6751
|
Abstract
Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Masao Kaneki
- Department of Anesthesia & Critical Care, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
6752
|
Messina MM, Overton JM. Cardiovascular effects of melanin-concentrating hormone. ACTA ACUST UNITED AC 2007; 139:23-30. [PMID: 17045349 DOI: 10.1016/j.regpep.2006.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 08/31/2006] [Indexed: 11/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic 19-amino acid neuropeptide exclusively synthesized in the lateral hypothalamic area (LHA) and the zona incerta (ZI) that has been implicated in the regulation of energy balance. Despite what is known about the orexigenic effect of MCH, whether MCH has distinct cardiovascular and metabolic effects has yet to be determined. Thus, our goal here was to characterize the concurrent cardiovascular, metabolic, and behavioral responses of male rats to chronic intracerebroventricular (icv) infusion of MCH. Male Long-Evans rats were instrumented with telemetry transmitters for measurement of heart rate (HR) and housed in room calorimeters for assessment of food intake and oxygen consumption (VO(2)) at standard lab ambient temperature (23 degrees C) in order to examine physiological responses to chronic infusion of MCH (8 microg/d and 16 microg/d). Our findings provide the first evidence that chronic administration of MCH induces bradycardia and reduced mean arterial pressure, while it did not affect VO(2). A second experiment was performed in which the physiological responses to an acute icv infusion of MCH were observed. The results of experiment 2 indicate that MCH leads to a low HR that is maintained during the first 2 h post-infusion, the time period during which MCH acutely stimulated feeding. Collectively, these findings confirm that MCH may be an important modulator of sympathetic nervous system activity and thus may play a critical role in coordinating normal responses to negative energy balance.
Collapse
Affiliation(s)
- Michelina M Messina
- Department of Biomedical Sciences and the Program in Neuroscience, 236 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
6753
|
Carvalho-Filho MAD, Carvalheira JBC, Velloso LA, Saad MJA. [Insulin and angiotensin II signaling pathways cross-talk: implications with the association between diabetes mellitus, arterial hypertension and cardiovascular disease]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2007; 51:195-203. [PMID: 17505626 DOI: 10.1590/s0004-27302007000200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 01/05/2007] [Indexed: 02/07/2023]
Abstract
Insulin (Ins) and angiotensin II (AII) play pivotal roles in the control of two vital and closely related systems: the metabolic and the circulatory, respectively. A failure in the proper action of each of these hormones results, to a variable degree, in the development of two highly prevalent and commonly overlapping diseases--diabetes mellitus (DM) and hypertension (AH). In recent years, a series of studies has revealed a tight connection between the signal transduction pathways that mediate Ins and AII actions in target tissues. This molecular cross-talk occurs at multiple levels and plays an important role in phenomena that range from the action of anti-hypertensive drugs to cardiac hypertrophy and energy acquisition by the heart. At the extracellular level, the angiotensin-converting enzyme controls AII synthesis but also interferes with Ins signaling through the proper regulation of AII and the accumulation of bradykinin. At an early intracellular level, AII, acting through JAK-2/IRS-1/PI3-kinase, JNK and ERK, may induce the serine phosphorylation and inhibition of key elements of the Ins-signaling pathway. Finally, by inducing the expression of the regulatory protein SOCS-3, AII may impose a late control on the Ins signal. This review will focus on the main advances obtained in this field and will discuss the implications of this molecular cross-talk in the common clinical association between DM and AH.
Collapse
Affiliation(s)
- Marco A de Carvalho-Filho
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | |
Collapse
|
6754
|
Muntzel MS, Crespo R, Joseph T, Onwumere O. Dietary salt loading exacerbates the increase in sympathetic nerve activity caused by intravenous insulin infusion in rats. Metabolism 2007; 56:373-9. [PMID: 17292726 DOI: 10.1016/j.metabol.2006.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 10/09/2006] [Indexed: 11/22/2022]
Abstract
Obesity and type 2 diabetes mellitus frequently produce chronic elevations in blood insulin levels. Importantly, hyperinsulinemia stimulates increases in sympathetic nerve activity that may predispose to hypertension, atherosclerosis, and end-organ damage. Because depletion of dietary salt (NaCl) increases angiotensin II levels, which has been shown to enhance sympathetic responses to excitatory stimuli such as thermal stimulation and bicuculline in the hypothalamus, we predicted that insulin-induced elevations in lumbar sympathetic activity would be augmented by low NaCl and suppressed by high dietary NaCl. Adult male Sprague-Dawley rats were randomized into groups receiving low (0.0 mEq/d, n = 10), normal (2.0 mEq/d, n = 10), and high (5.7 mEq/d, n = 10) NaCl for a period of 8 days. After this, the animals were anesthetized for measurement of heart rate, mean arterial pressure, and lumbar sympathetic nerve activity during 110 minutes of intravenous insulin infusion (15 mU/kg per minute) with euglycemic clamp. Insulin administration caused modest blood pressure decreases accompanied by heart rate increases that were similar across the 3 dietary groups. Unexpectedly, sympathetic increases to insulin were lowest in the low-NaCl group (100%-135% +/- 24%), moderate in the normal-NaCl group (100%-170% +/- 23%), and greatest in the high-NaCl group (100%-252% +/- 39%). Dietary NaCl level did not affect baseline blood glucose or insulin sensitivity as assessed by euglycemic clamp. These findings indicate that dietary salt loading exacerbates the lumbar sympathoexcitatory response to intravenous insulin infusion in rats.
Collapse
Affiliation(s)
- Martin S Muntzel
- Department of Biological Sciences, Lehman College, Bronx, NY 10468-1589, USA.
| | | | | | | |
Collapse
|
6755
|
Sleer LS, Taylor CC. Platelet-Derived Growth Factors and Receptors in the Rat Corpus Luteum: Localization and Identification of an Effect on Luteogenesis1. Biol Reprod 2007; 76:391-400. [PMID: 17108335 DOI: 10.1095/biolreprod.106.053934] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a vital role in regulating cell growth and angiogenesis. In this study, the expression of the family of PDGFs and PDGFRs in the ovarian corpus luteum were identified and characterized, and an effect of their activity on development of the corpus luteum revealed. Gonadotropin-stimulated immature rats were utilized as a model of induced ovulation, luteogenesis, and pseudopregnancy. Levels of ovarian mRNA for Pdgfb and Pdgfd, and their receptor, Pdgfrb, increased significantly as early as 4 h after human chorionic gonadotropin (hCG) injection in immature rats primed with equine chorionic gonadotropin (eCG). Gonadotropin regulation of Pdgfb expression was confirmed by in vitro promoter-reporter assays, which showed a 2- to 3-fold increase in Pdgfb promoter activity in response to luteinizing hormone (LH). Inhibition studies implicated protein kinase A, phosphatidylinositol 3-kinase and mitogen activated protein kinase signaling pathways in the LH-induced upregulation. In the corpus luteum, PDGFA, PDGFB, PDGFC, and PDGFRA were localized to a population of luteal parenchymal/steroidogenic cells. PDGFRB was expressed primarily in what appeared to be cells of the luteal microvasculature. Intraovarian injection of an inhibitor of PDGF receptor activity, the tyrphostin AG1295, prior to injection of hCG in eCG-primed immature rats resulted in a significant 21.86%+/-11.15% decrease in corpora lutea per treated ovary in comparison to the contralateral vehicle-injected control ovary. In addition, the treated ovary of 3 of 16 rats showed widespread hemorrhage throughout the entire ovary, indicating a possible role for PDGF receptor activity in maintenance of the ovarian vasculature.
Collapse
Affiliation(s)
- Leanne S Sleer
- Department of Biochemistry and Molecular & Cellular Biology, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | |
Collapse
|
6756
|
Neganova I, Al-Qassab H, Heffron H, Selman C, Choudhury AI, Lingard SJ, Diakonov I, Patterson M, Ghatei M, Bloom SR, Franks S, Huhtaniemi I, Hardy K, Withers DJ. Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol Reprod 2007; 76:1045-53. [PMID: 17329594 DOI: 10.1095/biolreprod.106.059360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Insulin receptor signaling regulates female reproductive function acting in the central nervous system and ovary. Female mice that globally lack insulin receptor substrate (IRS) 2, which is a key mediator of insulin receptor action, are infertile with defects in hypothalamic and ovarian functions. To unravel the tissue-specific roles of IRS2, we examined reproductive function in female mice that lack Irs2 only in the neurons. Surprisingly, these animals had minimal defects in pituitary and ovarian hormone levels, ovarian anatomy and function, and breeding performance, which indicates that the central nervous system IRS2 is not an obligatory signaling component for the regulation of reproductive function. Therefore, we undertook a detailed analysis of ovarian function in a novel Irs2 global null mouse line. Comparative morphometric analysis showed reduced follicle size, increased numbers of atretic follicles, as well as impaired oocyte growth and antral cavity development in Irs2 null ovaries. Granulosa cell proliferation was also defective in the Irs2 null ovaries. Furthermore, the insulin- and eCG-stimulated phosphoinositide-3-OH kinase signaling events, which included phosphorylation of Akt/protein kinase B and glycogen synthase kinase 3-beta, were impaired, whereas mitogen-activated protein kinase signaling was preserved in Irs2 null ovaries. These abnormalities were associated with reduced expression of cyclin D2 and increased CDKN1B levels, which indicates dysregulation of key components of the cell cycle apparatus implicated in ovarian function. Our data suggest that ovarian rather than central nervous system IRS2 signaling is important in the regulation of female reproductive function.
Collapse
Affiliation(s)
- Irina Neganova
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6757
|
Pedrosa R, Gonçalves N, Hopfer U, Jose PA, Soares-da-Silva P. Activity and regulation of Na+-HCO3- cotransporter in immortalized spontaneously hypertensive rat and Wistar-Kyoto rat proximal tubular epithelial cells. Hypertension 2007; 49:1186-93. [PMID: 17325238 DOI: 10.1161/hypertensionaha.106.083444] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study evaluates the presence and functional proprieties of the Na(+)-HCO(3)(-) cotransporter (NBC) in immortalized renal proximal tubular epithelial cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. The expected size and nucleotide sequence of a 1031-bp fragment corresponding to type 1 NBC (NBC1) was identified in both cell lines. The expression of the NBC1 transcript was lower (P<0.05) in SHR than in WKY cells. After intracellular acidification and in the presence of amiloride (1 mmol/L), the addition of sodium (115 mmol/L) in the absence of chloride resulted in rapid intracellular pH recovery that was higher in WKY than in SHR cells. This was an Na(+)- and HCO(3)(-)-dependent process in both cell lines. 4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulphonic acid inhibited NBC activity in both WKY and SHR cells; the inhibitory effect was, however, more pronounced in WKY than in SHR cells. Forskolin (10 micromol/L) and dibutyryl cAMP (0.5 mmol/L) did not alter NBC activity. Acidosis induced by a 24-hour treatment with NH4(+) (20 mmol/L) increased NBC activity to a greater extent in SHR than in WKY cells, without changes in intracellular pH and cell viability. Treatment with acetazolamide (300 micromol/L) for 24 hours did not change NBC activity in both cell lines. In contrast to NBC, Na(+)-K(+) ATPase activity and expression were higher in SHR than in WKY cells. It is concluded that SHR cells are endowed with lower NBC activity than WKY cells, but the former is more resistant to 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulphonic acid and responds better to acidosis.
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics Faculty of Medicine, Porto, Portugal
| | | | | | | | | |
Collapse
|
6758
|
Beguinot F. PTEN targeting: the search for novel insulin sensitisers provides new insight into obesity research. Diabetologia 2007; 50:247-9. [PMID: 17136390 DOI: 10.1007/s00125-006-0547-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Beguinot
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, 5 via Sergio Pansini, Naples, 80131, Italy.
| |
Collapse
|
6759
|
Alpert E, Gruzman A, Tennenbaum T, Sasson S. Selective cyclooxygenase-2 inhibitors stimulate glucose transport in L6 myotubes in a protein kinase Cδ-dependent manner. Biochem Pharmacol 2007; 73:368-77. [PMID: 17098211 DOI: 10.1016/j.bcp.2006.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 11/24/2022]
Abstract
Selective inhibitors of cyclooxygenase-2 (prostaglandin-endoperoxide synthase-2; COX-2) augment the rate of hexose uptake in myotubes by recruiting glucose transporter-4 (GLUT-4) to the plasma membrane in an insulin- and AMPKalpha-independent manner [Alpert E, Gruzman A, Lardi-Studler B, Cohen G, Reich R, Sasson S. Cyclooxygenase-2 (PTGS2) inhibitors augment the rate of hexose transport in L6 myotubes in an insulin- and AMPKalpha-independent manner. Diabetologia 2006;49:562-70]. We aimed at elucidating the molecular interactions that mediate this effect of COX-2 inhibitors in L6 myotubes. The effects of the inhibitors niflumic acid, nimesulide and rofecoxib on activities and phosphorylation state of key proteins in the insulin transduction pathway were determined. These inhibitors did not induce specific tyrosine phosphorylation in IRS-1, could not assemble a functional IRS-PI3K-PKB/Akt complex and did not activate GSK3alpha/beta, JNK1/2, ERK1/2, p38-MAPK or c-Cbl by site-specific phosphorylation(s). Yet, like insulin, they activated mTOR and induced downstream threonine phosphorylation in p70S6K and 4EBP1. However, rapamycin, which inhibits mTOR enzymatic activity, did not interfere with COX-2 inhibitor-induced stimulation of hexose uptake in myotube. Thus, mTOR activation was not required for COX-2 inhibitor-dependent augmentation of hexose transport in myotubes. Because PKCdelta has also been shown to activate mTOR, we asked whether COX-2 inhibitors activate mTOR by a prior activation of PKCdelta. Indeed, all three inhibitors induced tyrosine phosphorylation in PKCdelta and stimulated its kinase activity. Moreover, pharmacological inhibition of PKCdelta or the expression of a dominant-negative form of PKCdelta in myotubes completely abolished COX-2 inhibitor-dependent stimulation of hexose uptake. This study shows that selective COX-2 inhibitors activate a unique PKCdelta-dependent pathway to increase GLUT-4 abundance in the plasma membrane of myotubes and augment the rate of hexose transport.
Collapse
Affiliation(s)
- Evgenia Alpert
- Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
6760
|
Grassiolli S, Gravena C, de Freitas Mathias PC. Muscarinic M2 receptor is active on pancreatic islets from hypothalamic obese rat. Eur J Pharmacol 2007; 556:223-8. [PMID: 17174301 DOI: 10.1016/j.ejphar.2006.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/16/2022]
Abstract
Hypothalamic obese rats, obtained by neonatal treatment with monosodium L-glutamate (MSG), are hyperinsulinemic, and secrete more insulin than lean ones do when stimulated by glucose, while acetylcholine insulinotropic effect decreases. The effect of acetylcholine on glucose-induced insulin secretion is attributed to muscarinic receptors of pancreatic beta cells, mainly to M(3) subtype. However, it has been observed that activation of M(2) or M(4) subtypes causes inhibition of glucose-induced insulin secretion in insulin secreting cell line. Insulin secretion was measured, stimulated by glucose in the presence of acetylcholine plus methoctramine, a muscarinic M(2) antagonist, on pancreatic islets isolated from MSG-obese and lean rats to investigate whether impairment of acetylcholine insulinotropic effect on pancreatic islets from MSG-obese rats has any relationship with muscarinic M(2) receptor function in beta cells. Insulin secretion stimulated by 8.3 mM glucose was higher in islets from obese rats than from lean ones. Insulinotropic effect of acetylcholine was reported in islets of both animals, albeit less than in obese ones. Blockage of muscarinic M(2) receptor, using methoctramine at 1; 5 and 10 microM, increased acetylcholine secretory response in islets of obese rats, while no effect has been observed in lean ones. Results demonstrate that muscarinic M(2) receptors are functioning in pancreatic islets of MSG-obese rats. The inhibitory action of muscarinic M(2) receptor may be a mechanism by which acetylcholine discloses weak insulinotropic effect in MSG-obese rats.
Collapse
Affiliation(s)
- Sabrina Grassiolli
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Avenida Colombo 5790, 87020-900 Maringá, Brazil
| | | | | |
Collapse
|
6761
|
Mariappan MM, Feliers D, Mummidi S, Choudhury GG, Kasinath BS. High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Diabetes 2007; 56:476-85. [PMID: 17259394 DOI: 10.2337/db05-1334] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Laminin is a glycoprotein that contributes to renal extracellular matrix expansion in diabetes. We investigated regulation of laminin-beta1 synthesis in murine renal proximal tubular epithelial cells by 30 mmol/l glucose (high glucose), 1 nmol/l insulin (high insulin), and their combination (high glucose+high insulin), simulating conditions observed during progression of type 2 diabetes. Compared with 5 mmol/l glucose and no insulin (control), high glucose alone, high insulin alone, or high glucose+high insulin together increased laminin-beta1 chain protein synthesis within 5 min, lasting for up to 60 min with no change in laminin-beta1 mRNA levels. Cycloheximide, but not actinomycin-D, abrogated increased laminin-beta1 synthesis. High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. High glucose, high insulin, and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-beta1 synthesis. This is the first demonstration of rapid increment in laminin-beta1 synthesis by regulation of its mRNA translation by cells exposed to high glucose, high insulin, or high glucose+high insulin.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- Department of Medicine, MC7882, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
6762
|
Leme JACDA, Gomes RJ, de Mello MAR, Luciano E. Effects of short-term physical training on the liver IGF-I in diabetic rats. Growth Factors 2007; 25:9-14. [PMID: 17454145 DOI: 10.1080/08977190701210693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.
Collapse
|
6763
|
Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T. Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology 2007; 148:790-9. [PMID: 17068140 DOI: 10.1210/en.2006-0907] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin resistance and smoking are significant risk factors for cardiac and cerebral vascular diseases. Because vascular smooth muscle cells play a key role in the development and progression of atherosclerosis, we investigated the effect of nicotine on insulin-induced mitogenic signaling in aortic vascular smooth muscle cells isolated from Sprague Dawley rats. RT-PCR revealed the expression of alpha2-7, alpha10, beta1-3, delta, and epsilon subunits of the nicotinic acetylcholine receptor (nAChR) in the cells. Short-term nicotine treatment stimulated phosphorylation of p44/42-MAPK, p38-MAPK, and signal transducer and activator of transcription 3. However, an additive effect of nicotine pretreatment on insulin stimulation was only observed on p44/42-MAPK. The nicotine-induced phosphorylation of p44/42-MAPK and [methyl-(3)H]thymidine incorporation were effectively suppressed by a alpha7-nAChR-selective antagonist, methyllycaconitine, and the phosphorylation of p44/42-MAPK was stimulated by a alpha7-nAChR-specific agonist, GTS21. Furthermore, the phosphorylation was mediated via calmodulin kinase II, Src, and Shc. Interestingly, long-term (48-h) pretreatment with nicotine increased the amount of alpha7-AChR in the plasma membrane and insulin-induced phosphorylation of p44/42-MAPK. These results provide the first evidence that acute exposure to nicotine enhances insulin-induced mitogenesis predominantly by affecting the phosphorylation of p44/42-MAPK and that chronic exposure further augments the insulin signal via up-regulation of alpha7-nAChR, which may be crucial for the development and progression of atherosclerosis in large vessels.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
6764
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2007; 14:74-89. [PMID: 17940424 DOI: 10.1097/med.0b013e32802e6d87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6765
|
Abstract
UCPs (uncoupling proteins) can regulate cellular ATP production by uncoupling oxidative phosphorylation. UCP2 is expressed in islet beta-cells and its induction reduces glucose-stimulated insulin secretion. Under physiological conditions, superoxide, formed as a by-product of respiration, activates UCP2. This leads to reduced ATP production, which impairs closure of the ATP-dependent K+ channels to prevent insulin secretion. It is suggested that the physiological role of UCP2 is to prevent excessive superoxide generation through a feedback loop. UCP2 induction may also alter fatty acid metabolism by altering NAD/NADH or by facilitating cycling of fatty acid anions. Recently, UCP2 has been proposed to keep insulin secretion low during starvation, a function under the control of the transcription co-repressor, surtuin-1, which has been shown to bind to the UCP2 promoter. Pathological UCP2 expression or activation may suppress glucose-stimulated insulin secretion to the extent that diabetes onset is hastened. In ob/ob mice, induction of UCP2 at age 5 weeks precedes development of insulin secretion defects and hyperglycaemia. Activating protein kinase A-dependent pathways can normalize insulin secretion in UCP2-overexpressing islets. Conversely, lowering UCP2 expression may promote increased insulin secretion. UCP2 knockout mice were protected from the diabetogenic effects of a high-fat diet and their islets exhibited increased sensitivity to glucose and elevated ATP/ADP. These results support a role for UCP2 as a gene contributing to the pathogenesis of Type 2 diabetes.
Collapse
Affiliation(s)
- C B Chan
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.
| | | |
Collapse
|
6766
|
Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, Dong LQ, Liu F. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J Biol Chem 2007; 282:7991-6. [PMID: 17244624 DOI: 10.1074/jbc.m700098200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adiponectin functions as an insulin sensitizer, and yet the underlying molecular mechanism(s) remains largely unknown. We found that treating C2C12 myotubes with adiponectin or rapamycin enhanced the ability of insulin to stimulate IRS-1 tyrosine phosphorylation and Akt phosphorylation, concurrently with reduced p70 S6 kinase phosphorylation at Thr389 as well as IRS-1 phosphorylation at Ser302 and Ser636/639. Overexpression of dominant-negative AMP kinase (AMPK), but not dominant-negative p38 MAPK, reduced the insulin-sensitizing effect of adiponectin. Rapamycin, but not adiponectin, enhanced insulin-stimulated Akt phosphorylation in HeLa cells, which lack LKB1, and exogenous expression of LKB1 in HeLa cells rescued the insulin-sensitizing effect of adiponectin. Finally, overexpression of wild-type Rheb (Ras homology-enriched in brain) or the TSC2 mutant lacking the AMPK phosphorylation site (TSC2S1345A) inhibited the insulin-sensitizing effect of adiponectin in C2C12 cells. These results indicate that activation of the LKB1/AMPK/TSC1/2 pathway alleviates the p70 S6 kinase-mediated negative regulation of insulin signaling, providing a mechanism by which adiponectin increases insulin sensitivity in cells.
Collapse
Affiliation(s)
- Changhua Wang
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
6767
|
Bełtowski J, Wójcicka G, Jamroz-Wiśniewska A, Borkowska E. Role of PI3K and PKB/Akt in acute natriuretic and NO-mimetic effects of leptin. ACTA ACUST UNITED AC 2007; 140:168-77. [PMID: 17229473 DOI: 10.1016/j.regpep.2006.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 11/27/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Apart from controlling energy balance, leptin, a peptide hormone secreted by white adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have documented that leptin stimulates natriuresis and nitric oxide (NO) production, but the mechanism of these effects is incompletely elucidated. We examined whether phosphoinositide 3-kinase (PI3K) and its downstream effector, protein kinase B/Akt are involved in acute natriuretic and NO-mimetic effects of leptin in anaesthetized rats. Leptin (1 mg/kg i.v.) induced a marked increase in natriuresis and this effect was abolished by pretreatment with either wortmannin (15 microg/kg) or LY294002 (0.6 mg/kg), two structurally different PI3K inhibitors. Moreover, leptin increased plasma concentration and urinary excretion of NO metabolites, nitrites+nitrates (NO(x)), and of NO second messenger, cyclic GMP. In addition, leptin increased NO(x) and cGMP in aortic tissue. The stimulatory effect of leptin on NO(x) and cGMP was prevented by PKB/Akt inhibitor, triciribine, but not by either wortmannin or LY294002. Triciribine had no effect on leptin-induced natriuresis. Leptin stimulated Akt phosphorylation at Ser(473) in aortic tissue but not in the kidney. These results suggest that leptin-induced natriuresis is mediated by PI3K but not Akt, whereas NO-mimetic effect of leptin results from PI3K-independent stimulation of Akt.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, ul. Jaczewskiego 8, 20-090 Lublin, Poland.
| | | | | | | |
Collapse
|
6768
|
Abstract
Food intake, energy expenditure and body adiposity are homeostatically regulated. Central and peripheral signals communicate information about the current state of energy balance to key brain regions, including the hypothalamus and brainstem. Hunger and satiety represent coordinated responses to these signals, which include neural and hormonal messages from the gut. In recent years our understanding of how neural and hormonal brain-gut signalling regulates energy homeostasis has advanced considerably. Gut hormones have various physiological functions that include specifically targeting the brain to regulate appetite. New research suggests that gut hormones can be used to specifically regulate energy homeostasis in humans, and offer a target for anti-obesity drugs.
Collapse
Affiliation(s)
- Kevin G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
6769
|
Huypens P. Adipokines regulate systemic insulin sensitivity in accordance to existing energy reserves. Med Hypotheses 2007; 69:161-5. [PMID: 17208384 DOI: 10.1016/j.mehy.2006.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Adipocyte-derived hormones, including adiponectin and leptin, regulate systemic insulin sensitivity in accordance to existing triglyceride reserves. Leptin levels reflect existing fat mass and the adipokine negatively regulates insulin action in adipose tissue. Adiponectin, on the other hand, preserves insulin sensitivity via transient increments of AMPK activity and its circulating levels seem to reflect the adipogenic capacity of adipose tissue. Because adiponectin and insulin synergize in their postprandial actions, it seems evident that inadequate adiponectin production causes systemic insulin resistance. As a consequence, compounds that either increase adiponectin production or mimic its actions can be considered as an efficient strategy for improving insulin sensitivity in type 2 diabetics. We have previously shown that troglitazone and metformin exert opposing actions on adiponectin production, indicating that combined use of troglitazone and metformin is a more efficient strategy as compared to metformin treatment. Here, we will provide additional arguments which stress the need for a fixed dose of troglitazone and metformin in order to preserve endogenous adiponectin production. Finally, after delineating critical nodes of insulin and adipokine crosstalk, putative pathways are proposed by which adiponectin and leptin cooperatively regulate systemic insulin sensitivity in accordance to existing fat mass. By amplifying insulin action downstream of PI3K, leptin exerts negative feedback on insulin signaling via mTOR-dependent pathways that target IRS-1 for serine phosphorylation and protein degradation. Adiponectin-mediated increments of AMPK activity, on the other hand, may attenuate mTOR signaling, leading to the preservation of insulin sensitivity in periods of increased nutrient availability. Considering that leptin and adiponectin are inversely associated with BMI, the proposed model provides a plausible explanation for the observation that leptin exerts strong negative feedback on systemic insulin sensitivity, while increasing PIP3 availability.
Collapse
Affiliation(s)
- P Huypens
- Diabetes Research Center, Brussels Free University - VUB, Laarbeeklaan 103, B-1090 Brussels, Brabant, Belgium.
| |
Collapse
|
6770
|
Loxham SJG, Teague J, Poucher SM, De Schoolmeester J, Turnbull AV, Carey F. Glucagon challenge in the rat: A robust method for the in vivo assessment of Glycogen phosphorlyase inhibitor efficacy. J Pharmacol Toxicol Methods 2007; 55:71-7. [PMID: 16713718 DOI: 10.1016/j.vascn.2006.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/16/2006] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glycogen phosphorlyase inhibitors (GPi) act on the glycogenolytic pathway decreasing hepatic glucose output, making them potential candidates for Type 2 diabetes treatment. We established a robust in vivo method to assess GPis efficacy utilising glucagon-stimulated glycogenolysis. METHODS Blood glucose was monitored in both male AP Wistar and AP Zucker rats using tail prick samples pre- and post intraperitoneal or subcutaneous glucagon administration. The effect of glycogen phosphorylase inhibitors GPi296 (6-60 mg kg(-1) po) and DAB (5 mg kg(-1) po) upon glucose response to subcutaneous glucagon were examined in both strains. RESULTS In the Wistar rat glucagon induced dose related increases in blood glucose, with the maximum increase occurring 20 min post dose (4.0+/-0.88 mmol l(-1), intraperitoneal; and 2.8+/-0.72 mmol l(-1), subcutaneous, ns). Intraperitoneal glucagon administration produced shorter duration blood glucose elevation than observed with the subcutaneous route of administration. In the Zucker rat, no differences were observed between the 10 and 13 week old rats in response to glucagon (3-200 microg kg(-1) subcutaneous). The maximum blood glucose increase was lower in the Wistar rat compared to the Zucker rats (2.9+/-0.20 vs 7.7+/-1.22 mmol l(-1), P<0.0000018). GPi296 and DAB both produced similar inhibition in each strain. DISCUSSION Subcutaneous glucagon administration induced more sustained increases in blood glucose than intraperitoneal administration. Blood glucose response to glucagon was higher in the Zucker rat compared to the Wistar rat; there was no difference in inhibition mediated by either GPi296 or DAB between the two strains. We believe that subcutaneous glucagon administration produces a robust model for the assessment of GPis in either rat strain.
Collapse
Affiliation(s)
- Susan J G Loxham
- Cardiovascular and Gastrointestinal Discovery Department, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | | | | | | | | | | |
Collapse
|
6771
|
Abstract
Diabetes mellitus (DM) is a significant healthcare concern worldwide that affects more than 165 million individuals leading to cardiovascular disease, nephropathy, retinopathy, and widespread disease of both the peripheral and central nervous systems. The incidence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose levels raises future concerns in regards to the financial and patient care resources that will be necessary to care for patients with DM. Interestingly, disease of the nervous system can become one of the most debilitating complications and affect sensitive cognitive regions of the brain, such as the hippocampus that modulates memory function, resulting in significant functional impairment and dementia. Oxidative stress forms the foundation for the induction of multiple cellular pathways that can ultimately lead to both the onset and subsequent complications of DM. In particular, novel pathways that involve metabotropic receptor signaling, protein-tyrosine phosphatases, Wnt proteins, Akt, GSK-3beta, and forkhead transcription factors may be responsible for the onset and progression of complications form DM. Further knowledge acquired in understanding the complexity of DM and its ability to impair cellular systems throughout the body will foster new strategies for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
6772
|
Cleasby ME, Reinten TA, Cooney GJ, James DE, Kraegen EW. Functional Studies of Akt Isoform Specificity in Skeletal Muscle in Vivo; Maintained Insulin Sensitivity Despite Reduced Insulin Receptor Substrate-1 Expression. Mol Endocrinol 2007; 21:215-28. [PMID: 17021050 DOI: 10.1210/me.2006-0154] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractThe phosphoinositide 3-kinase/Akt pathway is thought to be essential for normal insulin action and glucose metabolism in skeletal muscle and has been shown to be dysregulated in insulin resistance. However, the specific roles of and signaling pathways triggered by Akt isoforms have not been fully assessed in muscle in vivo. We overexpressed constitutively active (ca-) Akt-1 or Akt-2 constructs in muscle using in vivo electrotransfer and, after 1 wk, assessed the roles of each isoform on glucose metabolism and fiber growth. We achieved greater than 2.5-fold increases in total Ser473 phosphorylation in muscles expressing ca-Akt-1 and ca-Akt-2, respectively. Both isoforms caused hypertrophy of muscle fibers, consistent with increases in p70S6kinase phosphorylation, and a 60% increase in glycogen accumulation, although only Akt-1 increased glycogen synthase kinase-3β phosphorylation. Akt-2, but not Akt-1, increased basal glucose uptake (by 33%, P = 0.004) and incorporation into glycogen and lipids, suggesting a specific effect on glucose transport. Consistent with this, short hairpin RNA-mediated silencing of Akt-2 caused reductions in glycogen storage and glucose uptake. Consistent with Akt-mediated insulin receptor substrate 1 (IRS-1) degradation, we observed approximately 30% reductions in IRS-1 protein in muscle overexpressing ca-Akt-1 or ca-Akt-2. Despite this, we observed no decrease in insulin-stimulated glucose uptake. Furthermore, a 68% reduction in IRS-1 levels induced using short hairpin RNAs targeting IRS-1 also did not affect glucose disposal after a glucose load. These data indicate distinct roles for Akt-1 and Akt-2 in muscle glucose metabolism and that moderate reductions in IRS-1 expression do not result in the development of insulin resistance in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Mark E Cleasby
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | |
Collapse
|
6773
|
Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 2007; 18:38-45. [PMID: 17140804 DOI: 10.1016/j.tem.2006.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/28/2022]
Abstract
Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.
Collapse
Affiliation(s)
- Travis J Maures
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0662, USA
| | | | | |
Collapse
|
6774
|
Wadley GD, Konstantopoulos N, Macaulay L, Howlett KF, Garnham A, Hargreaves M, Cameron-Smith D. Increased insulin-stimulated Akt pSer473 and cytosolic SHP2 protein abundance in human skeletal muscle following acute exercise and short-term training. J Appl Physiol (1985) 2006; 102:1624-31. [PMID: 17185494 DOI: 10.1152/japplphysiol.00821.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.
Collapse
Affiliation(s)
- Glenn D Wadley
- 1School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
6775
|
Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, Cintra DE, Fernandes MFDA, Flores MB, Velloso LA, Saad MJA, Carvalheira JBC. Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 2006; 577:997-1007. [PMID: 17008371 PMCID: PMC1890392 DOI: 10.1113/jphysiol.2006.120006] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/25/2006] [Accepted: 09/25/2006] [Indexed: 02/05/2023] Open
Abstract
Lifestyle interventions including exercise programmes are cornerstones in the prevention of obesity-related diabetes. In this study, we demonstrate that a single bout of exercise inhibits high-fat diet-induced insulin resistance. Diet-induced obesity (DIO) increased the expression and activity of the protein tyrosine phosphatase 1B (PTP1B) and attenuated insulin signalling in gastrocnemius muscle of rats, a phenomenon which was reversed by a single session of exercise. In addition, DIO was observed to lead to serine phosphorylation of insulin receptor substrate 1 (IRS-1), which was also reversed by exercise in muscle in parallel with a reduction in c-Jun N-terminal kinase (JNK) activity. Thus, acute exercise increased the insulin sensitivity during high-fat feeding in obese rats. Overall, these results provide new insights into the mechanism by which exercise restores insulin sensitivity.
Collapse
Affiliation(s)
- Eduardo R Ropelle
- Departamento de Clínica, Médica, FCM-UNICAMP, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil, 13081-970
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6776
|
Canabal DD, Song Z, Potian JG, Beuve A, McArdle JJ, Routh VH. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1418-28. [PMID: 17170237 DOI: 10.1152/ajpregu.00216.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-sensing neurons in the ventromedial hypothalamus (VMH) are involved in the regulation of glucose homeostasis. Glucose-sensing neurons alter their action potential frequency in response to physiological changes in extracellular glucose, insulin, and leptin. Glucose-excited neurons decrease, whereas glucose-inhibited (GI) neurons increase, their action potential frequency when extracellular glucose is reduced. Central nitric oxide (NO) synthesis is regulated by changes in local fuel availability, as well as insulin and leptin. NO is involved in the regulation of food intake and is altered in obesity and diabetes. Thus this study tests the hypothesis that NO synthesis is a site of convergence for glucose, leptin, and insulin signaling in VMH glucose-sensing neurons. With the use of the NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein in conjunction with the membrane potential-sensitive dye fluorometric imaging plate reader, we found that glucose and leptin suppress, whereas insulin stimulates neuronal nitric oxide synthase (nNOS)-dependent NO production in cultured VMH GI neurons. The effects of glucose and leptin were mediated by suppression of AMP-activated protein kinase (AMPK). The AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) increased both NO production and neuronal activity in GI neurons. In contrast, the effects of insulin on NO production were blocked by the phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Furthermore, decreased glucose, insulin, and AICAR increase the phosphorylation of VMH nNOS, whereas leptin decreases it. Finally, VMH neurons express soluble guanylyl cyclase, a downstream mediator of NO signaling. Thus NO may mediate, in part, glucose, leptin, and insulin signaling in VMH glucose-sensing neurons.
Collapse
Affiliation(s)
- Debra D Canabal
- Department of Pharmacology amd Physiology, New Jersey Medical School, 185 S. Orange Ave., PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | | | |
Collapse
|
6777
|
Potenza MA, Marasciulo FL, Tarquinio M, Quon MJ, Montagnani M. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance. Diabetes 2006; 55:3594-603. [PMID: 17130509 DOI: 10.2337/db06-0667] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.
Collapse
Affiliation(s)
- Maria A Potenza
- Department of Pharmacology and Human Physiology, Section of Pharmacology, Medical School, University of Bari, Policlinico-Piazza G. Cesare 11, 70124 Bari, Italy
| | | | | | | | | |
Collapse
|
6778
|
|
6779
|
Huypens PR. Leptin and adiponectin regulate compensatory beta cell growth in accordance to overweight. Med Hypotheses 2006; 68:1134-7. [PMID: 17098372 DOI: 10.1016/j.mehy.2006.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/31/2022]
Abstract
Compensatory beta cell growth occurs in accordance to overweight and increasing insulin demands. The proliferative actions of insulin and insulin-like growth factors are mediated via the IRS-2-PI(3)K-Akt pathway of pleiotropic insulin signaling. However, sustained activation leads to negative feedback via the mTOR-induced proteasomal degradation of IRS-2. The proliferative actions of incretins and adipokines are mediated via other pathways that ultimately converge with the IRS-2-PI(3)K-Akt axis. The incretins GIP and GLP-1 increase IRS-2 levels in beta cells by acting via the cAMP-PKA pathway, whereas leptin inhibits PTEN activity via CK2-dependent pathways. By increasing PIP(3) availability the adipokine amplifies the magnitude as well as duration of factors acting via the IRS-2-PI(3)K-Akt pathway. Considering that AMPK prevents mTOR-induced degradation of IRS-2, we propose that adiponectin and leptin cooperatively achieve compensatory beta cell growth in accordance to adiposity. In conditions of overt obesity, when adiponectin levels are too low to provide sufficient IRS-2 levels, loss of compensatory beta cell growth may occur.
Collapse
|
6780
|
Park J, Choe SS, Choi AH, Kim KH, Yoon MJ, Suganami T, Ogawa Y, Kim JB. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes 2006; 55:2939-49. [PMID: 17065329 DOI: 10.2337/db05-1570] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In adipocytes, oxidative stress and chronic inflammation are closely associated with metabolic disorders, including insulin resistance, obesity, cardiovascular disease, and type 2 diabetes. However, the molecular mechanisms underlying these metabolic disorders have not been thoroughly elucidated. In this report, we demonstrate that overexpression of glucose-6-phosphate dehydrogenase (G6PD) in adipocytes stimulates oxidative stress and inflammatory responses, thus affecting the neighboring macrophages. Adipogenic G6PD overexpression promotes the expression of pro-oxidative enzymes, including inducible nitric oxide synthase and NADPH oxidase, and the activation of nuclear factor-kappaB (NF-kappaB) signaling, which eventually leads to the dysregulation of adipocytokines and inflammatory signals. Furthermore, secretory factors from G6PD-overexpressing adipocytes stimulate macrophages to express more proinflammatory cytokines and to be recruited to the adipocytes; this would cause chronic inflammatory conditions in the adipose tissue of obesity. These effects of G6PD overexpression in adipocytes were abolished by pretreatment with NF-kappaB inhibitors or antioxidant drugs. Thus, we propose that a high level of G6PD in adipocytes may mediate the onset of metabolic disorders in obesity by increasing the oxidative stress and inflammatory signals.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
6781
|
de Oliveira CPMS, Stefano JT, de Lima VMR, de Sá SV, Simplicio FI, de Mello ES, Corrêa-Giannella ML, Alves VAF, Laurindo FRM, de Oliveira MG, Giannella-Neto D, Carrilho FJ. Hepatic gene expression profile associated with non-alcoholic steatohepatitis protection by S-nitroso-N-acetylcysteine in ob/ob mice. J Hepatol 2006; 45:725-733. [PMID: 16935387 DOI: 10.1016/j.jhep.2006.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/27/2006] [Accepted: 05/29/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS To understand the molecular mechanisms underlying non-alcoholic steatohepatitis (NASH) prevention by S-nitroso-N-acetylcysteine (SNAC), an NO donor that inhibits lipid peroxidation, we examined hepatic differentially expressed genes between ob/ob mice receiving or not SNAC treatment concomitantly with a methionine-choline deficient (MCD) diet. METHODS Ob/ob mice were assigned to receive oral SNAC fed solution (MCD+SNAC group) or vehicle (MCD group) by gavage. After four weeks, histopathological analysis and microarray hybridizations were conducted in liver tissues from groups. GeneSifter system was used to identify differentially expressed genes and pathways according to Gene Ontology. RESULTS NASH was absent in the MCD+SNAC group and no significant changes in food intake or body weight were observed in comparison to MCD group. After SNAC treatment, several genes belonging to oxidative phosphorylation, fatty acid biosynthesis, fatty acid metabolism and glutathione metabolism pathways were down-regulated in comparison to the MCD group. CONCLUSIONS SNAC treatment promotes down regulation of several genes from fatty acid (FA) metabolism related pathways, possibly through abrogation of the cytotoxic effects of reactive oxygen species and lipid peroxides with consequent prevention of mitochondrial overload. Further studies are required to investigate the clinical implications of these findings, in attempt to develop novel therapeutic strategies for NAFLD treatment.
Collapse
|
6782
|
Sardinha FLC, Telles MM, Albuquerque KT, Oyama LM, Guimarães PAMP, Santos OFP, Ribeiro EB. Gender difference in the effect of intrauterine malnutrition on the central anorexigenic action of insulin in adult rats. Nutrition 2006; 22:1152-61. [PMID: 17029904 DOI: 10.1016/j.nut.2006.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 07/05/2006] [Accepted: 07/09/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We evaluated whether insulin hypophagia and hypothalamic signaling are affected in adult rats exposed to intrauterine undernutrition. METHODS Pregnant rats ate ad libitum throughout pregnancy and lactation (control, C) or 50% of control intake in the first 2 wk of pregnancy (restricted, R). Four-month-old C and R progeny received insulin or vehicle intracerebroventricular injections for evaluation of 24-h food intake, hypothalamic insulin receptor (IR), and IR substrate-1 (IRS-1) protein content and tyrosine phosphorylation, pp185 phosphorylation, and IRS-1 association with phosphatidylinositol 3-kinase (PI3-K). RESULTS With respect to males, R males had normal body composition and insulin-induced hypophagia. IR protein levels were lower but IR phosphorylation was higher in R than in C males. IRS-1 levels and phosphorylation were similar between C and R males, insulin stimulated an IRS-1/PI3-K association in C but not in R males, and pp185 phosphorylation was higher in R than in C males. For females, body fat and serum leptin were elevated in R females. Insulin inhibited food intake in C but not in R females. Insulin-induced IR phosphorylation and protein levels of IR and IRS-1 were higher in R than in C females. However, IRS-1 and pp185 phosphorylation and IRS-1/PI3-K association were significantly stimulated by insulin in C but not in R females. CONCLUSIONS Female adult rats exposed to intrauterine undernutrition had increased adiposity, marked impairment of hypothalamic insulin signaling, and loss of insulin-induced hypophagia. These disturbances were less severe or even absent in male progeny. The findings show that female progeny are more susceptible than their male siblings to the effects of maternal malnutrition.
Collapse
Affiliation(s)
- Fátima L C Sardinha
- Department of Physiology, Division of Nutrition Physiology, Federal University of São Paulo-UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6783
|
Jamshidi Y, Snieder H, Wang X, Pavitt MJ, Spector TD, Carter ND, O’Dell SD. Phosphatidylinositol 3-kinase p85alpha regulatory subunit gene PIK3R1 haplotype is associated with body fat and serum leptin in a female twin population. Diabetologia 2006; 49:2659-67. [PMID: 17016694 PMCID: PMC1626353 DOI: 10.1007/s00125-006-0388-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/18/2006] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Phosphatidylinositol 3-kinase (PI3K) couples the leptin and insulin signalling pathways via the insulin receptor substrates IRS1 and IRS2. Hence, defective activation of PI3K could be a novel mechanism of peripheral leptin or insulin resistance. We investigated associations of tagging single-nucleotide polymorphisms (tSNPs) in the PI3K p85alpha regulatory subunit gene PIK3R1 with anthropometry, leptin, body fat and insulin sensitivity in a female twin population of European extraction. MATERIALS AND METHODS Eight tSNPs were genotyped in 2,778 women (mean age 47.4+/-12.5 years) from the St Thomas' UK Adult Twin Registry (Twins UK). RESULTS SNP rs1550805 was associated with serum leptin (p=0.028), BMI (p=0.025), weight (p=0.019), total fat (p=0.004), total fat percentage (p=0.002), waist circumference (p=0.025), central fat (p=0.005) and central fat percentage (p=0.005). SNPs rs7713645 and rs7709243 were associated with BMI (p=0.020 and p=0.029, respectively), rs7709243 with weight, total and central fat (p=0.026, p=0.031 and p=0.023, respectively) and both SNPs with fasting glucose (p=0.003 and p=0.001, respectively) and glucose 2-h post OGTT (p=0.023 and p=0.007, respectively). Subjects with haplotype 222 (frequency 7.2%) showed higher serum leptin concentration (p=0.007) and body fat measures (p< or =0.001 for all), and those with haplotype 221 (frequency 38.7%) showed higher fasting and 2-h glucose (p=0.035 and p=0.021, respectively) compared with subjects with the most common haplotype, 111 (frequency 45.5%). CONCLUSIONS/INTERPRETATION Association of the PIK3R1 SNP rs1550805 with serum leptin and body fat may reflect a diminished ability of PI3K to signal via IRS1 or IRS2 in response to leptin.
Collapse
Affiliation(s)
- Y. Jamshidi
- Department of Clinical Developmental Sciences, St George’s University of London, UK
| | - H. Snieder
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, GA, USA
- Twin Research and Genetic Epidemiology Unit, St Thomas’ Hospital, London, UK
| | - X. Wang
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, GA, USA
| | - M. J. Pavitt
- Department of Clinical Developmental Sciences, St George’s University of London, UK
| | - T. D. Spector
- Twin Research and Genetic Epidemiology Unit, St Thomas’ Hospital, London, UK
| | - N. D. Carter
- Department of Clinical Developmental Sciences, St George’s University of London, UK
| | - S. D. O’Dell
- Nutrition Food and Health Research Centre, King’s College London, UK
| |
Collapse
|
6784
|
Bertelli DF, Araújo EP, Cesquini M, Stoppa GR, Gasparotto-Contessotto M, Toyama MH, Felix JVC, Carvalheira JB, Michelini LC, Chiavegatto S, Boschero AC, Saad MJA, Lopes-Cendes I, Velloso LA. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits inositide trisphosphate accumulation in hypothalamus and regulates food intake and body weight. Endocrinology 2006; 147:5385-5399. [PMID: 16916951 DOI: 10.1210/en.2006-0280] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme phosphatidylinositol 3-kinase (PI3-kinase) exerts an important role in the transduction of the anorexigenic and thermogenic signals delivered by insulin and leptin to first-order neurons of the arcuate nucleus in the hypothalamus. The termination of the intracellular signals generated by the activation of PI3-kinase depends on the coordinated activity of specific inositol phosphatases. Here we show that phosphoinositide-specific inositol polyphosphate 5-phosphatase IV (5ptase IV) is highly expressed in neurons of the arcuate and lateral nuclei of the hypothalamus. Upon intracerebroventricular (ICV) treatment with insulin, 5ptase IV undergoes a time-dependent tyrosine phosphorylation, which follows the same patterns of canonical insulin signaling through the insulin receptor, insulin receptor substrate-2, and PI3-kinase. To evaluate the participation of 5ptase IV in insulin action in hypothalamus, we used a phosphorthioate-modified antisense oligonucleotide specific for this enzyme. The treatment of rats with this oligonucleotide for 4 d reduced the hypothalamic expression of 5ptase IV by approximately 80%. This was accompanied by an approximately 70% reduction of insulin-induced tyrosine phosphorylation of 5ptase IV and an increase in basal accumulation of phosphorylated inositols in the hypothalamus. Finally, inhibition of hypothalamic 5ptase IV expression by the antisense approach resulted in reduced daily food intake and body weight loss. Thus, 5ptase IV is a powerful regulator of signaling through PI3-kinase in hypothalamus and may become an interesting target for therapeutics of obesity and related disorders.
Collapse
Affiliation(s)
- Daniela F Bertelli
- Departamento de Clínica Médica, Faculdade de Ciências Medicas, State University of Campinas, 13083-970 Campinas SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6785
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
6786
|
Ueno M, Carvalheira JBC, Oliveira RLGS, Velloso LA, Saad MJA. Circulating ghrelin concentrations are lowered by intracerebroventricular insulin. Diabetologia 2006; 49:2449-2452. [PMID: 16955211 DOI: 10.1007/s00125-006-0371-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 05/25/2006] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Ghrelin is a peptide that is mainly produced by the stomach and stimulates food intake, adiposity and weight gain. Previous studies have documented that plasma levels of ghrelin are reduced by insulin, but the mechanisms that mediate this effect are unclear. METHODS To determine whether phosphatidylinositol 3-kinase (PI(3)K) and/or mitogen-activated protein kinase (MAPK) are involved in this insulin action, we tested the intracerebroventricular (i.c.v.) effect of specific inhibitors of PI(3)K (LY294002 and wortmannin) and MAPK (PD98059 and UO126) on the insulin-mediated reduction of ghrelin levels in rats. RESULTS Intracerebroventricular treatment with insulin reduced ghrelin levels. Inhibition of PI(3)K specifically blocked the insulin-induced reduction in ghrelin concentration, whereas inhibition of MAPK had no effect on insulin-mediated actions. Moreover, pretreatment with i.c.v. PI(3)K inhibitors blocked the reduction of ghrelin levels after OGTT-induced hyperglycaemia and hyperinsulinaemia. CONCLUSIONS/INTERPRETATION These data demonstrate that changes in insulin action in the central nervous system regulate circulating ghrelin levels and that PI(3)K is a specific mediator of this action.
Collapse
Affiliation(s)
- M Ueno
- Department of Internal Medicine, State, University of Campinas (UNICAMP), Campinas, São Paulo, 13081-970, Brazil
| | | | | | | | | |
Collapse
|
6787
|
Gomes RJ, de Mello MAR, Caetano FH, Sibuya CY, Anaruma CA, Rogatto GP, Pauli JR, Luciano E. Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth Horm IGF Res 2006; 16:326-331. [PMID: 17011807 DOI: 10.1016/j.ghir.2006.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 07/19/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to examine the influence of moderate swimming training on the GH/IGF-1 growth axis and tibial mass in diabetic rats. Male Wistar rats were allocated to one of four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced with alloxan (35 mg/kg b.w.). The training program consisted of a 1h swimming session/day with a load corresponding to 5% of the b.w., five days/week for six weeks. At the end of the training period, the rats were sacrificed and blood was collected for quantification of the serum glucose, insulin, GH, and IGF-1 concentrations. Samples of skeletal muscle were used to quantify the IGF-1 peptide content. The tibias were collected to determine their total area, length and bone mineral content. The results were analyzed by ANOVA with P<0.05 indicating significance. Diabetes decreased the serum levels of GH and IGF-1, as well as the tibial length, total area and bone mineral content in the SD group (P<0.05). Physical training increased the serum IGF-1 level in the TC and TD groups when compared to the sedentary groups (SC and SD), and the tibial length, total area and bone mineral content were higher in the TD group than in the SD group (P<0.05). Exercise did not alter the level of IGF-1 in gastrocnemius muscle in nondiabetic rats, but the muscle IGF-1 content was higher in the TD group than in the SD group. These results indicate that swimming training stimulates bone mass and the GH/IGF-1 axis in diabetic rats.
Collapse
Affiliation(s)
- R J Gomes
- Department of Physical Education, State University of São Paulo (UNESP), Avenida 24A No. 1515, Caixa Postal 199, Bela Vista, Rio Claro, CEP 13506-900, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
6788
|
Grassiolli S, Bonfleur ML, Scomparin DX, de Freitas Mathias PC. Pancreatic islets from hypothalamic obese rats maintain K+ATP channel-dependent but not -independent pathways on glucose-induced insulin release process. Endocrine 2006; 30:191-6. [PMID: 17322578 DOI: 10.1385/endo:30:2:191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/02/2006] [Accepted: 10/02/2006] [Indexed: 11/11/2022]
Abstract
One of the main features of obesity is hyperinsulinemia, which is related to insulin oversecretion. Glucose is by far the major physiological stimulator of insulin secretion. Glucose promotes an increase in the ATP/ADP ratio, which inactivates ATP-sensitive K+ channels (K+ATP) and induces beta cell depolarization with consequent calcium influx. Increased intracellular calcium concentration triggers insulin exocytosis. K+ATP channel function is important for K+ATP channel-dependent pathways involved in glucose-stimulated insulin secretion (GSIS). However, K+ATP channel-independent pathway has been identified and it has been found that this pathway sustains GSIS. Both pathways are critical to better GSIS control. GSIS was studied in pancreatic islets from hyperinsulinemic adult obese rats obtained by monosodium L-glutamate (MSG) neonatal treatment. Islets from MSG-obese rats were more glucose responsive than control ones. Diazoxide, a drug which maintains the K+ATP channels open without interfering with cell metabolism, blocked GSIS in islets from both groups. High extracellular potassium concentration plus diazoxide was used to study an alternative to the K+ATP channel pathway; in these conditions islets from MSG-obese rats did not respond, while islets from control animals showed enhanced GSIS. Results indicate that MSG-obese rats oversecreted insulin, even though the K+ATP channel-independent pathway is impaired in their beta cells.
Collapse
Affiliation(s)
- Sabrina Grassiolli
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
6789
|
Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest 2006; 116:1761-6. [PMID: 16823473 PMCID: PMC1483153 DOI: 10.1172/jci29063] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.
Collapse
Affiliation(s)
- Leona Plum
- Department of Mouse Genetics and Metabolism, Institute for Genetics, and Center of Molecular Medicine, University of Cologne, Cologne, Germany.
Klinik II und Poliklinik für Innere Medizin der Universität zu Köln, Cologne, Germany
| | - Bengt F. Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, and Center of Molecular Medicine, University of Cologne, Cologne, Germany.
Klinik II und Poliklinik für Innere Medizin der Universität zu Köln, Cologne, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, and Center of Molecular Medicine, University of Cologne, Cologne, Germany.
Klinik II und Poliklinik für Innere Medizin der Universität zu Köln, Cologne, Germany
| |
Collapse
|
6790
|
Prada PO, Pauli JR, Ropelle ER, Zecchin HG, Carvalheira JBC, Velloso LA, Saad MJA. Selective modulation of the CAP/Cbl pathway in the adipose tissue of high fat diet treated rats. FEBS Lett 2006; 580:4889-4894. [PMID: 16919274 DOI: 10.1016/j.febslet.2006.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 02/07/2023]
Abstract
A high-fat diet (HFD) is associated with reduced glucose uptake in muscle, but not in adipose tissue. In the present study, we investigated whether a HFD can modulate glucose uptake in adipose tissue by increasing signal transduction through the CAP/Cbl pathway, independently of the PI3-K/Akt pathway. Our results suggest that, in HFD, the differential regulation of insulin-induced glucose uptake between skeletal muscle and adipose tissue may, in part, be a consequence of the CAP/Cbl/C3G pathway, since the expression of CAP and Cbl, and also the activation of this pathway were increased in adipose tissue but not in muscle.
Collapse
Affiliation(s)
- Patrícia Oliveira Prada
- Departamento de Clínica Médica da Universidade Estadual de Campinas, FCM-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
6791
|
Carvalho-Filho MA, Ueno M, Carvalheira JBC, Velloso LA, Saad MJA. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRbeta/IRS-1 and Akt and insulin resistance in muscle of mice. Am J Physiol Endocrinol Metab 2006; 291:E476-E482. [PMID: 16638822 DOI: 10.1152/ajpendo.00422.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously demonstrated that the insulin resistance associated with inducible nitric oxide synthase (iNOS) induction in two different models of obesity, diet-induced obesity and the ob/ob mice, is mediated by S-nitrosation of proteins involved in insulin signal transduction: insulin receptor beta-subunit (IRbeta), insulin receptor substrate 1(IRS-1), and Akt. S-nitrosation of IRbeta and Akt impairs their kinase activities, and S-nitrosation of IRS-1 reduces its tissue expression. In this study, we observed that LPS-induced insulin resistance in the muscle of wild-type mice, as demonstrated by reduced insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, reduced IRS-1 expression and reduced insulin-induced serine phosphorylation of Akt. This resistance occurred in parallel with enhanced iNOS expression, which was accompanied by S-nitrosation of IRbeta/IRS-1 and Akt. In the muscle of iNOS(-/-) mice, we did not observe enhanced iNOS expression or any S-nitrosation of IRbeta/IRS-1 and Akt after LPS treatment. Moreover, insulin resistance was not present. The preservation of insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, of IRS-1 protein expression, and of insulin-induced serine phosphorylation of Akt observed in LPS-treated iNOS(-/-) mice strongly suggests that the insulin resistance induced by LPS is iNOS mediated, probably through S-nitrosation of proteins of early steps of insulin signaling.
Collapse
Affiliation(s)
- Marco A Carvalho-Filho
- Departamento de Clínica Médica, Universidade Estadual de Campinas, UNICAMP, 13081 970, Campinas SP, Brazil
| | | | | | | | | |
Collapse
|
6792
|
Abstract
Signal transduction via PI 3-kinases plays an important role in regulating the cellular processes of cell growth, survival, proliferation, and motility. The stimulated generation of reactive oxygen species is a necessary component of the signal transduction mechanisms by which many growth factors and cytokines activate this signaling pathway and elicit their cellular responses. Evidence now supports the oxidative inactivation of both tyrosine phosphatases acting upstream of PI 3-kinase, and of the lipid phosphatase PTEN as components of the normal stimulated regulation of PI 3-kinase signaling. However, the effects of chronic oxidative stress appear rather different, particularly a proposed role for nitrosylation of Akt and other targets leading to inhibition of PI 3-kinase signaling during diabetic insulin resistance in muscle. Recently, evidence has also begun to emerge, indicating that physiological redox signaling may display the same tight spatial and temporal specificity as seen with many other signal transduction systems in terms of targeting individual proteins for modification, and of enzymatic reversal mechanisms. This review will focus upon the details of these and other roles for reactive oxygen and nitrogen species in the regulation of PI 3-kinase signaling, both during acute stimulation and chronic oxidative stress, and the evidence for their significance.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee, United Kingdom.
| |
Collapse
|
6793
|
Yoshizumi M, Ishizawa K, Izawa Y, Tamaki T. [Intracellular signal transduction of vascular injury in insulin resistance]. Nihon Yakurigaku Zasshi 2006; 128:147-52. [PMID: 16971777 DOI: 10.1254/fpj.128.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6794
|
Hernández MI, Martínez A, Capurro T, Peña V, Trejo L, Avila A, Salazar T, Asenjo S, Iñiguez G, Mericq V. Comparison of clinical, ultrasonographic, and biochemical differences at the beginning of puberty in healthy girls born either small for gestational age or appropriate for gestational age: preliminary results. J Clin Endocrinol Metab 2006; 91:3377-81. [PMID: 16787993 DOI: 10.1210/jc.2005-2368] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT There are limited and controversial data concerning puberty characteristics in girls born small for gestational age (SGA). OBJECTIVE The objective of the study was to document clinical, ultrasonographic, and biochemical characteristics at the beginning of puberty in matched healthy girls born either SGA or appropriate for gestational age (AGA) recruited from the community. PATIENTS Inclusion criteria were breast Tanner stage II and a body mass index between the 10th and 95th percentiles. INTERVENTIONS Recruited subjects underwent a complete physical exam, bone age, and ultrasound measurements of the internal genitalia. Hormonal assessment included fasting early morning dehydroepiandrosterone sulfate, androstenedione, SHBG, inhibin-B, FSH, LH, estradiol (E2), 17-hydroxyprogesterone (17OH Prog), and testosterone. Thereafter, a GnRH agonist test (leuprolide 500 microg, sc) was performed with FSH and LH at time 3 and 24 h for E2, 17OH Prog, and testosterone. RESULTS Sixty-five girls (35 AGA, 30 SGA) with a mean age of 9.9 +/- 1.03 (7.8-12.5) yr, similar bone age/chronological age (1.02 +/- 0.8 in AGA and 1 +/- 0.76 in SGA), median height of 1.35 +/- 0.06 cm, and similar waist to hip ratio were included. No differences in the presence of pubic hair, axillary hair, apocrine odor, or ultrasound measurements were found. SGA girls had increased baseline E2 as well as stimulated E2 and 17OH Prog. CONCLUSIONS In a preliminary sample of lean, healthy girls recruited from the community born either SGA or AGA, we observed slight hormonal differences at the beginning of puberty. Longitudinal follow-up of this cohort will allow us to understand whether these differences are maintained and have a clinical impact in their pubertal development.
Collapse
Affiliation(s)
- M I Hernández
- Institute of Maternal and Child Research, University of Chile, Casilla 226-3, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6795
|
Flores MBS, Fernandes MFA, Ropelle ER, Faria MC, Ueno M, Velloso LA, Saad MJA, Carvalheira JBC. Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes 2006; 55:2554-2561. [PMID: 16936204 DOI: 10.2337/db05-1622] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prolonged exercise of medium to high intensity is known to promote a substantial effect on the energy balance of rats. In male rats, moderately to severely intense programs lead to a reduction in food intake. However, the exact causes for the appetite-suppressive effects of exercise are not known. Here, we show that intracerebroventricular insulin or leptin infusion reduced food intake in exercised rats to a greater extent than that observed in control animals. Exercise was associated with a markedly increased phosphorylation/activity of several proteins involved in leptin and insulin signal transduction in the hypothalamus. The regulatory role of interleukin (IL)-6 in mediating the increase in leptin and insulin sensitivity in hypothalamus was also investigated. Treatment with insulin or leptin markedly reduced food intake in exercised rats that were pretreated with vehicle, although no increase in sensitivity to leptin- and insulin-induced anorexia after pretreatment with anti-IL-6 antibody was detected. The current study provides direct measurements of leptin and insulin signaling in the hypothalamus and documents increased sensitivity to these hormones in the hypothalamus of exercised rats in an IL-6-dependent manner. These findings provide support for the hypothesis that the appetite-suppressive actions of exercise may be mediated by the hypothalamus.
Collapse
Affiliation(s)
- Marcelo B S Flores
- Department of Internal Medicine, State University of Campinas (UNICAMP), 13081-970-Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6796
|
Tups A, Helwig M, Stöhr S, Barrett P, Mercer JG, Klingenspor M. Photoperiodic regulation of insulin receptor mRNA and intracellular insulin signaling in the arcuate nucleus of the Siberian hamster,Phodopus sungorus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R643-50. [PMID: 16601260 DOI: 10.1152/ajpregu.00807.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the last 5 years it has been well established that photoperiod-induced changes in body weight in the seasonal hamster, Phodopus sungorus, are accompanied by a marked seasonal cycle in leptin sensitivity. In the present study, we investigated the possible involvement of insulin signaling in seasonal body weight regulation. We analyzed the expression pattern and relative intensity of insulin receptor (IR), phosphatidylinositol 3-kinase (PI3-kinase), and protein tyrosine phosphatase 1B (PTP1B) mRNAs by in situ hybridization in the brains of juvenile female hamsters acclimated to either long- (LD) or short-day length (SD) for 8 wk, with or without superimposed food deprivation for 48 h. Furthermore, the hypothalamic concentration and distribution of phospho-AKT, a marker of PI3-kinase activity was determined by immunoblotting and immunohistochemistry. Eight weeks of acclimation to SD led to a substantial downregulation of IR, PTP1B gene expression, and phospho-AKT concentration in this brain region, whereas PI3-kinase mRNA was unchanged. Food deprivation induced a decrease in PTP1B and a trend toward lowered IR gene expression in LD but not in SD. Additionally, a striking increase in PTP1B gene expression in the thalamus was observed after food deprivation in both photoperiods. The direction of change in neuronal insulin signaling contrasts to the central catabolic nature of this pathway described in other species. SD-induced reduction in insulin signaling may be due to decline in body fat stores mediated by enhanced central leptin sensitivity. Increased anorexigenic tone of leptin may overwrite central insulin signaling to prevent catabolic overdrive.
Collapse
Affiliation(s)
- Alexander Tups
- Division of Obesity and Metabolic Health, Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity, Scotland.
| | | | | | | | | | | |
Collapse
|
6797
|
Pourcet B, Fruchart JC, Staels B, Glineur C. Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of Type 2 diabetes and atherosclerosis. Expert Opin Emerg Drugs 2006; 11:379-401. [PMID: 16939380 DOI: 10.1517/14728214.11.3.379] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
More than 70% of patients with Type 2 diabetes mellitus (T2DM) die because of cardiovascular diseases. Current therapeutic strategies are based on separate treatment of insulin resistance and dyslipidaemia. Development of drugs with multimodal activities should improve management of the global cardiovascular risk of T2DM patients and result in better patient compliance. New therapeutic strategies are aimed at targeting the entire spectrum of dysfunctioning organs, cells and regulatory pathways implicated in the pathogenesis of T2DM, dyslipidaemia and atherosclerosis. PPAR family members play major roles in the regulation of lipid metabolism, glucose homeostasis and inflammatory processes, making these transcription factors ideal targets for therapeutic strategies against these diseases. This review discusses why PPARs and development of novel selective PPAR modulators, dual and pan PPAR agonists constitute promising approaches for the treatment of diabetes, dyslipidaemia and atherosclerosis.
Collapse
Affiliation(s)
- Benoit Pourcet
- Institut Pasteur de Lille, Département d'Athérosclérose, 01 rue du Professeur Calmette, BP 245, Lille 59019, France
| | | | | | | |
Collapse
|
6798
|
Fulop T, Tessier D, Carpentier A. The metabolic syndrome. ACTA ACUST UNITED AC 2006; 54:375-86. [PMID: 16904849 DOI: 10.1016/j.patbio.2006.07.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/04/2006] [Indexed: 12/17/2022]
Abstract
The metabolic syndrome (MS) is a cluster of metabolic abnormalities leading to increased risk for cardiovascular diseases and diabetes type 2. Its prevalence is increasing with aging. There exists actually an epidemic of MS. Visceral obesity and the resulting insulin resistance (IR) are the major determinant in the development of the MS. Abdominal obesity results in a low grade inflammation via the adipose tissue and macrophages secreted adipokines. This inflammation, via the generated pro-inflammatory molecules, interferes with the normal insulin signalling and thus contributes to the etiopathogenesis of the MS. Large clinical studies showed that CRP is increased in obese subjects and concomitantly to the number of existing component of the MS. Treatment of the MS is aimed to improve the IR by lifestyle changes including exercise and diet alone or in combination with medication targeting the individual components but having also anti-inflammatory actions. More research is needed to bring new therapies to be able to decrease the incidence and prevalence of the MS among the population and thus increasing their quality of life.
Collapse
Affiliation(s)
- T Fulop
- Research Centre on Aging, Immunology Graduate Programme, Faculty of Medicine, University of Sherbrooke, 1036, rue Belvedere Sud, Sherbrooke, Que., Canada J1H 4C4.
| | | | | |
Collapse
|
6799
|
Muñoz MC, Argentino DP, Dominici FP, Turyn D, Toblli JE. Irbesartan restores the in-vivo insulin signaling pathway leading to Akt activation in obese Zucker rats. J Hypertens 2006; 24:1607-17. [PMID: 16877964 DOI: 10.1097/01.hjh.0000239297.63377.3f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Angiotensin II (AII) has been shown to contribute to the pathogenesis of hypertension and insulin resistance. In addition, the administration of selective AII type 1 receptor blockers has been shown to improve insulin sensitivity. However, only a few studies have addressed the molecular mechanisms involved in this association. Furthermore, in a previous study we illustrated that obese Zucker rats (OZR) present increased serine 994 (Ser994) phosphorylation of hepatic insulin receptor, and this event seems to be implicated in the regulation of the intrinsic IRK in this model of insulin resistance. OBJECTIVE AND DESIGN We examined the effects of chronic treatment with irbesartan (50 mg/kg a day for 6 months) on the hepatic insulin signaling system of OZR. METHODS The extent of phosphorylation of several components of the insulin signaling system was assessed by immunoprecipitation, followed by immunoblotting with phosphospecific antibodies. In addition, liver AII levels and fat deposits were determined by immunohistochemistry and Oil red O, respectively. RESULTS OZR displayed a marked attenuation in the in-vivo phosphorylation of several components of the insulin signaling pathways in the liver, together with significantly higher hepatic AII levels and hepatic steatosis when compared with lean Zucker rats. We found that in the livers of OZR long-term administration of irbesartan is associated with: (i) increased insulin-stimulated insulin receptor tyrosine phosphorylation; (ii) decreased insulin receptor Ser994 phosphorylation; (iii) augmented insulin receptor substrate (IRS) 1 and 2 abundance and tyrosine phosphorylation; (iv) augmented association between IRS and the p85 regulatory subunit of phosphatidylinositol 3-kinase; (v) increased insulin-induced Akt phosphorylation; and (vi) decreased hepatic steatosis. CONCLUSION The present study provides substantial information that demonstrates that long-term selective AII blockade by irbesartan improves insulin signaling and is associated with decreased insulin receptor Ser994 phosphorylation in the liver of a representative animal model of the human metabolic syndrome.
Collapse
Affiliation(s)
- Marina C Muñoz
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
6800
|
Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R, Bodmer R, Oldham SM. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 4:133-42. [PMID: 16890541 DOI: 10.1016/j.cmet.2006.05.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/07/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
Reducing insulin/IGF signaling allows for organismal survival during periods of inhospitable conditions by regulating the diapause state, whereby the organism stockpiles lipids, reduces fertility, increases stress resistance, and has an increased lifespan. The Target of Rapamycin (TOR) responds to changes in growth factors, amino acids, oxygen tension, and energy status; however, it is unclear how TOR contributes to physiological homeostasis and disease conditions. Here, we show that reducing the function of Drosophila TOR results in decreased lipid stores and glucose levels. Importantly, this reduction of dTOR activity blocks the insulin resistance and metabolic syndrome phenotypes associated with increased activity of the insulin responsive transcription factor, dFOXO. Reduction in dTOR function also protects against age-dependent decline in heart function and increases longevity. Thus, the regulation of dTOR activity may be an ancient "systems biological" means of regulating metabolism and senescence, that has important evolutionary, physiological, and clinical implications.
Collapse
Affiliation(s)
- Nancy Luong
- The Burnham Institute for Medical Research, Cancer Research Center, Neuroscience and Aging Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|