1
|
Mirzaee M, Hosseini SM, Farahmand B, Fotouhi F, Bahramali G. A novel multi-epitope-based peptide recombinant influenza A vaccine prototype utilizing neuraminidase and hemagglutinin surface proteins: From in silico to preliminary study. Comput Biol Chem 2025; 117:108411. [PMID: 40058305 DOI: 10.1016/j.compbiolchem.2025.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/22/2025]
Abstract
Neuraminidase and hemagglutinin serve as the crucial surface proteins of influenza viruses. Hemagglutinin, as a variable surface protein, is indispensable for vaccine development. Therefore, Neuraminidase must not be overlooked in the formulation of the recombinant vaccine prototype, which may serve as a candidate for designing a multi-epitope recombinant vaccine using immunoinformatics. Our study involves immunoinformatic screening and analysis to develop a recombinant multi-epitope vaccine prototype comprising immunodominant and conserved epitopes from influenza hemagglutinin and neuraminidase. Predicted B-cell and T-cell epitopes target a wide allele population. A 199-amino acid construct integrates MHCI1 and MHCII for both mouse and human hosts, connected by rigid and flexible linkers. Molecular docking findings suggest that this multi-epitope structure could activate TLR3,2 TLR7, and TLR8, thereby prompting protective immune responses. B-cell epitopes mediate adaptive immune responses by facilitating antigen recognition and memory formation Furthermore, the designed construct underwent in silico cloning of the vaccine prototype candidate in pET21a as a prokaryotic expression vector, followed by evaluation and exploration. It underwent characterization for physicochemical attributes, allergenicity, toxicity, and antigenicity. Validation through dynamic simulation confirms the stability of the construct. This pioneering immunoinformatic study proposes the potential of a recombinant protein vaccine prototype centered around neuraminidase and hemagglutinin immunodominant epitopes to elicit immune responses against a broad spectrum of viruses. Additionally, this vaccine prototype has been evaluated through both in silico and in vitro studies.
Collapse
Affiliation(s)
- Mina Mirzaee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, University of Shahid Beheshti, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, University of Shahid Beheshti, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Fotouhi
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Meles DK, Khairullah AR, Rimayanti R, Mustofa I, Wurlina W, Utama S, Lestari TD, Mulyati S, Ahmad RZ, Moses IB, Wibowo S, Kusala MKJ, Wardhani BWK, Fauziah I, Kurniasih DAA, Anggraini L, Ekawasti F, Akintunde AO. The global burden of swine influenza and its mitigation. Open Vet J 2025; 15:1866-1879. [PMID: 40557091 PMCID: PMC12184450 DOI: 10.5455/ovj.2025.v15.i5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/25/2025] [Accepted: 04/20/2025] [Indexed: 06/28/2025] Open
Abstract
Swine influenza, often known as swine flu, is a respiratory disease caused by type A influenza virus (IAV) called swine influenza virus (SIV). There are currently multiple subtypes of IAV in pigs, including H1N1, H1N2, and H3N2. While the other subtypes of IAV were only detected in pigs, the H1N1 strain was isolated from infected people. The process of SIV infection is similar to that of other respiratory viral infections: the virus enters the body through aerosol, and the infection spreads quickly to the nasal cavity and epithelium of major airways. Immune responses such as innate, mucosal, and systemic immunity (both humoral and cellular immunity) are triggered by IAV infection. SIVs, like the 2009 H1N1 pandemic strain, can be easily transmitted from pigs to humans, thereby causing significant public health concerns. People who contract new swine influenza infections have bexperienceiety of symptoms that resemble those of seasonal influenza. Pandemics like the 2009 H1N1 pandemic have substantial economic impacts due to the costs associated with prevention, treatment, and hospitalization. The 2009 H1N1 pandemic, a new strain of the H1N1 virus, spread rapidly to over 200 countries, causing an estimated 284,400 deaths worldwide, according to the World Health Organization. The primary symptoms are fever, chills, headache, runny nose, body aches, joint pain or myalgia, cough, sore throat, and exhaustion. The hemagglutinin sequence of SIVs is the primary basis for the development of polymerase chain reaction tests. In mammals, influenza viruses are spread by direct or indirect contact with nasal secretions, as well as by droplets and aerosols released during coughing and sneezing. Swine influenza most commonly attacks children aged 5 years and over and teenagers. This illness is treated with antibiotics, which help prevent bacterial pneumonia and other secondary illnesses in calves weakened by influenza. There is now an injectable vaccine for influenza A. Wholistic preventive approach and appropriate biosafety measures are important strategies for preventing the occurrence of viruses.
Collapse
Affiliation(s)
- Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Lili Anggraini
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Fitrine Ekawasti
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan-Remo, Nigeria
| |
Collapse
|
3
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Zeng DD, Cai YR, Zhang S, Yan F, Jiang T, Li J. Machine learning methods for predicting human-adaptive influenza A virus reassortment based on intersegment constraint. Front Microbiol 2025; 16:1546536. [PMID: 40190733 PMCID: PMC11970406 DOI: 10.3389/fmicb.2025.1546536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction It is not clear about mechanisms underlining the inter-segment reassortment of Influenza A viruses (IAVs).We analyzed the viral nucleotide composition (NC) in coding sequences,examined the intersegment NC correlation, and predicted the IAV reassortment using machine learning (ML) approaches based on viral NC features. Methods Unsupervised ML methods were used to examine the NC difference between human-adapted and zoonotic IAVs. Supervised ML models of random forest classifier (rfc) and multiple-layer preceptor (mlp) were developed to predict the human adaption to IAVs. Results Our results demonstrated that the frequencies of thymine, cytosine, adenine,and guanine (t, c, a, and g), as well as the content of gc/at were consistently high or low for the segments of PB2, PB1, PA, NP, M1, and NS1 (ribonucleoprotein plus [RNPplus]), between mammalian and avian IAVs or between influenza B viruses (IBVs) and IAVs.RNPplus NC negatively correlated with the NC for HA, NA, and M1 (envelope protein plus [EPplus]). The human-adapted NC accurately discriminated between human IAVs and avian IAVs. A total of 221,184 simulated IAVs with pd09H1N1 EPplus and with RNPplus from other IAV subtypes indicated a high adaption of the RNPplus, from H6N6, H13N2, and H13N8 and other IAVs. Discussion In summary, there is a distinct human adaption-specific genomic NC between human IAVs and avian IAVs. The intersegment NC correlation constrains segment reassortment. This study presents a novel strategy for predicting IAV reassortment based on viral genetic compatibility.
Collapse
Affiliation(s)
- Dan-Dan Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Fang Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Rowe T, Fletcher A, Lange M, Hatta Y, Jasso G, Wentworth DE, Ross TM. Delay of innate immune responses following influenza B virus infection affects the development of a robust antibody response in ferrets. mBio 2025; 16:e0236124. [PMID: 39772665 PMCID: PMC11796412 DOI: 10.1128/mbio.02361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Due to its natural influenza susceptibility, clinical signs, transmission, and similar sialic acid residue distribution, the ferret is the primary animal model for human influenza research. Antibodies generated following infection of ferrets with human influenza viruses are used in surveillance to detect antigenic drift and cross-reactivity with vaccine viruses and circulating strains. Inoculation of ferrets, with over 1,500 human clinical influenza isolates (1998-2019) resulted in lower antibody responses (HI <1:160) to 86% (387 out of 448) influenza B viruses (IBVs) compared to 2.7% (30 out of 1,094) influenza A viruses (IAVs). Here, we show that the immune responses in ferrets inoculated with IBV were delayed and reduced compared to IAV. Innate gene expression in the upper respiratory tract and blood indicated that IAV generated a strong inflammatory response, including an early activation of the interferon (IFN), whereas IBV elicited a delayed and reduced response. Serum levels of cytokines and IFNs were all much higher following IAV infection than IBV infection. Pro-inflammatory, IFN, TH1/TH2, and T-effector proteins were significantly higher in sera of IAV-infected than IBV-infected ferrets over 28 days following the challenge. Serum levels of Type-I/II/III IFNs were detected following IAV infection throughout this period, whereas Type-III IFN was only late for IBV. An early increase in IFN-lambda corresponded to gene expression following IAV infection. Reduced innate immune responses following IBV infection reflected the subsequent delayed and reduced serum antibodies. These findings may help in understanding the antibody responses in humans following influenza vaccination or infection and consideration of potential addition of innate immunomodulators to overcome low responses. IMPORTANCE The ferret is the primary animal model for human influenza research. Using a ferret model, we studied the differences in both innate and adaptive immune responses following infection with influenza A and B viruses (IAV and IBV). Antibodies generated following infection of ferrets is used for surveillance assays to detect antigenic drift and cross-reactivity with vaccine viruses and circulating influenza strains. IAV infection of ferrets to generate these reagents resulted in a strong antibody response, but IBV infection generated weak antibody responses. In this study using influenza-infected ferrets, we found that IAV resulted in an early activation of the interferon (IFN) and pro-inflammatory response, whereas IBV showed a delay and reduction in these responses. Serum levels of IFNs and other cytokines or chemokines were much higher in ferrets following IAV infection. These reduced innate responses were reflected the subsequent delayed and reduced antibody responses to IBV in the sera. These findings may help in understanding low antibody responses in humans following influenza B vaccination and infection and may warrant the use of innate immunomodulators to overcome these weak responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Lange
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yasuko Hatta
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gabriela Jasso
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ted M. Ross
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| |
Collapse
|
6
|
Chen H, Li Y, Yuan L, Liu F, Sun Q, Luo Q, Lei Y, Hou Y, Li J, Cai L, Tang S. Age-related immune response disparities between adults and children with severe COVID-19: a case-control study in China. Front Microbiol 2025; 16:1525051. [PMID: 39967737 PMCID: PMC11832681 DOI: 10.3389/fmicb.2025.1525051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Elucidation of immune response differences is critical for uncovering underlying mechanisms and developing potential intervention measures among adults and children with COVID-19. Methods In this retrospective study, we analyzed serum biochemical markers and cytokine profiles among adults and children with COVID-19 in the First People's Hospital of Chenzhou in Hunan, China from 1 December 2022 to 13 February 2023. A case-control study was conducted using propensity score matching (PSM) to mitigate possible confounding factors. Results The significant differences observed included lymphocyte exhaustion, an increased neutrophil-to-lymphocyte (NEU/LYM) ratio, high levels of C-reactive protein (CRP), and a cytokine storm, characterized by high levels of Th1 proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, IL-8, interferon type I (IFN-γ), and tumor necrosis factor (TNF-α) in the lung among severe adult COVID-19 patients. Additionally, systemic immune responses were observed in children with COVID-19. Conclusion Significant differences in immune responses between adults and children with COVID-19 highlight the different mechanisms and potential intervention measures of COVID-19.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yuan Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fen Liu
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Qian Sun
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China
| | - Qingkai Luo
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yefei Lei
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Yinglan Hou
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Jiayan Li
- Department of Clinical Microbiology Laboratory, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Liang Cai
- Hunan Provincial Center for Disease Control and Prevention, Hunan, China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhu Y, Wei L, Zwygart ACA, Gaínza P, Khac QO, Olgiati F, Kurum A, Tang L, Correia B, Tapparel C, Stellacci F. A Synthetic Multivalent Lipopeptide Derived from Pam3CSK4 with Irreversible Influenza Inhibition and Immuno-Stimulating Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307709. [PMID: 38438885 DOI: 10.1002/smll.202307709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.
Collapse
Affiliation(s)
- Yong Zhu
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Lixia Wei
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Arnaud Charles-Antoine Zwygart
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Pablo Gaínza
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Quy Ong Khac
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Francesca Olgiati
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Armand Kurum
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Li Tang
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Bruno Correia
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
8
|
Hill BD, Zak AJ, Raja S, Bugada LF, Rizvi SM, Roslan SB, Nguyen HN, Chen J, Jiang H, Ono A, Goldstein DR, Wen F. iGATE analysis improves the interpretability of single-cell immune landscape of influenza infection. JCI Insight 2024; 9:e172140. [PMID: 38814732 PMCID: PMC11383363 DOI: 10.1172/jci.insight.172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Influenza poses a persistent health burden worldwide. To design equitable vaccines effective across all demographics, it is essential to better understand how host factors such as genetic background and aging affect the single-cell immune landscape of influenza infection. Cytometry by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its large, high-dimensional data remains difficult. We have developed a new analytical approach, in silico gating annotating training elucidating (iGATE), based on probabilistic support vector machine classification. By rapidly and accurately "gating" tens of millions of cells in silico into user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over the course of influenza infection. Applying iGATE to study effects of host genetic background, we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, we demonstrate that the most prominent effect of aging is a defective T cell response, reducing survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited differential influenza infection susceptibility and replication permissiveness in vivo, but neither property varied with host genotype or aging. The software is available at https://github.com/UmichWenLab/iGATE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Judy Chen
- Program in Immunology
- Department of Internal Medicine
| | | | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Fei Wen
- Department of Chemical Engineering
| |
Collapse
|
9
|
Zou Y, Sun X, Wang Y, Wang Y, Ye X, Tu J, Yu R, Huang P. Integrating single-cell RNA sequencing data to genome-wide association analysis data identifies significant cell types in influenza A virus infection and COVID-19. Brief Funct Genomics 2024; 23:110-117. [PMID: 37340787 DOI: 10.1093/bfgp/elad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xifang Sun
- Department of Mathematics, School of Science, Xi'an Shiyou University, Xi'an, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Yidi Wang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangyu Ye
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junlan Tu
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rongbin Yu
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Zhang X, Ross TM. Anti-neuraminidase immunity in the combat against influenza. Expert Rev Vaccines 2024; 23:474-484. [PMID: 38632930 PMCID: PMC11157429 DOI: 10.1080/14760584.2024.2343689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus infection in both human and animal models. The aim of this review is to better understand the mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based influenza vaccines or enhancing immune responses against NA for current influenza vaccines. AREAS COVERED In this review, the structure of influenza neuraminidase, the contribution of anti-NA immunity to protection, as well as the efforts and challenges of targeting the immune responses to NA were discussed. We also listed some of the newly discovered anti-NA monoclonal antibodies and discussed their contribution in therapeutic as well as the antigen design of a broadly protective NA vaccine. EXPERT OPINION Targeting the immune response to both HA and NA may be critical for achieving the optimal protection since there are different mechanisms of HA and NA elicited protective immunity. Monoclonal antibodies (mAbs) that target the conserved protective lateral face or catalytic sites are effective therapeutics. The epitope discovery using monoclonal antibodies may benefit NA-based vaccine elicited broadly reactive antibody responses. Therefore, the potential for a vaccine that elicits cross-reactive antibodies against neuraminidase is a high priority for next-generation influenza vaccines.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Mediation and instrumental variable analyses for vaccine-induced antibody titer against influenza B. Vaccine 2023; 41:2589-2595. [PMID: 36925423 DOI: 10.1016/j.vaccine.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE Immune correlate analyses for vaccine trials have been applied to investigate associations of vaccine efficacy and surrogate markers such as vaccine-induced antibodies. However, the role of antibody as a surrogate marker in predicting the outcome can vary by time, and surrogate-outcome confounding may have resulted in bias even in randomized trials. We provide a framework for surrogate marker assessment to address the aforementioned issues. STUDY DESIGN AND SETTING We reanalyzed the vaccine randomized trial for influenza B. We conducted a mediation analysis that enables estimation of vaccine efficacy, mediation effects and proportion of mediation on disease probabilities at various follow-up times. We proposed instrumental variable (IV) analyses with randomized vaccination as an IV accounting for potential unmeasured confounding. RESULTS The mediation effect of vaccine efficacy by hemagglutination inhibition (HAI) titer was significantly protective at 181 days after vaccination: 63.2% [95% confidence interval, (CI) = (39.9%, 82.0%)], and HAI titer explained 61.1% [95% CI = (36.7%, 96.2%)] of the protective effect of vaccination. CONCLUSIONS Most of vaccine efficacy is mediated by HAI titer, particularly in children 10 years and older. Our contribution is to provide causal analytics for the role of surrogate marker with weaker assumptions regarding surrogate-disease causation.
Collapse
|
12
|
Yayla BCC, Aykac K, Boluk O, Fidanci I, Tasar MA, Pamuk U, Karakoc AE, Karakaya J, Ozsurekci Y. The comparison of COVID-19 vs seasonal influenza in children. Pediatr Int 2023; 65:e15684. [PMID: 38037544 DOI: 10.1111/ped.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Influenza in children has been well described, whereas there has been a paucity of pediatric data regarding COVID-19. It is crucial for clinicians to differentiate cases of COVID-19 from cases of influenza because of the upcoming influenza season in the new pandemic era. METHODS This retrospective study included pediatric patients who were diagnosed with laboratory-confirmed COVID-19 between March and September 2020, or seasonal influenza between October 2019 and March 2020. RESULTS A total of 315 children were included in this study; 151 were diagnosed with influenza and 164 had confirmed COVID-19. The median age of patients with COVID-19 was 10 years (interquartile range [IQR]: 3-15 years), whereas the median age of patients with influenza was 4 years (IQR: 1-6 years) (p = 0.001). In the COVID-19 group, 6.3% of patients had underlying diseases, the most frequent being neurological conditions (3%). In the influenza group, 20.9% of patients had an underlying disease, the most frequent being asthma (14.5%). Fever (odds ratio [OR]: 20.476; 95% confidence interval [CI]: 2.438-171.995; p = 0.005), dyspnea/tachypnea (OR 13.950; 95% CI: 2.607-74.634; p = 0.002), and increased C-reactive protein (CRP) (OR: 7.650; 95% CI: 2.094-27.955; p = 0.002) were main predictors of influenza diagnosis in comparison to COVID-19. Lymphopenia was detected in 43.2% of patients with influenza and 19.9% of patients with COVID-19 (p = 0.001). CONCLUSIONS The accurate differentiation between "influenza or COVID-19" seems possible by evaluating a combination of factors including cough, fever, vomiting, leucopenia, lymphopenia, pneumonia, in pediatric patients with high CRP as well as age.
Collapse
Affiliation(s)
- Burcu Ceylan Cura Yayla
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Kubra Aykac
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Oguz Boluk
- Department of Pediatric Disease, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Ilknur Fidanci
- Department of Pediatric Emergency, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Medine Aysin Tasar
- Department of Pediatric Emergency, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Utku Pamuk
- Department of Pediatric Cardiology, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Ayse Esra Karakoc
- Department of Pediatric Cardiology, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Jale Karakaya
- Department of Bioistatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Lafuse WP, Wu Q, Kumar N, Saljoughian N, Sunkum S, Ahumada OS, Turner J, Rajaram MVS. Psychological stress creates an immune suppressive environment in the lung that increases susceptibility of aged mice to Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:990402. [PMID: 36189368 PMCID: PMC9523253 DOI: 10.3389/fcimb.2022.990402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
Age is a major risk factor for chronic infections, including tuberculosis (TB). Elderly TB patients also suffer from elevated levels of psychological stress. It is not clear how psychological stress impacts immune response to Mycobacterium tuberculosis (M.tb). In this study, we used social disruption stress (SDR) to investigate effects of psychological stress in young and old mice. Unexpectedly, we found that SDR suppresses lung inflammation in old mice as evidenced by lower pro-inflammatory cytokine levels in bronchial lavage fluid and decreased cytokine mRNA expression by alveolar macrophages. To investigate effects of stress on M.tb infection, mice were subjected to SDR and then infected with M.tb. As previously reported, old mice were better at controlling infection at 30 days than young mice. This control was transient as CFUs at 60 days were higher in old control mice compared to young mice. Consistently, SDR significantly increased M.tb growth at 60 days in old mice compared to young mice. In addition, SDR in old mice resulted in accumulation of IL-10 mRNA and decreased IFN-γ mRNA at 60 days. Also, confocal microscopy of lung sections from old SDR mice showed increased number of CD4 T cells which express LAG3 and CD49b, markers of IL-10 secreting regulatory T cells. Further, we also demonstrated that CD4 T cells from old SDR mice express IL-10. Thus, we conclude that psychological stress in old mice prior to infection, increases differentiation of IL-10 secreting T cells, which over time results in loss of control of the infection.
Collapse
Affiliation(s)
- William P. Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States,*Correspondence: William P. Lafuse, ; Murugesan V. S. Rajaram,
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Shrayes Sunkum
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | | | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States,*Correspondence: William P. Lafuse, ; Murugesan V. S. Rajaram,
| |
Collapse
|
14
|
Asami T, Endo K, Matsui R, Sawa T, Tanaka Y, Saiki T, Tanba N, Haga H, Tanaka S. Long-term caloric restriction ameliorates T cell immunosenescence in mice. Mech Ageing Dev 2022; 206:111710. [PMID: 35868542 DOI: 10.1016/j.mad.2022.111710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Aging is associated with a decrease in the function of the immune system, a phenomenon known as immunosenescence, which results in reduced resistance to infection. Caloric restriction (CR) is known to prolong lifespan and to regulate immune function. However, whether and how CR affects immunosenescence remains unclear. Here, we evaluated the effect of long- and short-term CR on immunosenescence by subjecting wild-type mice to CR between 6 and 18 months of age or between 17 and 18 months of age, respectively. Compared with a normal diet or short-term CR, long-term CR induced marked or complete attenuation of age-related decreases in the frequency of spleen NK cells and NKT cells; naïve CD4+ and CD8+ T cells; and cytokine- and granzyme B-secreting T cells. In contrast, both long- and short-term CR significantly suppressed age-related upregulation of the T cell exhaustion markers PD-1, Tim-3, and KLRG1, as well as the transcription factors NR4A1 and TOX, which regulate the expression of genes associated with the T cell exhaustion phenotype. These results suggest that CR might suppress age-associated immunosenescence by regulating the expression of transcription factors and target genes that control T cell exhaustion.
Collapse
Affiliation(s)
- Takuya Asami
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Katsunori Endo
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Rina Matsui
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Toko Sawa
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Yuna Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Takeru Saiki
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Naotaka Tanba
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Hadsuki Haga
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Sachi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| |
Collapse
|
15
|
Whitlock F, Murcia PR, Newton JR. A Review on Equine Influenza from a Human Influenza Perspective. Viruses 2022; 14:v14061312. [PMID: 35746783 PMCID: PMC9229935 DOI: 10.3390/v14061312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) have a main natural reservoir in wild birds. IAVs are highly contagious, continually evolve, and have a wide host range that includes various mammalian species including horses, pigs, and humans. Furthering our understanding of host-pathogen interactions and cross-species transmissions is therefore essential. This review focuses on what is known regarding equine influenza virus (EIV) virology, pathogenesis, immune responses, clinical aspects, epidemiology (including factors contributing to local, national, and international transmission), surveillance, and preventive measures such as vaccines. We compare EIV and human influenza viruses and discuss parallels that can be drawn between them. We highlight differences in evolutionary rates between EIV and human IAVs, their impact on antigenic drift, and vaccine strain updates. We also describe the approaches used for the control of equine influenza (EI), which originated from those used in the human field, including surveillance networks and virological analysis methods. Finally, as vaccination in both species remains the cornerstone of disease mitigation, vaccine technologies and vaccination strategies against influenza in horses and humans are compared and discussed.
Collapse
Affiliation(s)
- Fleur Whitlock
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pablo R. Murcia
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
| | - J. Richard Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| |
Collapse
|
16
|
Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W, Rossi GA. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr 2022; 10:1051079. [PMID: 36479289 PMCID: PMC9720385 DOI: 10.3389/fped.2022.1051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Respiratory tract infections (RTI) are mainly viral in origin and among the leading cause of childhood morbidity globally. Associated wheezing illness and asthma are still a clear unmet medical need. Despite the continuous progress in understanding the processes involved in their pathogenesis, preventive measures and treatments failed to demonstrate any significant disease-modifying effect. However, in the last decades it was understood that early-life exposure to microbes, may reduce the risk of infectious and allergic disorders, increasing the immune response efficacy. These results suggested that treatment with bacterial lysates (BLs) acting on gut microbiota, could promote a heterologous immunomodulation useful in the prevention of recurrent RTIs and of wheezing inception and persistence. This hypothesis has been supported by clinical and experimental studies showing the reduction of RTI frequency and severity in childhood after oral BL prophylaxis and elucidating the involved mechanisms. OM-85 is the product whose anti-viral effects have been most extensively studied in vitro, animal, and human cell studies and in translational animal infection/disease models. The results of the latter studies, describing the potential immune training-based activities of such BL, leading to the protection against respiratory viruses, will be reported. In response to human rhinovirus, influenza virus, respiratory syncytial virus and severe acute respiratory coronavirus-2, OM-85 was effective in modulating the structure and the functions of a large numbers of airways epithelial and immune cells, when administered both orally and intranasally.
Collapse
Affiliation(s)
| | - Ledit Ardusso
- Allergy and Immunology Department, Rosario School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Oliviero Sacco
- Department of Pediatrics, Pulmonary and Allergy Disease Unit, G. Gaslini University Hospital, Genoa, Italy
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, The Medical University Children's Hospital, Warszawa, Poland
| | - Giovanni A Rossi
- Department of Pediatrics, Unit of Pediatrics Pulmonology and Respiratory Endoscopy, G. Gaslini Hospital, Genoa, Italy
| |
Collapse
|
17
|
Differential Analysis and Putative Roles of Genes, Cytokines and Apoptotic Proteins in Blood Samples of Patients with Respiratory Viral Infections: A Single Center Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insights into the molecular pathogenesis of respiratory viral infections were investigated using serum and peripheral blood from patients with clinical syndromes. Signatures of expression of cytokines, genes and apoptotic proteins that discriminate symptomatic individuals from healthy individuals were determined among 21 patients. In symptomatic patients, significant upregulation of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12, IL-15, TNF-a and IFN-g (P<0.05) was noted, while IL-10 was significantly downregulated (P<0.05). This is accompanied by either up or down-regulation of various pro-apoptotic and anti-apoptotic markers, suggesting a protective role of immune responses against viral infection and the capacity of viruses to subvert host cell apoptosis. Gene expression analysis for both T and B cells were categorized according to their functional status of activation, proliferation, and differentiation. Of note, genes SH2D1A and TCL1A were upregulated only in rhinovirus samples, while PSMB7, CD4, CD8A, HLA-DMA, HLA-DRA and CD69 were upregulated in samples of Flu A and RSV but were not significant in samples of rhinovirus as compared to healthy individuals. These results demonstrated Flu A and RSV elicit different alterations in human peripheral blood gene expression as compared to rhinovirus. Overall, despite the small number of study subjects, the current study for the first time has recognized signature genes, cytokines and proteins that are used by some respiratory viruses that may serve as candidates for rapid diagnosis as well as targets for therapeutic interventions.
Collapse
|
18
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
19
|
Gonzalez KJ, Strauch EM. Decreased vaccine protection of egg-based influenza vaccine in the elderly and nonhemagglutinin-focused immunity. J Clin Invest 2021; 131:e151732. [PMID: 34338229 DOI: 10.1172/jci151732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe influenza illness or death is a serious concern among the elderly population despite vaccination. To investigate how the adaptive immune response after vaccination varies with the patient's age, Jung et al., in a recent issue of the JCI, extensively analyzed the serum antibody response in different age groups after immunization with the egg-based influenza vaccine Fluzone. As expected, the immune response in young adults was dominated by antibodies targeting the influenza hemagglutinin (HA) protein. On the contrary, the serological repertoire of elderly donors was characterized by cross-reactive (CR) antibodies recognizing non-HA antigens. Surprisingly, a substantial fraction of these CR antibodies targeted sulfated glycans typical of egg-produced proteins, which does not provide protection against human influenza viruses. Overall, these findings are of great value in understanding suboptimal immunity after influenza vaccination and shaping future vaccine efforts that will achieve increased protection in the elderly.
Collapse
Affiliation(s)
| | - Eva M Strauch
- Institute of Bioinformatics and.,Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Jones JM, Faruqi AJ, Sullivan JK, Calabrese C, Calabrese LH. COVID-19 Outcomes in Patients Undergoing B Cell Depletion Therapy and Those with Humoral Immunodeficiency States: A Scoping Review. Pathog Immun 2021; 6:76-103. [PMID: 34056149 PMCID: PMC8150936 DOI: 10.20411/pai.v6i1.435] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of humoral immunity has been well established in reducing infection risk and facilitating viral clearance in patients with COVID-19. However, the relationship between specific antibody responses and severity of COVID-19 is less well understood. METHODS To address this question and identify gaps in knowledge, we utilized the methodology of a scoping review to interrogate risk of infection and clinical outcomes of COVID-19 in patients with iatrogenic and inborn humoral immunodeficiency states based on existing literature. RESULTS Among patients with iatrogenic B-cell depletion, particularly with agents targeting CD20, our analysis found increased risk of severe COVID-19 and death across a range of underlying disease states. Among patients with humoral inborn errors of immunity with COVID-19, our synthesis found that patients with dysregulated humoral immunity, predominantly common variable immunodeficiency (CVID), may be more susceptible to severe COVID-19 than patients with humoral immunodeficiency states due to X-linked agammaglobulinemia and other miscellaneous forms of humoral immunodeficiency. There were insufficient data to appraise the risk of COVID-19 infection in both populations of patients. CONCLUSIONS Our work identifies potentially significant predictors of COVID-19 severity in patients with humoral immunodeficiency states and highlights the need for larger studies to control for clinical and biologic confounders of disease severity.
Collapse
Affiliation(s)
- Jessica M. Jones
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Aiman J. Faruqi
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - James K. Sullivan
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Cassandra Calabrese
- Cleveland Clinic, Department of Rheumatic and Immunologic Diseases, Cleveland, Ohio
| | - Leonard H. Calabrese
- Cleveland Clinic, Department of Rheumatic and Immunologic Diseases, Cleveland, Ohio
| |
Collapse
|
21
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
22
|
Merk VM, Phan TS, Brunner T. Regulation of Tissue Immune Responses by Local Glucocorticoids at Epithelial Barriers and Their Impact on Interorgan Crosstalk. Front Immunol 2021; 12:672808. [PMID: 34012456 PMCID: PMC8127840 DOI: 10.3389/fimmu.2021.672808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
The anti-inflammatory role of extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers is of increasing interest with regard to the search for alternatives to synthetic corticosteroids in the therapy of inflammatory disorders. Despite being very effective in many situations the use of synthetic corticosteroids is often controversial, as exemplified in the treatment of influenza patients and only recently in the current COVID-19 pandemic. Exploring the regulatory capacity of locally produced GCs in balancing immune responses in barrier tissues and in pathogenic disorders that lead to symptoms in multiple organs, could provide new perspectives for drug development. Intestine, skin and lung represent the first contact zones between potentially harmful pathogens or substances and the body, and are therefore important sites of immunoregulatory mechanisms. Here, we review the role of locally produced GCs in the regulation of type 2 immune responses, like asthma, atopic dermatitis and ulcerative colitis, as well as type 1 and type 3 infectious, inflammatory and autoimmune diseases, like influenza infection, psoriasis and Crohn’s disease. In particular, we focus on the role of locally produced GCs in the interorgan communication, referred to as gut-skin axis, gut-lung axis or lung-skin axis, all of which are interconnected in the pathogenic crosstalk atopic march.
Collapse
Affiliation(s)
- Verena M Merk
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
23
|
Contribution of Pro-Inflammatory Molecules Induced by Respiratory Virus Infections to Neurological Disorders. Pharmaceuticals (Basel) 2021; 14:ph14040340. [PMID: 33917837 PMCID: PMC8068239 DOI: 10.3390/ph14040340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Neurobehavioral alterations and cognitive impairment are common phenomena that represent neuropsychiatric disorders and can be triggered by an exacerbated immune response against pathogens, brain injury, or autoimmune diseases. Pro-inflammatory molecules, such as cytokines and chemokines, are produced in the brain by resident cells, mainly by microglia and astrocytes. Brain infiltrating immune cells constitutes another source of these molecules, contributing to an impaired neurological synapse function, affecting typical neurobehavioral and cognitive performance. Currently, there is increasing evidence supporting the notion that behavioral alterations and cognitive impairment can be associated with respiratory viral infections, such as human respiratory syncytial virus, influenza, and SARS-COV-2, which are responsible for endemic, epidemic, or pandemic outbreak mainly in the winter season. This article will review the brain′s pro-inflammatory response due to infection by three highly contagious respiratory viruses that are the leading cause of acute respiratory illness, morbidity, and mobility in infants, immunocompromised and elderly population. How these respiratory viral pathogens induce increased secretion of pro-inflammatory molecules and their relationship with the alterations at a behavioral and cognitive level will be discussed.
Collapse
|
24
|
Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int J Mol Sci 2021; 22:ijms22073603. [PMID: 33808471 PMCID: PMC8036776 DOI: 10.3390/ijms22073603] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.
Collapse
|
25
|
Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, Dhakal S, Hanson J, Krakowka S, Renukaradhya GJ. Immunity and Protective Efficacy of Mannose Conjugated Chitosan-Based Influenza Nanovaccine in Maternal Antibody Positive Pigs. Front Immunol 2021; 12:584299. [PMID: 33746943 PMCID: PMC7969509 DOI: 10.3389/fimmu.2021.584299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral administration of killed/inactivated swine influenza A virus (SwIAV) vaccine in weaned piglets provides variable levels of immunity due to the presence of preexisting virus specific maternal derived antibodies (MDA). To overcome the effect of MDA on SwIAV vaccine in piglets, we developed an intranasal deliverable killed SwIAV antigen (KAg) encapsulated chitosan nanoparticles called chitosan-based NPs encapsulating KAg (CS NPs-KAg) vaccine. Further, to target the candidate vaccine to dendritic cells and macrophages which express mannose receptor, we conjugated mannose to chitosan (mCS) and formulated KAg encapsulated mCS nanoparticles called mannosylated chitosan-based NPs encapsulating KAg (mCS NPs-KAg) vaccine. In MDA-positive piglets, prime-boost intranasal inoculation of mCS NPs-KAg vaccine elicited enhanced homologous (H1N2-OH10), heterologous (H1N1-OH7), and heterosubtypic (H3N2-OH4) influenza virus-specific secretory IgA (sIgA) antibody response in nasal passage compared to CS NPs-KAg vaccinates. In vaccinated upon challenged with a heterologous SwIAV H1N1, both mCS NPs-KAg and CS NPs-KAg vaccinates augmented H1N2-OH10, H1N1-OH7, and H3N2-OH4 virus-specific sIgA antibody responses in nasal swab, lung lysate, and bronchoalveolar lavage (BAL) fluid; and IgG antibody levels in lung lysate and BAL fluid samples. Whereas, the multivalent commercial inactivated SwIAV vaccine delivered intramuscularly increased serum IgG antibody response. In mCS NPs-KAg and CS NPs-KAg vaccinates increased H1N2-OH10 but not H1N1-OH7 and H3N2-OH4-specific serum hemagglutination inhibition titers were observed. Additionally, mCS NPs-KAg vaccine increased specific recall lymphocyte proliferation and cytokines IL-4, IL-10, and IFNγ gene expression compared to CS NPs-KAg and commercial SwIAV vaccinates in tracheobronchial lymph nodes. Consistent with the immune response both mCS NPs-KAg and CS NPs-KAg vaccinates cleared the challenge H1N1-OH7 virus load in upper and lower respiratory tract more efficiently when compared to commercial vaccine. The virus clearance was associated with reduced gross lung lesions. Overall, mCS NP-KAg vaccine intranasal immunization in MDA-positive pigs induced a robust cross-reactive immunity and offered protection against influenza virus.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Juliette Hanson
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| |
Collapse
|
26
|
Paixão V, Almeida EB, Amaral JB, Roseira T, Monteiro FR, Foster R, Sperandio A, Rossi M, Amirato GR, Santos CAF, Pires RS, Leal FB, Durigon EL, Oliveira DBL, Vieira RP, Vaisberg M, Santos JMB, Bachi ALL. Elderly Subjects Supplemented with L-Glutamine Shows an Improvement of Mucosal Immunity in the Upper Airways in Response to Influenza Virus Vaccination. Vaccines (Basel) 2021; 9:107. [PMID: 33572639 PMCID: PMC7911866 DOI: 10.3390/vaccines9020107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although glutamine is able to improve the immune response, its action in the upper airway immunity against the influenza virus vaccine remains unclear. Therefore, we aimed to evaluate the L-glutamine supplementation effect on the mucosal immune/inflammatory response of elderly subjects vaccinated against the influenza virus. METHODS Saliva sampling from 83 physically active elderly volunteers were collected pre- and 30 days after influenza virus vaccination and supplementation with L-glutamine (Gln, n = 42) or placebo (PL, n = 41). RESULTS Gln group showed higher salivary levels of interleukin (IL)-17, total secretory immunoglobulin A (SIgA), and specific-SIgA post-vaccination than values found pre-vaccination and in the PL group post-vaccination. Whereas higher salivary levels of IL-6 and IL-10 were observed post-vaccination in the Gln group, IL-37 levels were lower post-vaccination in both groups than the values pre-vaccination. Tumor necrosis factor (TNF)-α levels were unchanged. Positive correlations between IL-6 and IL-10 were found in all volunteer groups pre- and post-vaccination and also between IL-17 and IL-6 or IL-10 in the Gln group post-vaccination. A negative correlation between IL-37 and IL-10 was found pre- and post-vaccination in the PL group. CONCLUSION Gln supplementation was able to modulate salivary cytokine profile and increase SIgA levels, both total and specific to the influenza virus vaccine, in physically active elderly subjects.
Collapse
Affiliation(s)
- Vitória Paixão
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Ewin B. Almeida
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Jonatas B. Amaral
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Tamaris Roseira
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
- Method Faculty of São Paulo (FAMESP), São Paulo 04046-200, Brazil;
| | - Fernanda R. Monteiro
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
- Method Faculty of São Paulo (FAMESP), São Paulo 04046-200, Brazil;
| | - Roberta Foster
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
- Method Faculty of São Paulo (FAMESP), São Paulo 04046-200, Brazil;
| | | | - Marcelo Rossi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Gislene R. Amirato
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Carlos A. F. Santos
- Department of Medicine, Geriatry, Paulista School of Medicine (EPM), São Paulo 04023-062, Brazil;
| | - Renier S. Pires
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo 04743-030, Brazil;
| | - Fabyano B. Leal
- Institute of Biomedical Science, University of São Paulo (USP), São Paulo 05508-060, Brazil; (F.B.L.); (E.L.D.); (D.B.L.O.)
| | - Edison L. Durigon
- Institute of Biomedical Science, University of São Paulo (USP), São Paulo 05508-060, Brazil; (F.B.L.); (E.L.D.); (D.B.L.O.)
- Scientific Platform Pasteur, University of São Paulo (USP), São Paulo 05508-060, Brazil
| | - Danielle B. L. Oliveira
- Institute of Biomedical Science, University of São Paulo (USP), São Paulo 05508-060, Brazil; (F.B.L.); (E.L.D.); (D.B.L.O.)
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo 12245-520, Brazil;
- Post-Graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, São Paulo 15600-000, Brazil
- Post-Graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos 11015-020, Brazil
| | - Mauro Vaisberg
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
| | - Juliana M. B. Santos
- Post-Graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos 11015-020, Brazil
| | - André L. L. Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil; (V.P.); (E.B.A.); (J.B.A.); (T.R.); (F.R.M.); (R.F.); (M.R.); (G.R.A.); (M.V.); (A.L.L.B.)
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo 04743-030, Brazil;
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo 12245-520, Brazil;
| |
Collapse
|
27
|
Kim DI, Cho YB, Lim Y, Hong SH, Hahm B, Lee SM, Kang SC, Seo YJ. Chios mastic gum inhibits influenza A virus replication and viral pathogenicity. J Gen Virol 2021; 102. [PMID: 33416468 DOI: 10.1099/jgv.0.001550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chios mastic gum (CMG), a resin of the mastic tree (Pistacia lentiscus var. chia), has been used to treat multiple disorders caused by gastrointestinal malfunctions and bacterial infections for more than 2500 years. However, little is known about CMG's antiviral activity. CMG is known to influence multiple cellular processes such as cell proliferation, differentiation and apoptosis. As virus replication is largely dependent on the host cellular metabolism, it is conceivable that CMG regulates virus infectivity. Therefore, in this study, we evaluated CMG's potential as an antiviral drug to treat influenza A virus (IAV) infection. CMG treatment dramatically reduced the cytopathogenic effect and production of RNAs, proteins and infectious particles of IAV. Interestingly, CMG interfered with the early stage of the virus life cycle after viral attachment. Importantly, the administration of CMG greatly ameliorated morbidity and mortality in IAV-infected mice. The results suggest that CMG displays a potent anti-IAV activity by blocking the early stage of viral replication. Thus, mastic gum could be exploited as a novel therapeutic agent against IAV infection.
Collapse
Affiliation(s)
- Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - So-Hee Hong
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Zhilinskaya IN, Marchenko VA, Kharchenko EP. Mimicry between proteins of human and avian influenza viruses and host immune system proteins. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Van Vo G, Bagyinszky E, Park YS, Hulme J, An SSA. SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:3-19. [PMID: 33656709 DOI: 10.1007/978-3-030-59261-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the last two decades, several members of the Coronaviridae family demonstrated epidemic potential. In late 2019, an unnamed genetic relative, later named SARS-CoV-2 (COVID-19), erupted in the highly populous neighborhoods of Wuhan, China. Unchecked, COVID-19 spread rapidly among interconnected communities and related households before containment measures could be enacted. At present, the mortality rate of COVID-19 infection worldwide is 6.6%. In order to mitigate the number of infections, restrictions or recommendations on the number of people that can gather in a given area have been employed by governments worldwide. For governments to confidently lift these restrictions as well as counter a potential secondary wave of infections, alternative medications and diagnostic strategies against COVID-19 are urgently required. This review has focused on these issues.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
| | - John Hulme
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
30
|
Tavakoli M, Shokohi T, Lass Flörl C, Hedayati MT, Hoenigl M. Immunological response to COVID-19 and its role as a predisposing factor in invasive aspergillosis. Curr Med Mycol 2020; 6:75-79. [PMID: 34195465 PMCID: PMC8226042 DOI: 10.18502/cmm.6.4.5442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022] Open
Abstract
The world is involved with a pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2. The clinical manifestations of reported COVID-19-associated pulmonary impairments range from asymptomatic infections to a pneumonia-induced acute respiratory distress syndrome that requires mechanical ventilation. Fungal superinfections complicating the clinical course remain underexplored. Angiotensin-converting enzyme 2, the receptor for COVID-19 that is mainly expressed in airway epithelia and lung parenchyma, is considered an important regulator of innate immunity. With regard to the viral-cell interaction, imbalanced immune regulation between protective and altered responses caused by the exacerbation of inflammatory responses should be considered a major contributor to secondary pulmonary aspergillosis. In addition, the complex inherited factors, age-related changes, and lifestyle may also affect immune responses. The complication and persistence of invasive aspergillosis have been well described in patients with severe influenza or COVID-19. However, there is a scarcity of information about the immunological mechanisms predisposing patients with COVID-19 to fungal co-infections. Therefore, this study was conducted to investigate the aforementioned domain.
Collapse
Affiliation(s)
- Mahin Tavakoli
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Shokohi
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Cornelia Lass Flörl
- nstitute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Taghi Hedayati
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Health, University of California San Diego, La Jolla, California, USA
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Manna S, Chowdhury T, Chakraborty R, Mandal SM. Probiotics-Derived Peptides and Their Immunomodulatory Molecules Can Play a Preventive Role Against Viral Diseases Including COVID-19. Probiotics Antimicrob Proteins 2020; 13:611-623. [PMID: 33226581 PMCID: PMC7680993 DOI: 10.1007/s12602-020-09727-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
As of recent, the pandemic episode of COVID-19, a severe acute respiratory syndrome brought about by a novel coronavirus (SARS-CoV-2) expanding the pace of mortality, has affected the disease rate profoundly. Invulnerability is the fundamental choice to prevent the ruining event of COVID-19, as the drugs and antibodies are in the phase of preliminary clinical trials. Within this brief period, a few strains of SARS-CoV-2 have been recognized by the vaccine manufacturers, which could be an incorrect guess about the strain that will end up spreading. Since the circulating SARS-CoV-2 strains continue to mutate, immunizations, if at all works, might be for a restricted time. We have not put sufficient time in research to understand the immune responses that correlate with protection as this could help refine vaccines. Here, we have summed up the adequacy of the immunomodulatory component of probiotics for the prevention against viral infections. Furthermore, an in silico data have been provided in support of the "probiotics-derived lipopeptides" role in inactivating spike (S) glycoprotein of SARS-CoV-2 and its host receptor molecule, ACE2. Among well characterized lipopeptides derived from different probiotic strains, subtilisin (Bacillus amyloliquefaciens), curvacin A (Lactobacillus curvatus), sakacin P (Lactobacillus sakei), lactococcin Gb (Lactococcus lactis) was utilized in this study to demonstrate a higher binding proclivity to S-protein of SARS-CoV-2 and human ACE2. The outcome revealed noteworthy capabilities of the lipopeptides, due to their amphiphilic nature, to bind spike protein and receptor molecule, which may act to competitively inhibit the mandatory interaction of SARS-CoV-2 with the host epithelial cell expressing ACE2 for its entry into the cell for reproduction. In the current situation, probiotic treatment alongside chemotherapy may assist in bringing about substantial improvement of the health of COVID-19 patients. At the same time, probiotics may aid towards building up the immune defenses in people to evade COVID-19.
Collapse
Affiliation(s)
- Sounik Manna
- Department of Microbiology, Midnapore College (Autonomous), Paschim Medinipur, India
| | - Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
32
|
Rahil Z, Leylek R, Schürch CM, Chen H, Bjornson-Hooper Z, Christensen SR, Gherardini PF, Bhate SS, Spitzer MH, Fragiadakis GK, Mukherjee N, Kim N, Jiang S, Yo J, Gaudilliere B, Affrime M, Bock B, Hensley SE, Idoyaga J, Aghaeepour N, Kim K, Nolan GP, McIlwain DR. Landscape of coordinated immune responses to H1N1 challenge in humans. J Clin Invest 2020; 130:5800-5816. [PMID: 33044226 PMCID: PMC7598057 DOI: 10.1172/jci137265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza is a significant cause of morbidity and mortality worldwide. Here we show changes in the abundance and activation states of more than 50 immune cell subsets in 35 individuals over 11 time points during human A/California/2009 (H1N1) virus challenge monitored using mass cytometry along with other clinical assessments. Peak change in monocyte, B cell, and T cell subset frequencies coincided with peak virus shedding, followed by marked activation of T and NK cells. Results led to the identification of CD38 as a critical regulator of plasmacytoid dendritic cell function in response to influenza virus. Machine learning using study-derived clinical parameters and single-cell data effectively classified and predicted susceptibility to infection. The coordinated immune cell dynamics defined in this study provide a framework for identifying novel correlates of protection in the evaluation of future influenza therapeutics.
Collapse
Affiliation(s)
- Zainab Rahil
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Rebecca Leylek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Christian M. Schürch
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Han Chen
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Zach Bjornson-Hooper
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Shannon R. Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Salil S. Bhate
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | | | - Gabriela K. Fragiadakis
- UCSF Data Science CoLab and UCSF Department of Medicine, UCSF, San Francisco, California, USA
| | - Nilanjan Mukherjee
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Nelson Kim
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sizun Jiang
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer Yo
- ARK Clinical Research, Long Beach, California, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kenneth Kim
- ARK Clinical Research, Long Beach, California, USA
| | - Garry P. Nolan
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - David R. McIlwain
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- WCCT Global, Cypress, California, USA
| |
Collapse
|
33
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
34
|
Young B, Sadarangani S, Haur SY, Yung CF, Barr I, Connolly J, Chen M, Wilder-Smith A. Semiannual Versus Annual Influenza Vaccination in Older Adults in the Tropics: An Observer-blind, Active-comparator-controlled, Randomized Superiority Trial. Clin Infect Dis 2020; 69:121-129. [PMID: 30277500 DOI: 10.1093/cid/ciy836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Antibody titres and vaccine effectiveness decline within 6 months after influenza vaccination in older adults. Biannual vaccination may be necessary to provide year-round protection in the tropics, where influenza circulates throughout the year. METHODS Tropical Influenza Control Strategies (TROPICS1) was a single-center, 1:1 randomized, observer-blinded, active-comparator-controlled, superiority study in 200 community-resident adults aged ≥65 years. Participants received a standard-dose trivalent inactivated influenza vaccination (IIV3) at enrollment, and either tetanus-diphtheria-pertussis vaccination or IIV3 6 months later. The primary outcome was the proportion of participants with haemagglutination-inhibition (HI) geometric mean titre (GMT) ≥1:40 1 month after the second vaccination (month 7). Secondary outcomes included GMTs to month 12, the incidence of influenza-like illness (ILI), and adverse reactions after vaccination. RESULTS At month 7, the proportion of participants with an HI tire ≥1:40 against A/H1N1 increased by 21.4% (95% confidence interval [CI] 8.6-33.4) in the semiannual vaccination group. This proportion was not significantly higher for A/H3N2 (4.3, 95% CI -1.1-10.8) or B (2.1, 95% CI -2.0-7.3). Semiannual vaccination significantly increased GMTs against A/H1N1 and A/H3N2, but not B, at month 7. Participants receiving a repeat vaccination of IIV3 reported a significantly lower incidence of ILI in the 6 months after the second vaccination (relative vaccine effectiveness 57.1%, 95% CI 0.6-81.5). The frequency of adverse events was similar after the first and second influenza vaccinations. CONCLUSIONS Semiannual influenza vaccination in older residents of tropical countries has the potential to improve serological measures of protection against infection. Alternative vaccination strategies should also be studied. CLINICAL TRIALS REGISTRATION NCT02655874.
Collapse
Affiliation(s)
- Barnaby Young
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sapna Sadarangani
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sen Yew Haur
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital
| | - Chee Fu Yung
- Infectious Disease Service, KK Women's and Children's Hospital, Singapore
| | - Ian Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne.,Department of Microbiology and Immunology, The University of Melbourne, Parkville.,Faculty of Science and Technology, Federation University Australia, Gippsland Campus, Churchill, Victoria, Australia
| | - John Connolly
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Molecular and Cellular Biology, Proteos
| | - Mark Chen
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, Singapore
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Public Health, University of Heidelberg, Germany
| |
Collapse
|
35
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
36
|
Odak I, Barros-Martins J, Bošnjak B, Stahl K, David S, Wiesner O, Busch M, Hoeper MM, Pink I, Welte T, Cornberg M, Stoll M, Goudeva L, Blasczyk R, Ganser A, Prinz I, Förster R, Koenecke C, Schultze-Florey CR. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine 2020; 57:102885. [PMID: 32650275 PMCID: PMC7338277 DOI: 10.1016/j.ebiom.2020.102885] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. METHODS 30 hospitalized COVID-19 patients and 60 age- and gender-matched healthy controls (HC) participated in this study. We used two comprehensive 11-colour flow cytometric panels conforming to Good Laboratory Practice and approved for clinical diagnostics. FINDINGS Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and γδ T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. INTERPRETATION Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Understanding T cell-responses in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control. FUNDING Funded by State of Lower Saxony grant 14-76,103-184CORONA-11/20 and German Research Foundation, Excellence Strategy - EXC2155"RESIST"-Project ID39087428, and DFG-SFB900/3-Project ID158989968, grants SFB900-B3, SFB900-B8.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Germany
| | | | | | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Germany
| | - Olaf Wiesner
- Department of Pneumology and German Centre of Lung Research (DZL), Hannover Medical School, Germany
| | - Markus Busch
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Marius M Hoeper
- Department of Pneumology and German Centre of Lung Research (DZL), Hannover Medical School, Germany
| | - Isabell Pink
- Department of Pneumology and German Centre of Lung Research (DZL), Hannover Medical School, Germany
| | - Tobias Welte
- Department of Pneumology and German Centre of Lung Research (DZL), Hannover Medical School, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Matthias Stoll
- Department of Rheumatology and Immunology, Hannover Medical School, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Christian R Schultze-Florey
- Institute of Immunology, Hannover Medical School, Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany.
| |
Collapse
|
37
|
Landreth S, Lu Y, Pandey K, Zhou Y. A Replication-Defective Influenza Virus Vaccine Confers Complete Protection against H7N9 Viral Infection in Mice. Vaccines (Basel) 2020; 8:E207. [PMID: 32370136 PMCID: PMC7349114 DOI: 10.3390/vaccines8020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Avian influenza H7N9 viruses continue to pose a great threat to public health, which is evident by their high case-fatality rates. Although H7N9 was first isolated in humans in China in 2013, to date, there is no commercial vaccine available against this particular strain. Our previous studies developed a replication-defective influenza virus through mutation of the hemagglutinin (HA) cleavage site from a trypsin-sensitive to an elastase-sensitive motif. In this study, we report the development of a reassortant mutant influenza virus derived from the human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], which is the QVT virus. The HA gene of this virus possesses three mutations at the cleavage site, Lys-Gly-Arg were mutated to Gln-Thr-Val at amino acid (aa) positions 337, 338, and 339, respectively. We report this virus to rely on elastase in vitro, possess unaltered replication abilities when elastase was provided compared to the wild type virus in vitro, and to be non-virulent and replication-defective in mice. In addition, we report this virus to induce significant levels of antibodies and IFN-γ and IL-5 secreting cells, and to protect mice against a lethal challenge of the BC15 (H7N9) virus. This protection is demonstrated through the lack of body weight loss, 100% survival rate, and the prevention of BC15 (H7N9) viral replication as well as the reduction of proinflammatory cytokines induced in the mouse lung associated with the influenza disease. Therefore, these results provide strong evidence for the use of this reassortant mutant H7N9 virus as a replication-defective virus vaccine candidate against H7N9 viruses.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yao Lu
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
| | - Kannupriya Pandey
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yan Zhou
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
38
|
To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq F, Oseghale O, Anthony D, McQualter J, Bozinovski S, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Mitochondrial Reactive Oxygen Species Contribute to Pathological Inflammation During Influenza A Virus Infection in Mice. Antioxid Redox Signal 2020; 32:929-942. [PMID: 31190565 PMCID: PMC7104903 DOI: 10.1089/ars.2019.7727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Reactive oxygen species (ROS) are highly reactive molecules generated in different subcellular sites or compartments, including endosomes via the NOX2-containing nicotinamide adenine dinucleotide phosphate oxidase during an immune response and in mitochondria during cellular respiration. However, while endosomal NOX2 oxidase promotes innate inflammation to influenza A virus (IAV) infection, the role of mitochondrial ROS (mtROS) has not been comprehensively investigated in the context of viral infections in vivo. Results: In this study, we show that pharmacological inhibition of mtROS, with intranasal delivery of MitoTEMPO, resulted in a reduction in airway/lung inflammation, neutrophil infiltration, viral titers, as well as overall morbidity and mortality in mice infected with IAV (Hkx31, H3N2). MitoTEMPO treatment also attenuated apoptotic and necrotic neutrophils and macrophages in airway and lung tissue. At an early phase of influenza infection, that is, day 3 there were significantly lower amounts of IL-1β protein in the airways, but substantially higher amounts of type I IFN-β following MitoTEMPO treatment. Importantly, blocking mtROS did not appear to alter the initiation of an adaptive immune response by lung dendritic cells, nor did it affect lung B and T cell populations that participate in humoral and cellular immunity. Innovation/Conclusion: Influenza virus infection promotes mtROS production, which drives innate immune inflammation and this exacerbates viral pathogenesis. This pathogenic cascade highlights the therapeutic potential of local mtROS antioxidant delivery to alleviate influenza virus pathology.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan R Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Felicia Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Raymond Luong
- Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Farisha Esaq
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Osezua Oseghale
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - John J O'Leary
- Department of Histopathology Trinity College Dublin, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Doug A Brooks
- Division of Health Sciences, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| |
Collapse
|
39
|
Jiang Y, Yi C, Yi Y, Jin Q, Kang AS, Li J, Kumar Sacitharan P. Adiponectin exacerbates influenza infection in elderly individuals via IL-18. Signal Transduct Target Ther 2020; 5:32. [PMID: 32296048 PMCID: PMC7118100 DOI: 10.1038/s41392-020-0141-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Youzhu Jiang
- Department of Neurology, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, #1 Zhongfu Road, Nanjing, Jiangsu Province, China
| | - Changhua Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, #1 Zhongfu Road, Nanjing, Jiangsu Province, China
- Public Health and Therapy Center of Nanjing, Nanjing, 211113, China
| | - Yongxiang Yi
- Department of General Surgery, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, #1 Zhongfu Road, Nanjing, Jiangsu Province, China
| | - Qingwen Jin
- Department of Neurology, The Sir Run Run Hospital, Nanjing Medical University, #109 Longmian Avenue, Jiangning District, Nanjing, Jiangsu Province, China
| | - Angray S Kang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Junwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
- Xi'an Jiaotong-Liverpool University, Department of Biological Sciences, #111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P.R. China.
| |
Collapse
|
40
|
Bufan B, Arsenović-Ranin N, Petrović R, Živković I, Stoiljković V, Leposavić G. Strain specificities in influence of ageing on germinal centre reaction to inactivated influenza virus antigens in mice: Sex-based differences. Exp Gerontol 2020; 133:110857. [PMID: 32006634 DOI: 10.1016/j.exger.2020.110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Considering variability in vaccine responsiveness across human populations, in respect to magnitude and quality, and importance of vaccines in the elderly, the influence of recipient genetic background on the kinetics of age-related changes in the serum IgG antibody responses to seasonal trivalent inactivated split-virus influenza bulk (TIV) was studied in BALB/c and C57BL/6 mice showing quantitative and qualitative differences in this responses in young adult ages. With ageing the total serum IgG response to influenza viruses declined, in a strain-specific manner, so the strain disparity observed in young adult mice (the greater magnitude of IgG response in BALB/c mice) disappeared in aged mice. However, the sexual dimorphisms in this response (more prominent in females of both strains) remained in aged ones. The strain-specific differences in age-related decline in the magnitude of IgG response to TIV correlated with the number of germinal centre (GC) B splenocytes. The age-related decline in GC B cell number was consistent with the decrease in the proliferation of B cells and CD4+ cells in splenocyte cultures upon restimulation with TIV. Additionally, the age-related decrease in the magnitude of IgG response correlated with the increase in follicular T regulatory (fTreg)/follicular T helper (fTh) and fTreg/GC B splenocyte ratios (reflecting decrease in fTh and GC B numbers without changes in fTreg number), and the frequency of CD4+ splenocytes producing IL-21, a key factor in balancing the B cell and fTreg cell activity. With ageing the avidity of virus influenza-specific antibody increased in females of both strains. Moreover, ageing affected IgG2a/IgG1 and IgG2c/IgG1 ratios (reflecting Th1/Th2 balance) in male BALB/c mice and female C57BL/6 mice, respectively. Consequently, differently from young mice exhibiting the similar ratios in male and female mice, in aged female mice of both strains IgG2a(c)/IgG1 ratios were shifted towards a less effective IgG1 response (stimulated by IL-4 cytokines) compared with males. The age-related alterations in IgG subclass profiles in both strains correlated with those in IFN-γ/IL-4 production level ratio in splenocyte cultures restimulated with TIV. These findings stimulate further research to formulate sex-specific strategies to improve efficacy of influenza vaccine in the elderly.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
41
|
Liang Y, Zhang Q, Zhang L, Wang R, Xu X, Hu X. Astragalus Membranaceus Treatment Protects Raw264.7 Cells from Influenza Virus by Regulating G1 Phase and the TLR3-Mediated Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2971604. [PMID: 31975996 PMCID: PMC6955127 DOI: 10.1155/2019/2971604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
Abstract
Influenza is an acute respiratory infection disease caused by the influenza virus. At present, due to the high mutation rate of influenza virus, it is difficult for the existing antiviral drugs to play an effective antiviral effect continually, so it is urgent to develop a new anti-influenza drug. Recently, more and more studies have been conducted on the antiviral activity of Astragalus membranaceus, but the specific antiviral mechanism of this traditional Chinese medicine is not clear. In this study, the results proved that the Astragalus membranaceus injection showed obvious anti-influenza virus activity. It could improve the survival rate of Raw264.7 cells which were infected with influenza virus, while it improved the blocking effect of influenza virus on cell cycle after infection, increased the SOD activity, and reduced the MDA content. At the same time, the innate immunity was affected by regulating the expression of TLR3, TAK1, TBK1, IRF3, and IFN-β in the TLR3-mediated signaling pathway, thus exerting its antiviral effect in vitro.
Collapse
Affiliation(s)
- Yuxi Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Linjing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Rogers LRK, de Los Campos G, Mias GI. Microarray Gene Expression Dataset Re-analysis Reveals Variability in Influenza Infection and Vaccination. Front Immunol 2019; 10:2616. [PMID: 31787983 PMCID: PMC6854009 DOI: 10.3389/fimmu.2019.02616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza, a communicable disease, affects thousands of people worldwide. Young children, elderly, immunocompromised individuals and pregnant women are at higher risk for being infected by the influenza virus. Our study aims to highlight differentially expressed genes in influenza disease compared to influenza vaccination, including variability due to age and sex. To accomplish our goals, we conducted a meta-analysis using publicly available microarray expression data. Our inclusion criteria included subjects with influenza, subjects who received the influenza vaccine and healthy controls. We curated 18 microarray datasets for a total of 3,481 samples (1,277 controls, 297 influenza infection, 1,907 influenza vaccination). We pre-processed the raw microarray expression data in R using packages available to pre-process Affymetrix and Illumina microarray platforms. We used a Box-Cox power transformation of the data prior to our down-stream analysis to identify differentially expressed genes. Statistical analyses were based on linear mixed effects model with all study factors and successive likelihood ratio tests (LRT) to identify differentially-expressed genes. We filtered LRT results by disease (Bonferroni adjusted p < 0.05) and used a two-tailed 10% quantile cutoff to identify biologically significant genes. Furthermore, we assessed age and sex effects on the disease genes by filtering for genes with a statistically significant (Bonferroni adjusted p < 0.05) interaction between disease and age, and disease and sex. We identified 4,889 statistically significant genes when we filtered the LRT results by disease factor, and gene enrichment analysis (gene ontology and pathways) included innate immune response, viral process, defense response to virus, Hematopoietic cell lineage and NF-kappa B signaling pathway. Our quantile filtered gene lists comprised of 978 genes each associated with influenza infection and vaccination. We also identified 907 and 48 genes with statistically significant (Bonferroni adjusted p < 0.05) disease-age and disease-sex interactions, respectively. Our meta-analysis approach highlights key gene signatures and their associated pathways for both influenza infection and vaccination. We also were able to identify genes with an age and sex effect. This gives potential for improving current vaccines and exploring genes that are expressed equally across ages when considering universal vaccinations for influenza.
Collapse
Affiliation(s)
- Lavida R K Rogers
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Gustavo de Los Campos
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
43
|
Lafuse WP, Rajaram MVS, Wu Q, Moliva JI, Torrelles JB, Turner J, Schlesinger LS. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2252-2264. [PMID: 31511357 DOI: 10.4049/jimmunol.1900495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| |
Collapse
|
44
|
Arsenović-Ranin N, Petrović R, Živković I, Bufan B, Stoiljković V, Leposavić G. Influence of aging on germinal centre reaction and antibody response to inactivated influenza virus antigens in mice: sex-based differences. Biogerontology 2019; 20:475-496. [PMID: 31049769 DOI: 10.1007/s10522-019-09811-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
The study examined sex-specificities in age-related changes in BALB/c mice IgG antibody responses to immunisation with trivalent inactivated split-virus influenza bulk. Aging diminished the total serum IgG antibody responses to H1N1 and H3N2 and B influenza virus antigens in mice of both sexes, but they remained greater in aged females. This sex difference in aged mice correlated with the greater post-immunisation increase in the frequency of spleen germinal centre (GC) B cells and more favourable T follicular regulatory (Tfr)/GC B cell ratio, as Tfr cells are suggested to control antibody production through suppression of glycolysis. The greater post-immunisation GC B cell response in aged females compared with males correlated with the greater proliferation of B cells and CD4+ cells in splenocyte cultures from aged females restimulated with inactivated split-virus influenza from the bulk. To support the greater post-immunisation increase in the frequency GC B cell in aged females was more favourable Tfr/T follicular helper (Tfh) cell ratio. Additionally, compared with aged males, in age-matched females the greater avidity of serum IgG antibodies was found. However, in aged females IgG2a/IgG1 antibody ratio, reflecting spleen Th1/Th2 cytokine balance, was shifted towards IgG1 when compared with age-matched male mice. This shift was ascribed to a more prominent decline in the titres of functionally important IgG2a antibodies in females with aging. The study suggest that biological sex should be considered as a variable in designing strategies to manipulate with immune outcome of immunisation in aged animals, and possibly, at very long distance, humans.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia.
| |
Collapse
|
45
|
Amatore D, Celestino I, Brundu S, Galluzzi L, Coluccio P, Checconi P, Magnani M, Palamara AT, Fraternale A, Nencioni L. Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus. FASEB Bioadv 2019; 1:296-305. [PMID: 32123833 PMCID: PMC6996388 DOI: 10.1096/fba.2018-00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
During aging, glutathione (GSH) content declines and the immune system undergoes a deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is associated with GSH depletion, could weaken the host defenses against viral infections. We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of aged mice infected with influenza A PR8/H1N1 virus was studied through the determination of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production, and Th1/Th2 cytokine profile. Old mice had lower GSH than young mice in organs. Also the gene expression of endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of proteins, that is, Nrf2 and PDI, was reduced. Following infection, GSH content remained low and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI expression was upregulated during infection and appeared counterbalanced by GSH-C4. Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral replication and induced a predominant Th1 response. In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus infection by inducing immune response, in particular the Th1 profile.
Collapse
Affiliation(s)
- Donatella Amatore
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Ignacio Celestino
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Serena Brundu
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Luca Galluzzi
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Paolo Coluccio
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | - Mauro Magnani
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Anna Teresa Palamara
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | | | - Lucia Nencioni
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| |
Collapse
|
46
|
[Influenza infection: An update for clinicians]. Rev Med Interne 2019; 40:158-165. [PMID: 30638964 DOI: 10.1016/j.revmed.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
Abstract
Lower respiratory infections remain the deadliest communicable disease in the world. Influenza infections are particularly involved, whether intrinsically, or more frequently, by promoting bacterial infections and superinfections. The flu is also responsible for the decompensation of many comorbidities and could lead to some myocardial infarction and stroke. The effect of antiviral therapies is limited but preventives measures, such as vaccination, remain a major public health issue. The flu is a major challenge at all levels and all times, from vaccine prevention, to the recognition of atypical forms, and the early management of bacterial complications.
Collapse
|
47
|
Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis 2018; 44:377-385. [PMID: 28730407 DOI: 10.1007/s11239-017-1528-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Venous thromboembolism (VTE) is a worldwide disease related with mortality, cardiovascular disability, impaired quality of life and, cause major long-term complications. Clinicians related to the acute and long-term patients care must be involved in the molecular mechanisms of thrombosis. The vessel wall and its inner lining of the endothelium are critical to the maintenance of a patent vasculature. After endothelial disruption, collagen (first line of endothelial defense) and intravascular tissue factor (second line of endothelial defense) are exposed to blood flow, starting the formation of a thrombus. Anticoagulant endovascular proteins and endogenous fibrinolysis have an active role in hemostasis. Currently, the process of coagulation is a cell surface-based model that includes three overlapping phases: initiation, amplification, and propagation. From a simple view, inflammation is one of the first responses of the immune system to infection; inflammation is driven by eicosanoids and cytokines, which are released by injured or infected cells. Common cytokines, which regulate inflammatory response, include interleukins (mainly interleukin-6) that are responsible for communication among white blood cells, chemokines that promote chemotaxis, and interferons that have anti-viral effects. Acute infections have been associated with a transient increase in the risk of myocardial infarction, stroke and recently with venous thrombosis, supporting the notion that systemic and respiratory infections increase the risk of thromboembolic events. Recently, immunothrombosis, another thrombosis mechanism that includes innate immune mechanisms, the neutrophil extracellular genetic traps, and the immunothrombosis dysregulation, could explain some cases of "unprovoked" VTE especially in elderly, a high-risk population for thrombosis.
Collapse
Affiliation(s)
- Eduardo Vazquez-Garza
- Centro de Investigacion Biomedica del Hospital Zambrano Hellion, TecSalud. Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Batallón de San Patricio 112, Real San Agustin, 66278, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Carlos Jerjes-Sanchez
- Centro de Investigacion Biomedica del Hospital Zambrano Hellion, TecSalud. Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Batallón de San Patricio 112, Real San Agustin, 66278, San Pedro Garza Garcia, Nuevo Leon, Mexico. .,Instituto de Cardiología y Medicina Vascular, TecSalud and Centro de Investigacion Biomedica del Hospital Zambrano Hellion, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico.
| | - Aline Navarrete
- Programa Multicéntrico de Residencias Médicas - Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Jorge Joya-Harrison
- Programa Multicéntrico de Residencias Médicas - Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - David Rodriguez
- Instituto de Cardiología y Medicina Vascular, TecSalud and Centro de Investigacion Biomedica del Hospital Zambrano Hellion, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| |
Collapse
|
48
|
Perot BP, Boussier J, Yatim N, Rossman JS, Ingersoll MA, Albert ML. Autophagy diminishes the early interferon-β response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death Dis 2018; 9:539. [PMID: 29748576 PMCID: PMC5945842 DOI: 10.1038/s41419-018-0546-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Université Pierre et Marie Curie (Université Paris 6), Paris, France
| | - Jeremy Boussier
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,International Group for Data Analysis, Institut Pasteur, Paris, France.,Ecole Doctorale Frontières du Vivant, Université Paris Diderot, Paris, France
| | - Nader Yatim
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France
| | | | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France.
| | - Matthew L Albert
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France. .,Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
49
|
Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters. Exp Gerontol 2018; 105:32-39. [PMID: 29287772 PMCID: PMC5967410 DOI: 10.1016/j.exger.2017.12.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly.
Collapse
Affiliation(s)
- Tucker J Piergallini
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States.
| |
Collapse
|
50
|
Sambaturu N, Mukherjee S, López-García M, Molina-París C, Menon GI, Chandra N. Role of genetic heterogeneity in determining the epidemiological severity of H1N1 influenza. PLoS Comput Biol 2018; 14:e1006069. [PMID: 29561846 PMCID: PMC5880410 DOI: 10.1371/journal.pcbi.1006069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/02/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic differences contribute to variations in the immune response mounted by different individuals to a pathogen. Such differential response can influence the spread of infectious disease, indicating why such diseases impact some populations more than others. Here, we study the impact of population-level genetic heterogeneity on the epidemic spread of different strains of H1N1 influenza. For a population with known HLA class-I allele frequency and for a given H1N1 viral strain, we classify individuals into sub-populations according to their level of susceptibility to infection. Our core hypothesis is that the susceptibility of a given individual to a disease such as H1N1 influenza is inversely proportional to the number of high affinity viral epitopes the individual can present. This number can be extracted from the HLA genetic profile of the individual. We use ethnicity-specific HLA class-I allele frequency data, together with genome sequences of various H1N1 viral strains, to obtain susceptibility sub-populations for 61 ethnicities and 81 viral strains isolated in 2009, as well as 85 strains isolated in other years. We incorporate these data into a multi-compartment SIR model to analyse the epidemic dynamics for these (ethnicity, viral strain) epidemic pairs. Our results show that HLA allele profiles which lead to a large spread in individual susceptibility values can act as a protective barrier against the spread of influenza. We predict that populations skewed such that a small number of highly susceptible individuals coexist with a large number of less susceptible ones, should exhibit smaller outbreaks than populations with the same average susceptibility but distributed more uniformly across individuals. Our model tracks some well-known qualitative trends of influenza spread worldwide, suggesting that HLA genetic diversity plays a crucial role in determining the spreading potential of different influenza viral strains across populations. Levels of immunity to strains of H1N1 influenza can vary, depending on the individual. This strongly influences how the disease spreads in a population. Accounting for such variations is a major challenge for the epidemiology of infectious diseases. We study the effect of population-level genetic heterogeneity on the epidemic spread of different strains of H1N1 influenza. We model the immune response of specific ethnicities to a number of H1N1 viral strains, using this information to study disease spread for these (ethnicity, viral strain) epidemic pairs. Our results show that larger genetic diversity at the level of immune response, leading to the presence of susceptibility sub-populations with a broad distribution of susceptibilities, protects against the spread of influenza in a population. We also show that populations with a small number of highly susceptible individuals, but with a large number of less susceptible ones, should exhibit smaller outbreaks than populations with the same average susceptibility but where it is more uniformly distributed. Our work captures some qualitative trends of influenza spread worldwide, providing a first attempt at understanding how susceptibility heterogeneities arising from variations in immune response determine disease spread in populations.
Collapse
Affiliation(s)
- Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sumanta Mukherjee
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Martín López-García
- Department of Applied Mathematics, University of Leeds, Leeds, United Kingdom
| | - Carmen Molina-París
- Department of Applied Mathematics, University of Leeds, Leeds, United Kingdom
| | - Gautam I. Menon
- Computational Biology and Theoretical Physics groups, The Institute of Mathematical Sciences, Chennai, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
- * E-mail: (NC); (GIM)
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (NC); (GIM)
| |
Collapse
|