1
|
Yu CH, Song YJ, Song DH, Joe HE, Kim CH, Yun H, Kim NY, Sim E, Jeong ST, Hur GH. An Effective Prophylactic and Therapeutic Protection Against Botulinum Type A Intoxication in Mice and Rabbits Using a Humanized Monoclonal Antibody. Toxins (Basel) 2025; 17:138. [PMID: 40137911 PMCID: PMC11946523 DOI: 10.3390/toxins17030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins on Earth and are classified as Category A biological agents. BoNTs lead to paralysis in humans and cause botulism. Antibody therapeutics can effectively treat toxin-mediated infectious diseases. In this study, we generated a pharmaceutical humanized monoclonal antibody (HZ45 mAb) to prevent or treat botulism. HZ45 binds to the heavy chain receptor (HCR) domain of the toxin, preventing the toxin from entering the cell. The mAb was produced using hybridoma technology and phage display. We evaluated HZ45 mAb for the neutralization of BoNT serotype A (BoNT/A) in mice and rabbits. The survival results showed that pretreatment with HZ45 mAb provided 100% protection at a dose of 0.1 mg per mouse against a maximum of 100 LD50 of BoNT/A. To assess the therapeutic efficacy of HZ45 mAb in New Zealand white rabbits (NZWs), a 5 mg dose was administered 4 or 8 h after challenge with 10 LD50. The results indicated that 5 mg of HZ45 could treat the NZWs within 8 h after exposure to 10 LD50 botulinum. Consequently, in an in vivo context, including mice and rabbits, HZ45 mAb could protect against botulinum type A intoxication.
Collapse
Affiliation(s)
- Chi Ho Yu
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Young-Jo Song
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Dong Hyun Song
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Hae Eun Joe
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Chang-Hwan Kim
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Hyungseok Yun
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Na Young Kim
- ABION Inc., Seoul 08394, Republic of Korea; (N.Y.K.); (E.S.)
| | - Euni Sim
- ABION Inc., Seoul 08394, Republic of Korea; (N.Y.K.); (E.S.)
| | - Seong Tae Jeong
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Gyeung Haeng Hur
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| |
Collapse
|
2
|
Wei Y, Li G, Wang Z, Qian K, Zhang S, Zhang L, Lei C, Hu S. Development and characterization of a novel neutralizing scFv vectored immunoprophylaxis against botulinum toxin type A. J Drug Target 2024; 32:213-222. [PMID: 38164940 DOI: 10.1080/1061186x.2023.2301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.
Collapse
Affiliation(s)
- Yongpeng Wei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhuo Wang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Lingling Zhang
- Department of Central Laboratory, Clinical Research Center of Changhai Hospital, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
4
|
Steinke S, Roth KDR, Englick R, Langreder N, Ballmann R, Fühner V, Zilkens KJK, Moreira GMSG, Koch A, Azzali F, Russo G, Schubert M, Bertoglio F, Heine PA, Hust M. Mapping Epitopes by Phage Display. Methods Mol Biol 2023; 2702:563-585. [PMID: 37679639 DOI: 10.1007/978-1-0716-3381-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
- Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ruben Englick
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gustavo Marçal Schmidt Garcia Moreira
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Sector for Antibody and Protein Biochemistry, Tacalyx GmbH, Berlin, Germany
| | - Allan Koch
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Innovationszentrum Niedersachsen GmbH, startup.niedersachsen, Hannover, Germany
| | - Filippo Azzali
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Heine PA, Ruschig M, Langreder N, Wenzel EV, Schubert M, Bertoglio F, Hust M. Antibody Selection in Solution Using Magnetic Beads. Methods Mol Biol 2023; 2702:261-274. [PMID: 37679624 DOI: 10.1007/978-1-0716-3381-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibody phage display is a valuable in vitro technology to generate recombinant, sequence-defined antibodies for research, diagnostics, and therapy. Up to now (autumn 2022), 14 FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab. Additionally, recombinant, sequence-defined antibodies have significant advantages over their polyclonal counterparts.For a successful in vitro antibody generation by phage display, a suitable panning strategy is highly important. We present in this book chapter the panning in solution and its advantages over panning with immobilized antigens and give detailed protocols for the panning and screening procedure.
Collapse
Affiliation(s)
- Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Moreira GMSG, Gronow S, Dübel S, Mendonça M, Moreira ÂN, Conceição FR, Hust M. Phage Display-Derived Monoclonal Antibodies Against Internalins A and B Allow Specific Detection of Listeria monocytogenes. Front Public Health 2022; 10:712657. [PMID: 35372200 PMCID: PMC8964528 DOI: 10.3389/fpubh.2022.712657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a highly lethal disease initiated after the ingestion of Listeria-contaminated food. This species comprises different serovars, from which 4b, 1/2a, and 1/2b cause most of the infections. Among the different proteins involved in pathogenesis, the internalins A (InlA) and B (InlB) are the best characterized, since they play a major role in the enterocyte entry of Listeria cells during early infection. Due to their covalent attachment to the cell wall and location on the bacterial surface, along with their exclusive presence in the pathogenic L. monocytogenes, these proteins are also used as detection targets for this species. Even though huge advancements were achieved in the enrichment steps for subsequent Listeria detection, few studies have focused on the improvement of the antibodies for immunodetection. In the present study, recombinant InlA and InlB produced in Escherichia coli were used as targets to generate antibodies via phage display using the human naïve antibody libraries HAL9 and HAL10. A set of five recombinant antibodies (four against InlA, and one against InlB) were produced in scFv-Fc format and tested in indirect ELISA against a panel of 19 Listeria strains (17 species; including the three main serovars of L. monocytogenes) and 16 non-Listeria species. All five antibodies were able to recognize L. monocytogenes with 100% sensitivity (CI 29.24–100.0) and specificity (CI 88.78–100.0) in all three analyzed antibody concentrations. These findings show that phage display-derived antibodies can improve the biological tools to develop better immunodiagnostics for L. monocytogenes.
Collapse
Affiliation(s)
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Marcelo Mendonça
- Universidade Federal do Agreste de Pernambuco, Curso de Medicina Veterinária, Garanhuns, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| |
Collapse
|
7
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Antonucci L, Locci C, Schettini L, Clemente MG, Antonucci R. Infant botulism: an underestimated threat. Infect Dis (Lond) 2021; 53:647-660. [PMID: 33966588 DOI: 10.1080/23744235.2021.1919753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022] Open
Abstract
Infant botulism (IB) is defined as a potentially life-threatening neuroparalytic disorder affecting children younger than 12 months. It is caused by ingestion of food or dust contaminated by Clostridium botulinum spores, which germinate in the infant's large bowel and produce botulinum neurotoxin. Although the real impact of IB is likely underestimated worldwide, the USA has the highest number of cases. The limited reporting of IB in many countries is probably due to diagnostic difficulties and nonspecific presentation. The onset is usually heralded by constipation, followed by bulbar palsy, and then by a descending bilateral symmetric paralysis; ultimately, palsy can involve respiratory and diaphragmatic muscles, leading to respiratory failure. The treatment is based on supportive care and specific therapy with Human Botulism Immune Globulin Intravenous (BIG-IV), and should be started as early as possible. The search for new human-like antibody preparations that are both highly effective and well tolerated has led to the creation of a mixture of oligoclonal antibodies that are highly protective and can be produced in large quantities without the use of animals. Ongoing research for future treatment of IB involves the search for new molecular targets to produce a new generation of laboratory-produced antitoxins, and the development of new vaccines with safety and efficacy profiles that can be scaled up for clinical use. This narrative literature review aims to provide a readable synthesis of the best current literature on microbiological, epidemiological and clinical features of IB, and a practical guide for its treatment.
Collapse
Affiliation(s)
- Luca Antonucci
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Cristian Locci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Livia Schettini
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
Small Molecule Receptor Binding Inhibitors with In Vivo Efficacy against Botulinum Neurotoxin Serotypes A and E. Int J Mol Sci 2021; 22:ijms22168577. [PMID: 34445283 PMCID: PMC8395308 DOI: 10.3390/ijms22168577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.
Collapse
|
10
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
11
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
12
|
Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine PA, Ballmann R, Schneider KT, Roth KDR, Ruschig M, Riese P, Eschke K, Kim Y, Schäckermann D, Pedotti M, Kuhn P, Zock-Emmenthal S, Wöhrle J, Kilb N, Herz T, Becker M, Grasshoff M, Wenzel EV, Russo G, Kröger A, Brunotte L, Ludwig S, Fühner V, Krämer SD, Dübel S, Varani L, Roth G, Čičin-Šain L, Schubert M, Hust M. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun 2021; 12:1577. [PMID: 33707427 PMCID: PMC7952403 DOI: 10.1038/s41467-021-21609-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.
Collapse
Affiliation(s)
- Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Doris Meier
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Nora Langreder
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Ulfert Rand
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Simonelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Rico Ballmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Maximilian Ruschig
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Peggy Riese
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathrin Eschke
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yeonsu Kim
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dorina Schäckermann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Mattia Pedotti
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | | | | | | | | | | | - Marlies Becker
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Martina Grasshoff
- Helmholtz Centre for Infection Research, Research Group Innate Immunity and Infection, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Giulio Russo
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Andrea Kröger
- Helmholtz Centre for Infection Research, Research Group Innate Immunity and Infection, Braunschweig, Germany
| | - Linda Brunotte
- Westfälische Wilhelms-Universität Münster, Institut für Virologie (IVM), Münster, Germany
| | - Stephan Ludwig
- Westfälische Wilhelms-Universität Münster, Institut für Virologie (IVM), Münster, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Luca Varani
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland.
| | | | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Braunschweig, Germany.
| | - Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
13
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
14
|
Huen J, Yan Z, Iwashkiw J, Dubey S, Gimenez MC, Ortiz ME, Patel SV, Jones MD, Riazi A, Terebiznik M, Babaei S, Shahinas D. A Novel Single Domain Antibody Targeting FliC Flagellin of Salmonella enterica for Effective Inhibition of Host Cell Invasion. Front Microbiol 2019; 10:2665. [PMID: 31849856 PMCID: PMC6901939 DOI: 10.3389/fmicb.2019.02665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/01/2019] [Indexed: 11/26/2022] Open
Abstract
The enteric pathogen, Salmonella enterica is a major cause of human gastroenteritis globally and with increasing bacterial resistance to antibiotics, alternative solutions are urgently needed. Single domain antibodies (sdAbs), the smallest antibody fragments that retain antigen binding specificity and affinity, are derived from variable heavy-chain only fragments (VHH) of camelid heavy-chain-only immunoglobulins. SdAbs typically contain a single disulfide bond simplifying recombinant protein production in microbial systems. These factors make sdAbs ideally suited for the development of effective anti-bacterial therapeutics. To this end, we generated an anti-Salmonella VHH library from which we screened for high affinity sdAbs. We present a novel sdAb (Abi-Se07) that targets the Salmonella virulence factor, FliC, required for bacterial motility and invasion of host cells. We demonstrate that Abi-Se07 bound FliC with a K D of 16.2 ± 0.1 nM. In addition, Abi-Se07 exhibited cross-serovar binding to whole cells of S. enterica serovar Typhimurium, Heidelberg, and Hadar. Abi-Se07 significantly inhibited bacterial motility and significantly reduced S. enterica colonization in a more native environment of chicken jejunum epithelium. Taken together, we have identified a novel anti-Salmonella sdAb and discuss future efforts toward therapeutic development.
Collapse
Affiliation(s)
- Jennifer Huen
- AbCelex Technologies Inc., Mississauga, ON, Canada
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Zhun Yan
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | | | | | - Maria C. Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Maria E. Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | | | | | - Ali Riazi
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | - Mauricio Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Saeid Babaei
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | - Dea Shahinas
- AbCelex Technologies Inc., Mississauga, ON, Canada
| |
Collapse
|
15
|
Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, Tukhvatulin AI, Logunov DY, Naroditsky BS, Shcheblyakov DV, Gintsburg AL. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins (Basel) 2019; 11:E464. [PMID: 31394847 PMCID: PMC6723419 DOI: 10.3390/toxins11080464] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterium Clostridium botulinum is the causative agent of botulism-a severe intoxication caused by botulinum neurotoxin (BoNT) and characterized by damage to the nervous system. In an effort to develop novel C. botulinum immunotherapeutics, camelid single-domain antibodies (sdAbs, VHHs, or nanobodies) could be used due to their unique structure and characteristics. In this study, VHHs were produced using phage display technology. A total of 15 different monoclonal VHHs were selected based on their comlementarity-determining region 3 (CDR3) sequences. Different toxin lethal dose (LD50) challenges with each selected phage clone were conducted in vivo to check their neutralizing potency. We demonstrated that modification of neutralizing VHHs with a human immunoglobulin G (IgG)1 Fc (fragment crystallizable) fragment (fusionbody, VHH-Fc) significantly increased the circulation time in the blood (up to 14 days). At the same time, VHH-Fc showed the protective activity 1000 times higher than monomeric form when challenged with 5 LD50. Moreover, VHH-Fcs remained protective even 14 days after antibody administration. These results indicate that this VHH-Fc could be used as an effective long term antitoxin protection against botulinum type A.
Collapse
Affiliation(s)
- Svetlana A Godakova
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Anatoly N Noskov
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Irina D Vinogradova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Galina A Ugriumova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Andrey I Solovyev
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Ilias B Esmagambetov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Amir I Tukhvatulin
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Denis Y Logunov
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Boris S Naroditsky
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Dmitry V Shcheblyakov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia.
| | - Aleksandr L Gintsburg
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| |
Collapse
|
16
|
Fühner V, Heine PA, Zilkens KJC, Meier D, Roth KDR, Moreira GMSG, Hust M, Russo G. Epitope Mapping via Phage Display from Single-Gene Libraries. Methods Mol Biol 2019; 1904:353-375. [PMID: 30539480 DOI: 10.1007/978-1-4939-8958-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Antibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope). Knowing the epitope is valuable information for the improvement of diagnostic assays or therapeutic antibodies, as well as to understand the immune response of a vaccine. While huge progress has been made in the pipelines for the generation and functional characterization of antibodies, the available technologies for epitope mapping are still lacking effectiveness in terms of time and effort. Also, no technique available offers the absolute guarantee of succeeding. Thus, research to develop and improve epitope mapping techniques is still an active field. Phage display from random peptide libraries or single-gene libraries are currently among the most exploited methods for epitope mapping. The first is based on the generation of mimotopes and it is fastened to the need of high-throughput sequencing and complex bioinformatic analysis. The second provides original epitope sequences without requiring complex analysis or expensive techniques, but depends on further investigation to define the functional amino acids within the epitope. In this book chapter, we describe how to perform epitope mapping by antigen fragment phage display from single-gene antigen libraries and how to construct these types of libraries. Thus, we also provide figures and analysis to demonstrate the actual potential of this technique and to prove the necessity of certain procedural steps.
Collapse
Affiliation(s)
- Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Doris Meier
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Giulio Russo
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
17
|
Avril A. Therapeutic Antibodies for Biodefense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:173-205. [PMID: 29549640 DOI: 10.1007/978-3-319-72077-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diseases can be caused naturally by biological agents such as bacteria, viruses and toxins (natural risk). However, such biological agents can be intentionally disseminated in the environment by a State (military context) or terrorists to cause diseases in a population or livestock, to destabilize a nation by creating a climate of terror, destabilizing the economy and undermining institutions. Biological agents can be classified according to the severity of illness they cause, its mortality and how easily the agent can be spread. The Centers for Diseases Control and Prevention (CDC) classify biological agents in three categories (A, B and C); Category A consists of the six pathogens most suitable for use as bioweapons (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Antibodies represent a perfect biomedical countermeasure as they present both prophylactic and therapeutic properties, act fast and are highly specific to the target. This review focuses on the main biological agents that could be used as bioweapons, the history of biowarfare and antibodies that have been developed to neutralize these agents.
Collapse
Affiliation(s)
- Arnaud Avril
- Département des maladies infectieuses, Unité biothérapies anti-infectieuses et immunité, Institut de Recherche Biomédical des Armées, Brétigny-sur-Orge, France.
| |
Collapse
|
18
|
Abstract
Among the molecules of the immune system, antibodies, particularly monoclonal antibodies (mAbs), have been shown to be interesting for many biological applications. Due to their ability to recognize only a unique part of their target, mAbs are usually very specific. These targets can have many different compositions, but the most common ones are proteins or peptides that are usually from outside the host, although self-proteins can also be targeted in autoimmune diseases, or in some types of cancer. The parts of a mAb that interact with its target compose the paratope, while the recognized parts of the target compose the epitope. Knowing the epitope is valuable for the improvement of a biological product, e.g., a diagnostic assay, a therapeutic mAb, or a vaccine, as well as for the elucidation of immune responses. The current techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Even though there are several techniques available, each has its pros and cons. Thus, the choice for one of them is usually dependent on the preference and availability of the researcher, opening possibility for improvement, or development of alternative techniques. Phage display, for example, is a versatile technology, which allows the presentation of many different oligopeptides that can be tested against different antibodies, fitting the need for an epitope mapping approach. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
19
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
20
|
Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Evaluation of anti-botulinum neurotoxin single domain antibodies with additional optimization for improved production and stability. Toxicon 2017; 135:51-58. [DOI: 10.1016/j.toxicon.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/27/2023]
|
21
|
Miethe S, Mazuet C, Liu Y, Tierney R, Rasetti-Escargueil C, Avril A, Frenzel A, Thullier P, Pelat T, Urbain R, Fontayne A, Sesardic D, Hust M, Popoff MR. Development of Germline-Humanized Antibodies Neutralizing Botulinum Neurotoxin A and B. PLoS One 2016; 11:e0161446. [PMID: 27560688 PMCID: PMC4999263 DOI: 10.1371/journal.pone.0161446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are counted among the most toxic substances known and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. To date, 7 serologically distinct serotypes of BoNT (serotype A-G) are known. Due to the high toxicity of BoNTs the Centers for Disease Control and Prevention (CDC) have classified BoNTs as category A agent, including the six biological agents with the highest potential risk of use as bioweapons. Well tolerated antibodies neutralizing BoNTs are required to deal with the potential risk. In a previous work, we described the development of scFv and scFv-Fc (Yumab) from macaque origin (Macaca fascicularis) neutralizing BoNT/A and B by targeting the heavy and light chain of each serotype. In the present study, we humanized the macaque antibodies SEM120-IIIC1 (anti-BoNT/A light chain), A1HC38 (anti-BoNT/A heavy chain), BLC3 (anti-BoNT/B light chain) and B2-7 (anti-BoNT/B heavy chain) by germline-humanization to obtain a better potential immunotolerance in humans. We increased the Germinality Index (GI) of SEM120-IIIC1 to 94.5%, for A1HC38, to 95% for BLC3 and to 94.4% for B2-7. Furthermore, the neutralization efficacies of the germline-humanized antibodies were analyzed in lethal and non-lethal in vivo mouse assays as full IgG. The germline-humanized IgGs hu8SEM120-IIIC1, hu8A1HC38, hu8BLC3 and hu8B2-7 were protective in vivo, when anti-heavy and anti-light chain antibodies were combined. The synergistic effect and high humanness of the selected IgGs makes them promising lead candidates for further clinical development.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Yvonne Liu
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Robert Tierney
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Christine Rasetti-Escargueil
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, Lille, France
| | | | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
- * E-mail: (MRP); (MH)
| | - Michel Robert Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (MRP); (MH)
| |
Collapse
|
22
|
Abstract
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
Collapse
Affiliation(s)
- André Frenzel
- a YUMAB GmbH , Rebenring , Braunschweig.,b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| | | | - Michael Hust
- b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| |
Collapse
|
23
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
24
|
Scott VL, Villarreal DO, Hutnick NA, Walters JN, Ragwan E, Bdeir K, Yan J, Sardesai NY, Finnefrock AC, Casimiro DR, Weiner DB. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge. Hum Vaccin Immunother 2016; 11:1961-71. [PMID: 26158319 DOI: 10.1080/21645515.2015.1066051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.
Collapse
Affiliation(s)
- Veronica L Scott
- a Department of Pathology and Laboratory Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
26
|
Ambrose EA. Botulinum Neurotoxin, Tetanus Toxin, and Anthrax Lethal Factor Countermeasures. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Kibat J, Schirrmann T, Knape MJ, Helmsing S, Meier D, Hust M, Schröder C, Bertinetti D, Winter G, Pardes K, Funk M, Vala A, Giese N, Herberg FW, Dübel S, Hoheisel JD. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. N Biotechnol 2015; 33:574-81. [PMID: 26709003 DOI: 10.1016/j.nbt.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples isolated from pancreatic ductal adenocarcinoma and healthy pancreas, as well as recurrent and non-recurrent bladder tumours. We observed significant variation in the expression of the E3 ubiquitin-protein ligase (CHFR) as well as the glutamate receptor interacting protein 2 (GRIP2), for example, always with more than one of the scFvs binding to these targets. Only the relevant antibodies were then characterised further on antigen microarrays and by surface plasmon resonance experiments so as to select the most specific and highest affinity antibodies. These binders were in turn used to confirm a microarray result by immunohistochemistry analysis.
Collapse
Affiliation(s)
- Janek Kibat
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Thomas Schirrmann
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; YUMAB GmbH, Rebenring 33, 38106 Braunschweig, Germany
| | - Matthias J Knape
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Saskia Helmsing
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Christoph Schröder
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Sciomics GmbH, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Khalid Pardes
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mia Funk
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Andrea Vala
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nathalia Giese
- Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Stefan Dübel
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Toxins (Basel) 2015; 7:4895-905. [PMID: 26610569 PMCID: PMC4690105 DOI: 10.3390/toxins7124855] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
The historical method for the detection of botulinum neurotoxin (BoNT) is represented by the mouse bioassay (MBA) measuring the animal survival rate. Since the endpoint of the MBA is the death of the mice due to paralysis of the respiratory muscle, an ex vivo animal replacement method, called mouse phrenic nerve (MPN) assay, employs the isolated N. phrenicus-hemidiaphragm tissue. Here, BoNT causes a dose-dependent characteristic decrease of the contraction amplitude of the indirectly stimulated muscle. Within the EQuATox BoNT proficiency 13 test samples were analysed using the MPN assay by serial dilution to a bath concentration resulting in a paralysis time within the range of calibration curves generated with BoNT/A, B and E standards, respectively. For serotype identification the diluted samples were pre-incubated with polyclonal anti-BoNT/A, B or E antitoxin or a combination of each. All 13 samples were qualitatively correctly identified thereby delivering superior results compared to single in vitro methods like LFA, ELISA and LC-MS/MS. Having characterized the BoNT serotype, the final bath concentrations were calculated using the calibration curves and then multiplied by the respective dilution factor to obtain the sample concentration. Depending on the source of the BoNT standards used, the quantitation of ten BoNT/A containing samples delivered a mean z-score of 7 and of three BoNT/B or BoNT/E containing samples z-scores <2, respectively.
Collapse
|
29
|
Miethe S, Rasetti-Escargueil C, Avril A, Liu Y, Chahboun S, Korkeala H, Mazuet C, Popoff MR, Pelat T, Thullier P, Sesardic D, Hust M. Development of Human-Like scFv-Fc Neutralizing Botulinum Neurotoxin E. PLoS One 2015; 10:e0139905. [PMID: 26440796 PMCID: PMC4595074 DOI: 10.1371/journal.pone.0139905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Christine Rasetti-Escargueil
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Yvonne Liu
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Siham Chahboun
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Hannu Korkeala
- University of Helsinki, Faculty of Veterinary Medicine, Centre of Excellence in Microbial Food Safety Research, Department of Food Hygiene and Environmental Health, P.O. Box 66 (Agnes Sjöbergin katu 2), 00014 Helsinki University, Helsinki, Finland
| | - Christelle Mazuet
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 25 avenue du Docteur Roux, 75015, Paris, France
| | - Michel-Robert Popoff
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 25 avenue du Docteur Roux, 75015, Paris, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
- * E-mail:
| |
Collapse
|
30
|
Rasetti-Escargueil C, Avril A, Chahboun S, Tierney R, Bak N, Miethe S, Mazuet C, Popoff MR, Thullier P, Hust M, Pelat T, Sesardic D. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. MAbs 2015; 7:1161-77. [PMID: 26381852 PMCID: PMC4966489 DOI: 10.1080/19420862.2015.1082016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences, which suggest that they may be well tolerated in potential clinical development.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Arnaud Avril
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Siham Chahboun
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Rob Tierney
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Nicola Bak
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Sebastian Miethe
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Christelle Mazuet
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Michel R Popoff
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Philippe Thullier
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Michael Hust
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Thibaut Pelat
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Dorothea Sesardic
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| |
Collapse
|
31
|
Isolation of nanomolar scFvs of non-human primate origin, cross-neutralizing botulinum neurotoxins A1 and A2 by targeting their heavy chain. BMC Biotechnol 2015; 15:86. [PMID: 26382731 PMCID: PMC4574468 DOI: 10.1186/s12896-015-0206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
Background Botulism is a naturally occurring disease, mainly caused by the ingestion of food contaminated by the botulinum neurotoxins (BoNTs). Botulinum neurotoxins are the most lethal. They are classified among the six major biological warfare agents by the Centers for Disease Control. BoNTs act on the cholinergic motoneurons, where they cleave proteins implicated in acetylcholine vesicle exocytosis. This exocytosis inhibition induces a flaccid paralysis progressively affecting all the muscles and generally engendering a respiratory distress. BoNTs are also utilized in medicine, mainly for the treatment of neuromuscular disorders, preventing large scale vaccination. Botulism specific treatment requires injections of antitoxins, usually of equine origin and thus poorly tolerated. Therefore, development of human or human-like neutralizing antibodies is of a major interest, and it is the subject of the European framework project called “AntiBotABE”. Results In this study, starting from a macaque immunized with the recombinant heavy chain of BoNT/A1 (BoNT/A1-HC), an immune antibody phage-display library was generated and antibody fragments (single chain Fragment variable) with nanomolar affinity were isolated and further characterized. The neutralization capacities of these scFvs were analyzed in the mouse phrenic nerve-hemidiaphragm assay. Conclusions After a three-round panning, 24 antibody fragments with affinity better than 10 nM were isolated. Three of them neutralized BoNT/A1 efficiently and two cross-neutralized BoNT/A1 and BoNT/A2 subtypes in the mouse phrenic nerve-hemidiaphragm assay. These are the first monoclonal human-like antibodies cross-neutralizing both BoNT/A1 and BoNT/A2. The antibody A1HC38 was selected for further development, and could be clinically developed for the prophylaxis and treatment of botulism. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0206-0) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity. PLoS One 2015; 10:e0135306. [PMID: 26275214 PMCID: PMC4537209 DOI: 10.1371/journal.pone.0135306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022] Open
Abstract
The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.
Collapse
|
33
|
Droste P, Frenzel A, Steinwand M, Pelat T, Thullier P, Hust M, Lashuel H, Dübel S. Structural differences of amyloid-β fibrils revealed by antibodies from phage display. BMC Biotechnol 2015; 15:57. [PMID: 26084577 PMCID: PMC4472244 DOI: 10.1186/s12896-015-0146-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Beside neurofibrillary tangles, amyloid plaques are the major histological hallmarks of Alzheimer's disease (AD) being composed of aggregated fibrils of β-amyloid (Aβ). During the underlying fibrillogenic pathway, starting from a surplus of soluble Aβ and leading to mature fibrils, multiple conformations of this peptide appear, including oligomers of various shapes and sizes. To further investigate the fibrillization of β-amyloid and to have tools at hand to monitor the distribution of aggregates in the brain or even act as disease modulators, it is essential to develop highly sensitive antibodies that can discriminate between diverse aggregates of Aβ. RESULTS Here we report the generation and characterization of a variety of amyloid-β specific human and human-like antibodies. Distinct fractions of monomers and oligomers of various sizes were separated by size exclusion chromatography (SEC) from Aβ42 peptides. These antigens were used for the generation of two Aβ42 specific immune scFv phage display libraries from macaque (Macaca fascicularis). Screening of these libraries as well as two naïve human phage display libraries resulted in multiple unique binders specific for amyloid-β. Three of the obtained antibodies target the N-terminal part of Aβ42 although with varying epitopes, while another scFv binds to the α-helical central region of the peptide. The affinities of the antibodies to various Aβ42 aggregates as well as their ability to interfere with fibril formation and disaggregation of preformed fibrils were determined. Most significantly, one of the scFv is fibril-specific and can discriminate between two different fibril forms resulting from variations in the acidity of the milieu during fibrillogenesis. CONCLUSION We demonstrated that the approach of animal immunization and subsequent phage display based antibody selection is applicable to generate highly specific anti β-amyloid scFvs that are capable of accurately discriminating between minute conformational differences.
Collapse
Affiliation(s)
- Patrick Droste
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstr.7, 38106, Braunschweig, Germany. .,Current address: Celerion Switzerland AG, Allmendstrasse 32, 8320, Fehraltorf, Switzerland.
| | - André Frenzel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstr.7, 38106, Braunschweig, Germany. .,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - Miriam Steinwand
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstr.7, 38106, Braunschweig, Germany. .,Current address: Delenex Therapeutics AG, Wagistrasse 27, 8952, Schlieren, Switzerland.
| | - Thibaut Pelat
- Institut de recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines, La Tronche Cedex, France. .,Current address: BIOTEM Parc d'Activités Bièvre Dauphine, 885, rue Alphonse Gourju, 38140, Apprieu, France.
| | - Philippe Thullier
- Institut de recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines, La Tronche Cedex, France.
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Hilal Lashuel
- SV-BMI, Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland.
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
34
|
Luz D, Chen G, Maranhão AQ, Rocha LB, Sidhu S, Piazza RMF. Development and characterization of recombinant antibody fragments that recognize and neutralize in vitro Stx2 toxin from Shiga toxin-producing Escherichia coli. PLoS One 2015; 10:e0120481. [PMID: 25790467 PMCID: PMC4366190 DOI: 10.1371/journal.pone.0120481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes. METHODS AND FINDINGS In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA. CONCLUSION In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Leticia B. Rocha
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Sachdev Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Nuñez-Prado N, Compte M, Harwood S, Álvarez-Méndez A, Lykkemark S, Sanz L, Álvarez-Vallina L. The coming of age of engineered multivalent antibodies. Drug Discov Today 2015; 20:588-94. [PMID: 25757598 DOI: 10.1016/j.drudis.2015.02.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 12/01/2022]
Abstract
The development of monoclonal antibody (mAb) technology has had a profound impact on medicine. The therapeutic use of first-generation mAb achieved considerable success in the treatment of major diseases, including cancer, inflammation, autoimmune, cardiovascular, and infectious diseases. Next-generation antibodies have been engineered to further increase potency, improve the safety profile and acquire non-natural properties, and constitute a thriving area of mAb research and development. Currently, a variety of alternative antibody formats with modified architectures have been generated and are moving fast into the clinic. In fact, the bispecific antibody blinatumomab was the first in its class to be approved by the US Food and Drug Administration (FDA) as recently as December 2014. Here, we outline the fundamental strategies used for designing the next generation of therapeutic antibodies, as well as the most relevant results obtained in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Natalia Nuñez-Prado
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | | | - Simon Lykkemark
- Department of Clinical Medicine and Sino-Danish Center, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
36
|
Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L, Schütte M, Hust M. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 2015; 15:10. [PMID: 25888378 PMCID: PMC4352240 DOI: 10.1186/s12896-015-0125-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/09/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library. RESULTS The naive antibody gene libraries HAL9 and HAL10, with a combined theoretical diversity of 1.5×10(10) independent clones, were constructed from 98 healthy donors using improved phage display vectors. In detail, most common phagemids employed for antibody phage display are using a combined His/Myc tag for detection and purification. We show that changing the tag order to Myc/His improved the production of soluble antibodies, but did not affect antibody phage display. For several published antibody libraries, the selected number of kappa scFvs were lower compared to lambda scFvs, probably due to a lower kappa scFv or Fab expression rate. Deletion of a phenylalanine at the end of the CL linker sequence in our new phagemid design increased scFv production rate and frequency of selected kappa antibodies significantly. The HAL libraries and 834 antibodies selected against 121 targets were analyzed regarding the used germline V-genes, used V-gene combinations and CDR-H3/-L3 length and composition. The amino acid diversity and distribution in the CDR-H3 of the initial library was retrieved in the CDR-H3 of selected antibodies showing that all CDR-H3 amino acids occurring in the human antibody repertoire can be functionally used and is not biased by E. coli expression or phage selection. Further, the data underline the importance of CDR length variations. CONCLUSION The highly diverse universal antibody gene libraries HAL9/10 were constructed using an optimized scFv phagemid vector design. Analysis of selected antibodies revealed that the complete amino acid diversity in the CDR-H3 was also found in selected scFvs showing the functionality of the naive CDR-H3 diversity.
Collapse
Affiliation(s)
- Jonas Kügler
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany. .,mAb-factory GmbH, Gelsenkirchenstr. 5, 38108, Braunschweig, Germany.
| | - Sonja Wilke
- mAb-factory GmbH, Gelsenkirchenstr. 5, 38108, Braunschweig, Germany.
| | - Doris Meier
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Florian Tomszak
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany. .,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany. .,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Henk Garritsen
- Klinikum Braunschweig g GmbH, Institut für Klinische Transfusionsmedizin, Celler Str. 38, 38114, Braunschweig, Germany. .,Department Vaccinology, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
37
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Trott M, Weiß S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 2014; 9:e97478. [PMID: 24828352 PMCID: PMC4020869 DOI: 10.1371/journal.pone.0097478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022] Open
Abstract
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.
Collapse
Affiliation(s)
- Maria Trott
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Svenja Weiß
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Sascha Antoni
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Hagen von Briesen
- HIV Specimen Cryorepository (HSC) at Fraunhofer Institute of Biomedical Engineering, St. Ingbert, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- * E-mail:
| |
Collapse
|