birds and numerous human neuroinvasive disease cases in Europe. It is maintained in an enzootic cycle with Culex mosquitoes and passerine birds, a transmission cycle that is shared by West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), two flaviviruses that are endemic in the United States. USUV and WNV co-circulate in Africa and Europe, and SLEV and WNV co-circulate in North America. These three viruses are prime examples of One Health issues, in which the interactions between humans, animals, and the environments they reside in can have important health impacts. The three facets of One Health are interwoven throughout this article as we discuss the mechanisms of flavivirus transmission and emergence. We explore the possibility of USUV emergence in the United States by analyzing the shared characteristics among USUV, WNV, and SLEV, including the role that flavivirus co-infections and sequential exposures may play in viral emergence. Finally, we provide insights on the importance of integrated surveillance programs as One Health tools that can be used to mitigate USUV emergence and spread.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
7
|
Nelemans T, Tas A, Kikkert M, van Hemert MJ. Usutu virus NS4A suppresses the host interferon response by disrupting MAVS signaling. Virus Res 2024; 347:199431. [PMID: 38969013 PMCID: PMC11292556 DOI: 10.1016/j.virusres.2024.199431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-β production and signaling. In particular NS4A was very effective at suppressing IFN-β production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-β production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Marshall EM, Rashidi AS, van Gent M, Rockx B, Verjans GMGM. Neurovirulence of Usutu virus in human fetal organotypic brain slice cultures partially resembles Zika and West Nile virus. Sci Rep 2024; 14:20095. [PMID: 39209987 PMCID: PMC11362282 DOI: 10.1038/s41598-024-71050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Usutu (USUV), West Nile (WNV), and Zika virus (ZIKV) are neurotropic arthropod-borne viruses (arboviruses) that cause severe neurological disease in humans. However, USUV-associated neurological disease is rare, suggesting a block in entry to or infection of the brain. We determined the replication, cell tropism and neurovirulence of these arboviruses in human brain tissue using a well-characterized human fetal organotypic brain slice culture model. Furthermore, we assessed the efficacy of interferon-β and 2'C-methyl-cytidine, a synthetic nucleoside analogue, in restricting viral replication. All three arboviruses replicated within the brain slices, with WNV reaching the highest titers, and all primarily infected neuronal cells. USUV- and WNV-infected cells exhibited a shrunken morphology, not associated with detectable cell death. Pre-treatment with interferon-β inhibited replication of all arboviruses, while 2'C-methyl-cytidine reduced only USUV and ZIKV titers. Collectively, USUV can infect human brain tissue, showing similarities in tropism and neurovirulence as WNV and ZIKV. These data suggest that a blockade to infection of the human brain may not be the explanation for the low clinical incidence of USUV-associated neurological disease. However, USUV replicated more slowly and to lower titers than WNV, which could help to explain the reduced severity of neurological disease resulting from USUV infection.
Collapse
Affiliation(s)
- Eleanor M Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ahmad S Rashidi
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel van Gent
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Ndione MHD, Diagne MM, Mencattelli G, Diallo A, Ndiaye EH, Di Domenico M, Diallo D, Kane M, Curini V, Top NM, Marcacci M, Sankhe S, Ancora M, Secondini B, Di Lollo V, Teodori L, Leone A, Puglia I, Gaye A, Sall AA, Loucoubar C, Rosà R, Diallo M, Monaco F, Faye O, Cammà C, Rizzoli A, Savini G, Faye O. An amplicon-based sequencing approach for Usutu virus characterization. Virol J 2024; 21:163. [PMID: 39044231 PMCID: PMC11267690 DOI: 10.1186/s12985-024-02426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.
Collapse
Affiliation(s)
| | | | - Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, 38010, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38010, Italy
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - El Hadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Mouhamed Kane
- Virology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Ndeye Marieme Top
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Safiétou Sankhe
- Virology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, 38010, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38010, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, 64100, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, BP220, Senegal
| |
Collapse
|
10
|
Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024; 16:599. [PMID: 38675940 PMCID: PMC11055060 DOI: 10.3390/v16040599] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
11
|
Constant O, Maarifi G, Barthelemy J, Martin MF, Tinto B, Savini G, Van de Perre P, Nisole S, Simonin Y, Salinas S. Differential effects of Usutu and West Nile viruses on neuroinflammation, immune cell recruitment and blood-brain barrier integrity. Emerg Microbes Infect 2023; 12:2156815. [PMID: 36495563 DOI: 10.1080/22221751.2022.2156815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Usutu (USUV) and West Nile (WNV) viruses are two closely related Flavivirus belonging to Japanese encephalitis virus serogroup. Evidence of increased circulation of these two arboviruses now exist in Europe. Neurological disorders are reported in humans mainly for WNV, despite the fact that the interaction and effects of viral infections on the neurovasculature are poorly described, notably for USUV. Using a human in vitro blood-brain barrier (BBB) and a mouse model, this study characterizes and compares the cerebral endothelial cell permissiveness, innate immunity and inflammatory responses and immune cell recruitment during infection by USUV and WNV. Both viruses are able to infect and cross the human BBB but with different consequences. We observed that WNV infects BBB cells resulting in significant endothelium impairment, potent neuroinflammation and immune cell recruitment, in agreement with previous studies. USUV, despite being able to infect BBB cells with higher replication rate than WNV, does not strongly affect endothelium integrity. Importantly, USUV also induces neuroinflammation, immune cell recruitment such as T lymphocytes, monocytes and dendritic cells (DCs) and was able to infect dendritic cells (DCs) more efficiently compared to WNV, with greater propensity for BBB recruitment. DCs may have differential roles for neuroinvasion of the two related viruses.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Marie-France Martin
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.,INSERM, Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Sébastien Nisole
- CNRS, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
12
|
Bergmann F, Holicki CM, Michel F, Bock S, Scuda N, Priemer G, Kenklies S, Siempelkamp T, Skuballa J, Sauerwald C, Herms L, Muluneh A, Peters M, Hlinak A, Groschup MH, Sadeghi B, Ziegler U. Reconstruction of the molecular evolution of Usutu virus in Germany: Insights into virus emersion and circulation. PLoS Negl Trop Dis 2023; 17:e0011203. [PMID: 37782665 PMCID: PMC10569574 DOI: 10.1371/journal.pntd.0011203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/12/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus that is widely distributed in southern and central Europe. The zoonotic virus circulates primarily between birds and mosquitoes, can, however, in rare cases infect other mammals including humans. In the past, USUV has been repeatedly associated with mass mortalities in birds, primarily blackbirds and owls. Birds commonly succumb either due to the peracute nature of the infection or due to severe encephalitis. In Germany, USUV has spread rapidly since its first detection in 2010 in mosquitoes under the presence of susceptible host and vector species. Nonetheless, there is to date limited access to whole genome sequences resulting in the absence of in-depth phylogenetic and phylodynamic analyses. In this study, 118 wild and captive birds were sequenced using a nanopore sequencing platform with prior target enrichment via amplicons. Due to the high abundancy of Europe 3 and Africa 3 in Germany an ample quantity of associated whole genome sequences was generated and the most recent common ancestor could be determined for each lineage. The corresponding clock phylogeny revealed an introduction of USUV Europe 3 and Africa 3 into Germany three years prior to their first isolation in the avifauna in 2011 and 2014, respectively. Based on the clustering and temporal history of the lineages, evidence exists for the genetic evolution of USUV within Germany as well as new introductions thereof into the country.
Collapse
Affiliation(s)
- Felicitas Bergmann
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Friederike Michel
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sabine Bock
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Grit Priemer
- State Office of Agriculture, Food Safety and Fisheries Mecklenburg-Vorpommern (LALLF), Rostock, Germany
| | - Susanne Kenklies
- State Office for Consumer Protection Saxony-Anhalt (LAV), Stendal, Germany
| | - Timo Siempelkamp
- Thuringian State Office for Consumer Protection, Bad Langensalza, Germany
| | - Jasmin Skuballa
- State Institute for Chemical and Veterinary Analysis Karlsruhe, Karlsruhe, Germany
| | - Claudia Sauerwald
- Department of Veterinary Medicine, Hessian State Laboratory, Gießen, Germany
| | - Louise Herms
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Hannover, Germany
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | - Martin Peters
- Chemical and Veterinary Investigation Office (CVUA), Arnsberg, Germany
| | - Andreas Hlinak
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Pozzetto B, Grard G, Durand G, Paty MC, Gallian P, Lucas-Samuel S, Diéterlé S, Fromage M, Durand M, Lepelletier D, Chidiac C, Hoen B, Nicolas de Lamballerie X. Arboviral Risk Associated with Solid Organ and Hematopoietic Stem Cell Grafts: The Prophylactic Answers Proposed by the French High Council of Public Health in a National Context. Viruses 2023; 15:1783. [PMID: 37766192 PMCID: PMC10536626 DOI: 10.3390/v15091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Diseases caused by arboviruses are on the increase worldwide. In addition to arthropod bites, most arboviruses can be transmitted via accessory routes. Products of human origin (labile blood products, solid organs, hematopoietic stem cells, tissues) present a risk of contamination for the recipient if the donation is made when the donor is viremic. Mainland France and its overseas territories are exposed to a complex array of imported and endemic arboviruses, which differ according to their respective location. This narrative review describes the risks of acquiring certain arboviral diseases from human products, mainly solid organs and hematopoietic stem cells, in the French context. The main risks considered in this study are infections by West Nile virus, dengue virus, and tick-borne encephalitis virus. The ancillary risks represented by Usutu virus infection, chikungunya, and Zika are also addressed more briefly. For each disease, the guidelines issued by the French High Council of Public Health, which is responsible for mitigating the risks associated with products of human origin and for supporting public health policy decisions, are briefly outlined. This review highlights the need for a "One Health" approach and to standardize recommendations at the international level in areas with the same viral epidemiology.
Collapse
Affiliation(s)
- Bruno Pozzetto
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- GIMAP Team, CIRI-Centre International de Recherche en Infectiologie, Université Jean Monnet de Saint-Etienne, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Gilda Grard
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
| | - Guillaume Durand
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
| | - Marie-Claire Paty
- Santé Publique France, The French Public Health Agency, 94410 Saint-Maurice, France;
| | - Pierre Gallian
- Etablissement Français du Sang, 93218 Saint-Denis, France;
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), 13385 Marseille, France
| | | | | | - Muriel Fromage
- Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM), 93200 Saint-Denis, France;
| | - Marc Durand
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
| | - Didier Lepelletier
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
| | - Christian Chidiac
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- Department of Infectious and Tropical Diseases, University Hospital of Lyon, 69002 Lyon, France
| | - Bruno Hoen
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- Department of Infectious Diseases, University Hospital of Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | - Xavier Nicolas de Lamballerie
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), 13385 Marseille, France
| |
Collapse
|
14
|
Angeloni G, Bertola M, Lazzaro E, Morini M, Masi G, Sinigaglia A, Trevisan M, Gossner CM, Haussig JM, Bakonyi T, Capelli G, Barzon L. Epidemiology, surveillance and diagnosis of Usutu virus infection in the EU/EEA, 2012 to 2021. Euro Surveill 2023; 28:2200929. [PMID: 37589592 PMCID: PMC10436690 DOI: 10.2807/1560-7917.es.2023.28.33.2200929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.
Collapse
Affiliation(s)
- Giorgia Angeloni
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share first authorship
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share first authorship
| | - Elena Lazzaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
| | - Matteo Morini
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
| | - Giulia Masi
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Joana M Haussig
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Tamas Bakonyi
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share last authorship
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
- These authors contributed equally to the work and share last authorship
| |
Collapse
|
15
|
Martinet JP, Bohers C, Vazeille M, Ferté H, Mousson L, Mathieu B, Depaquit J, Failloux AB. Assessing vector competence of mosquitoes from northeastern France to West Nile virus and Usutu virus. PLoS Negl Trop Dis 2023; 17:e0011144. [PMID: 37276229 DOI: 10.1371/journal.pntd.0011144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/06/2023] [Indexed: 06/07/2023] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are two arthropod-borne viruses that circulate in mainland France. Assessing vector competence has only been conducted so far with mosquitoes from southern France while an increasingly active circulation of WNV and USUV has been reported in the last years. The main vectors are mosquitoes of the Culex genus and the common mosquito Culex pipiens. Here, we measure the vector competence of five mosquito species (Aedes rusticus, Aedes albopictus, Anopheles plumbeus, Culex pipiens and Culiseta longiareolata) present in northeastern France. Field-collected populations were exposed to artificial infectious blood meal containing WNV or USUV and examined at different days post-infection. We show that (i) Cx. pipiens transmitted WNV and USUV, (ii) Ae. rusticus only WNV, and (iii) unexpectedly, Ae. albopictus transmitted both WNV and USUV. Less surprising, An. plumbeus was not competent for both viruses. Combined with data on distribution and population dynamics, these assessments of vector competence will help in developing a risk map and implementing appropriate prevention and control measures.
Collapse
Affiliation(s)
- Jean-Philippe Martinet
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
- Université de Reims Champagne-Ardenne, Faculté de Pharmacie, ANSES, SFR Cap Santé, EA7510 ESCAPE-USC VECPAR, Reims, France
| | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Hubert Ferté
- Université de Reims Champagne-Ardenne, Faculté de Pharmacie, ANSES, SFR Cap Santé, EA7510 ESCAPE-USC VECPAR, Reims, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Bruno Mathieu
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Institut de Parasitologie et de Pathologie Tropicale, Strasbourg, France
| | - Jérôme Depaquit
- Université de Reims Champagne-Ardenne, Faculté de Pharmacie, ANSES, SFR Cap Santé, EA7510 ESCAPE-USC VECPAR, Reims, France
- Laboratoire de Parasitologie-Mycologie, CHU de Reims, Reims, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| |
Collapse
|
16
|
Laidoudi Y, Durand G, Watier-Grillot S, Dessimoulie AS, Labarde C, Normand T, Andréo V, Guérin P, Grard G, Davoust B. Evidence of Antibodies against the West Nile Virus and the Usutu Virus in Dogs and Horses from the Southeast of France. Transbound Emerg Dis 2023; 2023:8779723. [PMID: 40303666 PMCID: PMC12016972 DOI: 10.1155/2023/8779723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 05/02/2025]
Abstract
Every year, the world faces vector-borne diseases including arboviral (arthropod-borne viral) diseases caused by several, possibly fatal flaviviruses. The way they spread is related to a complex episystem involving several elements including vector abundance, animal carriers, and the flavivirus itself, which makes the disease difficult to manage. Here, we serologically screened 556 animals (358 dogs and 198 horses) using ELISA and a serum neutralisation test (SNT) for the anti-IgG antibodies directed against the West Nile (WNV) and Usutu (USUV) viruses. The animals investigated were split into two groups according to their exposure to the risk linked to the abundance of mosquitoes and migratory birds as well as the geographical distribution of arbovirus cases (458 animals from areas exposed to risk and 98 not exposed to risk). Overall, 25/310 dogs (8.1%) and 2/148 horses (1.3%) tested positive for SNT WNV and/or USUV in geographically exposed areas. Animals in unexposed areas were all negative. The geographical distribution of WNV seroprevalence in dogs was the same as the distribution of reported autochthonous human cases. Interestingly, a non-negligible seroprevalence caused by an as yet unidentified flavivirus other than WNV, USUV, or tick-borne encephalitis virus (TBEV) was detected in 18.6% (28/150) and 3.7% (4/106) of the investigated dogs and horses from the Hérault department, in the southeast of France, respectively. These data highlight the role of outdoor dogs as suitable sentinels for the evidence of WNV and USUV circulation in each area. In addition, the serological detection of an as yet unidentified flavivirus circulating in the Hérault department deserves greater attention, as this may constitute a serious threat to public and animal health.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Guillaume Durand
- National Reference Centre for Arboviruses, French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
- Unité des Virus Émergents (Aix-Marseille University-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | | | | | - Claire Labarde
- Animal Epidemiology Expert Group, French Military Health Service, Tours, France
- 1 Veterinary Group, French Military Health Service, Toulon, France
| | - Thomas Normand
- 41 Veterinary Group, French Military Health Service, Fontainebleau, France
| | - Virginie Andréo
- 26 Veterinary Group, French Military Health Service, Gramat, France
| | | | - Gilda Grard
- National Reference Centre for Arboviruses, French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
- Unité des Virus Émergents (Aix-Marseille University-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Bernard Davoust
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Animal Epidemiology Expert Group, French Military Health Service, Tours, France
| |
Collapse
|
17
|
Agliani G, Giglia G, Marshall EM, Gröne A, Rockx BH, van den Brand JM. Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
18
|
Akinsulie OC, Adesola RO, Bakre A, Adebowale OO, Adeleke R, Ogunleye SC, Oladapo IP. Usutu virus: An emerging flavivirus with potential threat to public health in Africa: Nigeria as a case study. Front Vet Sci 2023; 10:1115501. [PMID: 36875996 PMCID: PMC9980716 DOI: 10.3389/fvets.2023.1115501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Usutu virus (USUV) is an arthropod-borne virus (arbovirus) of the flaviviridae family (genus Flavivirus) which belong to the Japanese encephalitis virus complex. Culex mosquitoes have been implicated in the transmission of this pathogen. The major susceptible hosts of USUV are migratory birds, thereby potentiating its ability to spread from one region to another globally. Nigeria has the largest economy in Africa with a significant percentage of the gross domestic product relying on the agricultural and animal production industry. This review explores the zoonotic potentials of the virus in Africa, especially Nigeria, with special focus on the devastating sequelae this might lead to in the future if necessary precautionary policies are not enacted and adopted to bolster the surveillance system for mosquito-borne viruses.
Collapse
Affiliation(s)
| | | | - Adetolase Bakre
- Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | | |
Collapse
|
19
|
Chen R, Francese R, Wang N, Li F, Sun X, Xu B, Liu J, Liu Z, Donalisio M, Lembo D, Zhou GC. Exploration of novel hexahydropyrrolo[1,2-e]imidazol-1-one derivatives as antiviral agents against ZIKV and USUV. Eur J Med Chem 2023; 248:115081. [PMID: 36623328 DOI: 10.1016/j.ejmech.2022.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuyun Liu
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, Jiangsu, China
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China.
| |
Collapse
|
20
|
Lan D, Deng W, He K, Li Q, Peng X, Lao J, Li Z. Acupuncture treatment of a pregnant patient with Bell's palsy in the third trimester: Case report. Front Neurol 2023; 13:1088138. [PMID: 36686504 PMCID: PMC9845618 DOI: 10.3389/fneur.2022.1088138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
At present, the optimal treatment for Bell's palsy remains controversial, and the combination of corticosteroids and antiviral medication is usually recommended in the early stage. However, treatment is often delayed because the effects of these drugs on pregnant women and fetuses are still unclear. As a safe and effective complementary alternative therapy, acupuncture can alleviate Bell's palsy symptoms and improve the quality of life of the patient. Herein, we report the clinical presentation of a 27-year-old woman with Bell's palsy who was 26 weeks pregnant at the time of diagnosis. After five courses of treatment, the patient made a complete recovery.
Collapse
Affiliation(s)
- Danchun Lan
- Department of Acupuncture and Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Wenfei Deng
- The Eighth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Kunze He
- Acupuncture and Rehabilitation Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Li
- The Eighth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xin Peng
- The Eighth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Jinxiong Lao
- Department of Acupuncture and Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, China,The Eighth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Foshan, China,*Correspondence: Jinxiong Lao ✉
| | - Ziyong Li
- Department of Acupuncture and Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, China,The Eighth Clinical School of Medicine, Guangzhou University of Chinese Medicine, Foshan, China,Ziyong Li ✉
| |
Collapse
|
21
|
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? Viruses 2022; 15:77. [PMID: 36680117 PMCID: PMC9866956 DOI: 10.3390/v15010077] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Usutu virus (USUV), a neurotropic mosquito-borne flavivirus discovered in 1959 in South Africa, has spread over the last twenty years across the European continent. This virus follows an enzootic cycle involving mosquitoes and birds. This caused epizootics with significant bird mortality in Europe in 2016 and 2018. It can also occasionally infect humans and other mammals, including horses and bats, which act as incidental or dead-end hosts. The zoonotic risk associated with this succession of avian epizootics in Europe deserves attention, even if, to date, human cases remain exceptional. Human infection is most often asymptomatic or responsible for mild clinical symptoms. However, human Usutu infections have also been associated with neurological disorders, such as encephalitis and meningoencephalitis. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages which could co-circulate spatiotemporally. In this review we discuss several aspects of the circulation of Usutu virus in humans in Europe, the neurological disorders associated, involved viral lineages, and the issues and questions raised by their circulation.
Collapse
Affiliation(s)
- Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
22
|
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.
Collapse
|
23
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
24
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Fynmore N, Lühken R, Kliemke K, Lange U, Schmidt-Chanasit J, Lurz PWW, Becker N. Honey-baited FTA cards in box gravid traps for the assessment of Usutu virus circulation in mosquito populations in Germany. Acta Trop 2022; 235:106649. [PMID: 35963312 DOI: 10.1016/j.actatropica.2022.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Usutu virus (USUV) is becoming increasingly important to veterinary and human health in Germany. USUV has been implicated in mass die-off events of birds, especially of blackbirds (Turdus merula), and has experienced significant range expansion in the years since its first detection in 2010. Current detection methods rely primarily on dead bird surveillance or mass mosquito collection using CO2 as the main attractant. Dead bird surveillance can result in detection of disease circulation past the point at which control efforts would be most impactful. Vector surveillance offers the opportunity to detect disease circulation before significant outbreaks occur. However, current methods result in collections of extremely large numbers of predominantly nulliparous female mosquitoes who have not yet taken a blood meal. This study sought to test whether box gravid traps could successfully trap USUV infected gravid Culex mosquitoes, and if viral RNA could be successfully transferred and stabilised on an FTA card. During the month of August 2020, 18 Reiter-Cummings style box gravid traps with honey-baited FTA cards were set in a region of known USUV circulation around the southern border of Hesse, Germany. Four 48-hour trapping rounds were conducted. All mosquitoes and FTA cards were collected and stored during transport to the laboratory on dry ice. Samples and FTA cards were then transferred and stored in a freezer at -5 °C until identification. Identification was carried out on a chill plate before being sent with overnight courier in a styrofoam box with cooling elements for virus detection with a modified generic flavivirus RT-PCR. Mosquitoes were separated into pools by trap, date, species and feeding status. 2003 mosquitoes were caught in four rounds of trapping, 1834 or 88% of which were female Culex mosquitoes used for examination. 13 pools of mosquitoes and four FTA cards tested positive for USUV. No positive FTA cards were found in traps with positive mosquitoes and no positive mosquitoes were found in traps with positive FTA cards. Although fewer FTA cards than expected returned a positive result, this may have been a result of the extreme conditions experienced in the field and highlights the need to establish the temperature and humidity boundaries such a collection method can withstand. Box gravid traps however, provided a highly effective and targeted approach for capturing gravid female Culex mosquitoes, the most appropriate subpopulation for testing for USUV. Additionally, the simplicity and effectiveness of this trapping and surveillance method make it an attractive option for use as an early warning system, including for large scale surveillance programmes.
Collapse
Affiliation(s)
- Noelle Fynmore
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom; Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Renke Lühken
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Konstantin Kliemke
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Unchana Lange
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany; Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Peter W W Lurz
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Norbert Becker
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany.
| |
Collapse
|
26
|
Martin H, Barthelemy J, Chin Y, Bergamelli M, Moinard N, Cartron G, Tanguy Le Gac Y, Malnou CE, Simonin Y. Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice. Viruses 2022; 14:v14081619. [PMID: 35893684 PMCID: PMC9330037 DOI: 10.3390/v14081619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Usutu virus (USUV) is a neurotropic mosquito-borne flavivirus that has dispersed quickly in Europe these past years. This arbovirus mainly follows an enzootic cycle involving mosquitoes and birds, but can also infect other mammals, causing notably sporadic cases in humans. Although it is mainly asymptomatic or responsible for mild clinical symptoms, USUV has been associated with neurological disorders, such as encephalitis and meningoencephalitis, highlighting the potential health threat of this virus. Among the different transmission routes described for other flaviviruses, the capacity for some of them to be transmitted vertically has been demonstrated, notably for Zika virus or West Nile virus, which are closely related to USUV. To evaluate the ability of USUV to replicate in the placenta and gain access to the fetus, we combined the use of several trophoblast model cell lines, ex vivo human placental explant cultures from first and third trimester of pregnancy, and in vivo USUV-infected pregnant mice. Our data demonstrate that human placental cells and tissues are permissive to USUV replication, and suggest that viral transmission can occur in mice during gestation. Hence, our observations suggest that USUV could be efficiently transmitted by the vertical route.
Collapse
Affiliation(s)
- Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
| | - Yamileth Chin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, France;
- CECOS, Groupe d’Activité de Médecine de la Reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Géraldine Cartron
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Yann Tanguy Le Gac
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Cécile E. Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Correspondence: (C.E.M.); (Y.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
- Correspondence: (C.E.M.); (Y.S.)
| |
Collapse
|
27
|
Seroprevalence Rates against West Nile, Usutu, and Tick-Borne Encephalitis Viruses in Blood-Donors from North-Western Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138182. [PMID: 35805850 PMCID: PMC9266370 DOI: 10.3390/ijerph19138182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Introduction: West Nile virus (WNV), Usutu virus (USUV), and the tick-borne encephalitis virus (TBEV) are all arboviruses belonging to Flaviviridae family. All are characterized by vectorial transmission and sometimes associated with neuroinvasive infections. The circulation of these viruses is considered endemic in parts of Europe, with human cases reported in many countries. Among hosts, the viruses are vectored by hematophagous arthropods, such as mosquitoes (WNV, USUV) and ticks (TBEV). Considering the currently outdated knowledge regarding the epidemiology of these viruses in Romania, the aim of our study was to assess the seroprevalence rates of WNV, USUV, and TBEV among healthy blood donors in north-western Romania. Methods: Human blood samples from healthy donors were collected between November 2019 and February 2020 in six counties from the north-western region of Romania. The samples were serologically tested by ELISA and serum neutralization test. Results: Overall, we obtained a seroprevalence of 3.17% for WNV, 0.08% for TBEV, and 0% for USUV. Conclusion: Despite the low seroprevalence of WNV, USUV, and TBEV in our study, we highlight the need for continuous nationwide vector and disease surveillance and implementation of control measures. Further research is required for an optimal overview of the epidemiological status of the Romanian population regarding these flaviviruses together with countrywide awareness campaigns.
Collapse
|
28
|
Constant O, Gil P, Barthelemy J, Bolloré K, Foulongne V, Desmetz C, Leblond A, Desjardins I, Pradier S, Joulié A, Sandoz A, Amaral R, Boisseau M, Rakotoarivony I, Baldet T, Marie A, Frances B, Reboul Salze F, Tinto B, Van de Perre P, Salinas S, Beck C, Lecollinet S, Gutierrez S, Simonin Y. One Health surveillance of West Nile and Usutu viruses: a repeated cross-sectional study exploring seroprevalence and endemicity in Southern France, 2016 to 2020. Euro Surveill 2022; 27:2200068. [PMID: 35748300 PMCID: PMC9229194 DOI: 10.2807/1560-7917.es.2022.27.25.2200068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Patricia Gil
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, Marcy l'Etoile, France
| | - Isabelle Desjardins
- University of Lyon, VetAgro Sup, GREMERES-ICE Lyon Equine Research Center, Marcy l'Etoile, France
| | | | - Aurélien Joulié
- National veterinary school of Toulouse, Université de Toulouse, Toulouse, France
| | - Alain Sandoz
- Aix Marseille Université - CNRS, UMR 7376, Laboratoire Chimie de l'Environnement, Marseille, France
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Michel Boisseau
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | - Thierry Baldet
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | | | | | - Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Sylvie Lecollinet
- CIRAD, UMR ASTRE, CRVC, Petit Bourg, France
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| |
Collapse
|
29
|
Nagy A, Csonka N, Takács M, Mezei E, Barabás É. West Nile and Usutu virus seroprevalence in Hungary: A nationwide serosurvey among blood donors in 2019. PLoS One 2022; 17:e0266840. [PMID: 35395048 PMCID: PMC8992992 DOI: 10.1371/journal.pone.0266840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
In Hungary, West Nile virus (WNV) has been responsible for 459 laboratory confirmed human cases between 2004 and 2019, while the first human Usutu virus (USUV) infection was confirmed only in 2018. A comprehensive serosurvey was conducted among blood donors to assess the WNV and USUV seroprevalence in 2019, one year after the largest European WNV epidemic. Altogether, 3005 plasma samples were collected and screened for WNV and USUV specific Immunoglobulin G (IgG) antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). All reactive samples were further tested for tick-borne encephalitis virus IgG antibodies by ELISA. Indirect immunofluorescence test and microneutralization assay were used as confirmatory methods. Overall, the WNV seroprevalence was 4.32%, and in five blood donors USUV seropositivity was confirmed. The highest seroprevalence was measured in Central, Eastern and Southern Hungary, while the Western part of the country proved to be less affected. There was a statistically strong association between the WNV seroprevalence of 2019 and the cumulative incidence in the period of 2004 and 2019 calculated for every NUTS 3 region. The last WNV serological screening was performed in 2016 and the prevalence of anti-WNV IgG proved to be 2.19%. One year after the 2018 WNV outbreak, a significant increase in seroprevalence was observed in the Hungarian population and evidence for USUV seropositivity was also obtained. The spatial pattern of seroprevalence can support the identification of high-risk areas raising awareness of the need for increased surveillance, such as screening vector, equine, and avian populations. The communication with general practitioners and other professionals in primary health care services can support the early identification of acute human cases. Education and awareness-raising on the importance of protection against mosquito vectors amongst residents are also important parts of preventive measures.
Collapse
Affiliation(s)
- Anna Nagy
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
- * E-mail:
| | - Nikolett Csonka
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Mária Takács
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Eszter Mezei
- Department of Communicable Diseases Epidemiology and Infection Control, National Public Health Center, Budapest, Hungary
| | - Éva Barabás
- Confirmatory Laboratory, Hungarian National Blood Transfusion Service, Budapest, Hungary
| |
Collapse
|
30
|
West Nile and Usutu Virus Introduction via Migratory Birds: A Retrospective Analysis in Italy. Viruses 2022; 14:v14020416. [PMID: 35216009 PMCID: PMC8880244 DOI: 10.3390/v14020416] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during peaks of spring and autumn migration at 11 Italian sites located along important flyways, from 2012 to 2014. A total of 1335 specimens made of individual or pooled sera, and organs from 275 dead birds were tested for WNV and USUV RNA by real time PCR (RT-PCR). Furthermore, sera were tested by serum neutralization assay for detecting WNV and USUV neutralizing antibodies. Molecular tests detected WNV lineage 2 RNA in a pool made of three Song Thrush (Turdus philomelos) sera sampled in autumn, and lineage 1 in kidneys of six trans-Saharan birds sampled in spring. Neutralizing antibodies against WNV and USUV were found in 5.80% (n = 72; 17 bird species) and 0.32% (n = 4; 4 bird species) of the tested sera, respectively. Our results do not exclude the role of migratory birds as potential spreaders of WNV and USUV from Africa and Central Europe to Mediterranean areas and highlight the importance of a more extensive active surveillance of zoonotic viruses.
Collapse
|
31
|
Wald ME, Sieg M, Schilling E, Binder M, Vahlenkamp TW, Claus C. The Interferon Response Dampens the Usutu Virus Infection-Associated Increase in Glycolysis. Front Cell Infect Microbiol 2022; 12:823181. [PMID: 35186796 PMCID: PMC8855070 DOI: 10.3389/fcimb.2022.823181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
The mosquito-borne Usutu virus (USUV) is a zoonotic flavivirus and an emerging pathogen. So far therapeutical options or vaccines are not available in human and veterinary medicine. The bioenergetic profile based on extracellular flux analysis revealed an USUV infection-associated significant increase in basal and stressed glycolysis on Vero and with a tendency for basal glycolysis on the avian cell line TME-R derived from Eurasian blackbirds. On both cell lines this was accompanied by a significant drop in the metabolic potential of glycolysis. Moreover, glycolysis contributed to production of virus progeny, as inhibition of glycolysis with 2-deoxy-D-glucose reduced virus yield on Vero by one log10 step. Additionally, the increase in glycolysis observed on Vero cells after USUV infection was lost after the addition of exogenous type I interferon (IFN) β. To further explore the contribution of the IFN response pathway to the impact of USUV on cellular metabolism, USUV infection was characterized on human A549 respiratory cells with a knockout of the type I IFN receptor, either solely or together with the receptor of type III IFN. Notably, only the double knockout of types I and III IFN receptor increased permissiveness to USUV and supported viral replication together with an alteration of the glycolytic activity, namely an increase in basal glycolysis to an extent that a further increase after injection of metabolic stressors during extracellular flux analysis was not noted. This study provides evidence for glycolysis as a possible target for therapeutic intervention of USUV replication. Moreover, presented data highlight type I and type III IFN system as a determinant for human host cell permissiveness and for the infection-associated impact on glycolysis.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Erik Schilling
- Institute of Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marco Binder
- Research Group “Dynamics of early viral infection and the innate antiviral response”, Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
- *Correspondence: Claudia Claus,
| |
Collapse
|
32
|
Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, Ahad A. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS One 2021; 16:e0257414. [PMID: 34591885 PMCID: PMC8483414 DOI: 10.1371/journal.pone.0257414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34±2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Asim Saeed
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Zurva Ashraf
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Abdul Ahad
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
33
|
Seasonal Phenological Patterns and Flavivirus Vectorial Capacity of Medically Important Mosquito Species in a Wetland and an Urban Area of Attica, Greece. Trop Med Infect Dis 2021; 6:tropicalmed6040176. [PMID: 34698285 PMCID: PMC8544675 DOI: 10.3390/tropicalmed6040176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Seasonal patterns of mosquito population density and their vectorial capacity constitute major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus, Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx. pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus (USUV). The data provided were collected under the frame of the surveillance program carried out in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the period 2017-2018. The entomological surveillance of adult mosquitoes was performed on a weekly basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected mosquitoes were morphologically identified to species level and evaluated for their public health importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%) positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority of positive samples for WNV were detected in the East Attica region, followed by the South Sector of Attica, respectively. The findings of the current study highlight the WNV circulation in the region of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and integrated mosquito management programs as imperative public health interventions.
Collapse
|
34
|
Zecchin B, Fusaro A, Milani A, Schivo A, Ravagnan S, Ormelli S, Mavian C, Michelutti A, Toniolo F, Barzon L, Monne I, Capelli G. The central role of Italy in the spatial spread of USUTU virus in Europe. Virus Evol 2021; 7:veab048. [PMID: 34513027 PMCID: PMC8427344 DOI: 10.1093/ve/veab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
USUTU virus (USUV) is an arbovirus maintained in the environment through a bird-mosquito enzootic cycle. Previous surveillance plans highlighted the endemicity of USUV in North-eastern Italy. In this work, we sequenced 138 new USUV full genomes from mosquito pools (Culex pipiens) and wild birds collected in North-eastern Italy and we investigated the evolutionary processes (phylogenetic analysis, selection pressure and evolutionary time-scale analysis) and spatial spread of USUV strains circulating in the European context and in Italy, with a particular focus on North-eastern Italy. Our results confirmed the circulation of viruses belonging to four different lineages in Italy (EU1, EU2, EU3 and EU4), with the newly sequenced viruses from the North-eastern regions, Veneto and Friuli Venezia Giulia, belonging to the EU2 lineage and clustering into two different sub-lineages, EU2-A and EU2-B. Specific mutations characterize each European lineage and geographic location seem to have shaped their phylogenetic structure. By investigating the spatial spread in Europe, we were able to show that Italy acted mainly as donor of USUV to neighbouring countries. At a national level, we identified two geographical clusters mainly circulating in Northern and North-western Italy, spreading both northward and southward. Our analyses provide important information on the spatial and evolutionary dynamics of USUTU virus that can help to improve surveillance plans and control strategies for this virus of increasing concern for human health.
Collapse
Affiliation(s)
- B Zecchin
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Fusaro
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Milani
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Schivo
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ravagnan
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ormelli
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - C Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Michelutti
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Toniolo
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - L Barzon
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - I Monne
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - G Capelli
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
35
|
Schmidt V, Cramer K, Böttcher D, Heenemann K, Rückner A, Harzer M, Ziegler U, Vahlenkamp T, Sieg M. Usutu virus infection in aviary birds during the cold season. Avian Pathol 2021; 50:427-435. [PMID: 34351827 DOI: 10.1080/03079457.2021.1962003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) is responsible for countless deaths in both resident populations and birds kept in outdoor aviaries. Since 2001, USUV outbreaks attract increased attention due to the rapid geographical spread of the virus and its close relation to West Nile virus (WNV), an emerging pathogen in humans and animals. Similar to WNV, the USUV enzootic transmission cycle predominantly involves Culex spp. as vectors, whereas birds serve as amplifying reservoir hosts. In Europe, USUV-associated disease outbreaks in birds are nearly exclusively described during late spring and early autumn (early April to late October). Contagiousness of virus particles excreted by infected animals has not yet been proven, so that the role of non-vector-borne transmission, as it is known for the closely related WNV, remains unclear. Here we report the diagnosis of USUV infection in 15 of 24 birds from mortality outbreaks in eight different aviaries located in Germany, that occured during the cold season between late October 2018 and early April 2019. Detection of USUV was performed using standardized molecular biological methods and immunohistochemistry for verification of the infection. USUV infection in a parrot species, a tropical finch and two estrildid finches are reported for the first time. Further research on the occurrence of USUV infection during the cold season is key to understanding the dynamics of viral transmission as well as for a profound health risk assessment for aviary birds as well as humans.
Collapse
Affiliation(s)
- Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, D-04103 Leipzig, Germany
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Antje Rückner
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| |
Collapse
|
36
|
Giglia G, Agliani G, Munnink BBO, Sikkema RS, Mandara MT, Lepri E, Kik M, Ijzer J, Rijks JM, Fast C, Koopmans MPG, Verheije MH, Gröne A, Reusken CBEM, van den Brand JMA. Pathology and Pathogenesis of Eurasian Blackbirds ( Turdus merula) Naturally Infected with Usutu Virus. Viruses 2021; 13:1481. [PMID: 34452347 PMCID: PMC8402641 DOI: 10.3390/v13081481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
The Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus. Despite its continuous circulation in Europe, knowledge on the pathology, cellular and tissue tropism and pathogenetic potential of different circulating viral lineages is still fragmentary. Here, macroscopic and microscopic evaluations are performed in association with the study of cell and tissue tropism and comparison of lesion severity of two circulating virus lineages (Europe 3; Africa 3) in 160 Eurasian blackbirds (Turdus merula) in the Netherlands. Results confirm hepatosplenomegaly, coagulative necrosis and lymphoplasmacytic inflammation as major patterns of lesions and, for the first time, vasculitis as a novel virus-associated lesion. A USUV and Plasmodium spp. co-infection was commonly identified. The virus was associated with lesions by immunohistochemistry and was reported most commonly in endothelial cells and blood circulating and tissue mononucleated cells, suggesting them as a major route of entry and spread. A tropism for mononuclear phagocytes cells was further supported by viral labeling in multinucleated giant cells. The involvement of ganglionic neurons and epithelial cells of the gastrointestinal tract suggests a possible role of oral transmission, while the involvement of feather follicle shafts and bulbs suggests their use as a diagnostic sample for live bird testing. Finally, results suggest similar pathogenicity for the two circulating lineages.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Gianfilippo Agliani
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Maria Teresa Mandara
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (M.T.M.); (E.L.)
| | - Marja Kik
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jooske Ijzer
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Christine Fast
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler Institut, D-17493 Isle of Riems, Germany;
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
| | - Monique H. Verheije
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
| | - Andrea Gröne
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Chantal B. E. M. Reusken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (B.B.O.M.); (R.S.S.); (M.P.G.K.); (C.B.E.M.R.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Judith M. A. van den Brand
- Division of Pathology, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (G.G.); (G.A.); (M.K.); (J.I.); (M.H.V.); (A.G.)
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands;
| |
Collapse
|
37
|
Previous Usutu Virus Exposure Partially Protects Magpies ( Pica pica) against West Nile Virus Disease But Does Not Prevent Horizontal Transmission. Viruses 2021; 13:v13071409. [PMID: 34372622 PMCID: PMC8310384 DOI: 10.3390/v13071409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The mosquito-borne flaviviruses USUV and WNV are known to co-circulate in large parts of Europe. Both are a public health concern, and USUV has been the cause of epizootics in both wild and domestic birds, and neurological cases in humans in Europe. Here, we explore the susceptibility of magpies to experimental USUV infection, and how previous exposure to USUV would affect infection with WNV. None of the magpies exposed to USUV showed clinical signs, viremia, or detectable neutralizing antibodies. After challenge with a neurovirulent WNV strain, neither viremia, viral titer of WNV in vascular feathers, nor neutralizing antibody titers of previously USUV-exposed magpies differed significantly with respect to magpies that had not previously been exposed to USUV. However, 75% (6/8) of the USUV-exposed birds survived, while only 22.2% (2/9) of those not previously exposed to USUV survived. WNV antigen labeling by immunohistochemistry in tissues was less evident and more restricted in magpies exposed to USUV prior to challenge with WNV. Our data indicate that previous exposure to USUV partially protects magpies against a lethal challenge with WNV, while it does not prevent viremia and direct transmission, although the mechanism is unclear. These results are relevant for flavivirus ecology and contention.
Collapse
|
38
|
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, Koenraadt CJM, Pijlman GP. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect 2021; 9:2642-2652. [PMID: 33215969 PMCID: PMC7738303 DOI: 10.1080/22221751.2020.1854623] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that are mainly transmitted between bird hosts by vector mosquitoes. Infections in humans are incidental but can cause severe disease. USUV is endemic in large parts of Europe, while WNV mainly circulates in Southern Europe. In recent years, WNV is also frequently detected in Northern Europe, thereby expanding the area where both viruses co-circulate. However, it remains unclear how USUV may affect the future spread of WNV and the likelihood of human co-infection. Here we investigated whether co-infections with both viruses in cell lines and their primary mosquito vector, Culex pipiens, affect virus replication and transmission dynamics. We show that USUV is outcompeted by WNV in mammalian, avian and mosquito cells during co-infection. Mosquitoes that were exposed to both viruses simultaneously via infectious blood meal displayed significantly reduced USUV transmission compared to mosquitoes that were only exposed to USUV (from 15% to 3%), while the infection and transmission of WNV was unaffected. In contrast, when mosquitoes were pre-infected with USUV via infectious blood meal, WNV transmission was significantly reduced (from 44% to 17%). Injection experiments established the involvement of the midgut in the observed USUV-mediated WNV inhibition. The competition between USUV and WNV during co-infection clearly indicates that the chance of concurrent USUV and WNV transmission via a single mosquito bite is low. The competitive relation between USUV and WNV may impact virus transmission dynamics in the field and affect the epidemiology of WNV in Europe.
Collapse
Affiliation(s)
- Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), Wageningen, Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
39
|
Zelená H, Kleinerová J, Šikutová S, Straková P, Kocourková H, Stebel R, Husa P, Husa P, Tesařová E, Lejdarová H, Šebesta O, Juráš P, Ciupek R, Mrázek J, Rudolf I. First Autochthonous West Nile Lineage 2 and Usutu Virus Infections in Humans, July to October 2018, Czech Republic. Pathogens 2021; 10:pathogens10060651. [PMID: 34073968 PMCID: PMC8225171 DOI: 10.3390/pathogens10060651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
We present epidemiological, clinical and laboratory findings of five Czech patients diagnosed with autochthonous mosquito-borne disease—four patients with confirmed West Nile virus (WNV) and one patient with Usutu virus (USUV) infections, from July to October 2018, including one fatal case due to WNV. This is the first documented human outbreak caused by WNV lineage 2 in the Czech Republic and the first record of a neuroinvasive human disease caused by USUV, which illustrates the simultaneous circulation of WNV and USUV in the country.
Collapse
Affiliation(s)
- Hana Zelená
- Public Health Institute, Partyzánské nám. 7, 702 00 Ostrava, Czech Republic; (H.Z.); (J.M.)
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Jana Kleinerová
- Department of Infectious Diseases, Hospital Břeclav, U Nemocnice 3066/1, 690 74 Břeclav, Czech Republic;
| | - Silvie Šikutová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; (S.Š.); (P.S.)
| | - Petra Straková
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; (S.Š.); (P.S.)
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Hana Kocourková
- Department of Infectious Diseases, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic; (H.K.); (R.S.); (P.H.); (P.H.J.)
- Department of Infectious Diseases, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Roman Stebel
- Department of Infectious Diseases, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic; (H.K.); (R.S.); (P.H.); (P.H.J.)
- Department of Infectious Diseases, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic; (H.K.); (R.S.); (P.H.); (P.H.J.)
- Department of Infectious Diseases, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic; (H.K.); (R.S.); (P.H.); (P.H.J.)
- Department of Infectious Diseases, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Eva Tesařová
- Department of Health Insurance, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic;
| | - Hana Lejdarová
- Transfusion and Tissue Department, University Hospital Brno, Jihlavská 20, 602 00 Brno, Czech Republic;
| | - Oldřich Šebesta
- Regional Public Health Authority of the Southern Moravia Region, Jeřábkova 4, 602 00 Brno, Czech Republic; (O.Š.); (P.J.); (R.C.)
| | - Peter Juráš
- Regional Public Health Authority of the Southern Moravia Region, Jeřábkova 4, 602 00 Brno, Czech Republic; (O.Š.); (P.J.); (R.C.)
| | - Renata Ciupek
- Regional Public Health Authority of the Southern Moravia Region, Jeřábkova 4, 602 00 Brno, Czech Republic; (O.Š.); (P.J.); (R.C.)
| | - Jakub Mrázek
- Public Health Institute, Partyzánské nám. 7, 702 00 Ostrava, Czech Republic; (H.Z.); (J.M.)
| | - Ivo Rudolf
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; (S.Š.); (P.S.)
- Correspondence: ; Tel.: +420-519-352-961; Fax: +420-519-352-387
| |
Collapse
|
40
|
Böszörményi K, Hirsch J, Kiemenyi Kayere G, Fagrouch Z, Heijmans N, Rodriguez Garcia R, Dwarka S, van Dijke A, Aaldijk B, Limpens R, Barcena M, Koster B, Verstrepen B, Bogers W, Kocken C, Cornellissen G, Verschoor E, Faber B. A Bacterially-Expressed Recombinant Envelope Protein from Usutu Virus Induces Neutralizing Antibodies in Rabbits. Vaccines (Basel) 2021; 9:vaccines9020157. [PMID: 33669414 PMCID: PMC7920429 DOI: 10.3390/vaccines9020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.
Collapse
Affiliation(s)
- Kinga Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| | - Janet Hirsch
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Gwendoline Kiemenyi Kayere
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Nicole Heijmans
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Roberto Rodriguez Garcia
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Soesjiel Dwarka
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Amy van Dijke
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Boyd Aaldijk
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Ronald Limpens
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Montserrat Barcena
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Bram Koster
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Willy Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Clemens Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Gesine Cornellissen
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Ernst Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Bart Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| |
Collapse
|
41
|
Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Negl Trop Dis 2021; 15:e0009072. [PMID: 33493202 PMCID: PMC7861526 DOI: 10.1371/journal.pntd.0009072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile, Japanese encephalitis, Zika, and dengue viruses. USUV emerged in 1996 in Europe, where quickly spread across the continent causing a considerable number of bird deaths and varied neurological disorders in humans, including encephalitis, meningoencephalitis, or facial paralysis, thus warning about USUV as a potential health threat. USUV replication takes place on the endoplasmic reticulum (ER) of infected cells, inducing ER stress and resulting in the activation of stress-related cellular pathways collectively known as the integrated stress response (ISR). The alpha subunit of the eukaryotic initiation factor eIF2 (eIF2α), the core factor in this pathway, is phosphorylated by stress activated kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), heme-regulated inhibitor kinase (HRI), and general control non-repressed 2 kinase (GCN2). Its phosphorylation results, among others, in the downstream inhibition of translation with accumulation of discrete foci in the cytoplasm termed stress granules (SGs). Our results indicated that USUV infection evades cellular stress response impairing eIF2α phosphorylation and SGs assembly induced by treatment with the HRI activator ArsNa. This protective effect was related with oxidative stress responses in USUV-infected cells. Overall, these results provide new insights into the complex connections between the stress response and flavivirus infection in order to maintain an adequate cellular environment for viral replication. Usutu virus (USUV) infection impairs eIF2α phosphorylation and SGs assembly, in an oxidative stress related manner, as a mechanism to evade cellular stress response. Our results provide new insights into the complex connections between the stress response and USUV infection to maintain a better cellular environment for viral replication.
Collapse
|
42
|
Zanella MC, Cordey S, Laubscher F, Docquier M, Vieille G, Van Delden C, Braunersreuther V, Ta MK, Lobrinus JA, Masouridi-Levrat S, Chalandon Y, Kaiser L, Vu DL. Unmasking viral sequences by metagenomic next-generation sequencing in adult human blood samples during steroid-refractory/dependent graft-versus-host disease. MICROBIOME 2021; 9:28. [PMID: 33487167 PMCID: PMC7831233 DOI: 10.1186/s40168-020-00953-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Viral infections are common complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients with steroid-refractory/dependent graft-versus-host disease (GvHD) are highly immunosuppressed and are more vulnerable to infections with weakly pathogenic or commensal viruses. Here, twenty-five adult allo-HSCT recipients from 2016 to 2019 with acute or chronic steroid-refractory/dependent GvHD were enrolled in a prospective cohort at Geneva University Hospitals. We performed metagenomics next-generation sequencing (mNGS) analysis using a validated pipeline and de novo analysis on pooled routine plasma samples collected throughout the period of intensive steroid treatment or second-line GvHD therapy to identify weakly pathogenic, commensal, and unexpected viruses. RESULTS Median duration of intensive immunosuppression was 5.1 months (IQR 5.5). GvHD-related mortality rate was 36%. mNGS analysis detected viral nucleotide sequences in 24/25 patients. Sequences of ≥ 3 distinct viruses were detected in 16/25 patients; Anelloviridae (24/25) and human pegivirus-1 (9/25) were the most prevalent. In 7 patients with fatal outcomes, viral sequences not assessed by routine investigations were identified with mNGS and confirmed by RT-PCR. These cases included Usutu virus (1), rubella virus (1 vaccine strain and 1 wild-type), novel human astrovirus (HAstV) MLB2 (1), classic HAstV (1), human polyomavirus 6 and 7 (2), cutavirus (1), and bufavirus (1). CONCLUSIONS Clinically unrecognized viral infections were identified in 28% of highly immunocompromised allo-HSCT recipients with steroid-refractory/dependent GvHD in consecutive samples. These identified viruses have all been previously described in humans, but have poorly understood clinical significance. Rubella virus identification raises the possibility of re-emergence from past infections or vaccinations, or re-infection. Video abstract.
Collapse
Affiliation(s)
- M C Zanella
- Division of Infectious Diseases, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland.
| | - S Cordey
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - F Laubscher
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - M Docquier
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - G Vieille
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
| | - C Van Delden
- Division of Infectious Diseases, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - V Braunersreuther
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Mc Kee Ta
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - J A Lobrinus
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - S Masouridi-Levrat
- University of Geneva Medical School, Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Y Chalandon
- University of Geneva Medical School, Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - L Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva, Switzerland
| | - D L Vu
- Division of Infectious Diseases, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211, 14, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
43
|
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, Cadar D, Savini G, Teodori L, Monaco F, Schmidt-Chanasit J, Saiz JC, Gonzales G, Lecollinet S, Beck C, Gosselet F, Van de Perre P, Foulongne V, Salinas S, Simonin Y. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation 2021; 18:11. [PMID: 33407600 PMCID: PMC7789689 DOI: 10.1186/s12974-020-02060-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Orianne Constant
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Marie France Martin
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Lina Lapeyre
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Liana Teodori
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Federica Monaco
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148, Hamburg, Germany
| | | | - Gaëlle Gonzales
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Cécile Beck
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (BBB Lab), University of Artois, UR2465, F-62300, Lens, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France.
| |
Collapse
|
44
|
Leung C. A lesson learnt from the emergence of Zika virus: What flaviviruses can trigger Guillain-Barré syndrome? J Med Virol 2020; 92:2938-2945. [PMID: 32077499 DOI: 10.1002/jmv.25717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
Abstract
While Zika virus outbreaks raised the concern about rare viral infections in human, attention should also be paid to other Guillain-Barré syndrome (GBS) inducing viruses. This study aims to search for other flaviviruses likely to be associated with GBS. Amino acid (aa) sequence matching analysis was conducted to identify viruses molecularly similar to the Zika virus and human GBS-related proteins. A systematic review of clinical literature was performed to summarize the clinical findings of the GBS-associated flaviviruses identified in the aa sequence matching analysis. It was found that more than 10 pentapeptides were shared between 9 flaviviruses, Zika virus, and human GBS-related proteins. Twenty-six articles totaling 42 clinical cases were eligible for inclusion in the systematic review concerning the nine flaviviruses identified. While some patients showed signs of encephalitis, 5 out of 42 cases demonstrated typical GBS symptoms. Public health professionals should be aware of other GBS-associated flaviviruses and GBS cases with mild symptoms.
Collapse
Affiliation(s)
- Char Leung
- Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
45
|
Constant O, Bollore K, Clé M, Barthelemy J, Foulongne V, Chenet B, Gomis D, Virolle L, Gutierrez S, Desmetz C, Moares RA, Beck C, Lecollinet S, Salinas S, Simonin Y. Evidence of Exposure to USUV and WNV in Zoo Animals in France. Pathogens 2020; 9:pathogens9121005. [PMID: 33266071 PMCID: PMC7760666 DOI: 10.3390/pathogens9121005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are zoonotic arboviruses. These flaviviruses are mainly maintained in the environment through an enzootic cycle involving mosquitoes and birds. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Nevertheless, there is little data regarding the involvement of other mammals in the epidemiology of these arboviruses. In this study, we performed a serosurvey to assess exposure to these viruses in captive birds and mammals in a zoo situated in the south of France, an area described for the circulation of these two viruses. A total of 411 samples comprising of 70 species were collected over 16 years from 2003 to 2019. The samples were first tested by a competitive enzyme-linked immunosorbent assay. The positive sera were then tested using virus-specific microneutralization tests against USUV and WNV. USUV seroprevalence in birds was 10 times higher than that of WNV (14.59% versus 1.46%, respectively). Among birds, greater rhea (Rhea Americana) and common peafowl (Pavo cristatus) exhibited the highest USUV seroprevalence. Infections occurred mainly between 2016-2018 corresponding to a period of high circulation of these viruses in Europe. In mammalian species, antibodies against WNV were detected in one dama gazelle (Nanger dama) whereas serological evidence of USUV infection was observed in several Canidae, especially in African wild dogs (Lycaon pictus). Our study helps to better understand the exposure of captive species to WNV and USUV and to identify potential host species to include in surveillance programs in zoos.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Karine Bollore
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Marion Clé
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Baptiste Chenet
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - David Gomis
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - Laurie Virolle
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | | | - Caroline Desmetz
- bBioCommunication en CardioMétabolique (BC2M), Montpellier University, 34000 Montpellier, France;
| | - Rayane Amaral Moares
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
- Correspondence: ; Tel.: +33-(0)4-3435-9114
| |
Collapse
|
46
|
Kuchinsky SC, Hawks SA, Mossel EC, Coutermarsh-Ott S, Duggal NK. Differential pathogenesis of Usutu virus isolates in mice. PLoS Negl Trop Dis 2020; 14:e0008765. [PMID: 33044987 PMCID: PMC7580916 DOI: 10.1371/journal.pntd.0008765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/22/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Usutu virus (USUV; Flavivirus), a close phylogenetic and ecological relative of West Nile virus, is a zoonotic virus that can cause neuroinvasive disease in humans. USUV is maintained in an enzootic cycle between Culex mosquitoes and birds. Since the first isolation in 1959 in South Africa, USUV has spread throughout Africa and Europe. Reported human cases have increased over the last few decades, primarily in Europe, with symptoms ranging from mild febrile illness to severe neurological effects. In this study, we investigated whether USUV has become more pathogenic during emergence in Europe. Interferon α/β receptor knockout (Ifnar1-/-) mice were inoculated with recent USUV isolates from Africa and Europe, as well as the historic 1959 South African strain. The three tested African strains and one European strain from Spain caused 100% mortality in inoculated mice, with similar survival times and histopathology in tissues. Unexpectedly, a European strain from the Netherlands caused only 12% mortality and significantly less histopathology in tissues from mice compared to mice inoculated with the other strains. Viremia was highest in mice inoculated with the recent African strains and lowest in mice inoculated with the Netherlands strain. Based on phylogenetics, the USUV isolates from Spain and the Netherlands were derived from separate introductions into Europe, suggesting that disease outcomes may differ for USUV strains circulating in Europe. These results also suggest that while more human USUV disease cases have been reported in Europe recently, circulating African USUV strains are still a potential major health concern.
Collapse
Affiliation(s)
- Sarah C. Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Seth A. Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Eric C. Mossel
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
- * E-mail: (SCO); (NKD)
| | - Nisha K. Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
- * E-mail: (SCO); (NKD)
| |
Collapse
|
47
|
Josephine Schoenenwald AK, Pletzer M, Skern T. Structural and antigenic investigation of Usutu virus envelope protein domain III. Virology 2020; 551:46-57. [PMID: 33011522 DOI: 10.1016/j.virol.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) has recently emerged in birds and humans in Europe. Symptoms of a USUV infection resemble those of West Nile virus (WNV); further, the close antigenic relationship of domain III (DIII) of the USUV and WNV envelope (E) proteins has prevented the development of a reliable serological test to distinguish USUV from WNV. To begin to address this deficiency, we identified ten different sequence groups of DIII from 253 complete and 80 partial USUV genome sequences. We solved the DIII structures of four groups, including that of the outlying CAR-1969 strain, which shows an atypical DIII structure. Structural comparisons of the USUV DIII groups and the DIII of WNV bound to the neutralizing antibody E16 revealed why the E16 failed to neutralize all USUV strains tested except for USUV CAR-1969. The analyses allowed predictions to be made to engineer an antibody specific for USUV CAR-1969.
Collapse
Affiliation(s)
| | - Marina Pletzer
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Tim Skern
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
48
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|
49
|
Schoenenwald AKJ, Gwee CP, Stiasny K, Hermann M, Vasudevan SG, Skern T. Development and characterization of specific anti-Usutu virus chicken-derived single chain variable fragment antibodies. Protein Sci 2020; 29:2175-2188. [PMID: 32829514 PMCID: PMC7586906 DOI: 10.1002/pro.3937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Usutu virus belongs to the Japanese encephalitis serogroup within the Flaviviridae family. Mammals may become incidental hosts after the bite of an infected mosquito while birds act as the main reservoir. Human cases have become more common recently and elicit various outcomes ranging from asymptomatic to severe illness including encephalitis. Problematically, antisera against Usutu virus cross-react with other flaviviruses such as the co-circulating West Nile virus. As an approach to generate Usutu virus-specific antibodies, we immunized chickens with purified Usutu virus envelope protein domain III, isolated the spleen mRNA and generated an scFv phage display library. The most potent binders for Usutu virus domain III were selected via biopanning and their affinity to domain III was examined using SPR. Four scFvs bound the domain III of Usutu virus in the nanomolar region; two bound the protein over 40 times more strongly than West Nile virus domain III. We further characterized these scFv antibodies for suitability in standard laboratory tests such as western blots, ELISA, and neutralization tests. Four specific and one cross-reactive antibody performed well in western blots with domain III and the full-length envelope protein of Usutu virus and West Nile virus. All antibodies bound in virus ELISA assays to Usutu virus strain Vienna-2001. However, none of the antibodies neutralized either Usutu virus or West Nile virus. These antibody candidates could be crucial in future diagnostic tests to distinguish Usutu virus from other flaviviruses and might even offer virus neutralization after a conversion to Fab or IgG.
Collapse
Affiliation(s)
| | - Chin Piaw Gwee
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| | - Marcela Hermann
- Max Perutz LabsMedical University of Vienna, Vienna BiocenterViennaAustria
| | - Subhash G. Vasudevan
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore
- Department of Microbiology and ImmunologyNational University of SingaporeSingapore
- Institute for GlycomicsGriffith University, Gold Coast CampusQueenslandAustralia
| | - Tim Skern
- Max Perutz LabsMedical University of Vienna, Vienna BiocenterViennaAustria
| |
Collapse
|
50
|
Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, Klobucar A, Mrzljak A, Ilic M, Bogdanic M, Benvin I, Santini M, Capak K, Monaco F, Listes E, Savini G. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:699. [PMID: 32858963 PMCID: PMC7560012 DOI: 10.3390/pathogens9090699] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental ("dead-end") hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions ("One Health" concept) should be conducted for monitoring and prevention of this emerging arboviral infection.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, 21000 Novi Sad, Serbia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia;
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Iva Benvin
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Marija Santini
- Department for Intensive Care Medicine and Neuroinfectology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Krunoslav Capak
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, 21000 Split, Croatia;
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| |
Collapse
|