451
|
Gurumurthy CB, Quadros RM, Richardson GP, Poluektova LY, Mansour SL, Ohtsuka M. Genetically modified mouse models to help fight COVID-19. Nat Protoc 2020; 15:3777-3787. [PMID: 33106680 PMCID: PMC7704938 DOI: 10.1038/s41596-020-00403-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Mouse Genome Engineering Core Facility, Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Isehara, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
452
|
Rathnasinghe R, Strohmeier S, Amanat F, Gillespie VL, Krammer F, García-Sastre A, Coughlan L, Schotsaert M, Uccellini MB. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg Microbes Infect 2020; 9:2433-2445. [PMID: 33073694 PMCID: PMC7655046 DOI: 10.1080/22221751.2020.1838955] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Virginia L. Gillespie
- The Center for Comparative Medicine and Surgery (CCMS) Comparative Pathology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology and Immunology and Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY, USA
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY, USA
| |
Collapse
|
453
|
Hassert M, Geerling E, Stone ET, Steffen TL, Feldman MS, Dickson AL, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. PLoS Pathog 2020; 16:e1009163. [PMID: 33326500 PMCID: PMC7773324 DOI: 10.1371/journal.ppat.1009163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/30/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic. Critical to the rapid evaluation of vaccines and antivirals against SARS-CoV-2 is the development of tractable animal models to understand the adaptive immune response to the virus. To this end, the use of common laboratory strains of mice is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Importantly, using this system, we functionally identified the CD4+ and CD8+ structural peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice and confirmed their existence in an established model of SARS-CoV-2 pathogenesis. We demonstrated that, identical to what has been seen in humans, the antigen-specific CD8+ T cells in mice primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. As the focus of the immune response in mice is highly similar to that of the humans, the identification of functional murine SARS-CoV-2-specific T cell epitopes provided in this study will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Madi S. Feldman
- Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Alexandria L. Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jacob Class
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| |
Collapse
|
454
|
Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R, Dick EJ, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020; 11:6122. [PMID: 33257679 PMCID: PMC7705712 DOI: 10.1038/s41467-020-19891-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Paula A Pino
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anwari Akhter
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Angélica Olmo-Fontánez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colwyn Headley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Laura M Parodi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kendra J Alfson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Hilary M Staples
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Juan I Garcia
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alison Whigham
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Roy Neal Platt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jesse Martinez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Colin Chuba
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Stephanie Earley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | | | - Renee Escalona
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Cory R A Hallam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Corbett Christie
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jean L Patterson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Tim J C Anderson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Edward J Dick
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Luis D Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | | | | |
Collapse
|
455
|
STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat Commun 2020; 11:5838. [PMID: 33203860 PMCID: PMC7672082 DOI: 10.1038/s41467-020-19684-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.
Collapse
|
456
|
Leist SR, Dinnon KH, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE, Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher RC, Gralinski LE, Montgomery SA, Baric RS. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020; 183:1070-1085.e12. [PMID: 33031744 PMCID: PMC7510428 DOI: 10.1016/j.cell.2020.09.050] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
457
|
Mitsuyama K, Tsuruta K, Takedatsu H, Yoshioka S, Morita M, Niwa M, Matsumoto S. Clinical Features and Pathogenic Mechanisms of Gastrointestinal Injury in COVID-19. J Clin Med 2020; 9:E3630. [PMID: 33187280 PMCID: PMC7696882 DOI: 10.3390/jcm9113630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the global coronavirus disease 2019 (COVID-19) outbreak. Along with the respiratory tract, the gastrointestinal (GI) tract is one of the main extra-pulmonary targets of SARS-CoV-2 with respect to symptom occurrence and is a potential route for virus transmission, most likely due to the presence of angiotensin-converting enzyme 2. Therefore, understanding the mechanisms of GI injury is crucial for a harmonized therapeutic strategy against COVID-19. This review summarizes the current evidence for the clinical features of and possible pathogenic mechanisms leading to GI injury in COVID-19.
Collapse
Affiliation(s)
- Keiichi Mitsuyama
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan; (K.T.); (H.T.); (S.Y.); (M.M.)
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Kozo Tsuruta
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan; (K.T.); (H.T.); (S.Y.); (M.M.)
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Hidetoshi Takedatsu
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan; (K.T.); (H.T.); (S.Y.); (M.M.)
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Shinichiro Yoshioka
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan; (K.T.); (H.T.); (S.Y.); (M.M.)
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Masaru Morita
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan; (K.T.); (H.T.); (S.Y.); (M.M.)
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Mikio Niwa
- Institute for Advanced Sciences, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan;
| | - Satoshi Matsumoto
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo 186-0011, Japan;
| |
Collapse
|
458
|
Hewitt JA, Lutz C, Florence WC, Pitt MLM, Rao S, Rappaport J, Haigwood NL. ACTIVating Resources for the COVID-19 Pandemic: In Vivo Models for Vaccines and Therapeutics. Cell Host Microbe 2020; 28:646-659. [PMID: 33152279 PMCID: PMC7528903 DOI: 10.1016/j.chom.2020.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Preclinical Working Group of Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV), a public-private partnership spearheaded by the National Institutes of Health, has been charged with identifying, prioritizing, and communicating SARS-CoV-2 preclinical resources. Reviewing SARS-CoV-2 animal model data facilitates standardization and harmonization and informs knowledge gaps and prioritization of limited resources. To date, mouse, hamster, ferret, guinea pig, and non-human primates have been investigated. Several species are permissive for SARS-CoV-2 replication, often exhibiting mild disease with resolution, reflecting most human COVID-19 cases. More severe disease develops in a few models, some associated with advanced age, a risk factor for human disease. This review provides a snapshot that recommends the suitability of models for testing vaccines and therapeutics, which may evolve as our understanding of COVID-19 disease biology improves. COVID-19 is a complex disease, and individual models recapitulate certain aspects of disease; therefore, the coordination and assessment of animal models is imperative.
Collapse
Affiliation(s)
- Judith A Hewitt
- Office of Biodefense, Research Resources and Translational Research, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Cathleen Lutz
- In Vivo Pharmacology, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - William C Florence
- Office of Biodefense, Research Resources and Translational Research, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Louise M Pitt
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Srinivas Rao
- Sanofi Research and Development, Sanofi, Cambridge, MA 02139, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
459
|
Cleary SJ, Magnen M, Looney MR, Page CP. Update on animal models for COVID-19 research. Br J Pharmacol 2020; 177:5679-5681. [PMID: 33140409 DOI: 10.1111/bph.15266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Mélia Magnen
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - Mark R Looney
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| |
Collapse
|
460
|
Zhang YN, Li XD, Zhang ZR, Zhang HQ, Li N, Liu J, Li JQ, Zhang HJ, Wang ZJ, Shen S, Shi ZL, Wei HP, Yuan ZM, Ye HQ, Zhang B. A mouse model for SARS-CoV-2 infection by exogenous delivery of hACE2 using alphavirus replicon particles. Cell Res 2020; 30:1046-1048. [PMID: 32843719 PMCID: PMC7445228 DOI: 10.1038/s41422-020-00405-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hunan Normal University, School of Medicine, Changsha, Hunan, 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hua-Jun Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., No. 1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, Hubei, 420115, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., No. 1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, Hubei, 420115, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hong-Ping Wei
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
461
|
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, Ritter JH, Kang LI, Dort S, Robichaud A, Head R, Holtzman MJ, Diamond MS. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 2020; 21:1327-1335. [PMID: 32839612 PMCID: PMC7578095 DOI: 10.1038/s41590-020-0778-2] [Citation(s) in RCA: 718] [Impact Index Per Article: 143.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Collapse
Affiliation(s)
- Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharmila Nair
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamus P Keeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon H Ritter
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Dort
- SCIREQ Scientific Respiratory Equipment, Montreal, Quebec, Canada
| | | | - Richard Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
462
|
Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, Hansbro NG, Kim RY, Donovan C, Liu G, Faiz A, Short KR, Lyons JG, McCaughan GW, Gorrell MD, Cole A, Moreno C, Couteur D, Hesselson D, Triccas J, Neely GG, Gamble JR, Simpson SJ, Saunders BM, Oliver BG, Britton WJ, Wark PA, Nold-Petry CA, Hansbro PM. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 2020; 13:877-891. [PMID: 32820248 PMCID: PMC7439637 DOI: 10.1038/s41385-020-00340-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is causing a major once-in-a-century global pandemic. The scientific and clinical community is in a race to define and develop effective preventions and treatments. The major features of disease are described but clinical trials have been hampered by competing interests, small scale, lack of defined patient cohorts and defined readouts. What is needed now is head-to-head comparison of existing drugs, testing of safety including in the background of predisposing chronic diseases, and the development of new and targeted preventions and treatments. This is most efficiently achieved using representative animal models of primary infection including in the background of chronic disease with validation of findings in primary human cells and tissues. We explore and discuss the diverse animal, cell and tissue models that are being used and developed and collectively recapitulate many critical aspects of disease manifestation in humans to develop and test new preventions and treatments.
Collapse
Affiliation(s)
- M D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - A Irving
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, ZJU International Campus, Haining, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Montagutelli
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - M D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - I Rudloff
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - M F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - N G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - R Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - G Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - A Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - K R Short
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - J G Lyons
- Centenary Institute and Dermatology, The University of Sydney and Cancer Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - G W McCaughan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - M D Gorrell
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - A Cole
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - C Moreno
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - D Couteur
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - D Hesselson
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - J Triccas
- Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health and the Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, Australia
| | - G G Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - J R Gamble
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - B M Saunders
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - B G Oliver
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
| | - W J Britton
- Centenary Institute, The University of Sydney and Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - P A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C A Nold-Petry
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - P M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia.
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
463
|
Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K, Mercado NB, Yu J, Chan CN, Bondoc S, Starke CE, Nekorchuk M, Busman-Sahay K, Piedra-Mora C, Wrijil LM, Ducat S, Custers J, Atyeo C, Fischinger S, Burke JS, Feldman J, Hauser BM, Caradonna TM, Bondzie EA, Dagotto G, Gebre MS, Jacob-Dolan C, Lin Z, Mahrokhian SH, Nampanya F, Nityanandam R, Pessaint L, Porto M, Ali V, Benetiene D, Tevi K, Andersen H, Lewis MG, Schmidt AG, Lauffenburger DA, Alter G, Estes JD, Schuitemaker H, Zahn R, Barouch DH. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med 2020; 26:1694-1700. [PMID: 32884153 PMCID: PMC7671939 DOI: 10.1038/s41591-020-1070-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank Wegmann
- Janssen Vaccines & Prevention BV, Leiden, Netherlands
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi N Chan
- Oregon Health & Sciences University, Beaverton, OR, USA
| | | | | | | | | | - Cesar Piedra-Mora
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Linda M Wrijil
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Sarah Ducat
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy M Caradonna
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Makda S Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zijin Lin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shant H Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ramya Nityanandam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Jacob D Estes
- Oregon Health & Sciences University, Beaverton, OR, USA
| | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, Netherlands
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
464
|
Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020; 88:106980. [PMID: 33182073 PMCID: PMC7843151 DOI: 10.1016/j.intimp.2020.106980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
465
|
Kumar A, Faiq MA, Pareek V, Raza K, Narayan RK, Prasoon P, Kumar P, Kulandhasamy M, Kumari C, Kant K, Singh HN, Qadri R, Pandey SN, Kumar S. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Med Hypotheses 2020; 144:110271. [PMID: 33254575 PMCID: PMC7487155 DOI: 10.1016/j.mehy.2020.110271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 is caused by a new strain of coronavirus called SARS-coronavirus-2 (SARS-CoV-2), which is a positive sense single strand RNA virus. In humans, it binds to angiotensin converting enzyme 2 (ACE2) with the help a structural protein on its surface called the S-spike. Further, cleavage of the viral spike protein (S) by the proteases like transmembrane serine protease 2 (TMPRSS2) or Cathepsin L (CTSL) is essential to effectuate host cell membrane fusion and virus infectivity. COVID-19 poses intriguing issues with imperative relevance to clinicians. The pathogenesis of GI symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 are of particular relevance because they cannot be sufficiently explained from the existing knowledge of the viral diseases. Tissue specific variations of SARS-CoV-2 cell entry related receptors expression in healthy individuals can help in understanding the pathophysiological basis the aforementioned collection of symptoms. ACE2 mediated dysregulation of sodium dependent glucose transporter (SGLT1 or SLC5A1) in the intestinal epithelium also links it to the pathogenesis of diabetes mellitus which can be a possible reason for the associated mortality in COVID-19 patients with diabetes. High expression of ACE2 in mucosal cells of the intestine and GB make these organs potential sites for the virus entry and replication. Continued replication of the virus at these ACE2 enriched sites may be a basis for the disease recurrence reported in some, thought to be cured, patients. Based on the human tissue specific distribution of SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 and other supportive evidence from the literature, we hypothesize that SARS-CoV-2 host cell entry receptor-ACE2 based mechanism in GI tissue may be involved in COVID-19 (i) in the pathogenesis of digestive symptoms, (ii) in increased diabetic complications, (iii) in disease recurrence.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India.
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, NY, USA
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; National Brain Research Center, Manesar, Haryana, India
| | - Khursheed Raza
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences, Deoghar, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Pediatrics, Medical University of South Carolina, Charleston, USA
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; TAGC-INSERM, U1090, Aix Marseille University, Marseille, France
| | - Rizwana Qadri
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Neuro-oncology Laboratory, Rockefeller University, New York, NY, USA
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
466
|
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Kapell S, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140044 DOI: 10.1101/2020.10.27.358259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.
Collapse
|
467
|
Das IJ, Kalapurakal JA, Mittal BB. Caution warranted for low-dose radiation therapy for Covid-19. Br J Radiol 2020; 94:20200466. [PMID: 33112664 PMCID: PMC7774700 DOI: 10.1259/bjr.20200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Covid-19 is a morbid respiratory disease that has caused desperate times on a global scale due to the lack of any effective medical treatment. Some in the radiation community are actively proposing low-dose radiation therapy (LDRT) for managing the viral pneumonia associated with Covid-19. This commentary provides a rationale for exercising caution against such a decision as the efficacy of LDRT for viral diseases is unknown, while its long-term adverse risks are well known.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | | | | |
Collapse
|
468
|
Lu S, Zhao Y, Yu W, Yang Y, Gao J, Wang J, Kuang D, Yang M, Yang J, Ma C, Xu J, Qian X, Li H, Zhao S, Li J, Wang H, Long H, Zhou J, Luo F, Ding K, Wu D, Zhang Y, Dong Y, Liu Y, Zheng Y, Lin X, Jiao L, Zheng H, Dai Q, Sun Q, Hu Y, Ke C, Liu H, Peng X. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct Target Ther 2020; 5:157. [PMID: 32814760 PMCID: PMC7434851 DOI: 10.1038/s41392-020-00269-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of a suitable nonhuman primate (NHP) model of COVID-19 remains challenging. Here, we characterized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in three NHP species: Old World monkeys Macaca mulatta (M. mulatta) and Macaca fascicularis (M. fascicularis) and New World monkey Callithrix jacchus (C. jacchus). Infected M. mulatta and M. fascicularis showed abnormal chest radiographs, an increased body temperature and a decreased body weight. Viral genomes were detected in swab and blood samples from all animals. Viral load was detected in the pulmonary tissues of M. mulatta and M. fascicularis but not C. jacchus. Furthermore, among the three animal species, M. mulatta showed the strongest response to SARS-CoV-2, including increased inflammatory cytokine expression and pathological changes in the pulmonary tissues. Collectively, these data revealed the different susceptibilities of Old World and New World monkeys to SARS-CoV-2 and identified M. mulatta as the most suitable for modeling COVID-19.
Collapse
Affiliation(s)
- Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuan Zhao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jiahong Gao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jing Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Chunxia Ma
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingwen Xu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Xingli Qian
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiyan Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Siwen Zhao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingmei Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiting Long
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingxian Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Kaiyun Ding
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Daoju Wu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yinliang Dong
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yuqin Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yinqiu Zheng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Xiaochen Lin
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Li Jiao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Huanying Zheng
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Dai
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yunzhang Hu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Changwen Ke
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Hongqi Liu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
469
|
Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, Bleriot I, Ambroa A, López M, Bou G, Tomás M. Viral Related Tools against SARS-CoV-2. Viruses 2020; 12:E1172. [PMID: 33081350 PMCID: PMC7589879 DOI: 10.3390/v12101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Mónica González-Bardanca
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| |
Collapse
|
470
|
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5:237. [PMID: 33051445 PMCID: PMC7551521 DOI: 10.1038/s41392-020-00352-y] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/27/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that is highly pathogenic and has caused the recent worldwide pandemic officially named coronavirus disease (COVID-19). Currently, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Vaccines, such as inactivated vaccines, nucleic acid-based vaccines, and vector vaccines, have already entered clinical trials. In this review, we provide an overview of the experimental and clinical data obtained from recent SARS-CoV-2 vaccines trials, and highlight certain potential safety issues that require consideration when developing vaccines. Furthermore, we summarize several strategies utilized in the development of vaccines against other infectious viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the aim of aiding in the design of effective therapeutic approaches against SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/drug effects
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
Collapse
Affiliation(s)
- Yetian Dong
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
471
|
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. NATURE REVIEWS. MICROBIOLOGY 2020. [PMID: 33024307 DOI: 10.1038/s41579‐020‐00459‐7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named 'coronavirus disease 2019' (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail.
Collapse
Affiliation(s)
- Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
472
|
Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, White LE, Shamblin JD, Brocato RL, Liu J, Babka AM, Rauch HB, Smith JM, Hollidge BS, Fitzpatrick C, Badger CV, Hooper JW. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 2020; 5:142032. [PMID: 32841215 PMCID: PMC7566707 DOI: 10.1172/jci.insight.142032] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs. A highly lethal murine infection model for SARS-CoV-2 using mice transgenic for the human ACE2 protein is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lauren E White
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua D Shamblin
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, Russell F, Teh BW, Wen SCH. Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front Immunol 2020; 11:579250. [PMID: 33123165 PMCID: PMC7566192 DOI: 10.3389/fimmu.2020.579250] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
There are currently around 200 SARS-CoV-2 candidate vaccines in preclinical and clinical trials throughout the world. The various candidates employ a range of vaccine strategies including some novel approaches. Currently, the goal is to prove that they are safe and immunogenic in humans (phase 1/2 studies) with several now advancing into phase 2 and 3 trials to demonstrate efficacy and gather comprehensive data on safety. It is highly likely that many vaccines will be shown to stimulate antibody and T cell responses in healthy individuals and have an acceptable safety profile, but the key will be to confirm that they protect against COVID-19. There is much hope that SARS-CoV-2 vaccines will be rolled out to the entire world to contain the pandemic and avert its most damaging impacts. However, in all likelihood this will initially require a targeted approach toward key vulnerable groups. Collaborative efforts are underway to ensure manufacturing can occur at the unprecedented scale and speed required to immunize billions of people. Ensuring deployment also occurs equitably across the globe will be critical. Careful evaluation and ongoing surveillance for safety will be required to address theoretical concerns regarding immune enhancement seen in previous contexts. Herein, we review the current knowledge about the immune response to this novel virus as it pertains to the design of effective and safe SARS-CoV-2 vaccines and the range of novel and established approaches to vaccine development being taken. We provide details of some of the frontrunner vaccines and discuss potential issues including adverse effects, scale-up and delivery.
Collapse
Affiliation(s)
- Katie L. Flanagan
- Department of Infectious Diseases, Launceston General Hospital, Launceston, TAS, Australia
- Faculty of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Emma Best
- Department of Paediatric Infectious Diseases, Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Nigel W. Crawford
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Immunisation Service, Melbourne, VIC, Australia
| | - Michelle Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Infectious Diseases Unit, Alfred Health, Melbourne, VIC, Australia
| | - Archana Koirala
- Department of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- National Centre for Immunisation Research & Surveillance (NCIRS), Sydney, NSW, Australia
- Department of Infectious Diseases, Nepean Hospital, Sydney, NSW, Australia
| | - Kristine Macartney
- Department of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- National Centre for Immunisation Research & Surveillance (NCIRS), Sydney, NSW, Australia
| | - Fiona Russell
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Immunisation Service, Melbourne, VIC, Australia
| | - Benjamin W. Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sophie CH Wen
- Infection Management Prevention Services, Queensland Children's Hospital, South Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
474
|
Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, West A, Yount BL, Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 2020; 586:560-566. [PMID: 32854108 PMCID: PMC8034761 DOI: 10.1038/s41586-020-2708-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.
Collapse
MESH Headings
- Aging/immunology
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/drug therapy
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Humans
- Interferon-alpha/administration & dosage
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Interferons/administration & dosage
- Interferons/pharmacology
- Interferons/therapeutic use
- Interleukins/administration & dosage
- Interleukins/pharmacology
- Interleukins/therapeutic use
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Molecular
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Huang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Jeffrey S Glenn
- Departments of Medicine and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
475
|
Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha-Pereira J, Rockx B, Rodríguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara-Alert J, Beer M, Brasel T, Chan JFW, García-Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Animal models for COVID-19. Nature 2020; 586:509-515. [PMID: 32967005 PMCID: PMC8136862 DOI: 10.1038/s41586-020-2787-6] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William E Dowling
- Centre for Epidemic Preparedness Innovations (CEPI), Washington, DC, USA
| | | | | | | | - Randy A Albrecht
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miles W Carroll
- National Infection Service, Public Health England, Salisbury, UK
| | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, China
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Erik Dohm
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Paul Duprex
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darryl Falzarano
- VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Amy L Hartman
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - William B Klimstra
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Philip R Krause
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | | | - Wen-Chun Liu
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | - Anita K McElroy
- Division of Pediatric Infectious Diseases, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Lelystad, The Netherlands
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman |School of Public Health, New York, NY, USA
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Estefanía Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas F Rogers
- Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Chien-Te Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasper F W Chan
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Adolfo García-Sastre
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Douglas S Reed
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juergen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Seshadri S Vasan
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
- Department of Health Sciences, University of York, York, UK
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
476
|
Zhao Y, Wang J, Kuang D, Xu J, Yang M, Ma C, Zhao S, Li J, Long H, Ding K, Gao J, Liu J, Wang H, Li H, Yang Y, Yu W, Yang J, Zheng Y, Wu D, Lu S, Liu H, Peng X. Susceptibility of tree shrew to SARS-CoV-2 infection. Sci Rep 2020; 10:16007. [PMID: 32994418 PMCID: PMC7525503 DOI: 10.1038/s41598-020-72563-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic event in the world, it has not only caused huge economic losses, but also a serious threat to global public health. Many scientific questions about SARS-CoV-2 and Coronavirus disease (COVID-19) were raised and urgently need to be answered, including the susceptibility of animals to SARS-CoV-2 infection. Here we tested whether tree shrew, an emerging experimental animal domesticated from wild animal, is susceptible to SARS-CoV-2 infection. No clinical signs were observed in SARS-CoV-2 inoculated tree shrews during this experiment except the increasing body temperature particularly in female animals. Low levels of virus shedding and replication in tissues occurred in all three age groups. Notably, young tree shrews (6 months to 12 months) showed virus shedding at the earlier stage of infection than adult (2 years to 4 years) and old (5 years to 7 years) animals that had longer duration of virus shedding comparatively. Histopathological examine revealed that pulmonary abnormalities were the main changes but mild although slight lesions were also observed in other tissues. In summary, tree shrew is less susceptible to SARS-CoV-2 infection compared with the reported animal models and may not be a suitable animal for COVID-19 related researches. However, tree shrew may be a potential intermediate host of SARS-CoV-2 as an asymptomatic carrier.
Collapse
Affiliation(s)
- Yuan Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingwen Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Chunxia Ma
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Siwen Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingmei Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiting Long
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Kaiyun Ding
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jiahong Gao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jiansheng Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiyan Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jing Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yinqiu Zheng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Daoju Wu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Shuaiyao Lu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Hongqi Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
477
|
Hanifehnezhad A, Kehribar EŞ, Öztop S, Sheraz A, Kasırga S, Ergünay K, Önder S, Yılmaz E, Engin D, Oğuzoğlu TÇ, Şeker UÖŞ, Yılmaz E, Özkul A. Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNAR -/- mice. Heliyon 2020; 6:e05116. [PMID: 33015402 PMCID: PMC7522675 DOI: 10.1016/j.heliyon.2020.e05116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 01/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently a global pandemic with unprecedented public health, economic and social impact. The development of effective mitigation strategies, therapeutics and vaccines relies on detailed genomic and biological characterization of the regional viruses. This study was carried out to isolate SARS-CoV-2 viruses circulating in Anatolia, and to investigate virus propagation in frequently-used cells and experimental animals. We obtained two SARS-CoV-2 viruses from nasopharngeal swabs of confirmed cases in Vero E6 cells, visualized the virions using atomic force and scanning electron microscopy and determined size distribution of the particles. Viral cytopathic effects on Vero E6 cells were initially observed at 72 h post-inoculation and reached 90% of the cells on the 5th day. The isolates displayed with similar infectivity titers, time course and infectious progeny yields. Genome sequencing revealed the viruses to be well-conserved, with less than 1% diversity compared to the prototype virus. The analysis of the viral genomes, along with the available 62 complete genomes from Anatolia, showed limited diversity (up to 0.2% on deduced amino acids) and no evidence of recombination. The most prominent sequence variation was observed on the spike protein, resulting in the substitution D614G, with a prevalence of 56.2%. The isolates produced non-fatal infection in the transgenic type I interferon knockout (IFNAR-/-) mice, with varying neutralizing antibody titers. Hyperemia, regional consolidation and subpleural air accumulation was observed on necropsy, with similar histopathological and immunohistochemistry findings in the lungs, heart, stomach, intestines, liver, spleen and kidneys. Peak viral loads were detected in the lungs, with virus RNA present in the kidneys, jejunum, liver, spleen and heart. In conclusion, we characterized two local isolates, investigated in vitro growth dynamics in Vero E6 cells and identified IFNAR-/- mice as a potential animal model for SARS-CoV-2 experiments.
Collapse
Affiliation(s)
- Alireza Hanifehnezhad
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara 06110 Turkey
| | - Ebru Şahin Kehribar
- Bilkent University, UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Ankara 06800 Turkey
| | - Sıdıka Öztop
- Department of Immunology, Başkent University, Adana Dr Turgut Noyan Application and Research Center, Adana 01240 Turkey
| | - Ali Sheraz
- Bilkent University, UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Ankara 06800 Turkey
| | - Serkan Kasırga
- Bilkent University, UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Ankara 06800 Turkey
| | - Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100 Turkey
| | - Sevgen Önder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara 06100 Turkey
| | - Erkan Yılmaz
- Ankara University, Biotechnology Institute, Ankara 06135 Turkey
| | - Doruk Engin
- Ankara University, Biotechnology Institute, Ankara 06135 Turkey
| | - T Çiğdem Oğuzoğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara 06110 Turkey
| | - Urartu Özgür Şafak Şeker
- Bilkent University, UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Ankara 06800 Turkey
| | - Engin Yılmaz
- Hacettepe University, Faculty of Medicine, Department of Medical Biology (ret.), Ankara 06100 Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara 06110 Turkey.,Ankara University, Biotechnology Institute, Ankara 06135 Turkey
| |
Collapse
|
478
|
Rosenke K, Meade-White K, Letko M, Clancy C, Hansen F, Liu Y, Okumura A, Tang-Huau TL, Li R, Saturday G, Feldmann F, Scott D, Wang Z, Munster V, Jarvis MA, Feldmann H. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32995767 PMCID: PMC7523093 DOI: 10.1101/2020.09.25.314070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following emergence in late 2019, SARS-CoV-2 rapidly became pandemic and is presently responsible for millions of infections and hundreds of thousands of deaths worldwide. There is currently no approved vaccine to halt the spread of SARS-CoV-2 and only very few treatment options are available to manage COVID-19 patients. For development of preclinical countermeasures, reliable and well-characterized small animal disease models will be of paramount importance. Here we show that intranasal inoculation of SARS-CoV-2 into Syrian hamsters consistently caused moderate broncho-interstitial pneumonia, with high viral lung loads and extensive virus shedding, but animals only displayed transient mild disease. We determined the infectious dose 50 to be only five infectious particles, making the Syrian hamster a highly susceptible model for SARS-CoV-2 infection. Neither hamster age nor sex had any impact on the severity of disease or course of infection. Finally, prolonged viral persistence in interleukin 2 receptor gamma chain knockout hamsters revealed susceptibility of SARS-CoV-2 to adaptive immune control. In conclusion, the Syrian hamster is highly susceptible to SARS-CoV-2 making it a very suitable infection model for COVID-19 countermeasure development. The Syrian hamster is highly susceptible to SARS-CoV-2 making it an ideal infection model for COVID-19 countermeasure development.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frederick Hansen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael A Jarvis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,University of Plymouth and The Vaccine Group Ltd, Plymouth, Devon, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
479
|
Chen JS, Alfajaro MM, Wei J, Chow RD, Filler RB, Eisenbarth SC, Wilen CB. Cyclooxgenase-2 is induced by SARS-CoV-2 infection but does not affect viral entry or replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312769. [PMID: 32995789 PMCID: PMC7523115 DOI: 10.1101/2020.09.24.312769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE2, one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE2 signaling has also been shown to regulate the replication of many viruses, but it is not yet known whether it plays a role in SARS-CoV-2 replication. The purpose of this study was to dissect the effect of NSAIDs on COVID-19 in terms of SARS-CoV-2 entry and replication. We found that SARS-CoV-2 infection induced COX-2 upregulation in diverse human cell culture and mouse systems. However, suppression of COX-2/PGE2 signaling by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. Our findings suggest that COX-2 signaling driven by SARS-CoV-2 may instead play a role in regulating the lung inflammation and injury observed in COVID-19 patients.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
480
|
Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ, Wang Y, Teng Y, Zhao Z, Cui Y, Li Y, Li XF, Li J, Zhang NN, Yang X, Chen S, Guo Y, Zhao G, Wang X, Luo DY, Wang H, Yang X, Li Y, Han G, He Y, Zhou X, Geng S, Sheng X, Jiang S, Sun S, Qin CF, Zhou Y. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020. [PMID: 32732280 DOI: 10.1126/science:abc4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.
Collapse
MESH Headings
- Administration, Intranasal
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Female
- High-Throughput Nucleotide Sequencing
- Humans
- Immunogenicity, Vaccine
- Lung/virology
- Lung Diseases, Interstitial/virology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Mutation
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/genetics
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Virulence/genetics
Collapse
Affiliation(s)
- Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanxiao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - De-Yan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Li
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Gencheng Han
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaojun Zhou
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing 100071, China
| | | | - Xiaoli Sheng
- Beijing JOINN Biologics Co., Beijing 100176, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
481
|
Lee ACY, Zhang AJ, Chan JFW, Li C, Fan Z, Liu F, Chen Y, Liang R, Sridhar S, Cai JP, Poon VKM, Chan CCS, To KKW, Yuan S, Zhou J, Chu H, Yuen KY. Oral SARS-CoV-2 Inoculation Establishes Subclinical Respiratory Infection with Virus Shedding in Golden Syrian Hamsters. CELL REPORTS MEDICINE 2020; 1:100121. [PMID: 32984855 PMCID: PMC7508015 DOI: 10.1016/j.xcrm.2020.100121] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted largely by respiratory droplets or airborne aerosols. Despite being frequently found in the immediate environment and feces of patients, evidence supporting the oral acquisition of SARS-CoV-2 is unavailable. Using the Syrian hamster model, we demonstrate that the severity of pneumonia induced by the intranasal inhalation of SARS-CoV-2 increases with virus inoculum. SARS-CoV-2 retains its infectivity in vitro in simulated human-fed-gastric and fasted-intestinal fluid after 2 h. Oral inoculation with the highest intranasal inoculum (105 PFUs) causes mild pneumonia in 67% (4/6) of the animals, with no weight loss. The lung histopathology score and viral load are significantly lower than those infected by the lowest intranasal inoculum (100 PFUs). However, 83% of the oral infections (10/12 hamsters) have a level of detectable viral shedding from oral swabs and feces similar to that of intranasally infected hamsters. Our findings indicate that the oral acquisition of SARS-CoV-2 can establish subclinical respiratory infection with less efficiency. Oral inoculation of SARS-CoV-2 can establish respiratory infection in hamsters Orally infected hamsters do not have body weight loss and signs of disease Orally infected hamsters have a lower viral load and milder inflammation in lung Orally and intranasally infected hamsters have comparable level of virus shedding
Collapse
Affiliation(s)
- Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Can Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhimeng Fan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Liu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yanxia Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chung-Sing Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
482
|
Salajegheh Tazerji S, Magalhães Duarte P, Rahimi P, Shahabinejad F, Dhakal S, Singh Malik Y, Shehata AA, Lama J, Klein J, Safdar M, Rahman MT, Filipiak KJ, Rodríguez-Morales AJ, Sobur MA, Kabir F, Vazir B, Mboera L, Caporale M, Islam MS, Amuasi JH, Gharieb R, Roncada P, Musaad S, Tilocca B, Koohi MK, Taghipour A, Sait A, Subbaram K, Jahandideh A, Mortazavi P, Abedini MA, Hokey DA, Hogan U, Shaheen MNF, Elaswad A, Elhaig MM, Fawzy M. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: an updated review. J Transl Med 2020; 18:358. [PMID: 32957995 PMCID: PMC7503431 DOI: 10.1186/s12967-020-02534-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal–human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran. .,Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Phelipe Magalhães Duarte
- Faculty of Biological and Health Sciences, Universidade de Cuiabá (UNIC), Primavera Do Leste, MT, Brazil
| | - Parastoo Rahimi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Awad A Shehata
- Research and Development Section, PerNaturam GmbH, 56290, Gödenroth, Germany.,Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Juan Lama
- RetroVirox, Inc., San Diego, CA, USA
| | - Jörn Klein
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Alfonso J Rodríguez-Morales
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farrokhreza Kabir
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Vazir
- Department of Physiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leonard Mboera
- Emerging and Vector-borne Diseases Program, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - John H Amuasi
- Global Health, and Infectious Diseases Research Group, Kumasi Collaborative Center for Research in Tropical Medicine, Kumasi, Ghana
| | - Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Paola Roncada
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Sahar Musaad
- Kanad Hospital, Alain, P.O. Box 1016, Abu Dhabi, UAE
| | - Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Taghipour
- Department of Clinical Science, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ahmet Sait
- Virology Department, Pendik Veterinary Control Institute, Ministry of Food and Forestry, 34890, Pendik-Istanbul, Turkey
| | - Kannan Subbaram
- Department of Preparatory (Biology), Al-Ghad International Colleges for Applied Medical Sciences, Riyadh, Saudi Arabia
| | - Alireza Jahandideh
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Pathobiology Department, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Abedini
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Unarose Hogan
- Infection Prevention and Control, Technical Unit, Americares, Stamford, UK
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, National Research Division, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahmoud M Elhaig
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
483
|
Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li XF, Li Q, Xie L, Wang Y, Rao Z, Qin CF, Wang X. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 2020; 369:1505-1509. [PMID: 32703908 PMCID: PMC7402622 DOI: 10.1126/science.abc5881] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are no approved vaccines or therapeutics for treating COVID-19. Here we report a humanized monoclonal antibody, H014, that efficiently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 at nanomolar concentrations by engaging the spike (S) receptor binding domain (RBD). H014 administration reduced SARS-CoV-2 titers in infected lungs and prevented pulmonary pathology in a human angiotensin-converting enzyme 2 mouse model. Cryo-electron microscopy characterization of the SARS-CoV-2 S trimer in complex with the H014 Fab fragment unveiled a previously uncharacterized conformational epitope, which was only accessible when the RBD was in an open conformation. Biochemical, cellular, virological, and structural studies demonstrated that H014 prevents attachment of SARS-CoV-2 to its host cell receptors. Epitope analysis of available neutralizing antibodies against SARS-CoV and SARS-CoV-2 uncovered broad cross-protective epitopes. Our results highlight a key role for antibody-based therapeutic interventions in the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhe Lv
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Yun Sun
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing 100176, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Zhen Cui
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Neil Shaw
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Liangzhi Xie
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing 100176, China.
- Beijing Antibody Research Key Laboratory, Sino Biological Inc., Building 9, Jing Dong Bei Technology Park, No.18 Ke Chuang 10th St, BDA, Beijing, 100176, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
484
|
Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, Liu P, Zhou Y, Dong Z, Du A, Peng J, Hu L, Huang J, Feng P, Jiang T, Xia Z. SARS‐CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol 2020; 31:e2168. [DOI: 10.1002/rmv.2168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Shiqin Li
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Sijia Li
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Cyrollah Disoma
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Rong Zheng
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Mei Zhou
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Aroona Razzaq
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Pinjia Liu
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Yuzheng Zhou
- Department of Cell Biology School of Life Sciences Central South University Changsha China
- Section of Infection and Immunity Herman Ostrow School of Dentistry University of Southern California Los Angeles California USA
| | - Zijun Dong
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Ashuai Du
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Jian Peng
- Department of General Surgery Xiangya Hospital Central South University Changsha China
| | - Liqiang Hu
- The First Hospital of Changsha University of South China Changsha China
| | - Jufang Huang
- Department of Anatomy and Neurobiology School of Basic Medical Sciences Central South University Changsha China
- School of Life Sciences Central South University Changsha China
| | - Pinghui Feng
- Section of Infection and Immunity Herman Ostrow School of Dentistry University of Southern California Los Angeles California USA
| | - Taijiao Jiang
- Center for Systems Medicine Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Suzhou Institute of Systems Medicine Suzhou Jiangsu China
| | - Zanxian Xia
- Department of Cell Biology School of Life Sciences Central South University Changsha China
- Hunan Key Laboratory of Medical Genetics & Center for Medical Genetics School of Life Sciences Hunan Key Laboratory of Animal Models for Human Diseases Central South University Changsha China
| |
Collapse
|
485
|
Konwarh R. Can CRISPR/Cas Technology Be a Felicitous Stratagem Against the COVID-19 Fiasco? Prospects and Hitches. Front Mol Biosci 2020; 7:557377. [PMID: 33134311 PMCID: PMC7511716 DOI: 10.3389/fmolb.2020.557377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The current global debacle of COVID-19, spelled by SARS-CoV-2 needs no elaboration. With incessant and constantly clambering number of deaths across various nations, the need of the hour is to develop readily deployable, fast, affordable detection assays and kits, yielding precise and consistent results as well as timely availability of efficacious anti-SARS-CoV-2 strategies to contain it. Conventionally employed real time PCR based technique for detection of the virus suffers from a couple of handicaps. Amongst other approaches, CRISPR based technology has ushered in new hopes. Recent efforts have been directed toward developing CRISPR/Cas based low-cost, rapid detection methods as well as development of one-pot assay platforms. The plausible application of CRISPR-Cas system to counteract the viral assault has also been assessed. The write up in this article mirrors the current status, the prospects and the practical snags of CRISPR/Cas technology for the detection and inactivation of the novel corona virus, SARS-CoV-2.
Collapse
Affiliation(s)
- Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Centre of Excellence-Nanotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
486
|
Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, Shrihari S, McCune BT, Harvey IB, Keeler SP, Bloyet LM, Zhao H, Ma M, Adams LJ, Winkler ES, Holtzman MJ, Fremont DH, Whelan SPJ, Diamond MS. Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host Microbe 2020; 28:465-474.e4. [PMID: 32798445 PMCID: PMC7391951 DOI: 10.1016/j.chom.2020.07.018] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections, and an effective vaccine is critical to mitigate coronavirus-induced disease 2019 (COVID-19). Previously, we developed a replication-competent vesicular stomatitis virus (VSV) expressing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Here, we show that vaccination with VSV-eGFP-SARS-CoV-2 generates neutralizing immune responses and protects mice from SARS-CoV-2. Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high antibody titers that neutralize SARS-CoV-2 and target the receptor binding domain that engages human angiotensin-converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice that expressed human ACE2 and were immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung, indicating protection against pneumonia. Passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals also protects naive mice from SARS-CoV-2 challenge. These data support development of VSV-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Chlorocebus aethiops
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Disease Models, Animal
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Host Microbial Interactions/immunology
- Humans
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Receptors, Virus/genetics
- SARS-CoV-2
- Translational Research, Biomedical
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
- Vero Cells
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian B Harvey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamus P Keeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meisheng Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daved H Fremont
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
487
|
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.169946. [PMID: 32935108 PMCID: PMC7491522 DOI: 10.1101/2020.06.25.169946] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.
Collapse
Affiliation(s)
- Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ce Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alba Vieites Prado
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Sophie Skriabine
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Peiwen Lu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Orr-El Weizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Yuki Yasumoto
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | | | - Jaime Heltke
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Evelyn Ng
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - John Wheeler
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Etienne Levavasseur
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Benjamin Fontes
- Yale Environmental Health and Safety, Yale University, New Haven, CT 06510, USA
| | - Neal G. Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - David Van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Murat Gunel
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Syed A. Jaffar Kazmi
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Kai Zhang
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L. Horvath
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Isabelle Plu
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
| | - Stephane Haik
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Yale Environmental Health and Safety, Yale University, New Haven, CT 06510, USA
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Cellule nationale de référence des maladies de Creutzfeldt-Jakob, Paris, France
| | - Jean-Leon Thomas
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Angeliki Louvi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shelli F. Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Seilhean
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neuropathologie, Paris, France
| | - Nicolas Renier
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute - ICM, Paris, France
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Center for Genome Analysis, West Haven, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead Contact
| |
Collapse
|
488
|
Moreau GB, Burgess SL, Sturek JM, Donlan AN, Petri WA, Mann BJ. Evaluation of K18- hACE2 Mice as a Model of SARS-CoV-2 Infection. Am J Trop Med Hyg 2020; 103:1215-1219. [PMID: 32723427 PMCID: PMC7470527 DOI: 10.4269/ajtmh.20-0762] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
Murine models of SARS-CoV-2 infection are critical for elucidating the biological pathways underlying COVID-19. Because human angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2, mice expressing the human ACE2 gene have shown promise as a potential model for COVID-19. Five mice from the transgenic mouse strain K18-hACE2 were intranasally inoculated with SARS-CoV-2 Hong Kong/VM20001061/2020. Mice were followed twice daily for 5 days and scored for weight loss and clinical symptoms. Infected mice did not exhibit any signs of infection until day 4, when no other obvious clinical symptoms other than weight loss were observed. By day 5, all infected mice had lost around 10% of their original body weight but exhibited variable clinical symptoms. All infected mice showed high viral titers in the lungs as well as altered lung histology associated with proteinaceous debris in the alveolar space, interstitial inflammatory cell infiltration, and alveolar septal thickening. Overall, these results show that the K18-hACE2 transgenic background can be used to establish symptomatic SARS-CoV-2 infection and can be a useful mouse model for COVID-19.
Collapse
Affiliation(s)
- Gregory Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jeffrey M. Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Alexandra N. Donlan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Barbara J. Mann
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
489
|
Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020; 11:2163. [PMID: 32983181 PMCID: PMC7485091 DOI: 10.3389/fimmu.2020.02163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.
Collapse
Affiliation(s)
- Inmaculada Sanclemente-Alaman
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology, CIATEJ-CONACYT, Guadalajara, Mexico
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
490
|
Koma T, Adachi S, Doi N, Adachi A, Nomaguchi M. Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Front Microbiol 2020; 11:2016. [PMID: 32983025 PMCID: PMC7477919 DOI: 10.3389/fmicb.2020.02016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Human coronaviruses (HCoVs) are of zoonotic origins, and seven distinct HCoVs are currently known to infect humans. While the four seasonal HCoVs appear to be mildly pathogenic and circulate among human populations, the other three designated SARS-CoV, MERS-CoV, and SARS-CoV-2 can cause severe diseases in some cases. The newly identified SARS-CoV-2, a causative virus of COVID-19 that can be deadly, is now spreading worldwide much more efficiently than the other two pathogenic viruses. Despite evident differences in these properties, all HCoVs commonly have an exceptionally large genomic RNA with a rather peculiar gene organization and have the potential to readily alter their biological properties. CoVs are characterized by their biological diversifications, high recombination, and efficient adaptive evolution. We are particularly concerned about the high replication and transmission nature of SARS-CoV-2, which may lead to the emergence of more transmissible and/or pathogenic viruses than ever before. Furthermore, novel variant viruses may appear at any time from the CoV pools actively circulating or persistently being maintained in the animal reservoirs, and from the CoVs in infected human individuals. In this review, we describe knowns of the CoVs and then mention their unknowns to clarify the major issues to be addressed. Genome organizations and sequences of numerous CoVs have been determined, and the viruses are presently classified into separate phylogenetic groups. Functional roles in the viral replication cycle in vitro of non-structural and structural proteins are also quite well understood or suggested. In contrast, those in the in vitro and in vivo replication for various accessory proteins encoded by the variable 3' one-third portion of the CoV genome mostly remain to be determined. Importantly, the genomic sequences/structures closely linked to the high CoV recombination are poorly investigated and elucidated. Also, determinants for adaptation and pathogenicity have not been systematically investigated. We summarize here these research situations. Among conceivable projects, we are especially interested in the underlying molecular mechanism by which the observed CoV diversification is generated. Finally, as virologists, we discuss how we handle the present difficulties and propose possible research directions in the medium or long term.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Shun Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
491
|
Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020; 53:248-263. [PMID: 32717182 PMCID: PMC7359787 DOI: 10.1016/j.immuni.2020.07.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
492
|
25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Res 2020; 30:1043-1045. [PMID: 32811977 PMCID: PMC7431750 DOI: 10.1038/s41422-020-00398-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
|
493
|
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
494
|
Körner RW, Majjouti M, Alcazar MAA, Mahabir E. Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2. Viruses 2020; 12:E880. [PMID: 32806708 PMCID: PMC7471983 DOI: 10.3390/v12080880] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The fatal acute respiratory coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since COVID-19 was declared a pandemic by the World Health Organization in March 2020, infection and mortality rates have been rising steadily worldwide. The lack of a vaccine, as well as preventive and therapeutic strategies, emphasize the need to develop new strategies to mitigate SARS-CoV-2 transmission and pathogenesis. Since mouse hepatitis virus (MHV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2 share a common genus, lessons learnt from MHV and SARS-CoV could offer mechanistic insights into SARS-CoV-2. This review provides a comprehensive review of MHV in mice and SARS-CoV-2 in humans, thereby highlighting further translational avenues in the development of innovative strategies in controlling the detrimental course of SARS-CoV-2. Specifically, we have focused on various aspects, including host species, organotropism, transmission, clinical disease, pathogenesis, control and therapy, MHV as a model for SARS-CoV and SARS-CoV-2 as well as mouse models for infection with SARS-CoV and SARS-CoV-2. While MHV in mice and SARS-CoV-2 in humans share various similarities, there are also differences that need to be addressed when studying murine models. Translational approaches, such as humanized mouse models are pivotal in studying the clinical course and pathology observed in COVID-19 patients. Lessons from prior murine studies on coronavirus, coupled with novel murine models could offer new promising avenues for treatment of COVID-19.
Collapse
Affiliation(s)
- Robert W. Körner
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Mohamed Majjouti
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany;
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Member of the German Center for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), 50937 Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany;
| |
Collapse
|
495
|
Yinda CK, Port JR, Bushmaker T, Owusu IO, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, Rosenke R, Thomas T, Marzi A, Best SM, de Wit E, Shaia C, van Doremalen N, Munster VJ. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.11.246314. [PMID: 32803199 PMCID: PMC7427137 DOI: 10.1101/2020.08.11.246314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10 4 TCID 50 or 10 5 TCID 50 , the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10 5 TCID 50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Taken together, this suggests that this mouse model can be useful for studies of pathogenesis and medical countermeasure development. AUTHORS SUMMARY The disease manifestation of COVID-19 in humans range from asymptomatic to severe. While several mild to moderate disease models have been developed, there is still a need for animal models that recapitulate the severe and fatal progression observed in a subset of patients. Here, we show that humanized transgenic mice developed dose-dependent disease when inoculated with SARS-CoV-2, the etiological agent of COVID-19. The mice developed upper and lower respiratory tract infection, with virus replication also in the brain after day 3 post inoculation. The pathological and immunological diseases manifestation observed in these mice bears resemblance to human COVID-19, suggesting increased usefulness of this model for elucidating COVID-19 pathogenesis further and testing of countermeasures, both of which are urgently needed.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Irene Offei Owusu
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Madison J Hebner
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sonja M Best
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
496
|
Zheng J, Roy Wong LY, Li K, Verma AK, Ortiz M, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB, Perlman S. K18-hACE2 Mice for Studies of COVID-19 Treatments and Pathogenesis Including Anosmia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32817939 DOI: 10.1101/2020.08.07.242073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing COVID-19 pandemic is associated with substantial morbidity and mortality. While much has been learned in the first months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation and many patients with this finding show no or only minor respiratory signs. Studies in animals experimentally infected with SARS-CoV-2, the cause of COVID-19, provide opportunities to study aspects of the disease not easily investigated in human patients. COVID-19 severity ranges from asymptomatic to lethal. Most experimental infections provide insights into mild disease. Here, using K18-hACE2 mice that we originally developed for SARS studies, we show that infection with SARS-CoV-2 causes severe disease in the lung, and in some mice, the brain. Evidence of thrombosis and vasculitis was detected in mice with severe pneumonia. Further, we show that infusion of convalescent plasma (CP) from a recovered COVID-19 patient provided protection against lethal disease. Mice developed anosmia at early times after infection. Notably, while treatment with CP prevented significant clinical disease, it did not prevent anosmia. Thus K18-hACE2 mice provide a useful model for studying the pathological underpinnings of both mild and lethal COVID-19 and for assessing therapeutic interventions.
Collapse
|
497
|
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020; 11:1949. [PMID: 32849654 PMCID: PMC7426442 DOI: 10.3389/fimmu.2020.01949] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. Coronavirus attacks the respiratory system, causing pneumonia and lymphopenia in infected individuals. Viral components like spike and nucleocapsid proteins trigger an immune response in the host to eliminate the virus. These viral antigens can be either recognized by the B cells or presented by MHC complexes to the T cells, resulting in antibody production, increased cytokine secretion, and cytolytic activity in the acute phase of infection. Genetic polymorphism in MHC enables it to present some of the T cell epitopes very well over the other MHC alleles. The association of MHC alleles and its downregulated expression has been correlated with disease severity against influenza and coronaviruses. Studies have reported that infected individuals can, after recovery, induce strong protective responses by generating a memory T-cell pool against SARS-CoV and MERS-CoV. These memory T cells were not persistent in the long term and, upon reactivation, caused local damage due to cross-reactivity. So far, the reports suggest that SARS-CoV-2, which is highly contagious, shows related symptoms in three different stages and develops an exhaustive T-cell pool at higher loads of viral infection. As there are no specific treatments available for this novel coronavirus, numerous small molecular drugs that are being used for the treatment of diseases like SARS, MERS, HIV, ebola, malaria, and tuberculosis are being given to COVID-19 patients, and clinical trials for many such drugs have already begun. A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.
Collapse
Affiliation(s)
- Vibhuti Kumar Shah
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Priyanka Firmal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Aftab Alam
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Samit Chattopadhyay
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
498
|
Hassert M, Geerling E, Stone ET, Steffen TL, Dickson A, Feldman MS, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793909 DOI: 10.1101/2020.08.07.241877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in nearly 20 million infections across the globe, as of August 2020. Critical to the rapid evaluation of vaccines and antivirals is the development of tractable animal models of infection. The use of common laboratory strains of mice to this end is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Interestingly, we did not observe an enhancement of SARS-CoV-2 specific antibody responses with hACE2 induction. Importantly, using this system, we functionally identified the CD4+ and CD8+ peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice. Antigen-specific CD8+ T cells in mice of this MHC haplotype primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. The functional identification of these T cell epitopes will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2. The use of this tractable expression system has the potential to be used in other instances of emerging infections in which the rapid development of an animal model is hindered by a lack of host susceptibility factors.
Collapse
|
499
|
Bilinska K, Butowt R. Anosmia in COVID-19: A Bumpy Road to Establishing a Cellular Mechanism. ACS Chem Neurosci 2020; 11:2152-2155. [PMID: 32673476 PMCID: PMC7467568 DOI: 10.1021/acschemneuro.0c00406] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
It has become clear since the pandemic broke out that SARS-CoV-2 virus causes reduction of smell and taste in a significant fraction of COVID-19 patients. The olfactory dysfunction often occurs early in the course of the disease, and sometimes it is the only symptom in otherwise asymptomatic carriers. The cellular mechanisms for these specific olfactory disturbances in COVID-19 are now beginning to be elucidated. Several very recent papers contributed to explaining the key cellular steps occurring in the olfactory epithelium leading to anosmia/hyposmia (collectively known as dysosmia) initiated by SARS-CoV-2 infection. In this Viewpoint, we discuss current progress in research on olfactory dysfunction in COVID-19 and we also propose an updated model of the SARS-CoV-2-induced dysosmia. The emerging central role of sustentacular cells and inflammatory processes in the olfactory epithelium are particularly considered. The proposed model of anosmia in COVID-19 does not answer unequivocally whether the new coronavirus exploits the olfactory route to rapidly or slowly reach the brain in COVID-19 patients. To answer this question, new systematic studies using an infectious virus and appropriate animal models are needed.
Collapse
Affiliation(s)
- Katarzyna Bilinska
- Department of Molecular Cell
Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-094 Bydgoszcz, Poland
- Department of Anatomy,
L.
Rydygier Collegium Medicum, Nicolaus Copernicus
University, ul. Lukasiewicza 1, 85-821 Bydgoszcz, Poland
| | | |
Collapse
|
500
|
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, Das D, Street K, de Bezieux HR, Choi YG, Risso D, Dudoit S, Purdom E, Mill J, Hachem RA, Matsunami H, Logan DW, Goldstein BJ, Grubb MS, Ngai J, Datta SR. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. SCIENCE ADVANCES 2020; 6:eabc5801. [PMID: 32937591 PMCID: PMC10715684 DOI: 10.1126/sciadv.abc5801] [Citation(s) in RCA: 721] [Impact Index Per Article: 144.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.
Collapse
Affiliation(s)
- David H Brann
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Tatsuya Tsukahara
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Caleb Weinreb
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE1 1UL, UK
| | - Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA 94720
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Boying Gong
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Rebecca Chance
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Iain C Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Hsin-Jung Chou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Present address: Surrozen, Inc., South San Francisco, CA 94080
| | - Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Berkeley Institute for Data Science, University of California, Berkeley
- Present address: Genentech, Inc., South San Francisco, CA 94080
| | - Kelly Street
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Hector Roux de Bezieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
- Center for Computational Biology, University of California, Berkeley, CA 94720
| | - Yoon-Gi Choi
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Sandrine Dudoit
- Department of Statistics, University of California, Berkeley, CA 94720
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA 94720
| | - Jonathan Mill
- University of Exeter Medical School, College of Medicine & Health, University of Exeter, Exeter EX2 5DW, UK
| | - Ralph Abi Hachem
- Duke University School of Medicine Department of Head and Neck Surgery & Communication Sciences, Durham, NC 27717 USA
| | - Hiroaki Matsunami
- Duke University School of Medicine Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Durham, NC 27717 US
| | - Darren W Logan
- Waltham Petcare Science Institute, Leicestershire LE14 4RT, UK
| | - Bradley J Goldstein
- Duke University School of Medicine Department of Head and Neck Surgery & Communication Sciences, Durham, NC 27717 USA
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE1 1UL, UK
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Present address: National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|