6801
|
Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 2006; 55:2392-7. [PMID: 16873706 DOI: 10.2337/db06-0391] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Initial attempts to unravel the molecular mechanism of insulin resistance have strongly suggested that a defect responsible for insulin resistance in the majority of patients lies at the postreceptor level of insulin signaling. Subsequent studies in insulin-resistant animal models and humans have consistently demonstrated a reduced strength of insulin signaling via the insulin receptor substrate (IRS)-1/phosphatidylinositol (PI) 3-kinase pathway, resulting in diminished glucose uptake and utilization in insulin target tissues. However, the nature of the triggering event(s) remains largely enigmatic. Two separate, but likely, complementary mechanisms have recently emerged as a potential explanation. First, it became apparent that serine phosphorylation of IRS proteins can reduce their ability to attract PI 3-kinase, thereby minimizing its activation. A number of serine kinases that phosphorylate serine residues of IRS-1 and weaken insulin signal transduction have been identified. Additionally, mitochondrial dysfunction has been suggested to trigger activation of several serine kinases, leading to a serine phosphorylation of IRS-1. Second, a distinct mechanism involving increased expression of p85alpha has also been found to play an important role in the pathogenesis of insulin resistance. Conceivably, a combination of both increased expression of p85alpha and increased serine phosphorylation of IRS-1 is needed to induce clinically apparent insulin resistance.
Collapse
Affiliation(s)
- Boris Draznin
- Research Service, 151, Denver VA Medical Center, 1055 Clermont St., CO 80220, USA.
| |
Collapse
|
6802
|
Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am J Physiol Heart Circ Physiol 2006; 291:H827-34. [PMID: 16517948 DOI: 10.1152/ajpheart.00003.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the role for the JAK/STAT signaling pathway in acute opioid-induced cardioprotection (OIC) and whether opioid-induced glycogen synthase kinase-3β (GSK-3β) inhibition is mediated by the JAK/STAT pathway. Rats underwent 30 min of ischemia and either 5 min or 2 h of reperfusion, followed by tissue isolation for molecular analysis or infarct size assessment, respectively. Rats were treated with vehicle, morphine (300 μg/kg), the δ-opioid agonist fentanyl isothiocynate (FIT, 10 μg/kg), or the GSK inhibitor SB-216763 (SB21, 600 μg/kg) 10 min before ischemia. Five minutes before opioid or SB21 treatment, some rats received the putative JAK2 inhibitor AG-490 (3 mg/kg) or the putative JAK3 inhibitor ZM-449829 (3 mg/kg). H9C2 cardiomyoblast cells were also used to investigate FIT-induced signaling (1 μM) in vitro via molecular analysis. Morphine induced the phosphorylation of JAK2, yet not JAK1, in the area at risk. Morphine, FIT, and SB21 also reduced infarct size compared with vehicle (water) when administered before ischemia [43.0 ± 2.8, 39.1 ± 3.1, and 42.1 ± 2.5 (* P < 0.001, respectively) vs. 58.1 ± 1.3%, respectively]. AG-490 abrogated OIC, whereas ZM-449829 had no effect on OIC. Cardioprotection was afforded by SB21 even in the presence of AG-490. Morphine phosphorylated STAT3, Akt, and GSK-3β, and phosphorylation was abrogated by AG-490. FIT stimulation of H9C2 cells also caused a time-dependent phosphorylation of STAT3, Akt, and GSK-3β, and this effect was abrogated by AG-490. STAT3 phosphorylation was also dependent on phosphatidylinositol 3-kinase (PI3K) activation in both tissue and H9C2 cells. These data suggest that OIC occurs via the JAK2 regulation of PI3K pathway-dependent STAT3, Akt, and GSK-3β, with GSK-3β contributing a central role in acute OIC.
Collapse
Affiliation(s)
- Eric R Gross
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
6803
|
Traina F, Favaro PMB, Medina SDS, Duarte ADSS, Winnischofer SMB, Costa FF, Saad STO. ANKHD1, ankyrin repeat and KH domain containing 1, is overexpressed in acute leukemias and is associated with SHP2 in K562 cells. Biochim Biophys Acta Mol Basis Dis 2006; 1762:828-34. [PMID: 16956752 DOI: 10.1016/j.bbadis.2006.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/05/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
In the present study, increased levels of ANKHD1 mRNA and protein expression in leukemia cell lines are reported, as compared with normal hematopoietic cells. Furthermore, a higher expression of ANKHD1 mRNA was detected in primary acute leukemia samples than in normal hematopoietic cells (P=0.002). ANKHD1 was detected in the cytosolic and membrane fraction of cells and was co-immunoprecipitated with SHP2 in protein extracts of K562 and LNCaP cell lines. These findings suggest a role for ANKHD1 as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells.
Collapse
Affiliation(s)
- Fabíola Traina
- The Hematology and Hemotherapy Center, Faculty of Medical Sciences, Department of Internal Medicine, State University of Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6804
|
Kuželová K, Grebeňová D, Pluskalová M, Marinov I, Klamová H, Hrkal Z. Imatinib mesylate affects tyrosine kinase activity in both leukemic and normal primary mononuclear blood cells. J Appl Biomed 2006. [DOI: 10.32725/jab.2006.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6805
|
Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361:1219-35. [PMID: 16815800 PMCID: PMC1642707 DOI: 10.1098/rstb.2006.1858] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut-brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as behavioural effects.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, OH 45237 USA.
| | | | | | | |
Collapse
|
6806
|
Moraes JC, Amaral ME, Picardi PK, Calegari VC, Romanatto T, Bermúdez-Echeverry M, Chiavegatto S, Saad MJ, Velloso LA. Inducible-NOS but not neuronal-NOS participate in the acute effect of TNF-α on hypothalamic insulin-dependent inhibition of food intake. FEBS Lett 2006; 580:4625-31. [PMID: 16876161 DOI: 10.1016/j.febslet.2006.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 06/26/2006] [Accepted: 07/07/2006] [Indexed: 11/21/2022]
Abstract
TNF-alpha acts on the hypothalamus modulating food intake and energy expenditure through mechanisms incompletely elucidated. Here, we explore the hypothesis that, to modulate insulin-induced anorexigenic signaling in hypothalamus, TNF-alpha requires the synthesis of NO. TNF-alpha activates signal transduction through JNK and p38 in hypothalamus, peaking at 10(-8) M. This is accompanied by the induction of expression of the inducible and neuronal forms of NOS, in both cases peaking at 10(-12) M. In addition, TNF-alpha stimulates NOS catalytic activity. Pre-treatment with TNF-alpha at a low dose (10(-12) M) inhibits insulin-dependent anorexigenic signaling, and this effect is abolished in iNOS but not in nNOS knockout mice.
Collapse
Affiliation(s)
- Juliana C Moraes
- Department of Internal Medicine, State University of Campinas, DCM-FCM, UNICAMP, 13084-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6807
|
Hsieh YC, Choudhry MA, Yu HP, Shimizu T, Yang S, Suzuki T, Chen J, Bland KI, Chaudry IH. Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J 2006; 20:1109-17. [PMID: 16770010 DOI: 10.1096/fj.05-5549com] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PGC-1alpha (peroxisome proliferator-activated receptor [PPARgamma] coactivator-1alpha) activates PPARalpha and mitochondrial transcription factor A (Tfam), which regulate proteins, fatty acid and ATP metabolism (i.e., FAT/CD36, MCAD, and COX I). Recently we found that the salutary effects of estradiol (E2) on cardiac function following trauma-hemorrhage (T-H) are mediated via estrogen receptor (ER)beta. In this study we tested the hypothesis that ERbeta-mediated cardioprotection is induced via up-regulation of PGC-1alpha through PPARalpha or Tfam-dependent pathway. Male rats underwent T-H and received ERalpha agonist propylpyrazole-triol (PPT), ERbeta agonist diarylpropionitrile (DPN), E2, or vehicle. Another group was treated with antisense PGC-1alpha oligonucleotides prior to administration of DPN. E2 and DPN treatments attenuated the decrease in cardiac mitochondrial ATP, abrogated the T-H-induced lipid accumulation, and normalized PGC-1alpha, PPARalpha, FAT/CD36, MCAD, Tfam, and COX I after T-H. In contrast, PPT administration did not abrogate lipid accumulation. Moreover, in PPT-treated animals mitochondrial ATP remained significantly lower than those observed in DPN- or E2-treated animals. Prior administration of antisense PGC-1alpha prevented DPN-mediated cardioprotection and increase in ATP levels and Tfam but not in PPARalpha following T-H. These findings suggest that the salutary effects of E2 on cardiac function following T-H are mediated via ERbeta up-regulation of PGC-1alpha through Tfam-dependent pathway.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, 1670 University Blvd, Volker Hall, Rm. G094, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6808
|
Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. J Nutr Biochem 2006; 18:1-9. [PMID: 16854579 DOI: 10.1016/j.jnutbio.2006.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/14/2006] [Accepted: 03/30/2006] [Indexed: 02/08/2023]
Abstract
Organisms reprogram metabolic pathways to adapt to changes in nutrient availability. This requires that nutrient-based stimuli are sensed, signals are transmitted, and highly specific responses are engaged. We propose that in the liver, the mitogen-activated protein kinase, c-jun N-terminal kinase (JNK), links excessive nutrient metabolism with impaired insulin regulation of glucose production. The liver, by virtue of its anatomic position and selective regulatory features, buffers and is highly responsive to changes in nutrient delivery. In particular, sugars such as sucrose and fructose uniquely regulate and are selectively metabolized by the liver. We propose that when hepatic fructose uptake exceeds requirements for glycogen and energy (hepatic sugar excess), the JNK-signaling pathway is engaged as part of the adaptive response.
Collapse
Affiliation(s)
- Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
6809
|
Albuquerque KT, Sardinha FLC, Telles MM, Watanabe RLH, Nascimento CMO, Tavares do Carmo MG, Ribeiro EB. Intake of trans fatty acid–rich hydrogenated fat during pregnancy and lactation inhibits the hypophagic effect of central insulin in the adult offspring. Nutrition 2006; 22:820-9. [PMID: 16815496 DOI: 10.1016/j.nut.2006.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 03/22/2006] [Accepted: 04/20/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Using rats we examined whether maternal intake of hydrogenated fat rich in trans fatty acids affects brain fatty acid profile, hypothalamic content of insulin receptor and insulin receptor substrate-1 proteins, and the hypophagic effect of centrally administered insulin in 3-mo-old male progeny. METHODS Throughout pregnancy and lactation, Wistar rats ate isocaloric/normolipidic diets with soybean oil (control) or soybean oil-derived hydrogenated fat (trans diet) as a fat source. Upon weaning, the trans offspring continued on the trans diet (trans group) or were switched to a control diet (trans-control group). RESULTS Compared with control rats, trans rats had lower brain levels of eicosapentaenoic acid. Compared with trans rats, trans-control rats had increased levels of total polyunsaturated fatty acids and arachidonic acid and decreased levels of trans fatty acids, saturated fatty acids, and monounsaturated fatty acids. Insulin receptor and insulin receptor substrate-1 levels were significantly lower (44% and 38%, respectively) in trans than in control rats. In trans-control rats, insulin receptor was 26% lower (P < 0.05), whereas insulin receptor substrate-1 was 50% lower, than in control rats. Insulin decreased 24-h feeding in control (27%) and trans (38%) rats but failed to do so in trans-control rats. The latter group had increased serum glucose levels. CONCLUSIONS The data suggest that the early (intrauterine/perinatal) exposure to hydrogenated fat rich in trans fatty acids programmed the hypothalamic feeding control mechanisms. As young adults, only trans-control animals showed loss of insulin-induced hypophagia, indicating that the mismatch between early and later nutritional environments was relevant. However, the trans group also showed signs of altered appetite signaling mechanisms, suggesting that the early adaptations may have deleterious consequences later in life.
Collapse
Affiliation(s)
- Kelse T Albuquerque
- Department of Physiology, Division of Nutrition Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6810
|
Shiraishi K, Ascoli M. Activation of the lutropin/choriogonadotropin receptor in MA-10 cells stimulates tyrosine kinase cascades that activate ras and the extracellular signal regulated kinases (ERK1/2). Endocrinology 2006; 147:3419-27. [PMID: 16614081 PMCID: PMC1482736 DOI: 10.1210/en.2005-1478] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show that activation of the recombinant lutropin/choriogonadotropin receptor (LHR) in mouse Leydig tumor cells (MA-10 cells) leads to the tyrosine phosphorylation of Shc (Src homology and collagen homology) and the formation of complexes containing Shc and Sos (Son of sevenless), a guanine nucleotide exchange factor for Ras. Because a dominant-negative mutant of Shc inhibits the LHR-mediated activation of Ras and the phosphorylation of ERK1/2, we conclude that the LHR-mediated phosphorylation of ERK1/2 is mediated, at least partially, by the classical pathway used by growth factor receptors. We also show that the endogenous epidermal growth factor receptor (EGFR) present in MA-10 cells is phosphorylated upon activation of the LHR. The LHR-mediated phosphorylation of the EGFR and Shc, the activation of Ras, and the phosphorylation of ERK1/2 are inhibited by expression of a dominant-negative mutant of Fyn, a member of the Src family kinases (SFKs) expressed in MA-10 cells and by PP2, a pharmacological inhibitor of the SFKs. These are also inhibited, but to a lesser extent, by AG1478, an inhibitor of the EGFR kinase. We conclude that the SFKs are responsible for the LHR-mediated phosphorylation of the EGFR and Shc, the formation of complexes containing Shc and Sos, the activation of Ras, and the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Koji Shiraishi
- Department of Pharmacology, 2-319B BSB, 51 Newton Road, The University of Iowa, Iowa City, 52242-1109, USA
| | | |
Collapse
|
6811
|
Amaral ME, Barbuio R, Milanski M, Romanatto T, Barbosa HC, Nadruz W, Bertolo MB, Boschero AC, Saad MJA, Franchini KG, Velloso LA. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters. J Neurochem 2006; 98:203-12. [PMID: 16638016 DOI: 10.1111/j.1471-4159.2006.03857.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.
Collapse
Affiliation(s)
- Maria E Amaral
- Department of Internal Medicine, State University of Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6812
|
Pereira RO, Moreira ASB, de Carvalho L, Moura AS. Overfeeding during lactation modulates insulin and leptin signaling cascade in rats' hearts. ACTA ACUST UNITED AC 2006; 136:117-21. [PMID: 16806530 DOI: 10.1016/j.regpep.2006.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 05/09/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
Insulin has been described as a potential mediator of intrinsic responses to the nutritional state in the heart due to its effects on cardiac metabolism, mainly on glucose transport. It has been demonstrated that leptin can act through some components of the insulin-signaling cascade. We investigated the association between overfeeding during lactation and alterations of insulin and leptin signaling in the heart. In summary, we analyzed a feasible cross-talk between insulin and leptin through the study of some key proteins of their cascades in the heart. In order to study the effect of overfeeding on these cascades, Wistar rats were overfed through litter size reduction to only three pups. At 10 and 21 days of life, key proteins such as insulin receptor, leptin receptor, PI3-kinase, JAK2, STAT3, and GLUT4 were measured by Western blotting. Furthermore, the pups' weight and the plasma levels of insulin, leptin and glucose were determined. Overfed animals were overweight, had high insulin and leptin plasma levels, and displayed an activation of insulin and leptin cascade, leading to an increased translocation of GLUT4. We suggest that overfeeding during lactation probably alters cardiac metabolism, through the activation of a modulated cross-talk between leptin and insulin cascades.
Collapse
Affiliation(s)
- Renata Oliveira Pereira
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade do Estado; Marin-Neto et al., 1998do Rio de Janeiro, Av. 28 de Setembro, 87-Rio de Janeiro, 20550-030, Brazil
| | | | | | | |
Collapse
|
6813
|
Degasperi GR, Velho JA, Zecchin KG, Souza CT, Velloso LA, Borecký J, Castilho RF, Vercesi AE. Role of mitochondria in the immune response to cancer: a central role for Ca2+. J Bioenerg Biomembr 2006; 38:1-10. [PMID: 16779655 DOI: 10.1007/s10863-006-9000-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/08/2006] [Indexed: 02/03/2023]
Abstract
This study demonstrates that Ca2+ stimulates mitochondrial energy metabolism during spleen lymphocyte activation in response to the ascitic Walker 256 tumor in rats. Intracellular Ca2+ concentrations, phosphorylated protein kinase C (pPKC) levels, Bcl-2 protein contents, interleukin-2 (IL-2) levels, mitochondrial uncoupling protein-2 (UCP-2) contents and reactive oxygen species (ROS) were significantly elevated in these activated lymphocytes. Mitochondria of activated lymphocytes exhibited high free Ca2+ concentrations in the matrix and enhanced oligomycin-sensitive oxygen consumption, indicating an increased rate of oxidative phosphorylation. The production of ROS was largely decreased by diphenylene iodinium in the activated lymphocytes, suggesting that NADPH oxidase is the prevalent source of these species. Accumulation of UCP-2 and the anti-apoptotic protein Bcl-2 is probably important to prevent mitochondrial dysfunction and cell death elicited by the sustained high levels of intracellular Ca2+ and ROS and may explain the observed higher resistance from activated lymphocytes against the opening of the mitochondrial membrane permeability pore (MPT). All these changes were blocked by pretreatment of the rats with verapamil, an L-type Ca2+ channel antagonist. These data demonstrate a central role of Ca2+ in the control of mitochondrial bioenergetics in spleen lymphocytes during the immune response to cancer.
Collapse
Affiliation(s)
- Giovanna R Degasperi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6814
|
Guadagnini D, Gontijo JAR. Altered renal sodium handling in spontaneously hypertensive rats (SHR) after hypertonic saline intracerebroventricular injection: role of renal nerves. Life Sci 2006; 79:1666-73. [PMID: 16806279 DOI: 10.1016/j.lfs.2006.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/25/2006] [Accepted: 06/02/2006] [Indexed: 11/21/2022]
Abstract
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Also, there is a surprising lack of experimental data on the natriuretic mechanisms induced by intracerebroventricular (ICV) injection of hyperosmotic saline (HoS) in SHR. In normotensive animals ICV injection of HoS causes coordinated responses including natriuresis and inhibition of renal sympathetic nerve activity. In the present study, we hypothesized that presumable blunting of the sympathoinhibitory response to centrally injected HoS may contribute to a lack of suppression of efferent renal nerve outflow in SHR. To test this hypothesis, the present study evaluates the influence of renal denervation after central HoS injection at increasing concentration on urinary sodium handling in SHR compared with age-matched normotensive WKy rats. The study confirmed previous data showing pronounced natriuretic response to centrally HoS stimuli but also demonstrated that the creatinine clearance (C(Cr)) and fractional sodium excretion responses diminished as graded NaCl concentrations were increased in WKy rats but not in SHR. In SHR, increased FE(Na) obtained by central administration of 0.90 M NaCl was produced by increases in proximal (FEP(Na)) and post-proximal fractional urinary sodium rejection without changes in C(Cr), indicating a direct tubular effect. Renal denervation caused significant antinatriuresis by decreased C(Cr) and increased FEP(Na) reabsorption in WKy but not in SHR. This study suggests that natriuresis observed only after higher centrally HoS stimuli with a rightward shift of dose-response curve provides evidence of a down-regulation of target organ responsiveness of periventricular areas of genetic hypertensive rats.
Collapse
Affiliation(s)
- Dioze Guadagnini
- Disciplina de Medicina Interna, Laboratório de Metabolismo Hidro-Salino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-100 Campinas, SP, Brazil
| | | |
Collapse
|
6815
|
Um SH, D'Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006; 3:393-402. [PMID: 16753575 DOI: 10.1016/j.cmet.2006.05.003] [Citation(s) in RCA: 534] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 05/01/2006] [Accepted: 05/03/2006] [Indexed: 12/13/2022]
Abstract
Nutrient overload leads to obesity, insulin resistance, and often type 2 diabetes. Whereas increased fat intake is commonly cited as the major factor in diet-induced dysmetabolic states, increased protein consumption also contributes, through elevated circulating amino acids. Recent studies have revealed that ribosomal protein S6 kinase 1, S6K1, an effector of mTOR, is sensitive to both insulin and nutrients, including amino acids. Although S6K1 is an effector of growth, recent reports show that amino acids also negatively affect insulin signaling through mTOR/S6K1 phosphorylation of IRS1. Moreover, rather than signaling through the class 1 PI3K pathway, amino acids appear to mediate mTOR activation through class 3 PI3K, or hVps34. Consistent with this, infusion of amino acids into humans leads to S6K1 activation, inhibition of insulin-induced class 1 PI3K activation, and insulin resistance. Thus, S6K1 may mediate deleterious effects, like insulin resistance, and potentially type 2 diabetes in the face of nutrient excess.
Collapse
Affiliation(s)
- Sung Hee Um
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
6816
|
Liu HW, Cheng B, Yu WL, Sun RX, Zeng D, Wang J, Liao YX, Fu XB. Angiotensin II regulates phosphoinositide 3 kinase/Akt cascade via a negative crosstalk between AT1 and AT2 receptors in skin fibroblasts of human hypertrophic scars. Life Sci 2006; 79:475-83. [PMID: 16522324 DOI: 10.1016/j.lfs.2006.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/23/2005] [Accepted: 01/20/2006] [Indexed: 11/27/2022]
Abstract
Angiotensin II (Ang II) stimulation has been shown to regulate proliferation of skin fibroblasts and production of extracellular matrix, which are very important process in skin wound healing and scarring; however, the signaling pathways involved in this process, especially in humans, are less explored. In the present study, we used skin fibroblasts of human hypertrophic scar, which expressed both AT1 and AT2 receptors, and observed that Ang II increased Akt phosphorylation and phosphoinositide 3 kinase (PI 3-K) activity. In addition, the Ang II-induced Akt phosphorylation was blocked by wortmannin, a PI 3-K inhibitor. This Ang II-activated PI 3-K/Akt cascade was markedly inhibited by valsartan, an AT(1) receptor-specific blocker, whereas it was enhanced by PD123319, an AT(2) receptor antagonist. On the other hand, the Ang II- or EGF-induced activation of PI 3-K/Akt was strongly attenuated by AG1478, an inhibitor of epidermal growth factor (EGF) receptor kinase. Moreover, Ang II stimulated tyrosine phosphorylation of EGF receptor and p85alpha subunit of PI 3-K accompanied by an increase in their association, which was inhibited by valsartan, and enhanced by PD123319. The Ang II-induced transactivation of EGF receptor resulted in activation of extracellular signal-regulated kinase (ERK) that was also inhibited by valsartan, and enhanced by PD123319. Taken together, our results showed that AT(1) receptor-mediated activation of PI 3-K/Akt cascades occurs at least partially via the transactivation of EGF receptor, which is under a negative control by AT(2) receptor in hypertrophic scar fibroblasts. These findings contribute to understanding the molecular mechanism of human hypertrophic scar formation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Cells, Cultured
- Cicatrix, Hypertrophic/metabolism
- Cicatrix, Hypertrophic/pathology
- Enzyme Activation/drug effects
- ErbB Receptors/genetics
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Phosphotransferases/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Cross-Talk/drug effects
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Signal Transduction/drug effects
- Skin/cytology
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Hong-Wei Liu
- Department of Plastic Surgery, Guangzhou Liuhuaqiao Hospital, Liuhua road 111, Guangzhou, Guangdong Province 510010, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
6817
|
Narang AS, Mahato RI. Biological and biomaterial approaches for improved islet transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
6818
|
Stump CS, Hamilton MT, Sowers JR. Effect of antihypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc 2006; 81:796-806. [PMID: 16770980 DOI: 10.4065/81.6.796] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
People with hypertension have a high prevalence of insulin resistance and are at relatively high risk of developing type 2 diabetes mellitus. It is becoming increasingly evident that antihypertensive agents have disparate metabolic effects. For example, recent clinical trials indicate that agents that interrupt the renin-angiotensin axis reduce the risk of developing diabetes compared with other classes of antihypertensive agents. Blockade of the effects of angiotensin II might improve blood flow to insulin-sensitive tissues. Furthermore, interruption of the renin-angiotensin system might provide metabolic benefit through such mechanisms as reduced oxidative stress and restored nitric oxide production, which could lead to improved insulin signaling. Alternatively, collective trials suggest that both diuretics and beta-blockers accelerate the appearance of new-onset type 2 diabetes mellitus in patients with hypertension. Therefore, the risk of new-onset diabetes-associated cardiovascular risks should be factored into future treatment recommendations for patients who require antihypertensive therapy. This will become even more important as the number of insulin-resistant patients with hypertension increases in parallel with the steady growth in the number of sedentary, obese, and aged persons in our population.
Collapse
Affiliation(s)
- Craig S Stump
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri-Columbia, Harry S Truman VA Medical Center, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
6819
|
Chabowski A, Górski J, Calles-Escandon J, Tandon NN, Bonen A. Hypoxia-induced fatty acid transporter translocation increases fatty acid transport and contributes to lipid accumulation in the heart. FEBS Lett 2006; 580:3617-23. [PMID: 16753149 DOI: 10.1016/j.febslet.2006.05.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Protein-mediated LCFA transport across plasma membranes is highly regulated by the fatty acid transporters FAT/CD36 and FABPpm. Physiologic stimuli (insulin stimulation, AMP kinase activation) induce the translocation of one or both transporters to the plasma membrane and increase the rate of LCFA transport. In the hypoxic/ischemic heart, intramyocardial lipid accumulation has been attributed to a reduced rate of fatty acid oxidation. However, since acute hypoxia (15 min) activates AMPK, we examined whether an increased accumulation of intramyocardial lipid during hypoxia was also attributable to an increased rate of LCFA uptake as a result AMPK-induced translocation of FAT/CD36 and FABPpm. In cardiac myocytes, hypoxia (15 min) induced the redistribution of FAT/CD36 from an intracellular pool (LDM) (-25%, P<0.05) to the plasma membranes (PM) (+54%, P<0.05). Hypoxia also induced an increase in FABPpm at the PM (+56%, P<0.05) and a concomitant FABPpm reduction in the LDM (-24%, P<0.05). Similarly, in intact, Langendorff perfused hearts, hypoxia induced the translocation of a both FAT/CD36 and FABPpm to the PM (+66% and +61%, respectively, P<0.05), with a concomitant decline in FAT/CD36 and FABPpm in the LDM (-24% and -23%, respectively, P<0.05). Importantly, the increased plasmalemmal content of these transporters was associated with increases in the initial rates of palmitate uptake into cardiac myocytes (+40%, P<0.05). Acute hypoxia also redirected palmitate into intracellular lipid pools, mainly to PL and TG (+48% and +28%, respectively, P<0.05), while fatty acid oxidation was reduced (-35%, P<0.05). Thus, our data indicate that the increased intracellular lipid accumulation in hypoxic hearts is attributable to both: (a) a reduced rate of fatty acid oxidation and (b) an increased rate of fatty acid transport into the heart, the latter being attributable to a hypoxia-induced translocation of fatty acid transporters.
Collapse
Affiliation(s)
- Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, ul. Mickiewicza 2C, 15-089 Bialystok, Poland.
| | | | | | | | | |
Collapse
|
6820
|
Badal S, Brown PD, Ragoobirsingh D. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle. BMC BIOCHEMISTRY 2006; 7:17. [PMID: 16729893 PMCID: PMC1524779 DOI: 10.1186/1471-2091-7-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/27/2006] [Indexed: 12/04/2022]
Abstract
Background Evidence demonstrates that exogenously administered nitric oxide (NO) can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO) on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml) in the presence or absence of glucose (25 mM) and insulin (100 nM). Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Dalip Ragoobirsingh
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| |
Collapse
|
6821
|
Velloso LA. [The hypothalamic control of feeding and thermogenesis: implications on the development of obesity]. ACTA ACUST UNITED AC 2006; 50:165-76. [PMID: 16767283 DOI: 10.1590/s0004-27302006000200003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The worldwide increase in the prevalence of obesity is becoming one of the most important clinical-epidemiological phenomena of the present days. Environmental factors such as changes in life-style and feeding behavior associated with poorly characterized genetic determinants are though to play the most important roles in the pathogenesis of this disease. During the last ten years, since the discovery of leptin, great advances were obtained in the characterization of the hypothalamic mechanisms involved in the control of food intake and thermogenesis. Such advances are unveiling a complex and integrated system and are opening a wide perspective for the finding of novel therapeutic targets for the treatment of this harming condition. This review will present some of the most recent findings in this field. It will be focused on the actions of leptin and insulin in the hypothalamus and will explore the hypothesis that hypothalamic resistance to the action of these hormones may play a role in the development of obesity and may act as a molecular link between obesity, type 2 diabetes mellitus and other clinical conditions on which insulin resistance plays an important pathogenetic role.
Collapse
|
6822
|
Choi JH, Choi KC, Auersperg N, Leung PCK. Gonadotropins activate proteolysis and increase invasion through protein kinase A and phosphatidylinositol 3-kinase pathways in human epithelial ovarian cancer cells. Cancer Res 2006; 66:3912-20. [PMID: 16585220 DOI: 10.1158/0008-5472.can-05-1785] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite evidence that gonadotropins may facilitate peritoneal metastasis of ovarian cancer by increasing cell adhesion, the action and molecular mechanism of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in ovarian cancer invasion is not well characterized. In the present study, we investigated the effects of FSH and LH on the invasive activity and the expression of metastasis-related proteinases in human epithelial ovarian cancer by Western blot, zymography, reverse transcription-PCR (RT-PCR), ELISA, and Boyden chamber assay. Treatment with FSH or LH (10, 100, or 1,000 ng/mL) significantly increased the invasion of ovarian cancer cell lines, including BG-1, CaOV-3, and SKOV-3 cells but not OVCAR-3 cells. In addition, treatment of SKOV-3 cells with FSH or LH (100 or 1,000 ng/mL) enhanced the expression and activation of matrix metalloproteinases (MMP-2 and MMP-9) as shown by RT-PCR, gelatin zymography, and ELISA. Pretreatment with [(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (10 micromol/L), a total MMP inhibitor, and 3-(4-phenoxyphenylsulfonyl)-propylthiirane (20 micromol/L), a specific gelatinase inhibitor, neutralized the proinvasive effect of gonadotropins in SKOV-3 cells. In addition, the secretion of tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) and plasminogen activator inhibitor-1 was significantly decreased by FSH and LH (100 or 1,000 ng/mL). We further showed that gonadotropins induced an increase in SKOV-3 invasiveness via the activation of protein kinase A (PKA) and phosphatidylinositol 3-kinase (PI3K) signaling pathways. Taken together, these results suggest that gonadotropins may contribute to ovarian cancer metastasis via activation of proteolysis and increase in invasion through the PKA and PI3K pathways.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Obstetrics and Gynecology, British Columbia Children's and Women's Hospital, Child and Family Research Institute, University of British Columbia, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | |
Collapse
|
6823
|
Shojaiefard M, Lang F. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR. Biochem Biophys Res Commun 2006; 345:1611-4. [PMID: 16730658 DOI: 10.1016/j.bbrc.2006.05.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/12/2006] [Indexed: 01/27/2023]
Abstract
Adequate phosphate homeostasis is of critical importance for a wide variety of functions including bone mineralization and energy metabolism. Phosphate balance is a function of intestinal absorption and renal elimination, which are both under tight hormonal control. Intestinal phosphate absorption is accomplished by the Na(+), phosphate cotransporter NaPi IIb (SLC34A2). Signaling mechanisms mediating hormonal regulation of SLC34A2 are incompletely understood. The mammalian target of rapamycin (mTOR) is a kinase regulating a variety of nutrient transporters. The present experiments explored whether mTOR regulates the activity of SLC34A2. In Xenopus oocytes expressing SLC34A2 but not in water injected oocytes phosphate (1 mM) induced a current (Ip) which was significantly enhanced by coexpression of mTOR. Preincubation of the oocytes for 24 h with rapamycin (50 nM) did not significantly affect Ip in the absence of mTOR but virtually abolished the increase of Ip following coexpression of mTOR. The wild type serum and glucocorticoid inducible kinase SGK1 and the constitutively active (S422D)SGK1 similarly stimulated Ip, an effect again reversed by rapamycin. Coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 significantly decreased Ip and abrogated the stimulating effect of mTOR on Ip. In conclusion, mTOR and SGK1 cooperate in the stimulation of the intestinal phosphate transporter SLC34A2.
Collapse
|
6824
|
Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 2006; 5:333-42. [PMID: 16582877 DOI: 10.1038/nrd2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.
Collapse
Affiliation(s)
- Dan F Lazar
- Eli Lilly and Co., Endocrine Division, Lilly Research Laboratories, Indianapolis, Indianapolis 46285, USA.
| | | |
Collapse
|
6825
|
Jo M, Curry TE. Luteinizing hormone-induced RUNX1 regulates the expression of genes in granulosa cells of rat periovulatory follicles. Mol Endocrinol 2006; 20:2156-72. [PMID: 16675540 PMCID: PMC1783681 DOI: 10.1210/me.2005-0512] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge induces specific transcription factors that regulate the expression of a myriad of genes in periovulatory follicles to bring about ovulation and luteinization. The present study determined 1) the localization of RUNX1, a nuclear transcription factor, 2) regulation of Runx1 mRNA expression, and 3) its potential function in rat ovaries. Up-regulation of mRNA and protein for RUNX1 is detected in preovulatory follicles after human chorionic gonadotropin (hCG) injection in gonadotropin-treated immature rats as well as after the LH surge in cycling animals by in situ hybridization and immunohistochemical and Western blot analyses. The regulation of Runx1 mRNA expression was investigated in vitro using granulosa cells from rat preovulatory ovaries. Treatments with hCG, forskolin, or phorbol 12 myristate 13-acetate stimulated Runx1 mRNA expression. The effects of hCG were reduced by inhibitors of protein kinase A, MAPK kinase, or p38 kinase, indicating that Runx1 expression is regulated by the LH-initiated activation of these signaling mediators. In addition, hCG-induced Runx1 mRNA expression was inhibited by a progesterone receptor antagonist and an epidermal growth factor receptor tyrosine kinase inhibitor, whereas amphiregulin stimulated Runx1 mRNA expression, demonstrating that the expression is mediated by the activation of the progesterone receptor and epidermal growth factor receptor. Finally, knockdown of Runx1 mRNA by small interfering RNA decreased progesterone secretion and reduced levels of mRNA for Cyp11a1, Hapln1, Mt1a, and Rgc32. The hormonally regulated expression of Runx1 in periovulatory follicles, its involvement in progesterone production, and regulation of preovulatory gene expression suggest important roles of RUNX1 in the periovulatory process.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
6826
|
Doronzo G, Russo I, Mattiello L, Riganti C, Anfossi G, Trovati M. Insulin activates hypoxia-inducible factor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia 2006; 49:1049-63. [PMID: 16506055 DOI: 10.1007/s00125-006-0156-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 11/17/2005] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS We previously demonstrated that insulin stimulates vascular endothelial growth factor (VEGF) synthesis and secretion via phosphatidylinositol-3 kinase (PI3-K) and mitogen-activated protein kinase (MAPK) pathways in vascular smooth muscle cells (VSMC) from humans and from insulin-sensitive lean Zucker fa/+ rats. We also showed that this effect is attenuated in VSMC from insulin-resistant obese Zucker fa/fa rats. As it is not known whether the effects of insulin on VEGF involve activation of hypoxia-inducible factor-1 (HIF-1), we aimed to evaluate: (1) whether insulin modulates HIF-1alpha protein synthesis and activity; (2) the insulin signalling pathways involved; and (3) the role of insulin resistance. METHODS Using aortic VSMC taken from humans and Zucker rats and cultured in normoxia, the following were evaluated: (1) dose-dependent (0.5, 1, 2 nmol/l) and time-dependent (2, 4, 6 h) effects exerted by insulin on HIF-1alpha content in both nucleus and cytosol, measured by Western blots; (2) insulin effects on HIF-1 DNA-binding activity on the VEGF gene, measured by electrophoretic mobility shift assay; and (3) involvement of the insulin signalling molecules in these insulin actions, by using the following inhibitors: LY294002 (PI3-K), PD98059 (extracellular signal regulated kinase [ERK]), SP600125 (Jun N terminal kinase [JNK]), SB203580 (p38 mitogen-activated protein kinase) and rapamycin (mammalian target of rapamycin), and by detecting the insulin signalling molecules by Western blots. RESULTS In aortic VSMC from humans and Zucker fa/+ rats cultured in normoxia insulin increases the HIF-1alpha content in cytosol and nucleus via dose- and time-dependent mechanisms, and HIF-1 DNA-binding activity on the VEGF gene. The insulin-induced increase of HIF-1alpha is blunted by the translation inhibitor cycloheximide, LY294002, PD98059, SP600125 and rapamycin, but not by SB203580. It is also reduced in Zucker fa/fa rats, which present an impaired ability of insulin to induce Akt, ERK-1/2 and JNK-1/2 phosphorylation. CONCLUSIONS/INTERPRETATION These results provide a biological mechanism for the impaired collateral vessel formation in obesity.
Collapse
Affiliation(s)
- G Doronzo
- Diabetes Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, I-10043, Orbassano, Turin, Italy
| | | | | | | | | | | |
Collapse
|
6827
|
Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, Moeschel K, Mushack J, Schleicher E, Häring HU. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 2006; 20:1206-8. [PMID: 16611834 DOI: 10.1096/fj.05-4635fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin resistance in skeletal muscle is found in obesity and type 2 diabetes. A mechanism for impaired insulin signaling in peripheral tissues is the inhibition of insulin action through serine phosphorylation of insulin receptor substrate (Irs) proteins that abolish the coupling of Irs proteins to the activated insulin receptor. Recently, we described serine-318 as a protein kinase C (PKC)-dependent phosphorylation site in Irs1 (Ser-318) activated by hyperinsulinemia. Here we show in various cell models that the adipose hormone leptin, a putative mediator in obesity-related insulin resistance, promotes phosphorylation of Ser-318 in Irs1 by a janus kinase 2, Irs2, and PKC-dependent pathway. Mutation of Ser-318 to alanine abrogates the inhibitory effect of leptin on insulin-induced Irs1 tyrosine phosphorylation and glucose uptake in L6 myoblasts. In C57Bl/6 mice, Ser-318 phosphorylation levels in muscle tissue were enhanced by leptin and insulin administration in lean animals while in diet-induced obesity Ser-318 phosphorylation levels were already up-regulated in the basal state, and further stimulation was diminished. In analogy, in lymphocytes of obese hyperleptinemic human subjects basal Ser-318 phosphorylation levels were increased compared to lean individuals. During a hyperinsulinemic euglycemic clamp, the increment in Ser-318 phosphorylation observed in lean individuals was absent in obese. In summary, these data suggest that phosphorylation of Ser-318 in Irs1 mediates the inhibitory signal of leptin on the insulin-signaling cascade in obese subjects.
Collapse
Affiliation(s)
- Anita M Hennige
- University of Tuebingen, Department of Internal Medicine IV, Tuebingen D-72076, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6828
|
Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, Lipton SA, Li SH, Tong G, Leibowitz SF, Li XJ. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 2006; 12:526-33. [PMID: 16604089 DOI: 10.1038/nm1382] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/23/2006] [Indexed: 11/08/2022]
Abstract
The hypothalamus responds to circulating leptin and insulin in the control of food intake and body weight. A number of neurotransmitters in the hypothalamus, including gamma-aminobutyric acid (GABA), also have key roles in feeding. Huntingtin-associated protein 1 (Hap1) is expressed more abundantly in the hypothalamus than in other brain regions, and lack of Hap1 in mice leads to early postnatal death. Hap1 is also involved in intracellular trafficking of the GABA(A) receptor. Here, we report that fasting upregulates the expression of Hap1 in the rodent hypothalamus, whereas intracerebroventricular administration of insulin downregulates Hap1 by increasing its degradation through ubiquitination. Decreasing the expression of mouse hypothalamic Hap1 by siRNA reduces the level and activity of hypothalamic GABA(A) receptors and causes a decrease in food intake and body weight. These findings provide evidence linking hypothalamic Hap1 to GABA in the stimulation of feeding and suggest that this mechanism is involved in the feeding-inhibitory actions of insulin in the brain.
Collapse
Affiliation(s)
- Guoqing Sheng
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6829
|
Vinciguerra M, Foti M. PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling. Arch Physiol Biochem 2006; 112:89-104. [PMID: 16931451 DOI: 10.1080/13813450600711359] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin resistance in peripheral tissues is the primary cause responsible for onset of type II diabetes mellitus. Recently, the genetic and biochemical dissection of intracellular signalling pathways transducing the metabolic and mitogenic effects of insulin has contributed to the understanding of the molecular causes of this insulin resistance. In particular, important efforts have been developed to comprehend the role of negative regulators of insulin signalling, since they might represent future therapeutical targets to reduce insulin resistance in peripheral tissues. Herein, we will briefly review major intracellular signalling pathways activated by insulin and how they are negatively regulated by distinct mechanisms. In particular, the role of PTEN and SHIP2, two phosphoinositide phosphatases recently implicated as negative modulators of insulin signalling, is in focus. Current knowledge on the role of PTEN and SHIP2 in insulin resistance, type II diabetes and related disorders will also be discussed.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
6830
|
Gupte A, Mora S. Activation of the Cbl insulin signaling pathway in cardiac muscle; Dysregulation in obesity and diabetes. Biochem Biophys Res Commun 2006; 342:751-7. [PMID: 16494846 DOI: 10.1016/j.bbrc.2006.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
In adipocytes, the Cbl/CAP dependent signaling pathway has been involved in regulating insulin-stimulated glucose uptake. We investigated activation of Cbl and its downstream effector TC10 in cardiac and skeletal muscle of Balb/C mice. Insulin administration resulted in Cbl phosphorylation in cardiac, skeletal muscle, and adipose tissue. Subsequent TC10 activation was detected only in heart and adipose tissue. c-Cbl and CAP gene expression was significantly reduced in the heart tissue of streptozotocin-induced diabetic animals, whereas no change was observed for other components of the pathway. No changes in Cbl expression were detected in hindlimb muscle. In leptin-/- obese mice Cbl expression in heart and adipose tissue was maintained, although insulin-mediated Cbl phosphorylation and subsequent TC10 activation were significantly reduced. In conclusion, our data demonstrate that Cbl/CAP/TC10 insulin signaling pathway is active in cardiac muscle and impaired during obesity and insulin deficiency.
Collapse
Affiliation(s)
- Anisha Gupte
- Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506, USA
| | | |
Collapse
|
6831
|
Carvalheira JBC, Saad MJA. [Insulin resistance/hyperinsulinemia associated diseases not included in the metabolic syndrome]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2006; 50:360-367. [PMID: 16767302 DOI: 10.1590/s0004-27302006000200022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past years, in Brazil and in developed countries, obesity has become a major public health problem. It was identified that besides DM2 and metabolic syndrome other clinical entities were associated with insulin resistance. In this review we describe some of these alterations emphasizing nonalcoholic fatty liver disease, but also including polycistic ovary disease, hyperuricemia, chronic renal failure, heart failure, cognitive decline and cancer.
Collapse
|
6832
|
Burdakov D, Gerasimenko O, Verkhratsky A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 2006; 25:2429-33. [PMID: 15745970 PMCID: PMC6726089 DOI: 10.1523/jneurosci.4925-04.2005] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physiological signaling mechanisms that link normal variations in body energy status to the activity of arousal- and metabolism-regulating brain centers are not well understood. The melanin-concentrating hormone (MCH) and orexin/hypocretin types of neurons of the lateral hypothalamus (LH) exert opposing effects on arousal and metabolism. We examined whether shifts in brain extracellular glucose that correspond to physiological changes in blood glucose can alter the electrical output of neurochemically and biophysically defined LH cells in mouse brain slices. Here, we show that physiologically relevant concentrations of glucose dose-dependently enhance the electrical excitability of MCH neurons by inducing depolarization and increasing membrane resistance. We also demonstrate that the same physiological shifts in glucose have the opposite effects on the electrical activity of orexin neurons. We propose that these direct actions of glucose on the arousal- and metabolism-regulating LH neurons play a key role in the translation of normal variations in body energy resources into appropriate changes in arousal and metabolism.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
6833
|
de Oliveira CPMS, Simplicio FI, de Lima VMR, Yuahasi K, Lopasso FP, Alves VAF, Abdalla DSP, Carrilho FJ, Laurindo FRM, de Oliveira MG. Oral administration of S-nitroso-N-acetylcysteine prevents the onset of non alcoholic fatty liver disease in rats. World J Gastroenterol 2006; 12:1905-1911. [PMID: 16609997 PMCID: PMC4087516 DOI: 10.3748/wjg.v12.i12.1905] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 07/02/2005] [Accepted: 07/20/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the potential of S-nitroso-N-acetylcysteine (SNAC) in inhibition of lipid peroxidation and the effect of oral SNAC administration in the prevention of nonalcoholic fatty liver disease (NAFLD) in an animal model. METHODS NAFLD was induced in Wistar male rats by choline-deficient diet for 4 wk. SNAC-treated animals (n=6) (1.4 mg/kg per day of SNAC, orally) were compared to 2 control groups: one (n=6) received PBS solution and the other (n=6) received NAC solution (7 mg/kg per day). Histological variables were semiquantitated with respect to macro and microvacuolar fat changes, its zonal distribution, foci of necrosis, portal and perivenular fibrosis, and inflammatory infiltrate with zonal distribution. LOOHs from samples of liver homogenates were quantified by HPLC. Nitrate levels in plasma of portal vein were assessed by chemiluminescence. Aqueous low-density lipoprotein (LDL) suspensions (200 microg protein/mL) were incubated with CuCl(2) (300 micromol/L) in the absence and presence of SNAC (300 micromol/L) for 15 h at 37 degree Celsius. Extent of LDL oxidation was assessed by fluorimetry. Linoleic acid (LA) (18.8 micromol/L) oxidation was induced by soybean lipoxygenase (SLO) (0.056 micromol/L) at 37 degree Celsius in the presence and absence of N-acetylcysteine (NAC) and SNAC (56 and 560 micromol/L) and monitored at 234 nm. RESULTS Animals in the control group developed moderate macro and microvesicular fatty changes in periportal area. SNAC-treated animals displayed only discrete histological alterations with absence of fatty changes and did not develop liver steatosis. The absence of NAFLD in the SNAC-treated group was positively correlated with a decrease in the concentration of LOOH in liver homogenate, compared to the control group (0.7+/-0.2 nmol/mg vs 3.2+/-0.4 nmol/mg protein, respectively, P<0.05), while serum levels of aminotransferases were unaltered. The ability of SNAC in preventing lipid peroxidation was confirmed in in vitro experiments using LA and LDL as model substrates. CONCLUSION Oral administration of SNAC prevents the onset of NAFLD in Wistar rats fed with choline-deficient diet. This effect is correlated with the ability of SNAC to block the propagation of lipid peroxidation in vitro and in vitro.
Collapse
|
6834
|
Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M, Waagstein F, Holmäng A. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 2006; 291:H787-96. [PMID: 16565309 DOI: 10.1152/ajpheart.00974.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the association between hyperinsulinemia and cardiac hypertrophy, we treated rats with insulin for 7 wk and assessed effects on myocardial growth, vascularization, and fibrosis in relation to the expression of angiotensin II receptors (AT-R). We also characterized insulin signaling pathways believed to promote myocyte growth and interact with proliferative responses mediated by G protein-coupled receptors, and we assessed myocardial insulin receptor substrate-1 (IRS-1) and p110 alpha catalytic and p85 regulatory subunits of phospatidylinositol 3 kinase (PI3K), Akt, MEK, ERK1/2, and S6 kinase-1 (S6K1). Left ventricular (LV) geometry and performance were evaluated echocardiographically. Insulin decreased AT1a-R mRNA expression but increased protein levels and increased AT2-R mRNA and protein levels and phosphorylation of IRS-1 (Ser374/Tyr989), MEK1/2 (Ser218/Ser222), ERK1/2 (Thr202/Tyr204), S6K1 (Thr421/Ser424/Thr389), Akt (Thr308/Thr308), and PI3K p110 alpha but not of p85 (Tyr508). Insulin increased LV mass and relative wall thickness and reduced stroke volume and cardiac output. Histochemical examination demonstrated myocyte hypertrophy and increases in interstitial fibrosis. Metoprolol plus insulin prevented the increase in relative wall thickness, decreased fibrosis, increased LV mass, and improved function seen with insulin alone. Thus our data demonstrate that chronic hyperinsulinemia decreases AT1a-to-AT2 ratio and increases MEK-ERK1/2 and S6K1 pathway activity related to hypertrophy. These changes might be crucial for increased cardiovascular growth and fibrosis and signs of impaired LV function.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Cardiovascular Institute, The Wallenberg Laboratory, Sahlgrenska Univ. Hospital, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
6835
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
6836
|
de Souza GFP, Yokoyama-Yasunaka JKU, Seabra AB, Miguel DC, de Oliveira MG, Uliana SRB. Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: implications for the treatment of cutaneous leishmaniasis. Nitric Oxide 2006; 15:209-16. [PMID: 16527502 DOI: 10.1016/j.niox.2006.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/15/2005] [Accepted: 01/30/2006] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) is considered a key molecule in the defense against intracellular pathogens, particularly Leishmania. The expression of inducible nitric oxide synthase and consequent production of NO by infected macrophages has been shown to correlate with leishmaniasis resistance in the murine model as well as in human patients. Nitric oxide donors have been used successfully in the treatment of cutaneous leishmaniasis in humans, although their mechanisms of action are not fully understood. In the present work, the dose-dependent cytotoxic effects of the NO-donors S-nitroso-N-acetyl-l-cysteine (SNAC) and S-nitrosoglutathione (GSNO) against Leishmania were evaluated. GSNO inhibited the growth of Leishmania major and Leishmania amazonensis with in vitro 50% inhibitory concentrations (IC(50)) of 68.8+/-22.86 and 68.9+/-7.9 micromol L(-1), respectively. The IC(50) for SNAC against L. major and L. amazonensis were, respectively, 54.6+/-8.3 and 181.6+/-12.5 micromol L(-1). The leishmanicidal activity of GSNO, but not of SNAC, was reversed by ascorbic acid (AA) and dithiothreitol (DTT), suggesting that the mechanism of action of GSNO is related to the transnitrosation of parasite proteins. These results demonstrate that SNAC and GSNO have leishmanicidal activity, and are thus potential therapeutic agents against cutaneous leishmaniasis.
Collapse
|
6837
|
Bouzakri K, Karlsson HKR, Vestergaard H, Madsbad S, Christiansen E, Zierath JR. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients. Diabetes 2006; 55:785-91. [PMID: 16505244 DOI: 10.2337/diabetes.55.03.06.db05-0796] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal IRS-1 Ser (312) and Ser (616) phosphorylation was also increased in nondiabetic kidney transplant recipients. Insulin increased phosphorylation of IRS-1 at Ser (312) but not Ser (616) in healthy subjects, with impairments noted in nondiabetic kidney and pancreas-kidney transplant recipients. Insulin action on ERK-1/2 and Akt phosphorylation was impaired in pancreas-kidney transplant recipients and was preserved in nondiabetic kidney transplant recipients. Importantly, insulin stimulation of the Akt substrate AS160 was impaired in nondiabetic kidney and pancreas-kidney transplant recipients. In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia.
Collapse
Affiliation(s)
- Karim Bouzakri
- Karolinska Institute, Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
6838
|
Velloso LA, Folli F, Perego L, Saad MJA. The multi-faceted cross-talk between the insulin and angiotensin II signaling systems. Diabetes Metab Res Rev 2006; 22:98-107. [PMID: 16389635 DOI: 10.1002/dmrr.611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin and angiotensin II are hormones that play pivotal roles in the control of two vital and closely related systems, the metabolic and the circulatory systems, respectively. A failure in the proper action of each of these hormones results, to a variable degree, in the development of two highly prevalent and commonly overlapping diseases-diabetes mellitus and hypertension. In recent years, a series of studies has revealed a tight connection between the signal transduction pathways that mediate insulin and angiotensin II actions in target tissues. This molecular cross-talk occurs at multiple levels and plays an important role in phenomena that range from the action of anti-hypertensive drugs to cardiac hypertrophy and energy acquisition by the heart. At the extracellular level, the angiotensin-converting enzyme controls angiotensin II synthesis but also interferes with insulin signaling through the proper regulation of angiotensin II and through the accumulation of bradykinin. At an early intracellular level, angiotensin II, acting through JAK-2/IRS-1/PI3-kinase, JNK and ERK, may induce the serine phosphorylation and inhibition of key elements of the insulin-signaling pathway. Finally, by inducing the expression of the regulatory protein SOCS-3, angiotensin II may impose a late control on the insulin signal. This review will focus on the main advances obtained in this field and will discuss the implications of this molecular cross-talk in the common clinical association between diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine, State University of Campinas, SP, Brazil.
| | | | | | | |
Collapse
|
6839
|
Murray JF, Hahn JD, Kennedy AR, Small CJ, Bloom SR, Haskell-Luevano C, Coen CW, Wilson CA. Evidence for a stimulatory action of melanin-concentrating hormone on luteinising hormone release involving MCH1 and melanocortin-5 receptors. J Neuroendocrinol 2006; 18:157-67. [PMID: 16454799 DOI: 10.1111/j.1365-2826.2005.01397.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present series of studies aimed to further our understanding of the role of melanin-concentrating hormone (MCH) neurones in the central regulation of luteinising hormone (LH) release in the female rat. LH release was stimulated when MCH was injected bilaterally into the rostral preoptic area (rPOA) or medial preoptic area (mPOA), but not when injected into the zona incerta (ZI), of oestrogen-primed ovariectomised rats. In rats that were steroid-primed to generate a surge-like release of LH, MCH administration into the ZI blocked this rise in LH release: no such effect occurred when MCH was injected into the rPOA or mPOA. In vitro, MCH stimulated gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants. Double-label immunohistochemistry showed GnRH-immunoreactive neurones in the vicinity of and intermingled with immunoreactive MCH processes. MCH is the endogenous ligand of the MCH type 1 receptor (MCH1-R). Previously, we have shown a role for melanocortin-5 receptors (MC5-R) in the stimulatory action of MCH, so we next investigated the involvement of both MCH1-R and/or MC5-R in mediating the actions of MCH on GnRH and hence LH release. The stimulatory action of MCH in the rPOA was inhibited by administration of antagonists for either MCH1-R or MC5-R. However, in the mPOA, the action of MCH was blocked only by the MC5-R antagonist. LH release was stimulated by an agonist for MC5-R injected into the rPOA or mPOA; this was blocked by the MC5-R antagonist but not the MCH1-R antagonist. These results indicate that both MCH1-R and MC5-R are involved in the central control of LH release by MCH.
Collapse
Affiliation(s)
- J F Murray
- Department of Basic Medical Sciences, Physiology and Clinical Developmental Sciences; O&G, St George's University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
6840
|
Badal S, Brown PD, Ragoobirsingh D. Exogenous nitric oxide inhibits IRS-1 expression in rat hepatocytes and skeletal myocytes. J Biomed Sci 2006; 13:561-8. [PMID: 16470420 DOI: 10.1007/s11373-006-9073-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022] Open
Abstract
Accumulative evidence has supported the role of nitric oxide (NO) in a variety of normal physiological functions as well as many pathological conditions. In this study, we examined the possible diabetogenicity of NO by measuring the expression of the insulin receptor substrate (IRS)-1 in rat hepatocytes and skeletal myocytes. IRS-1 is important in the insulin-mediated signal transduction pathway in both liver and skeletal muscle. Exogenous NO donated by S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) resulted in significant reduction in levels of IRS-1 in both cells, when compared to the insulin-stimulated control (p<0.001). Reversal to near normal levels was achieved using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). SNAP was the more potent drug, and the skeletal myocytes were the more sensitive cells to the inhibitory effects of NO released from the drugs. These results provide further evidence that exogenous NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences (Biochemistry section), University of the West Indies, Kingston, Jamaica
| | | | | |
Collapse
|
6841
|
He Z, Opland DM, Way KJ, Ueki K, Bodyak N, Kang PM, Izumo S, Kulkarni RN, Wang B, Liao R, Kahn CR, King GL. Regulation of vascular endothelial growth factor expression and vascularization in the myocardium by insulin receptor and PI3K/Akt pathways in insulin resistance and ischemia. Arterioscler Thromb Vasc Biol 2006; 26:787-93. [PMID: 16469952 DOI: 10.1161/01.atv.0000209500.15801.4e] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study characterized the role of insulin receptors and resistance on vascular endothelial growth factor (VEGF) expression and myocardial vascularization in physiological conditions and after ischemia. METHODS AND RESULTS Cardiac microvascular density was reduced by 30% in insulin-resistant Zucker fatty rats versus lean controls. This was associated with a parallel 40% inhibition of insulin-stimulated activation of both Akt and VEGF expression in the myocardium and cardiomyocytes. In contrast, the activation of Erk1/2 by insulin remained unchanged. In cultured cardiomyocytes, insulin or insulin-like growth factor (IGF)-1 increased VEGF mRNA and protein expression by 2-fold. Inhibition of PI3K/Akt, especially Akt2-mediated cascades but not the Ras/MEK/Erk pathway, using chemical inhibitors, dominant negative adenoviral constructs, or siRNA approaches suppressed VEGF mRNA expression by insulin. Ventricular tissues from muscle insulin receptor knockout (MIRKO) mice, which lack insulin receptors in the myocardium, have significant reductions in insulin but not IGF-1 signaling, VEGF expression, and vascular density before and after ischemia versus controls. CONCLUSIONS Insulin regulates VEGF gene expression and vascularization in the myocardium specifically via insulin receptors and the activation of PI3K/Akt pathway. Selective inhibition of this pathway may lead to the decreases in VEGF expression and capillary density in the myocardium of patients with insulin resistance.
Collapse
Affiliation(s)
- Zhiheng He
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6842
|
Bernard JR, Reeder DW, Herr HJ, Rivas DA, Yaspelkis BB. High-fat feeding effects on components of the CAP/Cbl signaling cascade in Sprague-Dawley rat skeletal muscle. Metabolism 2006; 55:203-12. [PMID: 16423627 DOI: 10.1016/j.metabol.2005.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
The aim of this investigation was to determine whether the CAP (Cbl-associated protein)/Cbl signaling cascade is present and responsive to insulin in skeletal muscle and if high-fat feeding impairs insulin-stimulated activation of this signaling cascade. Sprague-Dawley rats were assigned to either control (n = 16) or high fat-fed (n = 16) dietary groups. After a 12-week dietary period, animals were subjected to hind limb perfusions in the presence (n = 8 per group) or absence (n = 8 per group) of insulin. High-fat feeding reduced rates of insulin-stimulated skeletal muscle phosphatidylinositol 3-kinase activity and 3-O-methylglucose transport. In plasma membrane fractions, neither the high-fat diet nor insulin altered the insulin receptor beta subunit (IR-beta), APS (adaptor protein containing PH and SH2 domains), c-Cbl, or TC10 protein concentration, but high-fat feeding did decrease CAP protein concentration. APS, c-Cbl, CAP, and TC10 messenger RNA were present in the skeletal muscle and reflected the protein concentration of experimental groups. Despite insulin-stimulated plasma membrane IR-beta tyrosine phosphorylation being unaffected by high-fat feeding, c-Cbl tyrosine phosphorylation, the kinase activity of IR-beta toward APS, and glucose transporter 4 protein concentration were all significantly reduced in insulin-stimulated plasma membrane prepared from the skeletal muscle of high fat-fed animals. These findings suggest that the CAP/Cbl signaling cascade is present in skeletal muscle, activated by insulin, and impaired by high-fat feeding.
Collapse
Affiliation(s)
- Jeffrey R Bernard
- Department of Kinesiology, College of Health and Human Development, California State University Northridge, Northridge, CA 91330-8287, USA
| | | | | | | | | |
Collapse
|
6843
|
Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR. Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 2006; 135:611-25. [PMID: 16111819 DOI: 10.1016/j.neuroscience.2005.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/22/2005] [Accepted: 06/09/2005] [Indexed: 12/30/2022]
Abstract
Neural signaling by melanin-concentrating hormone and its receptor (SLC-1) has been implicated in the control of energy balance, but due to the wide distribution of melanin-concentrating hormone-containing fibers throughout the neuraxis, its critical sites of action for a particular effect have not been identified. The present study aimed to anatomically and functionally characterize melanin-concentrating hormone innervation of the rat caudal brainstem, as this brain area plays an important role in the neural control of ingestive behavior and autonomic outflow. Using retrograde tracing we demonstrate that a significant proportion (5-15%) of primarily perifornical and far-lateral hypothalamic melanin-concentrating hormone neurons projects to the dorsal vagal complex. In the caudal brainstem, melanin-concentrating hormone-ir axon profiles are distributed densely in most areas including the nucleus of the solitary tract, dorsal motor nucleus of the vagus, and sympathetic premotor areas in the ventral medulla. Close anatomical appositions can be demonstrated between melanin-concentrating hormone-ir axon profiles and tyrosine hydroxylase, GABA, GLP-1, NOS-expressing, and nucleus of the solitary tract neurons activated by gastric nutrient infusion. In medulla slice preparations, bath application of melanin-concentrating hormone inhibited in a concentration-dependent manner the amplitude of excitatory postsynaptic currents evoked by solitary tract stimulation via a pre-synaptic mechanism. Fourth ventricular administration of melanin-concentrating hormone (10 microg) in freely moving rats decreased core body temperature but did not change locomotor activity and food and water intake. We conclude that the rich hypothalamo-medullary melanin-concentrating hormone projections in the rat are mainly inhibitory to nucleus of the solitary tract neurons, but are not involved in the control of food intake. Projections to ventral medullary sites may play a role in the inhibitory effect of melanin-concentrating hormone on energy expenditure.
Collapse
Affiliation(s)
- H Zheng
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
6844
|
Shojaiefard M, Christie DL, Lang F. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 2006; 341:945-9. [PMID: 16466692 DOI: 10.1016/j.bbrc.2006.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 12/20/2022]
Abstract
Cellular accumulation of creatine is accomplished by the Na(+), Cl(-), and creatine transporter CreaT (SLC6A8). The mammalian target of rapamycin (mTOR) is a kinase stimulating cellular nutrient uptake. The present experiments explored whether SLC6A8 is regulated by mTOR. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes, creatine-induced a current which was significantly enhanced by coexpression of mTOR. Kinetic analysis revealed that mTOR enhanced maximal current without significantly altering affinity. Preincubation of the oocytes for 32 h with rapamycin (50 nM) decreased the creatine-induced current and abrogated its stimulation by mTOR. The effect of mTOR on CreaT was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid-inducible kinase (K119N)SGK1 and mimicked by coexpression of wild type SGK1. In conclusion, mTOR stimulates the creatine transporter SLC6A8 through mechanisms at least partially shared by the serum and glucocorticoid-inducible kinase SGK1.
Collapse
|
6845
|
Loizzo A, Loizzo S, Galietta G, Caiola S, Spampinato S, Campana G, Seghieri G, Ghirlanda G, Franconi F. Overweight and metabolic and hormonal parameter disruption are induced in adult male mice by manipulations during lactation period. Pediatr Res 2006; 59:111-5. [PMID: 16326992 DOI: 10.1203/01.pdr.0000190575.12965.ce] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal manipulations (10 min of maternal separation plus s.c. sham injection, daily for the first 21 d of life) determine overweight in male adult mice. In this work, we investigated the mechanisms underlying mild obesity and the alteration of caloric balance. Neonatally manipulated mice become overweight after onset of maturity, showing increased fat tissue and hypertrophic epididymal adipocytes. Increase in body weight occurs in the presence of a small increase in daily food intake (significant only in the adult period) and the absence of a decrease in spontaneous locomotor activity, while the calculated caloric efficiency is higher in manipulated mice, especially in adulthood. Fasting adult animals show hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and hyperleptinemia. Soon after weaning and in the adulthood, plasma corticosterone and adrenocorticotropin (ACTH) are also significantly increased. Thus, neonatal manipulations in nongenetically susceptible male mice program mild obesity, with metabolic and hormonal alterations that are similar to those found in experimental models of diabetes mellitus, suggesting that this metabolic derangement may have at least part of its roots early on in life and, more interestingly, that psychological and nociceptive stimuli induce these features.
Collapse
Affiliation(s)
- Alberto Loizzo
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6846
|
|
6847
|
Hirabara SM, Silveira LR, Abdulkader F, Carvalho CRO, Procopio J, Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism. J Cell Physiol 2006; 210:7-15. [PMID: 17013887 DOI: 10.1002/jcp.20811] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.
Collapse
Affiliation(s)
- Sandro M Hirabara
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
6848
|
Majsterek I, Sliwinski T, Poplawski T, Pytel D, Kowalski M, Slupianek A, Skorski T, Blasiak J. Imatinib mesylate (STI571) abrogates the resistance to doxorubicin in human K562 chronic myeloid leukemia cells by inhibition of BCR/ABL kinase-mediated DNA repair. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:74-82. [PMID: 16388976 DOI: 10.1016/j.mrgentox.2005.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/10/2005] [Accepted: 10/31/2005] [Indexed: 11/25/2022]
Abstract
Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Molecular Genetics, University of Lodz, Banacha 12/16 street, 90-237 Lodz, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
6849
|
Hori S, Hori K, Kaya M, Ishigaki T, Koyama K, Otani H, Tsujita J, Oku Y. Comparison of body mass, food intake and plasma constituents in lean and obese Zucker rats under cold acclimation and deacclimation. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2005.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6850
|
Balasubramaniyan V, Nalini N. Intraperitoneal leptin regulates lipid metabolism in ethanol supplemented Mus musculas heart. Life Sci 2006; 78:831-7. [PMID: 16137712 DOI: 10.1016/j.lfs.2005.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 05/23/2005] [Indexed: 01/24/2023]
Abstract
Diseases of the heart and blood vessels are a major cause of illness and disability worldwide. The relationship between ethanol consumption and cardiovascular disease are both complex and interconnected. Our aim of this study was to explore the effect of leptin on lipid metabolism in ethanol supplemented mice. Male Swiss mice (Mus musculas) weighing 25+/-2 g were administered ethanol (6.32 g kg(-1) body weight) for the first 30 days. Subsequently, ethanol fed mice were given intraperitoneal injections of exogenous mouse recombinant leptin (230 microg kg(-1) body weight) every alternate day for 15 days. Food and water intake and total body weight were measured every day and at the end of the experimental period of 45 days, plasma and cardiac lipids were analyzed. Exogenous leptin injections to ethanol fed mice significantly (P < 0.05) prevented the accumulation of total cholesterol, phospholipids (PL), triglycerides (TG) and free fatty acids (FFA) in the mouse heart and blood as compared to the untreated ethanol fed mice whereas, the plasma concentration of free cholesterol was significantly increased on leptin administration as compared to normal untreated mice. Moreover leptin administration significantly elevated the activities of cardiac lipoprotein lipase (LPL) and plasma lecithin cholesterol acyl transferase (LCAT) and significantly reduced the activities of cardiac HMG CoA reductase and cholesterol ester synthase (CES) on leptin administration to ethanol fed mice. Thus we could postulate that an increase in systemic leptin level prevents the accumulation of lipids in the plasma and heart of ethanol treated mice.
Collapse
Affiliation(s)
- V Balasubramaniyan
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar- 608 002, Tamilnadu, India
| | | |
Collapse
|