1
|
Feng Y, Li J, Wang Y, Yin T, Wang Q, Cheng L. Fine particulate matter exposure and cancer risk: a systematic review and meta-analysis of prospective cohort studies. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0171. [PMID: 40257112 DOI: 10.1515/reveh-2024-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Studies examining the relationship between fine particulate matter (PM2.5) exposure and cancer risk is inconclusive, with an evident scarcity of comprehensive data on the overall cancer risk. Given the emergence of new evidence, updated meta-analyses is essential. A search was performed on multiple databases including PubMed, Embase, Scopus, Web of Science, and the Cochrane Library up to Jan 2025. Hazard ratios (HRs), relative risks (RRs), or incidence rate ratios (IRRs) with their 95 % confidence intervals (CIs) were extracted and pooled. Moreover, a comprehensive and detailed quality assessment of the included studies was conducted to validate the plausibility of the findings. Overall, 57 original studies were included, covering 36 cancer categories and including overall cancer and malignancies specific to particular anatomical sites. For each increase of 10 μg per cubic meter in PM2.5 concentration, there was an observed pooled HR of 1.07 for overall cancer (95 %CI:1.02-1.13). In the case of site-specific cancers, the pooled HRs were 1.11 (95 %CI:1.07-1.15), 1.06 (95 %CI:1.02-1.11), 1.17 (95 %CI:1.07-1.28), and 1.14 (95 %CI:1.03-1.26) for lung, breast, liver and esophageal cancers, respectively. Furthermore, PM2.5 exposure may potentially correlate with the risk of cancers at other anatomical locations including upper aerodigestive tract, oral cavity, kidney, skin, as well as digestive organs. In light of available evidence, it is inferred that PM2.5 exposure could potentially raise overall cancer risk with moderate certainty. As for site-specific malignancies, there is very low certainty evidence for lung cancer, low certainty evidence for breast cancer, and moderate certainty evidence for both liver and esophageal cancers.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Qiankun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
2
|
Masci I, Bozal C, Lezón C, Martin M, Brites F, Bonetto J, Alvarez L, Kurtz M, Tasat D. Exposure to airborne particulate matter and undernutrition in young rats: An in-depth histopathological and biochemical study on lung and excretory organs. Food Chem Toxicol 2025; 197:115246. [PMID: 39793949 DOI: 10.1016/j.fct.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Environmental stressors, such as air particulate matter (PM) and nutrient deficiencies, can significantly impact crucial organs involved in detoxifying xenobiotics, including lungs, liver, and kidneys, especially in vulnerable populations like children. This study investigated the effect of 4-week exposure to Residual Oil Fly Ash (ROFA) on these organs in young rats under growth-restricted nutrition (NGR). We assessed histological, histomorphometric and biochemical parameters. ROFA exposure induced histological changes and inflammation in all three organs when compared to control (C) animals. Specifically, in lungs ROFA caused a significant reduction in alveolar airspace (C: 55.8 ± 1.8% vs. ROFA: 38.7 ± 3.0%, p < 0.01) and alveolar number along with changes in alveolar size distribution, and disruption of the smooth muscle layer which may impaired respiratory function. In the liver, ROFA increased binucleated cells, macro and microvesicles and both AST and ALT serum biomarkers (AST: C = 77.7 ± 1.3 vs. ROFA = 81.6 ± 1.3, p < 0.05; ALT: C = 44.5 ± 0.9 vs. ROFA = 49.4 ± 1.3, p < 0.05). In the kidneys, a reduced Bowman's space (C: 2.15 ± 0.2 mm2 vs. ROFA: 1.74 ± 0.2 mm2, p < 0.05) was observed, indicative of glomerular filtration failure. NGR alone reduced Bowman's space (C: 2.15 ± 0.2 mm2 vs. NGR: 1.06 ± 0.1 mm2, p < 0.001). In lung and liver NGR showed higher levels of proinflammatory cytokine IL-6 (p < 0.01 and p < 0.001, respectively) when compared to C. In conclusion, both stressors negatively affected lung and excretory organs in young rats, with nutritional status further modulating the physiological response to ROFA. These findings highlight the compounded risks posed by environmental pollutants and poor nutrition in vulnerable populations.
Collapse
Affiliation(s)
- Ivana Masci
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina
| | - Carola Bozal
- Cátedra de Histología y Embriología. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christian Lezón
- Cátedra de Fisiología. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Martin
- Laboratorio de Lípidos y Lipoproteínas, Departamento de Bioquímica Clínica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Lipoproteínas, Departamento de Bioquímica Clínica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Bonetto
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina
| | - Laura Alvarez
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana. Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina.
| | - Deborah Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina; Cátedra de Anatomía Patológica. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Zhao H, Zheng X, Lin G, Wang X, Lu H, Xie P, Jia S, Shang Y, Wang Y, Bai P, Zhang X, Tang N, Qi X. Effects of air pollution on the development and progression of digestive diseases: an umbrella review of systematic reviews and meta-analyses. BMC Public Health 2025; 25:183. [PMID: 39819486 PMCID: PMC11740668 DOI: 10.1186/s12889-024-21257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Air pollution, especially particulate matter (PM), is one of the most common risk factors for global burden of disease. However, its effect on the risk of digestive diseases is unclear. Herein, we attempt to explore this issue by reviewing the existing evidence from published meta-analyses. We conducted a systematic literature search to identify all relevant meta-analyses regarding the association of air pollution with digestive diseases, and summarize their major findings. We assessed the methodological quality and evidence quality of the included meta-analyses using the AMSTAR-2 and GRADE tools, respectively, and the overlap of primary studies was assessed by the GROOVE tool. Nine meta-analyses were included in our analysis, containing 43 primary studies with high overlap. In the included meta-analyses, the methodological quality was from critically low to moderate, and the evidence quality was from very low to moderate. The exposure was primarily PM2.5. Seven, four, and one meta-analysis investigated the effect of air pollution on liver diseases, gastrointestinal diseases, and pancreatic diseases, respectively. PM2.5 exposure was significantly associated with liver dysfunction, chronic liver diseases, liver cancer, and colorectal cancer, but not oesophagus cancer, gastric cancer, or pancreatic cancer. Based on very low to moderate quality evidence from meta-analyses, PM2.5 exposure may contribute to the development of some digestive diseases, especially liver diseases.
Collapse
Affiliation(s)
- Haonan Zhao
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Zheng
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Guo Lin
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaomin Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Huiyuan Lu
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengpeng Xie
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Siqi Jia
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiyang Shang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xuan Zhang
- National Institute of Occupational Safety and Health, Kanagawa, 214-8585, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan.
- College of Energy and Power, Shenyang Institute of Engineering, Shenyang, 110136, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China.
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
Zhang K, Tian L, Sun Q, Lv J, Ding R, Yu Y, Li Y, Duan J. Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM 2.5 on liver development and injury in offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104585. [PMID: 39489199 DOI: 10.1016/j.etap.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a significant contributor to air pollution. PM2.5 exposure poses a substantial hazard to public health. In recent years, the adverse effects of maternal PM2.5 exposure on fetal health have gradually gained public attention. As the largest organ in the body, the liver has many metabolic and secretory functions. Liver development, as well as factors that interfere with its growth and function, are of concern. This review utilized the adverse outcome pathway (AOP) framework as the analytical approach to demonstrate the link between maternal PM2.5 exposure and potential neonatal liver injury from the molecular to the population level. The excessive generation of reactive oxygen species (ROS), subsequent endoplasmic reticulum (ER) stress, and oxidative stress were regarded as the essential components in this framework, as they could trigger adverse developmental outcomes in the offspring through DNA damage, autophagy dysfunction, mitochondrial injury, and other pathways. To the best of our knowledge, this is the first article based on an AOP framework that elaborates on the influence of maternal exposure to PM2.5 on liver injury occurrence and adverse effects on liver development in offspring. Therefore, this review offered mechanistic insights into the developmental toxicity of PM2.5 in the liver, which provided a valuable basis for future studies and prevention strategies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jianong Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Chen Y, Zhao C, Zhang Y, Lin Y, Shen G, Wang N, Jia X, Yang Y. Associations of ambient particulate matter and household fuel use with chronic liver disease in China: A nationwide analysis. ENVIRONMENT INTERNATIONAL 2024; 193:109083. [PMID: 39471715 DOI: 10.1016/j.envint.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Long-term effects of outdoor and indoor air pollution on chronic liver disease (CLD) remain unclear. Thus, the study was conducted to investigate the relationship between prolonged exposure to ambient particulate matter (PM1, PM2.5 and PM10) and household fuel usage with CLD. METHODS Data from the China Health and Retirement Longitudinal Study (CHARLS) covering the years 2011 to 2020 were employed. In the cross-sectional analysis, 16,680 participants were included, while 12,969 participants were enrolled in the longitudinal study. The associations between various sizes of particulate matter and CLD were elucidated using logistic regression model and generalized linear-mixed models. Additionally, the additive effects of ambient particulate matter (PM) levels and the utilization of solid fuels for cooking were investigated, with a comparison of effect sizes between converted and non-converted fuel types. RESULTS Over a 10-year follow-up period, 746 (5.75 %) individuals developed CLD. For a 1-year average concentrations, PM1, PM2.5 and PM10 were each linked to a 1.549 (95 %CI:1.522-1.576), 1.296 (95 %CI:1.276-1.317) and 1.134 (95 %CI:1.118-1.150) fold risk of incident CLD per 10 μg/m3 increase, respectively. A similar effect of PM concentrations over a 2-year period on CLD was observed. Moreover, simultaneous exposure to ambient PM and solid fuels is associated with an increased risk of CLD. Those who continue using solid fuels may face a higher risk of CLD compared to individuals who switch to cleaner cooking fuels. Female participants, smokers, and individuals with shorter sleep duration and multiple chronic diseases exhibited slightly stronger effects. CONCLUSION Long-term exposure to various sizes of PM (PM1, PM2.5, PM10) has been linked to an elevated risk of CLD incidence. Co-exposure to ambient PM and solid fuels is associated with higher health risks.
Collapse
Affiliation(s)
- Yongyue Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Chenyu Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Yan Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Guibin Shen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Nana Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China.
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Joo Y, Joo M, Nguyen MH, Hong J, Kim C, Wong MS, Heo J. Daily estimation of NO 2 concentrations using digital tachograph data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1109. [PMID: 39465475 DOI: 10.1007/s10661-024-13190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Traffic information is crucial for estimating NO2 concentrations, but it is static and limited in predicting constantly changing NO2 levels. To overcome these challenges, this study utilized real-time spatial big data to capture both the spatial and temporal fluctuations in traffic. Digital tachograph (DTG) data, sourced from digital devices in all commercial vehicles, are employed to construct a DTG land use regression (LUR) model, and its performance is compared with that of a non-DTG-LUR model. The DTG-LUR model exhibits superior performance, with an explanatory power of 0.46, in contrast to the 0.36 of the non-DTG model. This significant improvement stems from the spatially and temporally dynamic DTG variables such as cargo traffic. This study introduces a novel approach for incorporating DTG data in correlating with NO2 concentrations. It underscores the advantage of DTG data in predicting daily NO2 fluctuations at a precise 200-m grid, which is not feasible with conventional data. The findings of the study highlight the immense potential of spatial big data for fine-grained analyses, which could enable hourly predictions of air pollution.
Collapse
Affiliation(s)
- Yoohyung Joo
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Minsoo Joo
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Minh Hieu Nguyen
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jiwan Hong
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sing Wong
- Department of Land Surveying and Geo-Infomatics, Hong Kong Polytechnic University, Hong Kong, China
| | - Joon Heo
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Thongsak N, Chitapanarux T, Chotirosniramit A, Chakrabandhu S, Traisathit P, Nakharutai N, Srikummoon P, Thumronglaohapun S, Supasri T, Hemwan P, Chitapanarux I. Air pollutants and primary liver cancer mortality: a cohort study in crop-burning activities and forest fires area. Front Public Health 2024; 12:1389760. [PMID: 39381772 PMCID: PMC11459313 DOI: 10.3389/fpubh.2024.1389760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Northern Thailand experiences high levels of air pollution in the dry season due to agricultural waste burning and forest fires. Some air pollutants can enter the bloodstream, and the liver has the role of detoxifying these along with other harmful substances. In this study, we assessed the effects of long-term exposure to air pollutants on liver cancer mortality in this area. Methods A cohort of 10,859 primary liver cancer patients diagnosed between 2003 and 2018 and followed up to the end of 2020 were included in the study. Extended time-varying covariates of the annually averaged pollutant concentrations updated each year were utilized. The associations between air pollutants and mortality risk were examined by using a Cox proportional hazard model. Results Metastatic cancer stage had the highest adjusted hazard ratio (aHR) of 3.57 (95% confidence interval (CI):3.23-3.95). Being male (aHR = 1.10; 95% CI: 1.04-1.15), over 60 years old (aHR = 1.16; 95% CI: 1.11-1.21), having a history of smoking (aHR = 1.16; 95%CI: 1.11-1.22), and being exposed to a time-updated local concentration of PM2.5 of 40 μg/m3 (aHR = 1.10; 95% CI: 1.05-1.15) increased the mortality risk. Conclusion We found that air pollution is one of several detrimental factors on the mortality risk of liver cancer.
Collapse
Affiliation(s)
- Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Taned Chitapanarux
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anon Chotirosniramit
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Kurtz M, Lezón C, Masci I, Boyer P, Brites F, Bonetto J, Bozal C, Álvarez L, Tasat D. Air pollution induces morpho-functional, biochemical and biomechanical vascular dysfunction in undernourished rats. Food Chem Toxicol 2024; 190:114777. [PMID: 38824989 DOI: 10.1016/j.fct.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-β1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina.
| | - Christian Lezón
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ivana Masci
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Patricia Boyer
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Bonetto
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Carola Bozal
- Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Álvarez
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Deborah Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Ma X, Fisher JA, McGlynn KA, Liao LM, Vasiliou V, Sun N, Kaufman JD, Silverman DT, Jones RR. Long-term exposure to ambient fine particulate matter and risk of liver cancer in the NIH-AARP Diet and Health Study. ENVIRONMENT INTERNATIONAL 2024; 187:108637. [PMID: 38636274 PMCID: PMC11286199 DOI: 10.1016/j.envint.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure has been associated with liver cancer incidence and mortality in a limited number of studies. We sought to evaluate this relationship for the first time in a U.S. cohort with historical exposure assessment. METHODS We used spatiotemporal prediction models to estimate annual average historical PM2.5 concentrations (1980-2015) at residential addresses of 499,729 participants in the NIH-AARP Diet and Health Study, a cohort in 6 states (California, Florida, Louisiana, New Jersey, North Carolina, and Pennsylvania) and 2 metropolitan areas (Atlanta, Georgia, and Detroit, Michigan) enrolled in 1995-1996 and followed up through 2017. We used a time-varying Cox model to estimate the association for liver cancer and the predominant histologic type, hepatocellular carcinoma (HCC), per 5 µg/m3 increase in estimated outdoor PM2.5 levels, incorporating a 5-year average, lagged 10 years prior to cancer diagnosis and adjusting for age, sex, race/ethnicity, education level and catchment state. We also evaluated PM2.5 interactions with hypothesized effect modifiers. RESULTS We observed a non-significantly increased risk of liver cancer associated with estimated PM2.5 exposure (Hazard ratio [HR] = 1.05 [0.96-1.14], N = 1,625); associations were slightly stronger for HCC, (84 % of cases; HR = 1.08 [0.98-1.18]). Participants aged 70 or older at enrollment had an increased risk of liver cancer versus other age groups (HR = 1.50 [1.01-2.23]); p-interaction = 0.01) and risk was elevated among participants who did not exercise (HR = 1.81 [1.22-2.70]; p-interaction = 0.01). We found no evidence of effect modification by sex, smoking status, body mass index, diabetes status, or alcohol consumption (p-interaction > 0.05). CONCLUSIONS Our findings in this large cohort suggest that residential ambient PM2.5 levels may be associated with liver cancer risk. Further exploration of the variation in associations by age and physical activity are important areas for future research.
Collapse
Affiliation(s)
- Xiuqi Ma
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Jared A Fisher
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ning Sun
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rena R Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
10
|
Yu Z, Sun Z, Liu L, Li C, Zhang X, Amat G, Ran M, Hu X, Xu Y, Zhao X, Zhou J. Environmental surveillance in Jinan city of East China (2014-2022) reveals improved air quality but remained health risks attributable to PM2.5-bound metal contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123275. [PMID: 38163628 DOI: 10.1016/j.envpol.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
PM2.5-bound metal contaminants are associated with multiple chronic diseases in human. At global level, the contamination status has not been well controlled yet. Here we report findings from a long-term air pollution surveillance in Jinan city of Shandong, China. During 2014-2022, the dynamics and trends of PM2.5-bound heavy metal contaminants were monitored in an industrial area and a downtown area. The surveillance targets included: antimony (Sb), aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se). The human exposure and health risks were calculated and we found that the health risks of most contaminants showed peak values in autumn and winter. But Al, Mn, Hg and Be were found to result in highest health risk in spring or summer in the downtown area. In the industrial area we identified 100% alarming health index >1 (ranged from 1.12 to 3.35) in autumn and winter. In winter the total non-carcinogenic HI was all above 1 (peak value 2.21). Mn and As together posed >85% non-carcinogenic risk. As and Cd were ranked as major drivers of carcinogenic risks (5.84 × 10-6 and 2.78 × 10-6). Pd and Cd both showed non-negligible environmental levels but risk assessment model for their air-exposure associated non-carcinogenic risks are not yet available. This study updates air pollution data and status for air pollution status in China. This study provides valuable 9 year long-term reference to experimental and field studies in the related fields.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Zhan Sun
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Lanzheng Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Gzalnur Amat
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Mohan Ran
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiaoyue Hu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Yunxiang Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Sun HZ, Tang H, Fang J, Dai H, Zhao H, Xu S, Xiang Q, Tian Y, Jiao Y, Luo T, Huang M, Shu J, Zang L, Liu H, Guo Y, Xu W, Bai X. A Chinese longitudinal maternity cohort study (2013-2021) on intrahepatic cholestasis phenotypes: Risk associations from environmental exposure to adverse pregnancy outcomes. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132915. [PMID: 37951168 DOI: 10.1016/j.jhazmat.2023.132915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic disease that occurs during mid-to-late pregnancy and is associated with various adverse pregnancy outcomes, including intrauterine fetal demise. However, since the underlying cause of ICP remains unclear, there is an ongoing debate on the phenotyping criteria used in the diagnostic process. Here, we identified single- and multi-symptomatic ICP (ICP-S and ICP-M) in 104,221 Chinese females from the ZEBRA maternity cohort, with the objective of exploring the risk implications of the two phenotypes on pregnancy outcomes and from environmental exposures. We employed multivariate binary logistic regression to estimate confounder-adjusted odds ratios and found that ICP-M was more strongly associated with preterm birth and low birth weight compared to ICP-S. Throughout pregnancy, incremental exposure to PM2.5, O3, and greenness could alter ICP risks by 17.3%, 12.5%, and -2.3%, respectively, with more substantial associations observed with ICP-M than with ICP-S. The major scientific advancements lie in the elucidation of synergistic risk interactions between pollutants and the protective antagonistic effects of greenness, as well as highlighting the risk impact of preconceptional environmental exposures. Our study, conducted in the context of the "three-child policy" in China, provides epidemiological evidence for policy-making to safeguard maternal and neonatal health.
Collapse
Affiliation(s)
- Haitong Zhe Sun
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Republic of Singapore; Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Republic of Singapore; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Haiyang Tang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jing Fang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Lanxi People's Hospital, Jinhua, Zhejiang 321102, PR China
| | - Haizhen Dai
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Huan Zhao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, PR China
| | - Siyuan Xu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Qingyi Xiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yijia Tian
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yurong Jiao
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Ting Luo
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Meishuang Huang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jia Shu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Lu Zang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hengyi Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Centre, Beijing 100191, PR China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wei Xu
- Maternal and Child Health Division, Health Commission of Zhejiang Province, Hangzhou, Zhejiang 310006, PR China
| | - Xiaoxia Bai
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Traditional Chinese Medicine for Reproductive Health Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310006, PR China; Zhejiang Provincial Clinical Research Centre for Obstetrics and Gynecology, Hangzhou, Zhejiang 310006, PR China; Key Laboratory of Women's Reproductive Health, Hangzhou, Zhejiang 310006, PR China.
| |
Collapse
|
12
|
Nemmar A, Beegam S, Yuvaraju P, Zaaba NE, Elzaki O, Yasin J, Adeghate E. Pathophysiologic effects of waterpipe (shisha) smoke inhalation on liver morphology and function in mice. Life Sci 2024; 336:122058. [PMID: 37659593 DOI: 10.1016/j.lfs.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
AIMS The global prevalence of waterpipe tobacco smoking is increasing. Although the cardiorespiratory, renal, and reproductive effects of waterpipe smoking (WPS) are well-documented, there is limited knowledge regarding its adverse impact on the liver. Therefore, our study aimed to assess the effects and potential mechanisms of WPS inhalation for one or four weeks on the liver. MAIN METHODS Mice were exposed to WPS for 30 min per day, five days per week, while control mice were exposed to clean air. KEY FINDINGS Analysis using light microscopy revealed the infiltration of immune cells (neutrophils and lymphocytes) accompanied by vacuolar hepatic degeneration upon WPS inhalation. At the four-week timepoint, electron microscopy analysis demonstrated an increased number of mitochondria with a concomitant pinching-off of hepatocyte plasma membranes. WPS exposure led to a significant rise in the activities of liver enzymes alanine aminotransferase and aspartate aminotransferase in the bloodstream. Additionally, WPS inhalation elevated lipid peroxidation and reactive oxygen species levels and disrupted the levels of the antioxidant glutathione in liver tissue homogenates. The concentration of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, and IL-1β, was significantly increased in the WPS-exposed group. Furthermore, WPS inhalation induced DNA damage and a significant increase in the levels of cleaved caspase-3, cytochrome C and hypoxia-inducible factor 1α along with alterations in the activity of mitochondrial complexes I, II, III and IV. SIGNIFICANCE Our findings provide evidence that WPS inhalation triggers changes in liver morphology, oxidative stress, inflammation, DNA damage, apoptosis, and alterations in mitochondrial activity.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Dales R, Mitchell K, Lukina A, Brook J, Karthikeyan S, Cakmak S. Does ambient air pollution influence biochemical markers of liver injury? Findings of a cross-sectional population-based survey. CHEMOSPHERE 2023; 340:139859. [PMID: 37619749 DOI: 10.1016/j.chemosphere.2023.139859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND There is limited evidence supporting an adverse effect of ambient air pollution on the liver. OBJECTIVES To test the association between exposure to residential air pollution and serum biochemical indicators of liver injury. METHODS We used a nationally representative sample of 32,989 participants aged 3-79 years old who participated in the Canadian Health Measures Survey between 2007 and 2019. Cross-sectional associations were assessed by generalized linear mixed models incorporating survey-specific sampling weights. RESULTS The joint effect of an interquartile range (IQR) increase in nitrogen dioxide (NO2), ozone (O3) and fine particulate matter (PM2.5) was positively and significantly associated with all measures of liver injury adjusting for age, sex, education, income, smoking, alcohol consumption, body mass index (BMI), total cholesterol, diabetes, hypertension, and physical activity. The ranking of effect sizes from largest to smallest percent increases were 8.72% (95% confidence interval [CI] 7.56, 9.88) for alanine aminotransferase (ALT), 5.54% (95%CI 3.31, 7.77) for gamma-glutamyl transferase (GGT), 4.81% (95%CI 3.87, 5.74) for aspartate aminotransferase (AST), 2.46% (95%CI 0.26, 4.65) for total bilirubin (TBIL) and 1.18% (95%CI 0.62, 1.75) for alkaline phosphatase (ALP). Findings were not significantly different when stratified by age (≤16, >16 yr), sex, smoking (current, other), cholesterol (≤6.18, >6.18 mmol/l) and BMI (<30, ≥30 kg/m2). DISCUSSION These findings suggest that ambient air pollution may have a relatively small impact on the liver, but these changes may have significant impact from a population health perspective, considering the ubiquitous nature of air pollution, or for individuals exposed to very high levels of air pollution.
Collapse
Affiliation(s)
- Robert Dales
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - Kimberly Mitchell
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Anna Lukina
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Subramanian Karthikeyan
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sabit Cakmak
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Short-term exposure to PM 2.5 and 1.5 million deaths: a time-stratified case-crossover analysis in the Mexico City Metropolitan Area. Environ Health 2023; 22:70. [PMID: 37848890 PMCID: PMC10580614 DOI: 10.1186/s12940-023-01024-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in low and middle income countries. We aimed to explore the association between short-term exposure to PM2.5 with broad-category and cause-specific mortality outcomes in the Mexico City Metropolitan Area (MCMA), and potential effect modification by age, sex, and SES characteristics in such associations. METHODS We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from the MCMA for the period of 2004-2019. Daily 1 × 1 km PM2.5 (median = 23.4 μg/m3; IQR = 13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Odds ratios were converted into percent increase for ease of interpretation. RESULTS PM2.5 exposure was associated with broad-category mortality outcomes, including all non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between age, sex and SES strata. CONCLUSIONS Exposure to PM2.5 was associated with non-accidental, broad-category and cause-specific mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indication of effect modification by individual-level characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social, Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Madiedo-Podvrsan S, Sebillet L, Martinez T, Bacari S, Zhu F, Cattelin M, Leclerc E, Merlier F, Jellali R, Lacroix G, Vayssade M. Development of a lung-liver in vitro coculture model for inhalation-like toxicity assessment. Toxicol In Vitro 2023; 92:105641. [PMID: 37437822 DOI: 10.1016/j.tiv.2023.105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Animal models are considered prime study models for inhalation-like toxicity assessment. However, in light of animal experimentation reduction (3Rs), we developed and investigated an alternative in vitro method to study systemic-like responses to inhalation-like exposures. A coculture platform was established to emulate inter-organ crosstalks between a pulmonary barrier, which constitutes the route of entry of inhaled compounds, and the liver, which plays a major role in xenobiotic metabolism. Both compartments (Calu-3 insert and HepG2/C3A biochip) were jointly cultured in a dynamically-stimulated environment for 72 h. The present model was characterized using acetaminophen (APAP), a well-documented hepatotoxicant, to visibly assess the passage and circulation of a xenobiotic through the device. Based on viability and functionality parameters the coculture model showed that the bronchial barrier and the liver biochip can successfully be maintained viable and function in a dynamic coculture setting for 3 days. In a stress-induced environment, present results reported that the coculture model emulated active and functional in vitro crosstalk that seemingly was responsive to xenobiotic exposure doses. The hepatic and bronchial cellular responses to xenobiotic exposure were modified in the coculture setting as they displayed earlier and stronger detoxification processes, highlighting active and functional organ crosstalk between both compartments.
Collapse
Affiliation(s)
- Sabrina Madiedo-Podvrsan
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Louise Sebillet
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Thomas Martinez
- French National Institute for Industrial Environment and Risks, INERIS, Direction milieux et impacts sur le vivant, Verneuil-en-Halatte, France
| | - Salimata Bacari
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Fengping Zhu
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Marie Cattelin
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Franck Merlier
- Université de technologie de Compiègne, UPJV, CNRS Enzyme and Cell Engineering Laboratory, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Ghislaine Lacroix
- French National Institute for Industrial Environment and Risks, INERIS, Direction milieux et impacts sur le vivant, Verneuil-en-Halatte, France
| | - Muriel Vayssade
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
16
|
Matthiessen C, Glaubitz L, Lucht S, Kälsch J, Luedde T, Erbel R, Stang A, Schmidt B, Friedman SL, Canbay A, Bechmann LP, Hoffmann B. Long-term exposure to air pollution and prevalent nonalcoholic fatty liver disease. Environ Epidemiol 2023; 7:e268. [PMID: 37840860 PMCID: PMC10569764 DOI: 10.1097/ee9.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a disease characterized by lipid accumulation within hepatocytes, ranging from simple steatosis to steatohepatitis, in the absence of secondary causes of hepatic fat accumulation. Although air pollution (AP) has been associated with several conditions related to NAFLD (e.g., metabolic syndrome, type 2 diabetes mellitus), few studies have explored an association between AP and NAFLD. The aim of the study was to investigate whether exposure to AP is associated with NAFLD prevalence. Methods We used baseline cross-sectional data (2000-2003) of the Heinz-Nixdorf-Recall cohort study in Germany (baseline n = 4,814), a prospective population-based cohort study in the urbanized Ruhr Area. Mean annual exposure to size-fractioned particulate matter (PM10, PM2.5, PMcoarse, and PM2.5abs), nitrogen dioxide, and particle number was assessed using two different exposure models: a chemistry transport dispersion model, which captures urban background AP exposure on a 1 km2 grid at participant's residential addresses, and a land use regression model, which captures point-specific AP exposure at participant's residential addresses. NAFLD was assessed with the fatty liver index (n = 4,065), with NAFLD defined as fatty liver index ≥60. We estimated ORs of NAFLD per interquartile range of exposure using logistic regression, adjusted for socio-demographic and lifestyle variables. Results We observed a NAFLD prevalence of 31.7% (n = 1,288). All air pollutants were positively associated with NAFLD prevalence, with an OR per interquartile range for PM2.5 of 1.11 (95% confidence interval [CI] = 1.00, 1.24) using chemistry transport model, and 1.06 (95% CI = 0.94, 1.19) using the land use regression model, respectively. Conclusion There was a positive association between long-term AP exposure and NAFLD.
Collapse
Affiliation(s)
- Clara Matthiessen
- Institute of Occupational, Social, and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lina Glaubitz
- Institute of Occupational, Social, and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Sarah Lucht
- Institute of Occupational, Social, and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
- Cardinal Health, Dublin, Ohio
| | - Julia Kälsch
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital of Duesseldorf, Germany
| | - Raimund Erbel
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- School of Public Health, Department of Epidemiology Boston University, Boston, Massachusetts
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Barbara Hoffmann
- Institute of Occupational, Social, and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
17
|
Pei H, He Z, Du R, Zhu Y, Yang Y. PM2.5 exposure aggravates acute liver injury by creating an inflammatory microenvironment through Kupffer cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115264. [PMID: 37467564 DOI: 10.1016/j.ecoenv.2023.115264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
AIM This work aimed to investigate the impact of PM2.5 exposure on acute liver injury METHODS: C57BL/6 mice were used to examine the hepatic histopathological changes in PM2.5-exposed mice, as well as in CCl4-mediated acute liver injury mice after long-term exposure to PM2.5. During in vitro experiments, Kupffer cells were detected for M1 polarization level after treating with PM2.5, and the activation level of NLRP3 inflammasomes were assessed. RESULTS According to our findings, PM2.5 can induce M1 polarization of Kupffer cells in the liver to create an inflammatory microenvironment. Long-term exposure to PM2.5 can aggravate acute liver injury in mice. Treatment with MCC950, an NLRP3 inhibitor, can inhibit the effect of PM2.5. As demonstrated by in vitro analysis, PM2.5 can promote M1 polarization of Kupffer cells. CONCLUSION As suggested by our results, long-term exposure to PM2.5 can create an inflammatory microenvironment to aggravate mouse acute liver injury. The effect is related to NLRP3-mediated M1 polarization in Kupffer cells.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Yi Yang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
18
|
Zhang C, Ma T, Liu C, Ma D, Wang J, Liu M, Ran J, Wang X, Deng X. PM 2.5 induced liver lipid metabolic disorders in C57BL/6J mice. Front Endocrinol (Lausanne) 2023; 14:1212291. [PMID: 37780625 PMCID: PMC10539470 DOI: 10.3389/fendo.2023.1212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
PM2.5 can cause adverse health effects via several pathways, such as inducing pulmonary and systemic inflammation, penetration into circulation, and activation of the autonomic nervous system. In particular, the impact of PM2.5 exposure on the liver, which plays an important role in metabolism and detoxification to maintain internal environment homeostasis, is getting more attention in recent years. In the present study, C57BL/6J mice were randomly assigned and treated with PM2.5 suspension and PBS solution for 8 weeks. Then, hepatic tissue was prepared and identified by metabolomics analysis and transcriptomics analysis. PM2.5 exposure can cause extensive metabolic disturbances, particularly in lipid and amino acids metabolic dysregulation.128 differential expression metabolites (DEMs) and 502 differently expressed genes (DEGs) between the PM2.5 exposure group and control group were detected. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DEGs were significantly enriched in two disease pathways, non-alcoholic fatty liver disease (NAFLD) and type II diabetes mellitus (T2DM), and three signaling pathways, which are TGF-beta signaling, AMPK signaling, and mTOR signaling. Besides, further detection of acylcarnitine levels revealed accumulation in liver tissue, which caused restricted lipid consumption. Furthermore, lipid droplet accumulation in the liver was confirmed by Oil Red O staining, suggesting hepatic steatosis. Moreover, the aberrant expression of three key transcription factors revealed the potential regulatory effects in lipid metabolic disorders, the peroxisomal proliferative agent-activated receptors (PPARs) including PPARα and PPARγ is inhibited, and the activated sterol regulator-binding protein 1 (SREBP1) is overexpressed. Our results provide a novel molecular and genetic basis for a better understanding of the mechanisms of PM2.5 exposure-induced hepatic metabolic diseases, especially in lipid metabolism.
Collapse
Affiliation(s)
- Chenxiao Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Liu
- College of Basic Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Ma H, Zhang Q, Liang W, Han A, Xie N, Xiang H, Wang X. Short-Term Exposure to PM 2.5 and O 3 Impairs Liver Function in HIV/AIDS Patients: Evidence from a Repeated Measurements Study. TOXICS 2023; 11:729. [PMID: 37755740 PMCID: PMC10537338 DOI: 10.3390/toxics11090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Studies investigating the relationship between ambient air pollutants and liver function are scarce. Our objective was to examine the associations of acute exposure to PM2.5 and O3 with levels of hepatic enzymes in people living with HIV/AIDS (PWHA). Our study involved 163 PWHA, who were evaluated for serum hepatic enzymes up to four times within a year. We extracted daily average concentrations of PM2.5, PM2.5 components, and O3 for each participant, based on their residential address, using the Tracking of Air Pollution in China database. Linear mixed-effect models were utilized to assess the associations of acute exposure to PM2.5 and O3 with hepatic enzymes. Weighted quantile sum regression models were employed to identify the major constituents of PM2.5 that affect hepatic enzymes. The percent change of aspartate aminotransferase (AST) concentration was positively correlated with a 10 µg/m3 increase in PM2.5, ranging from 1.92 (95% CI: 3.13 to 4.38) to 6.09 (95% CI: 9.25 to 12.38), with the largest effect observed at lag06. Additionally, acute O3 exposure was related to increased levels of alanine aminotransferase (ALT), AST, and alkaline phosphatase (ALP) concentrations. Co-exposure to high levels of PM2.5 and O3 had an antagonistic effect on the elevation of AST. Further analysis revealed that SO42- and BC were major contributors to elevated AST concentration due to PM2.5 constituents. A stronger association was found between O3 exposure and ALT concentration in female PWHA. Our study found that short-term exposure to PM2.5 and O3 was associated with increased levels of hepatic enzymes, indicating that PM2.5 and O3 exposure may contribute to hepatocellular injury in PWHA. Our study also found that PWHA may be more vulnerable to air pollution than the general population. These findings highlight the relationship between air pollutants and liver function in PWHA, providing a scientific basis for the implementation of measures to protect susceptible populations from the adverse effects of air pollution. A reduction in the burning of fossil fuels and reduced exposure to air pollutants may be effective hazard reduction approaches.
Collapse
Affiliation(s)
- Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Qian Zhang
- Qingshan District Center for Disease Control and Prevention, 4# Yangang Road, Wuhan 430070, China
| | - Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Aojing Han
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| |
Collapse
|
20
|
Schneider LJ, Santiago I, Johnson B, Stanley AH, Penaredondo B, Lund AK. Histological features of non-alcoholic fatty liver disease revealed in response to mixed vehicle emission exposure and consumption of a high-fat diet in wildtype C57Bl/6 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115094. [PMID: 37285676 PMCID: PMC12147234 DOI: 10.1016/j.ecoenv.2023.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently plaguing the population at pandemic proportions and is expected to become more prevalent over the next decade. Recent epidemiological studies have demonstrated a correlation between the manifestation of NAFLD and ambient air pollution levels, which is exacerbated by other risk factors, such as diabetes, dyslipidemia, obesity, and hypertension. Exposure to airborne particulate matter has also been associated with inflammation, hepatic lipid accumulation, oxidative stress, fibrosis, and hepatocyte injury. While prolonged consumption of a high-fat (HF) diet is associated with NAFLD, little is known regarding the effects of inhaled traffic-generated air pollution, a ubiquitous environmental pollutant, on the pathogenesis of NAFLD. Therefore, we investigated the hypothesis that exposure to a mixture of gasoline and diesel engine emissions (MVE), coupled with the concurrent consumption of a HF diet, promotes the development of a NAFLD phenotype within the liver. Three-month-old male C57Bl/6 mice were placed on either a low-fat or HF diet and exposed via whole-body inhalation to either filtered (FA) air or MVE (30 µg PM/m3 gasoline engine emissions + 70 µg PM/m3 diesel engine emissions) 6 hr/day for 30 days. Histology revealed mild microvesicular steatosis and hepatocyte hypertrophy in response to MVE exposure alone, compared to FA controls, yielding a classification of "borderline NASH" under the criteria of the modified NAFLD active score (NAS) system. As anticipated, animals on a HF diet exhibited moderate steatosis; however, we also observed inflammatory infiltrates, hepatocyte hypertrophy, and increased lipid accumulation, with the combined effect of HF diet and MVE exposure. Our results indicate that inhalation exposure to traffic-generated air pollution initiates hepatocyte injury and further exacerbates lipid accumulation and hepatocyte injury induced by the consumption of a HF diet, thereby contributing to the progression of NAFLD-related pathologies.
Collapse
Affiliation(s)
- Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Isabella Santiago
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bailee Johnson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Analana Hays Stanley
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bea Penaredondo
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
21
|
Liu R, Li D, Xie J, Wang L, Hu Y, Tian Y. Air pollution, alcohol consumption, and the risk of elevated liver enzyme levels: a cross-sectional study in the UK Biobank. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87527-87534. [PMID: 37428318 DOI: 10.1007/s11356-023-28659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Evidences on the association between exposure to air pollution and liver enzymes was scarce in low pollution area. We aimed to investigate the association between air pollution and liver enzyme levels and further explore whether alcohol intake influence this association. This cross-sectional study included 425,773 participants aged 37 to 73 years from the UK Biobank. Land Use Regression was applied to assess levels of PM2.5, PM10, NO2, and NOx. Levels of liver enzymes including AST, ALT, GGT, and ALP were determined by enzymatic rate method. Long-term low-level exposure to PM2.5 (per 5-μg/m3 increase) was significantly associated with AST (0.596% increase, 95% CI, 0.414 to 0.778%), ALT (0.311% increase, 0.031 to 0.593%), and GGT (1.552% increase, 1.172 to 1.933%); The results were similar for PM10; NOX and NO2 were only significantly correlated with AST and GGT Significant modification effects by alcohol consumption were found (P-interaction < 0.05). The effects of pollutants on AST, ALT, and GGT levels gradually increased along with the weekly alcohol drinking frequency. In conclusion, long-term low-level air pollutants exposure was associated with elevated liver enzyme levels. And alcohol intake may exacerbate the effect of air pollution on liver enzymes.
Collapse
Affiliation(s)
- Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
22
|
Cui H, Qi Y, Guo C, Tang N. The effect of PM 2.5 exposure on the mortality of patients with hepatocellular carcinoma in Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28039-1. [PMID: 37273052 DOI: 10.1007/s11356-023-28039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Several studies have shown the effects of PM2.5 exposure on respiratory and cardiovascular systems. However, there is no cohort study evidence of adverse effects of PM2.5 exposure on survival in patients with hepatocellular carcinoma (HCC) in China. This study is aimed at evaluating this association. This cohort study included 1440 HCC patients treated at the Third Central Clinical College of Tianjin Medical University from September 2013 to December 2018. We collected patient information, including demographic data, medical history, lifestyle characteristics, and disease characteristics. Based on PM2.5 concentrations measured at monitoring stations, the inverse distance weighted (IDW) method was used to assess the individuals' exposure during their survival period. Survival status was analysed by the Kaplan-Meier method. Restricted cubic splines and Cox proportional hazards models were used to estimate the relationship between PM2.5 and mortality, and potential confounders were adjusted for. The mortality rate of HCC patients exposed to PM2.5 ≥ 58.56 μg/m3 was significantly higher than that of HCC patients living in environments with PM2.5 < 58.56 μg/m3 (79.0% vs 50.7%, P < 0.001). The restricted cubic spline model showed a linear relationship between the PM2.5 concentration and mortality risk (P overall-association < 0.0001 and P nonlinear-association = 0.3568). Cox regression analysis showed that after adjusting for confounding factors, for every 10-μg/m3 increase in atmospheric PM2.5, the risk of death for HCC patients increased by 44% [hazard ratio (HR) = 1.44, 95% confidence interval (CI) 1.34, 1.56; P < 0.001]. Compared with patients exposed to PM2.5 <58.56 μg/m3, those exposed to PM2.5 ≥ 58.56 μg/m3 had a 1.55-fold increased risk of death. Stratified analysis results showed that the effects of PM2.5 on HCC mortality were more significant in patients aged ≥60 years or patients living in central urban areas. We found that exposure to elevated PM2.5 after HCC diagnosis may affect survival, with a higher concentration corresponding to a greater effect.
Collapse
Affiliation(s)
- Hao Cui
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Department of Hepatology and Gastroenterology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Ye Qi
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Chunyue Guo
- The Third Central Clinical College of Tianjin Medical University, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China.
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
23
|
Moradi M, Mard SA, Farbood Y, Dianat M, Goudarzi G, Khorsandi L, Seyedian SS. The protective effect of p-Coumaric acid on hepatic injury caused by particulate matter in the rat and determining the role of long noncoding RNAs MEG3 and HOTAIR. J Biochem Mol Toxicol 2023:e23364. [PMID: 37183931 DOI: 10.1002/jbt.23364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is associated with serious human health problems. P-coumaric acid (PC) is a herbal phenolic compound that exhibits beneficial pharmacological potentials. Here, the protective effect of PC on liver injury induced by air pollution was examined. Thirty-two adult male Wistar rats (200-250 g) were divided randomly into four groups (n = 8). The groups were; Control (rats received DMSO and then exposed to clean air), PC (rats received PC and then exposed to clean air), DMSO + Dust (rats received DMSO and then exposed to dust), and PC + Dust (the animals received PC and then exposed to dust). The clean air, DMSO, PC, and dust were administrated 3 days a week for 6 consecutive weeks. The rats were anesthetized and their blood samples and liver sections were taken to conduct molecular, biomedical, and histopathological tests. Dust exposure increased the liver enzymes, bilirubin, triglyceride, cholesterol, and the production of liver malondialdehyde, and decreased in liver total anti-oxidant capacity and serum high-density lipoprotein. It also increased the mRNA expression of inflammatory-related cytokines, decreased the mRNA expression of SIRT-1, decreased the expression levels of miR-20b5p, and MEG3 while increased the expression levels of miR-34a, and HOTAIR. Dust exposure also increased the liver content of three cytokines TNF-α, NF-κB, HMGB-1, and ATG-7 proteins. PC enhanced liver function against adverse effects of dust through recovering almost all the studied variables. Exposure to dust damaged the liver through induction of oxidative stress, inflammation, and autophagy. PC protected the liver against dust-induced cytotoxicity.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed A Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran. Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed S Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
25
|
Wirsching J, Nagel G, Tsai MY, de Hoogh K, Jaensch A, Anwander B, Sokhi RS, Ulmer H, Zitt E, Concin H, Brunekreef B, Hoek G, Weinmayr G. Exposure to ambient air pollution and elevated blood levels of gamma-glutamyl transferase in a large Austrian cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163658. [PMID: 37100134 DOI: 10.1016/j.scitotenv.2023.163658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Gamma glutamyl transferase (GGT) is related to oxidative stress and an indicator for liver damage. We investigated the association between air pollution and GGT in a large Austrian cohort (N = 116,109) to better understand how air pollution affects human health. Data come from voluntary prevention visits that were routinely collected within the Vorarlberg Health Monitoring and Prevention Program (VHM&PP). Recruitment was ongoing from 1985 to 2005. Blood was drawn and GGT measured centralized in two laboratories. Land use regression models were applied to estimate individuals' exposure at their home address for particulate matter (PM) with a diameter of <2.5 μm (PM2.5), <10 μm (PM10), fraction between 10 μm and 2.5 μm (PMcoarse), as well as PM2.5 absorbance (PM2.5abs), NO2, NOx and eight components of PM. Linear regression models, adjusting for relevant individual and community-level confounders were calculated. The study population was 56 % female with a mean age of 42 years and mean GGT was 19.0 units. Individual PM2.5 and NO2 exposures were essentially below European limit values of 25 and 40 μg/m3, respectively, with means of 13.58 μg/m3 for PM2.5 and 19.93 μg/m3 for NO2. Positive associations were observed for PM2.5, PM10, PM2.5abs, NO2, NOx, and Cu, K, S in PM2.5 and PM10 fractions and Zn mainly in PM2.5 fraction. The strongest association per interquartile range observed was an increase of serum GGT concentration by 1.40 % (95 %-CI: 0.85 %; 1.95 %) per 45.7 ng/m3 S in PM2.5. Associations were robust to adjustments for other biomarkers, in two-pollutant models and the subset with a stable residential history. We found that long-term exposure to air pollution (PM2.5, PM10, PM2.5abs, NO2, NOx) as well as certain elements, were positively associated with baseline GGT levels. The elements associated suggest a role of traffic emissions, long range transport and wood burning.
Collapse
Affiliation(s)
- Jan Wirsching
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Ming-Yi Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bernhard Anwander
- Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg, Bregenz, Austria
| | - Ranjeet S Sokhi
- Centre for Atmospheric and Climate Physics Research (CACP), School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| |
Collapse
|
26
|
Han F, Yu L, Mo X, Zhang L, Jia J, Dong J, Gu S. Measurement and control of containing-fluorine particulate matter emission during spent pot lining combustion detoxification process. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130748. [PMID: 36669415 DOI: 10.1016/j.jhazmat.2023.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The particle size distribution (PSD), composition, morphology, and formation mechanism of particulate matter (PM) released from the combustion of spent pot lining with and without CaSiO3 were investigated. The results showed that NaF and Na3AlF6 were found to be the main compositions of PM, and the particle size distribution of PM shows a bimodal distribution. CaSiO3 substantially inhibited the emission of PM by transforming NaF, Na3AlF6, and CaF2 into stable Ca4Si2O7F2. Moreover, CaSiO3 also limited the formation of high hazardous PM0.2 by providing SiO2, Al2O3, and NaAlSiO4 with high melting points as the core of promoting the growth of PM in particle size.
Collapse
Affiliation(s)
- Funian Han
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
| | - Liang Yu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Xinyun Mo
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
| | - Lu Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqi Jia
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jingmeng Dong
- College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Shaopeng Gu
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
27
|
Wen Q, Liu T, Yu Y, Zhang Y, Yang Y, Zheng R, Li L, Chen R, Wang S. Self-Reported Primary Cooking Fuels Use and Risk of Chronic Digestive Diseases: A Prospective Cohort Study of 0.5 Million Chinese Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47002. [PMID: 37011136 PMCID: PMC10069757 DOI: 10.1289/ehp10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Household air pollution (HAP) from inefficient combustion of solid fuels is a major health concern worldwide. However, prospective evidence on the health impacts of solid cooking fuels and risks of chronic digestive diseases remains scarce. OBJECTIVES We explored the effects of self-reported primary cooking fuels on the incidence of chronic digestive diseases. METHODS The China Kadoorie Biobank recruited 512,726 participants 30-79 years of age from 10 regions across China. Information on primary cooking fuels at the current and previous two residences was collected via self-reporting at baseline. Incidence of chronic digestive diseases was identified through electronic linkage and active follow-up. Cox proportional hazards regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of self-reported long-term cooking fuel patterns and weighted duration of self-reported solid cooking fuel use with chronic digestive diseases incidence. Linear trend was tested by assigning the medians of weighted duration in each group and then taking those as continuous variables in the models. Subgroup analyses were undertaken across the baseline characteristics of participants. RESULTS During 9.1 ± 1.6 y of follow-up, 16,810 new cases of chronic digestive diseases were documented, among which 6,460 were diagnosed as cancers. Compared with long-term cleaner fuel use, self-reported long-term use of solid cooking fuels (i.e., coal, wood) was associated with elevated risks of chronic digestive diseases (HR = 1.08 ; 95% CI: 1.02, 1.13), including nonalcoholic fatty liver disease (NAFLD) (HR = 1.43 ; 95% CI: 1.10, 1.87), hepatic fibrosis/cirrhosis (HR = 1.35 ; 95% CI: 1.05, 1.73), cholecystitis (HR = 1.19 ; 95% CI: 1.07, 1.32), and peptic ulcers (HR = 1.15 ; 95% CI: 1.00, 1.33). The longer the weighted duration of self-reported solid cooking fuel use, the higher the risks of chronic digestive diseases, hepatic fibrosis/cirrhosis, peptic ulcers, and esophageal cancer (p Trend < 0.05 ). The aforementioned associations were modified by sex and body mass index (BMI). Positive associations of always solid cooking fuel use with chronic digestive disease, hepatic fibrosis/cirrhosis, NAFLD, and cholecystitis were observed among women but not men. The longer the weighted duration of self-reported solid cooking fuel use, the higher the risk of NAFLD among those with a BMI ≥ 28 kg / m 2 . DISCUSSION Long-term self-reported solid cooking fuels use was associated with higher risks of chronic digestive diseases. The positive association of HAP from solid cooking fuels with chronic digestive diseases indicates for an imminent promotion of cleaner fuels as public health interventions. https://doi.org/10.1289/EHP10486.
Collapse
Affiliation(s)
- Qiaorui Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tanxin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuelin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunjing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yingzi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Rongshou Zheng
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Ru Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
VoPham T, Jones RR. State of the science on outdoor air pollution exposure and liver cancer risk. ENVIRONMENTAL ADVANCES 2023; 11:100354. [PMID: 36875691 PMCID: PMC9984166 DOI: 10.1016/j.envadv.2023.100354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background There is emerging evidence that air pollution exposure increases the risk of developing liver cancer. To date, there have been four epidemiologic studies conducted in the United States, Taiwan, and Europe showing generally consistent positive associations between ambient exposure to air pollutants, including particulate matter <2.5 μm in aerodynamic diameter (PM2.5) and nitrogen dioxide (NO2), and liver cancer risk. There are several research gaps and thus valuable opportunities for future work to continue building on this expanding body of literature. The objectives of this paper are to narratively synthesize existing epidemiologic literature on the association between air pollution exposure and liver cancer incidence and describe future research directions to advance the science of understanding the role of air pollution exposure in liver cancer development. Future research directions include 1) accounting for potential confounding by established risk factors for the predominant histological subtype, hepatocellular carcinoma (HCC); 2) examination of incident primary liver cancer outcomes with consideration of potential differential associations according to histology; 3) air pollution exposure assessments considering early-life and/or historical exposures, residential histories, residual confounding from other sources of air pollution (e.g., tobacco smoking), and integration of geospatial ambient exposure modeling with novel biomarker technologies; 4) examination of air pollution mixtures experienced in the exposome; 5) consideration of increased opportunities for exposure to outdoor air pollution due to climate change (e.g., wildfires); and 6) consideration of modifying factors for air pollution exposure, such as socioeconomic status, that may contribute to disparities in liver cancer incidence. Conclusions In light of mounting evidence demonstrating that higher levels of air pollution exposure increase the risk for developing liver cancer, methodological considerations primarily concerning residual confounding and improved exposure assessment are warranted to robustly demonstrate an independent association for air pollution as a hepatocarcinogen.
Collapse
Affiliation(s)
- Trang VoPham
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, Washington 98109, United States
- Department of Epidemiology, University of Washington, 3980 15th Avenue NE, Seattle, Washington 98195, United States
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland 20850, United States
| |
Collapse
|
29
|
Tsai SS, Hsu CT, Yang C. Risk of death from liver cancer in relation to long-term exposure to fine particulate air pollution in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:135-143. [PMID: 36752360 DOI: 10.1080/15287394.2023.2168225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the International Agency for Research on Cancer (IARC), airborne fine particulate matter (PM2.5), which is categorized as a Group I carcinogen, was found to lead to predominantly lung as well as other cancer types in humans. Hepatocellular carcinoma (HCC) is endemic in Taiwan where it is the second and fourth foremost cause of cancer deaths in men and women, respectively. Taiwan's mortality rates for liver cancer vary considerably from one region to another, suggesting that the environment may exert some influence on deaths attributed to liver cancer. The aim of this investigation was to perform an ecologic study to examine the possible link between ambient PM2.5 levels and risk of liver cancer in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized liver cancer mortality rates were calculated for male and female residents of these areas from 2010 to 2019. Data were tested using weighted-multiple regression analyses to compute adjusted risk ratio (RR) controlling for urbanization level and physician density. Annual PM2.5 levels of each municipality were divided into tertiles. The adjusted RRs for males residing in those areas with intermediate tertile levels (21.85 to 28.21 ug/m3) and the highest tertiles levels (28.22-31.23 ug/m3) of PM2.5 were 1.29 (95% CI = 1.25-1.46) and 1.41 (95% CI = 1.36-1.46), respectively. Women in these locations shared a similar risk, 1.32 (1.25-1.4) and 1.41 (1.34-1.49), respectively. Evidence indicated that PM2.5 increased risk of mortality rates attributed to liver cancer in both men and women in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Ta Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
30
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Daily exposure to PM 2.5 and 1.5 million deaths: A time-stratified case-crossover analysis in the Mexico City Metropolitan Area. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.15.23284576. [PMID: 36711599 PMCID: PMC9882435 DOI: 10.1101/2023.01.15.23284576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in Latin America. Methods We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from Mexico City Metropolitan Area for the period of 2004-2019. Daily 1×1 km PM2.5 (median=23.4 μg/m3; IQR=13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Results PM2.5 exposure was associated with higher total non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between SES strata. Conclusions Exposure to PM2.5 was associated with mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indications of effect modification by individual SES-related characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social. Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Wu J, Luo M, Lin N, Huang Z, Wang T, Xu T, Zhang L, You Z, Lin M, Lin K, Xie X, Guo Y. Association of greenness exposure with coronary artery stenosis and biomarkers of myocardial injury in patients with myocardial infarction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159036. [PMID: 36167129 DOI: 10.1016/j.scitotenv.2022.159036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Greenness has been linked to cardiovascular health; however, limited evidence is available regarding its association with coronary artery stenosis and biomarkers of myocardial injury. We aimed to assess these associations and examine their modification and mediation effects in patients with myocardial infarction (MI). METHODS This study included 2030 patients with MI. The normalized difference vegetation index (NDVI) was used to characterize greenness exposure. We used a logistic regression model to explore the relationship between coronary artery stenosis and residential greenness, and applied linear regression models to assess the association of greenness with biomarkers of myocardial injury. The bootstrap method was used to explore whether potential variables mediated the associations. To further investigate the exposure-response curve describing these relationships, we developed restricted cubic spline models. RESULT Compared to the lowest quartile of NDVI, the odds ratio (OR) (95 % confidence interval [CI]) for severe stenosis (≥75 % stenosis) was 0.68 (95 % CI: 0.47 to 0.98) for the third quartile. Participants in the highest greenness exposure quartile had lower levels of cardiac troponin I (cTnI), creatine kinase (CK), and creatine kinase isoenzyme (CKMB) than those in the lowest quartile (β = -0.22, 95 % CI: -0.40 to -0.05; β = -0.13, 95 % CI: -0.22 to -0.04; β = -0.07, 95 % CI: -0.14 to -0.003). The association between residential greenness and myocardial injury biomarkers was stronger in men and older participants. Mediation analyses revealed that the effects of greenness on coronary stenosis, cTnI, CK, and CKMB were mediated by systolic blood pressure (SBP) and diastolic blood pressure (DBP). CONCLUSION Higher greenness exposure was associated with coronary artery stenosis and reduced levels of myocardial injury biomarkers, including cTnI, CK, and CKMB. These associations may be partially mediated by SBP and DBP levels.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Manqing Luo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Na Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Zelin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tinggui Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tingting Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Liwei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Zhebin You
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China; Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Maoqing Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Kaiyang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China.
| |
Collapse
|
32
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
33
|
Song Y, Chen L, Bennett E, Wheeler AJ, Southam K, Yen S, Johnston F, Zosky GR. Can Maternal Exposure to Air Pollution Affect Post-Natal Liver Development? TOXICS 2023; 11:toxics11010061. [PMID: 36668787 PMCID: PMC9866810 DOI: 10.3390/toxics11010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/01/2023]
Abstract
Emerging evidence suggests that inhalation of particulate matter (PM) can have direct adverse effects on liver function. Early life is a time of particular vulnerability to the effects of air pollution. On that basis, we tested whether in utero exposure to residential PM has an impact on the developing liver. Pregnant mice (C57BL/6J) were intranasally administered 100 µg of PM sampled from residential roof spaces (~5 mg/kg) on gestational days 13.5, 15.5, and 17.5. The pups were euthanized at two weeks of age, and liver tissue was collected to analyse hepatic metabolism (glycogen storage and lipid level), cellular responses (oxidative stress, inflammation, and fibrosis), and genotoxicity using a range of biochemical assays, histological staining, ELISA, and qPCR. We did not observe pronounced effects of environmentally sampled PM on the developing liver when examining hepatic metabolism and cellular response. However, we did find evidence of liver genomic DNA damage in response to in utero exposure to PM. This effect varied depending on the PM sample. These data suggest that in utero exposure to real-world PM during mid-late pregnancy has limited impacts on post-natal liver development.
Collapse
Affiliation(s)
- Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Ling Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ellen Bennett
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Amanda J. Wheeler
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
- Commonwealth Scientific and Industrial Research Organisation, Aspendale, VIC 3195, Australia
| | - Katherine Southam
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Seiha Yen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Fay Johnston
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
34
|
Li C, Yu JL, Xu JJ, He YC, Qin KZ, Chen L, Huang HF, Wu YT. Interactive effects of ambient air pollution and sunshine duration on the risk of intrahepatic cholestasis of pregnancy. ENVIRONMENTAL RESEARCH 2022; 215:114345. [PMID: 36116502 DOI: 10.1016/j.envres.2022.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION While the associations among ambient pollutants and various pregnancy complications are well documented, the effect of ambient pollutants on intrahepatic cholestasis of pregnancy (ICP) has not been examined. This study aimed to explore the effects of ambient pollutants and sunshine duration on ICP. METHODS The study enrolled 169,971 pregnant women who delivered between 2015 and 2020 in two hospitals. The associations between ICP and exposure to ambient pollutants and sunshine duration, averaged throughout different periods (including the 3 months before conception, 1st trimester and 2nd trimester), were estimated using a generalized linear model. The interaction effects of ambient pollutants and sunshine duration on ICP were estimated. RESULTS The fitted curves for ICP incidence were similar to the temporal trends of PM2.5, PM10, SO2, CO and NO2 but not that of O3. The risk of ICP was significantly elevated following a 10-μg/m3 increase in PM2.5 (aOR [adjusted odds ratio] = 1.057, 95% CI [confidence interval]: 1.017-1.099) and PM10 (aOR = 1.043, 95% CI: 1.013-1.074) and a 1-h decrease in sunshine duration (aOR = 1.039, 95% CI: 1.011-1.068) during the 3 months before conception. In the second trimester, a 1-μg/m3 increase in the concentration of SO2 was associated with an increased risk of ICP (aOR = 1.011, 95% CI: 1.001-1.021). Increased concentrations of PM2.5 and PM10 had interactive effects with reduced sunshine duration during the 3 months before conception on increasing the risk of ICP. CONCLUSIONS Exposure to PM2.5 and PM10 during the 3 months before conception and exposure to SO2 in the second trimester were associated with an increased ICP risk. Reduced sunshine duration had an interactive effect with increased concentrations of PM2.5 and PM10 during the 3 months before conception on the occurrence of ICP.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jia-Le Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yi-Chen He
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Kai-Zhou Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Lei Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Yuan CS, Lai CS, Chang-Chien GP, Tseng YL, Cheng FJ. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157528. [PMID: 35882344 DOI: 10.1016/j.scitotenv.2022.157528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM2.5 on mouse kidneys. METHODS We collected PM2.5 near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM2.5 constituents on mice kidneys. RESULTS PM2.5 was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM2.5 water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed. CONCLUSION We found that water-soluble extract and insoluble particles of PM2.5 could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM2.5 concentration of 44 μg/m3 for mice.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
36
|
Sex-Dependent Responses to Maternal Exposure to PM2.5 in the Offspring. Antioxidants (Basel) 2022; 11:antiox11112255. [PMID: 36421441 PMCID: PMC9686974 DOI: 10.3390/antiox11112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 μg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring’s metabolism regardless of sex.
Collapse
|
37
|
Lin YC, Shih HS, Lai CY. Long-term nonlinear relationship between PM 2.5 and ten leading causes of death. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3967-3990. [PMID: 34773532 DOI: 10.1007/s10653-021-01136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has become a major concern worldwide. Many epidemiological studies have proved relationships between fine particulate matter (PM2.5) and various diseases, but most studies only use short-term and models for specific groups to derive relationships with acute diseases. This makes it difficult to understand long-term exposure, nonlinear relationships, and spatial-temporal health risks regarding chronic diseases. Therefore, this study proposed to analyze and map PM2.5 exceedance probability from long-term spatial-temporal monitoring data using radial basis function estimation. We then constructed and compared multiple linear regression and generalized additive models to investigate linear and nonlinear relationships between long-term average PM2.5 concentration, PM2.5 potential probability for exceeding the standard, and standardized mortality for the top ten causes of death in all towns and villages in Taiwan nationally from 2010 to 2017. Linear models indicate that increasing PM2.5 concentration increased malignant neoplasm, pneumonia, and chronic lower respiratory disease mortalities; chronic liver diseases; and cirrhosis; whereas heart diseases and esophagus cancer mortality decreased. For the nonlinear model results, it can be found that there were also significant nonlinear relationships between PM2.5 concentration and malignant mortalities for neoplasm, heart disease, diabetes; and trachea, bronchus, lung, liver, intrahepatic bile duct, and esophagus cancer. Thus, long-term exposure to PM2.5 may be a significant risk factor for multiple acute and chronic diseases. Results from this study can be directly applied worldwide to provide air quality and health management references for governments, and important information on long-term health risks for local residents in the study area.
Collapse
Affiliation(s)
- Yuan-Chien Lin
- Department of Civil Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan, 32001, Taiwan.
| | - Hua-San Shih
- Department of Civil Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan, 32001, Taiwan
| | - Chun-Yeh Lai
- Department of Civil Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan, 32001, Taiwan
| |
Collapse
|
38
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
39
|
VoPham T, Kim NJ, Berry K, Mendoza JA, Kaufman JD, Ioannou GN. PM 2.5 air pollution exposure and nonalcoholic fatty liver disease in the Nationwide Inpatient Sample. ENVIRONMENTAL RESEARCH 2022; 213:113611. [PMID: 35688225 PMCID: PMC9378584 DOI: 10.1016/j.envres.2022.113611] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Particulate matter air pollution <2.5 μm in diameter (PM2.5) is a ubiquitous exposure primarily produced from fossil fuel combustion. Previous epidemiologic studies have been mixed. The objective of this study was to examine the association between ambient PM2.5 exposure and NAFLD among hospitalized patients in the Nationwide Inpatient Sample (NIS). METHODS We conducted a cross-sectional analysis of hospitalizations from 2001 to 2011 using the NIS, the largest nationally representative all-payer inpatient care administrative database in the United States. Average annual PM2.5 exposure was estimated by linking census tracts (based on NIS-provided hospital ZIP Codes) with a spatiotemporal exposure model. Clinical conditions were identified using hospital discharge diagnosis codes. Multivariable logistic regression incorporating discharge weights was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between PM2.5 exposure and odds of NAFLD among hospitalized patients adjusting for age, sex, race/ethnicity, year, individual- and area-level socioeconomic status, urbanicity, region, obesity, diabetes, metabolic syndrome, impaired fasting glucose, dyslipidemia, hypertension, obstructive sleep apnea, and smoking. RESULTS There were 269,705 hospitalized patients with NAFLD from 2001 to 2011 (total unweighted n = 45,433,392 hospitalizations). Higher ambient PM2.5 exposure was associated with increased odds of NAFLD among hospitalized patients (adjusted OR: 1.24 per 10 μg/m3 increase, 95% CI 1.15-1.33, p < 0.01). There were statistically significant interactions between PM2.5 exposure and age, race/ethnicity, diabetes, smoking, and region, with stronger positive associations among patients who were aged ≥45 years, non-Hispanic White or Asian/Pacific Islander, non-diabetics, non-smokers, or in the Midwest and West regions, respectively. CONCLUSIONS In this nationwide cross-sectional analysis of the NIS database, there was a positive association between ambient PM2.5 exposure and odds of NAFLD among hospitalized patients. Future research should examine the effects of long-term historical PM2.5 exposure and incident NAFLD cases.
Collapse
Affiliation(s)
- Trang VoPham
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA.
| | - Nicole J Kim
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, WA, USA
| | - Kristin Berry
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Jason A Mendoza
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics and Nutritional Sciences Program, University of Washington, Seattle, WA, USA; Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - George N Ioannou
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, WA, USA; Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
| |
Collapse
|
40
|
Wang X, Guo B, Yang X, Li J, Baima Y, Yin J, Yu J, Xu H, Zeng C, Feng S, Wei J, Hong F, Zhao X. Role of Liver Enzymes in the Relationship Between Particulate Matter Exposure and Diabetes Risk: A Longitudinal Cohort Study. J Clin Endocrinol Metab 2022; 107:e4086-e4097. [PMID: 35861878 DOI: 10.1210/clinem/dgac438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Particulate matter (PM) is an important risk factor for diabetes. However, its underlying mechanisms remain poorly understood. Although liver-derived biological intermediates may play irreplaceable roles in the pathophysiology of diabetes, few studies have explored this in the association between PM and diabetes. OBJECTIVE We investigated the role of liver enzymes in mediating the relationship between PM exposure and diabetes. METHODS We included a total of 7963 participants from the China Multi-Ethnic Cohort. Residential exposure to PM was assessed using a validated spatial-temporal assessment method. Diabetes was diagnosed according to the criteria from American Diabetes Association. Associations between PM, liver enzyme [including alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase (GGT)], and diabetes were estimated using multivariable regression models. The function of liver enzymes in the relationship between PM and diabetes was assessed using mediation analysis. RESULTS PM exposure was positively associated with the odds of diabetes, with odds ratios of 1.32 (95% CI 0.83, 2.09), 1.33 (95% CI 1.07, 1.65), and 1.18 (95% CI 1.02, 1.36) for every 10-μg/m3 increment in ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) PM, respectively. ALT (4.47%) and GGT (4.78%) exhibited statistically significant mediation effects on the association between PM2.5 and diabetes, and the ALT (4.30%) also had a mediating role on PM10. However, none of the liver enzymes had a significant mediating effect on PM1. CONCLUSION The relationship between PM and diabetes is partially mediated by liver enzymes, suggesting that lipid accumulation, oxidative stress, and chronic inflammation in the liver may be involved in its pathogenesis.
Collapse
Affiliation(s)
- Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xianxian Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jingzhong Li
- Tibet Center for disease control and prevention, Lhasa, Tibet, China
| | - Yangji Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Okunromade O, Yin J, Ray C, Adhikari A. Air Quality and Cancer Prevalence Trends across the Sub-Saharan African Regions during 2005-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811342. [PMID: 36141614 PMCID: PMC9517113 DOI: 10.3390/ijerph191811342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
Poor air quality and environmental pollution remain some of the main etiological factors leading to cancers and cancer-related deaths worldwide. As a result of human activities, deleterious airborne chemicals can be dispersed not only in the environment but also released in occupational environments and industrial areas. Air pollutants and cancer links are now established through various oxidative stress-related mechanisms and related DNA damages. Generally, ambient and indoor air pollutants have been understudied in sub-Saharan Africa (SSA) compared to other regions in the world. Our study not only highlights the deleterious effects of air pollutants in these developing countries, but it has strived to examine the trends and correlations between cancers and some air pollutants-carbon dioxide, other greenhouse gases, PM2.5, and human development index-in some SSA countries, where recent cancer burdens were reported as high. Our results showed strikingly higher yearly trends of cancers and above-mentioned air pollutant levels in some sub-Saharan countries during 2005-2020. Relative risks (RR) of these air pollutants-related cancer case rates were, however, below, or slightly above 1.0, or not statistically significant possibly due to other responsible and confounding factors which were not considered in our analyses due to data unavailability. We recommend new approaches to monitoring, minimizing, and creating awareness of the trends of hazardous air pollutants in sub-Saharan Africa, which will help ameliorate cancer prevalence and support the reduction in air pollution levels within regulatory limits, thereby relieving the cumulative burdens of cancers. Utilization of the findings from the study will support large-scale public health and health policy efforts on cancer management through environmental stewardship in SSA countries having the poorest outcome and the shortest survival rates from cancers.
Collapse
Affiliation(s)
- Omolola Okunromade
- Department of Health Policy and Community Health, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Jingjing Yin
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Clara Ray
- Department of Geology and Geography, College of Science and Mathematics, Georgia Southern University, Statesboro, GA 30460, USA
| | - Atin Adhikari
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
42
|
Li K, Zhang Q, Wang T, Rong R, Hu X, Zhang Y. Laboratory investigation of pollutant emissions and PM 2.5 toxicity of underground coal fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155537. [PMID: 35489495 DOI: 10.1016/j.scitotenv.2022.155537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Widespread underground coal fires (UCFs) release large amounts of pollutants, thus leading to air pollution and health impacts. However, this topic has not been widely investigated, especially regarding the potential health hazards. We quantified the pollutant emissions and analyzed the physicochemical properties of UCF PM2.5 in a laboratory study of coal smoldering under a simulated UCF background. The emission factors of CO2, CO, and PM2.5 were 2489 ± 35, 122 ± 9, 12.90 ± 1.79 g/kg, respectively. UCF PM2.5 are carbonaceous particles with varied morphology and complex composition, including heavy metals, silica and polycyclic aromatic hydrocarbons (PAHs). The main PAHs components were those with 2-4 rings. Benzoapyrene (BaP) and indeno[1,2, 3-cd]pyrene (IcdP) were important contributors to the carcinogenesis of these PAHs. We quantitatively evaluate the toxicity of inhaled UCF PM2.5 using a nasal inhalation exposure system. The target organs of UCF PM2.5 are lungs, liver, and kidneys. UCF PM2.5 presented an enriched chemical composition and induced inflammation and oxidative stress, which together mediated multiple organ injury. Long-term PM2.5 metabolism is the main cause of persistent toxicity, which might lead to long-term chronic diseases. Therefore, local authorities should recognize the importance and effects of UCF emissions, especially PM2.5, to establish control and mitigation measures.
Collapse
Affiliation(s)
- Kaili Li
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China.
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory (HFIPS), Chinese Academy of Science, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science (SKLFS), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Chin WS, Pan SC, Huang CC, Chen PJ, Guo YL. Exposure to Air Pollution and Survival in Follow-Up after Hepatocellular Carcinoma. Liver Cancer 2022; 11:474-482. [PMID: 36158593 PMCID: PMC9485987 DOI: 10.1159/000525346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Air pollutants are classified as carcinogens by the International Agency for Research on Cancer. Long-term exposure to ambient particulate matter with an aerodiameter of 2.5 μm or lower (PM2.5) has been reported to be linked with increased mortality due to hepatocellular carcinoma (HCC). However, the effects of air pollutants other than PM2.5 on HCC-related mortality have not been fully investigated. Accordingly, we conducted this study to assess the effect of long-term exposure to air pollutants (PM2.5 and nitrogen dioxide [NO2]) on HCC-related mortality. Method In 2005, the Taiwan Liver Cancer Network (TLCN) was established by the National Research Program for Genomic Medicine to recruit liver cancer patients from 5 major medical centers in northern, central, and southern Taiwan. The TLCN had successfully recruited 9,344 patients by the end of 2018. In this study, we included 1,000 patients randomly sampled from the TLCN to assess the effect of exposure to air pollutants on HCC mortality after HCC diagnosis. Daily averages of PM2.5 and NO2 concentrations were retrieved from 77 air quality-monitoring stations and interpolated to the townships of patients' residences by using the Kriging method. The effect of air pollutants on HCC survival was assessed using a Cox proportional hazards model. Results A total of 940 patients were included in the analysis. After adjusting for potential confounders and mutually adjusting for co-pollutants, we observed that the hazards ratio (95% confidence interval) for HCC-related mortality for every 1-μg/m3 increase in PM2.5 concentration was 1.11 (1.08-1.14) and that for every 1-ppb increase in NO2 concentration was 1.08 (1.03-1.13). Conclusion Our study suggests that long-term exposure to PM2.5 and NO2 was associated with decreased survival time in patients with HCC in Taiwan.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Shin-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Chun Huang
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, NTU College of Medicine, Taipei, Taiwan
- Department of Gastroenterology, NTU Hospital, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| |
Collapse
|
44
|
Mehrabadi S, Miri M, Najafi ML, Ghalenovi M, Adli A, Pajohanfar NS, Ambrós A, Dovlatabadi A, Estiri EH, Abroudi M, Alonso L, Bazghandi MS, Dadvand P. Green space exposure during pregnancy and umbilical cord blood levels of liver enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68432-68440. [PMID: 35545744 DOI: 10.1007/s11356-022-20568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Evidence has suggested better pregnancy outcomes due to exposure to greenspace; however, the studies on such an association with the level of liver enzymes in the cord blood are still nonexistent. Hence, this study investigated the relationship between exposure to greenspace during the entire pregnancy and gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in cord blood samples. We selected 150 pregnant women from our pregnancy cohort in Sabzevar, Iran (2018). Greenspace exposure was characterized based on (i) residential distance to green space, (ii) time spent in public/private green spaces, (iii) residential surrounding greenspace, (iv) visual access to greenspace, and (v) number of indoor natural pot plants at home. We developed linear regression models to investigate the adjusted associations of greenspace exposure with enzyme levels. Each one interquartile range (IQR) increase in the residential surrounding greenspace (100 m buffer) was related to a reduction of -12.58 (U/L) (95% CI -22.86, -2.29), -3.35 (U/L) (95% CI -5.50, -1.20), and -0.57 (U/L) (95% CI -1.12, -0.02) in the levels of GGT, AST, and ALT, respectively. Moreover, a similar association was observed for the time the participants spent in green spaces. A decrease in the residential distance to large green spaces was related with lower cord blood levels of AST, ALT, and GGT. Having a window with greenspace view at home was significantly related to lower AST level. The results for the indoor plant pots were not conclusive. Our findings suggested an inverse relationship between greenspace exposure during pregnancy and cord blood levels of liver enzymes. Further studies in other settings and populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Albert Ambrós
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Afishin Dovlatabadi
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Elahe Hasannejad Estiri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Malihe Sadat Bazghandi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
45
|
Jackson TW, Henriquez AR, Snow SJ, Schladweiler MC, Fisher AA, Alewel DI, House JS, Kodavanti UP. Adrenal Stress Hormone Regulation of Hepatic Homeostatic Function After an Acute Ozone Exposure in Wistar-Kyoto Male Rats. Toxicol Sci 2022; 189:73-90. [PMID: 35737395 PMCID: PMC9609881 DOI: 10.1093/toxsci/kfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are responsible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.
Collapse
Affiliation(s)
- Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
46
|
Wen Q, Chan KH, Shi K, Lv J, Guo Y, Pei P, Yang L, Chen Y, Du H, Gilbert S, Avery D, Hu W, Chen J, Yu C, Chen Z, Li L, China Kadoorie Biobank Collaborative Group. Tobacco smoking and solid fuels for cooking and risk of liver cancer: A prospective cohort study of 0.5 million Chinese adults. Int J Cancer 2022; 151:181-190. [PMID: 35199334 PMCID: PMC7612779 DOI: 10.1002/ijc.33977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 12/05/2022]
Abstract
Previous research found tobacco smoking and solid fuel use for cooking to increase the risk of chronic liver disease mortality, but previous cohort studies have not investigated their independent and joint associations with liver cancer incidence in contemporary China. The China Kadoorie Biobank (CKB) study recruited 0.5 million adults aged 30 to 79 years from 10 areas across China during 2004 to 2008. Participants reported detailed smoking and fuel use information at baseline. After an 11.1-year median follow-up via electronic record linkage, we recorded 2997 liver cancer cases. Overall, 29.4% participants were current smokers. Among those who cooked at least once per month, 48.8% always used solid fuels (ie, coal or wood) for cooking. Tobacco smoking and solid fuel use for cooking were independently associated with increased risks of liver cancer, with hazard ratios (95% confidence intervals [CIs]) of 1.28 (1.15-1.42) and 1.25 (1.03-1.52), respectively. The more cigarettes consumed each day, the earlier the age of starting smoking or the longer duration of solid fuels exposure, the higher the risk (Ptrend < .001, =.001, =.018, respectively). Compared with never smokers who had always used clean fuels (ie, gas or electricity), ever-smokers who had always used solid fuels for cooking had a 67% (95% CIs: 1.29-2.17) higher risk. Among Chinese adults, tobacco smoking and solid fuel use for cooking were independently associated with higher risk of liver cancer incidence. Stronger association was observed with higher number of daily cigarette consumption, the earlier age of starting smoking and longer duration of solid fuel use.
Collapse
Affiliation(s)
- Qiaorui Wen
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
| | - Ka Hung Chan
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Oxford British Heart Foundation Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | - Kexiang Shi
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
| | - Jun Lv
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesPeking University, Ministry of EducationBeijingChina
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical SciencesNational Center for Cardiovascular DiseasesBeijingChina
| | - Pei Pei
- National Center for Cardiovascular DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Huaidong Du
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Simon Gilbert
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Weijie Hu
- Maiji DivisionCenter for Disease Control and PreventionTianshuiChina
| | - Junshi Chen
- Food Safety Risk AssessmentChina National CenterBeijingChina
| | - Canqing Yu
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Liming Li
- Department of Epidemiology and BiostatisticsSchool of Public Health, Peking University Health Science CenterBeijingChina
- Oxford British Heart Foundation Centre of Research ExcellencePeking UniversityBeijingChina
| | | |
Collapse
|
47
|
Kahremanoğlu K, Tosun H, Eroğlu AE, Boyaci E. Recent progress in wearable extractive sampling technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
48
|
Li Y, Yuan X, Wei J, Sun Y, Ni W, Zhang H, Zhang Y, Wang R, Xu R, Liu T, Yang C, Chen G, Xu J, Liu Y. Long-term exposure to ambient air pollution and serum liver enzymes in older adults: a population-based longitudinal study. Ann Epidemiol 2022; 74:1-7. [PMID: 35680103 DOI: 10.1016/j.annepidem.2022.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the association of long-term exposure to ambient air pollution with serum liver enzymes in older adults. METHODS In this longitudinal study, we investigated 318,911 adults aged ≥65 years and assessed their long-term residential exposure to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Linear mixed models and generalized linear mixed models were implemented for exposure-response analyses. RESULTS Each interquartile range (IQR) increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 4.6%, 4.6%, 5.6%, 4.6%, 6.2%, and 3.6% increase in alanine aminotransferase (ALT), and a 4.6%, 5.2%, 3.6%, 3.3%, 6.1%, and 4.0% increase in aspartate aminotransferase (AST), respectively. Each IQR increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 23%, 24%, 28%, 17%, 31%, and 19% increase in odds of elevated ALT (>40 U/L), and a 32%, 39%, 40%, 32%, 57%, and 25% increase in odds of elevated AST (>40 U/L), respectively. CONCLUSIONS Long-term exposure to ambient air pollution was significantly associated with increased serum liver enzyme levels in older adults, suggesting that air pollution exposures may induce hepatocellular injury.
Collapse
Key Words
- AST, aspartate aminotransferase
- Alanine aminotransferase
- Ambient air pollution
- Aspartate aminotransferase
- BMI, body mass index
- CHAP, ChinaHighAirPollutants
- CI, confidence interval
- CO, carbon monoxide
- FBG, fasting blood glucose
- HDL-C, high-density lipoprotein cholesterol
- IQR, interquartile range
- LDL-C, low-density lipoprotein cholesterol
- Liver enzymes
- NO(2), nitrogen dioxide
- O(3), ozone
- OR, odds ratio
- Older adults Abbreviations: ALT, alanine aminotransferase
- PM(10), particulate matter with an aerodynamic diameter ≤10 µm
- PM(2.5), particulate matter with an aerodynamic diameter ≤2.5 µm
- SD, standardized deviation
- SO(2), sulfur dioxide
- TC, total cholesterol
- TG, triglyceride
- WC, waist circumference
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xueli Yuan
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, and Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Yuanying Sun
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Wenqing Ni
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Hongmin Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Yan Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Rui Wang
- Luohu Center for Chronic Disease Control, Shenzhen, Guangdong 518000, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunyu Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
49
|
Liu Y, Jiang Y, Wu M, Muheyat S, Yao D, Jin X. Short-term effects of ambient air pollution on daily emergency room visits for abdominal pain: a time-series study in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40643-40653. [PMID: 35084676 DOI: 10.1007/s11356-021-18200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Short-term exposure to ambient air pollution has been proven to result in respiratory, cardiovascular, and digestive diseases, leading to increased emergency room visits (ERVs). Abdominal pain complaints provide a large proportion of the ERVs, as yet few studies have focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments within China. Daily data for daily ERVs were collected in Wuhan, China (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3), and meteorological variables. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages, and seasons. A total of 16,318 abdominal pain ERVs were identified during the study period. A 10-μg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 4.89% (95% confidence interval [CI]: - 1.50-11.70), 1.85% (95% CI: - 0.29-4.03), 0.83% (95% CI: - 0.05-1.72), - 0.22% (95% CI: - 0.73-0.30), 0.24% (95% CI: 0.08-0.40), and 0.86% (95% CI: 0.04 - 1.69). We observed significant correlations between CO and O3 and increases in daily abdominal pain ERVs and positive but insignificant correlations between the other pollutants and ERVs (except PM10). The effects were stronger for females (especially SO2 and O3: 13.53% vs. - 2.46%; 1.20% vs. 0.47%, respectively) and younger people (especially CO and O3: 0.25% vs. 0.01%; 1.36% vs. 0.15%, respectively). Males (1.38% vs. 0.87%) and elders (1.27% vs. 0.99%) were more likely to be affected by PM2.5. The correlations with PM2.5 were stronger in cool seasons (1.25% vs. - 0.07%) while the correlation with CO was stronger in warm seasons (0.47% vs. 0.14%). Our time-series study suggests that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that the effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.
Collapse
Affiliation(s)
- Yaqi Liu
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Jiang
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Manyi Wu
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Sunghar Muheyat
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dongai Yao
- Physical Examination Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoqing Jin
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
50
|
Zhuang J, Hu J, Bei F, Huang J, Wang L, Zhao J, Qian R, Sun J. Exposure to air pollutants during pregnancy and after birth increases the risk of neonatal hyperbilirubinemia. ENVIRONMENTAL RESEARCH 2022; 206:112523. [PMID: 34929187 DOI: 10.1016/j.envres.2021.112523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Exposure to air pollution is associated with increased risks of several adverse conditions in newborns, such as preterm birth. Whether air pollution is associated with neonatal hyperbilirubinemia remains unclear. We aimed to develop and validate an air-quality-based model to better predict neonatal hyperbilirubinemia. METHODS A multicenter, population-based cohort of neonates with a gestational age (GA) ≥35 weeks and birth weight ≥2000 g was enrolled in the study. The study was conducted in Shanghai, China, from July 2017 to December 2018. The daily average concentrations of particulate matter (PM) with aerodynamic diameters≤2.5 μm (PM2.5) and ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) were measured. Neonatal hyperbilirubinemia was diagnosed according to the American Academy of Pediatrics (AAP) guidelines by trained neonatologists. We used logistic least absolute shrinkage and selection operator (LASSO) regression to screen air pollutant indicators related to neonatal hyperbilirubinemia and build an air-quality signature for each patient. An air-quality-based nomogram was then established to predict the risk of neonatal hyperbilirubinemia. RESULTS A total of 11196 neonates were evaluated. Prenatal PM10, CO and NO2 exposure and postpartum SO2 exposure were significantly associated with neonatal hyperbilirubinemia. The air-quality score was calculated according to the hyperbilirubinemia-related pollutants. The air-quality score of the hyperbilirubinemia group was significantly higher than that of the nonhyperbilirubinemia group (P < .01, odds ratio = 2.97). An air-quality-based logistic regression model was built and showed good discrimination (C-statistic of 0.675 [95% CI (confidence interval), 0.658 to 0.692]) and good calibration. Decision curve analysis showed that the air-quality-based model was better than the traditional clinical model in predicting neonatal hyperbilirubinemia. CONCLUSIONS The findings of this study suggest that ambient air pollution exposure is associated with an increased risk of neonatal hyperbilirubinemia. Our results encourage further exploration of this possibility in future studies.
Collapse
Affiliation(s)
- Jialu Zhuang
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Jie Hu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Fei Bei
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Jiahu Huang
- Department of Pediatrics,Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, 355 Luding Road, Shanghai, China.
| | - Liangjun Wang
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Junjie Zhao
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Ruiying Qian
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, China.
| | - Jianhua Sun
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| |
Collapse
|