901
|
Longitudinal dynamics of antibody responses in recovered COVID-19 patients. Signal Transduct Target Ther 2021; 6:137. [PMID: 33790222 PMCID: PMC8009921 DOI: 10.1038/s41392-021-00559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
|
902
|
Garcia-Flores V, Romero R, Xu Y, Theis K, Arenas-Hernandez M, Miller D, Peyvandipour A, Galaz J, Levenson D, Bhatti G, Gershater M, Pusod E, Kracht D, Florova V, Leng Y, Tao L, Faucett M, Para R, Hsu CD, Zhang G, Tarca A, Pique-Regi R, Gomez-Lopez N. Maternal-Fetal Immune Responses in Pregnant Women Infected with SARS-CoV-2. RESEARCH SQUARE 2021. [PMID: 33821263 PMCID: PMC8020997 DOI: 10.21203/rs.3.rs-362886/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pregnant women are a high-risk population for severe/critical COVID-19 and mortality. However, the maternal-fetal immune responses initiated by SARS-CoV-2 infection, and whether this virus is detectable in the placenta, are still under investigation. Herein, we report that SARS-CoV-2 infection during pregnancy primarily induced specific maternal inflammatory responses in the circulation and at the maternal-fetal interface, the latter being governed by T cells and macrophages. SARS-CoV-2 infection during pregnancy was also associated with a cytokine response in the fetal circulation (i.e. umbilical cord blood) without compromising the cellular immune repertoire. Moreover, SARS-CoV-2 infection neither altered fetal cellular immune responses in the placenta nor induced elevated cord blood levels of IgM. Importantly, SARS-CoV-2 was not detected in the placental tissues, nor was the sterility of the placenta compromised by maternal viral infection. This study provides insight into the maternal-fetal immune responses triggered by SARS-CoV-2 and further emphasizes the rarity of placental infection.
Collapse
|
903
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
904
|
Ferreira-Gomes M, Kruglov A, Durek P, Heinrich F, Tizian C, Heinz GA, Pascual-Reguant A, Du W, Mothes R, Fan C, Frischbutter S, Habenicht K, Budzinski L, Ninnemann J, Jani PK, Guerra GM, Lehmann K, Matz M, Ostendorf L, Heiberger L, Chang HD, Bauherr S, Maurer M, Schönrich G, Raftery M, Kallinich T, Mall MA, Angermair S, Treskatsch S, Dörner T, Corman VM, Diefenbach A, Volk HD, Elezkurtaj S, Winkler TH, Dong J, Hauser AE, Radbruch H, Witkowski M, Melchers F, Radbruch A, Mashreghi MF. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun 2021; 12:1961. [PMID: 33785765 PMCID: PMC8010106 DOI: 10.1038/s41467-021-22210-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Caroline Tizian
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anna Pascual-Reguant
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Weijie Du
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ronja Mothes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chaofan Fan
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Lisa Budzinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Justus Ninnemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mareen Matz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lennard Ostendorf
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lukas Heiberger
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Sandy Bauherr
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marcus Alexander Mall
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas H Winkler
- Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jun Dong
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anja Erika Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mario Witkowski
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
905
|
Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D, Crooks M, Gabbay M, Brady M, Hishmeh L, Attree E, Heightman M, Banerjee R, Banerjee A. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 2021; 11:e048391. [PMID: 33785495 PMCID: PMC8727683 DOI: 10.1136/bmjopen-2020-048391] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess medium-term organ impairment in symptomatic individuals following recovery from acute SARS-CoV-2 infection. DESIGN Baseline findings from a prospective, observational cohort study. SETTING Community-based individuals from two UK centres between 1 April and 14 September 2020. PARTICIPANTS Individuals ≥18 years with persistent symptoms following recovery from acute SARS-CoV-2 infection and age-matched healthy controls. INTERVENTION Assessment of symptoms by standardised questionnaires (EQ-5D-5L, Dyspnoea-12) and organ-specific metrics by biochemical assessment and quantitative MRI. MAIN OUTCOME MEASURES Severe post-COVID-19 syndrome defined as ongoing respiratory symptoms and/or moderate functional impairment in activities of daily living; single-organ and multiorgan impairment (heart, lungs, kidneys, liver, pancreas, spleen) by consensus definitions at baseline investigation. RESULTS 201 individuals (mean age 45, range 21-71 years, 71% female, 88% white, 32% healthcare workers) completed the baseline assessment (median of 141 days following SARS-CoV-2 infection, IQR 110-162). The study population was at low risk of COVID-19 mortality (obesity 20%, hypertension 7%, type 2 diabetes 2%, heart disease 5%), with only 19% hospitalised with COVID-19. 42% of individuals had 10 or more symptoms and 60% had severe post-COVID-19 syndrome. Fatigue (98%), muscle aches (87%), breathlessness (88%) and headaches (83%) were most frequently reported. Mild organ impairment was present in the heart (26%), lungs (11%), kidneys (4%), liver (28%), pancreas (40%) and spleen (4%), with single-organ and multiorgan impairment in 70% and 29%, respectively. Hospitalisation was associated with older age (p=0.001), non-white ethnicity (p=0.016), increased liver volume (p<0.0001), pancreatic inflammation (p<0.01), and fat accumulation in the liver (p<0.05) and pancreas (p<0.01). Severe post-COVID-19 syndrome was associated with radiological evidence of cardiac damage (myocarditis) (p<0.05). CONCLUSIONS In individuals at low risk of COVID-19 mortality with ongoing symptoms, 70% have impairment in one or more organs 4 months after initial COVID-19 symptoms, with implications for healthcare and public health, which have assumed low risk in young people with no comorbidities. TRIAL REGISTRATION NUMBER NCT04369807; Pre-results.
Collapse
Affiliation(s)
| | - Malgorzata Wamil
- Department of Cardiology, Great Western Hospital Foundation NHS Trust, Swindon, UK
- Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Jude Oben
- Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Daniel J Cuthbertson
- Institute of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - Dan Wootton
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Department of Respiratory Research, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Michael Crooks
- Department of Respiratory Medicine, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
- Institute of Clinical and Applied Health Research, University of Hull, Hull, UK
| | - Mark Gabbay
- Institute of Population Health Sciences, University of Liverpool, Liverpool, UK
| | - Michael Brady
- Perspectum, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Melissa Heightman
- Department of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Amitava Banerjee
- Department of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
- Institute of Health Informatics, University College London, London, UK
- Department of Cardiology, Barts Health NHS Trust, London, UK
| |
Collapse
|
906
|
Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, Tian D, Liao Y, Liu T, Lu H, Ling Y. Rapid SARS-CoV-2 antigen detection potentiates early diagnosis of COVID-19 disease. Biosci Trends 2021; 15:93-99. [PMID: 33776018 DOI: 10.5582/bst.2021.01090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As the COVID-19 epidemic is still ongoing, a more rapid detection of SARS-CoV-2 infection such as viral antigen-detection needs to be evaluated for early diagnosis of COVID-19 disease. Here, we report the dynamic changes of SARS-CoV-2 viral antigens in nasopharyngeal swabs of COVID-19 patients and its association with the viral nucleic acid clearance and clinical outcomes. Eighty-five COVID-19 patients were enrolled for detection of SARS-CoV-2 viral antigens, including 57 anti-SARS-CoV-2 antibody negative cases and 28 antibody positive cases. The viral antigen could be detected in 52.63% (30/57) patients with SARS-CoV-2 antibody negative at the early stage of SARS-CoV-2 infection, especially in the first 5 days after disease onset (p = 0.0018) and disappeared in about 8 days after disease onset. Viral antigens were highly detectable in patients with low Ct value (less than 30) of SARS-CoV-2 nucleic acid RT-PCT assay, suggesting the expression of viral antigen was associated with high viral load. Furthermore, positive antigen detection indicated disease progression, nine cases with positive antigen (9/30, 30.0%), in contrast to two cases (2/27, 7.40%) (p = 0.0444) with negative antigen, which progressed into severe disease. Thus, the viral antigens were persistent in early stages of infection when virus was in highly replicating status, and viral antigen detection promises to rapidly screen positive patients in the early stage of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ying Lv
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Drug Clinical Trial, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanhui Si
- Department of Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyi Zhu
- Department of Pediatrics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Nursing, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haiyan Feng
- Department of Pain Rehabilitation, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Di Tian
- Scientific Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yixin Liao
- Scientific Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Scientific Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
907
|
Vick SC, Frutoso M, Mair F, Konecny AJ, Greene E, Wolf CR, Logue JK, Boonyaratanakornkit J, Gottardo R, Schiffer JT, Chu HY, Prlic M, Lund JM. A differential regulatory T cell signature distinguishes the immune landscape of COVID-19 hospitalized patients from those hospitalized with other respiratory viral infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.25.21254376. [PMID: 33791720 PMCID: PMC8010752 DOI: 10.1101/2021.03.25.21254376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 infection has caused a lasting global pandemic costing millions of lives and untold additional costs. Understanding the immune response to SARS-CoV-2 has been one of the main challenges in the past year in order to decipher mechanisms of host responses and interpret disease pathogenesis. Comparatively little is known in regard to how the immune response against SARS-CoV-2 differs from other respiratory infections. In our study, we compare the peripheral blood immune signature from SARS-CoV-2 infected patients to patients hospitalized pre-pandemic with Influenza Virus or Respiratory Syncytial Virus (RSV). Our in-depth profiling indicates that the immune landscape in patients infected by SARS-CoV-2 is largely similar to patients hospitalized with Flu or RSV. Similarly, serum cytokine and chemokine expression patterns were largely overlapping. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease state were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated with the severity of COVID-19 disease. These findings are particularly relevant as Tregs are being discussed as a therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of Flu and RSV infections could be leveraged to identify common treatment strategies. HIGHLIGHTS The immune landscapes of hospitalized pre-pandemic RSV and influenza patients are similar to SARS-CoV-2 patientsSerum cytokine and chemokine expression patterns are largely similar between patients hospitalized with respiratory virus infections, including SARS-CoV-2, versus healthy donorsSARS-CoV-2 patients with the most critical disease displayed unique changes in the Treg compartmentadvances in understanding and treating SARS-CoV-2 could be leveraged for other common respiratory infections.
Collapse
Affiliation(s)
- Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Evan Greene
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA, 98195
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
908
|
Immune memory in convalescent patients with asymptomatic or mild COVID-19. Cell Discov 2021; 7:18. [PMID: 33767156 PMCID: PMC7993859 DOI: 10.1038/s41421-021-00250-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.
Collapse
|
909
|
Avouac J, Drumez E, Hachulla E, Seror R, Georgin-Lavialle S, El Mahou S, Pertuiset E, Pham T, Marotte H, Servettaz A, Domont F, Chazerain P, Devaux M, Claudepierre P, Langlois V, Mekinian A, Maria ATJ, Banneville B, Fautrel B, Pouchot J, Thomas T, Flipo RM, Richez C. COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study. LANCET RHEUMATOLOGY 2021; 3:e419-e426. [PMID: 33786454 PMCID: PMC7993930 DOI: 10.1016/s2665-9913(21)00059-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Various observations have suggested that the course of COVID-19 might be less favourable in patients with inflammatory rheumatic and musculoskeletal diseases receiving rituximab compared with those not receiving rituximab. We aimed to investigate whether treatment with rituximab is associated with severe COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases. Methods In this cohort study, we analysed data from the French RMD COVID-19 cohort, which included patients aged 18 years or older with inflammatory rheumatic and musculoskeletal diseases and highly suspected or confirmed COVID-19. The primary endpoint was the severity of COVID-19 in patients treated with rituximab (rituximab group) compared with patients who did not receive rituximab (no rituximab group). Severe disease was defined as that requiring admission to an intensive care unit or leading to death. Secondary objectives were to analyse deaths and duration of hospital stay. The inverse probability of treatment weighting propensity score method was used to adjust for potential confounding factors (age, sex, arterial hypertension, diabetes, smoking status, body-mass index, interstitial lung disease, cardiovascular diseases, cancer, corticosteroid use, chronic renal failure, and the underlying disease [rheumatoid arthritis vs others]). Odds ratios and hazard ratios and their 95% CIs were calculated as effect size, by dividing the two population mean differences by their SD. This study is registered with ClinicalTrials.gov, NCT04353609. Findings Between April 15, 2020, and Nov 20, 2020, data were collected for 1090 patients (mean age 55·2 years [SD 16·4]); 734 (67%) were female and 356 (33%) were male. Of the 1090 patients, 137 (13%) developed severe COVID-19 and 89 (8%) died. After adjusting for potential confounding factors, severe disease was observed more frequently (effect size 3·26, 95% CI 1·66–6·40, p=0·0006) and the duration of hospital stay was markedly longer (0·62, 0·46–0·85, p=0·0024) in the 63 patients in the rituximab group than in the 1027 patients in the no rituximab group. 13 (21%) of 63 patients in the rituximab group died compared with 76 (7%) of 1027 patients in the no rituximab group, but the adjusted risk of death was not significantly increased in the rituximab group (effect size 1·32, 95% CI 0·55–3·19, p=0·53). Interpretation Rituximab therapy is associated with more severe COVID-19. Rituximab will have to be prescribed with particular caution in patients with inflammatory rheumatic and musculoskeletal diseases. Funding None.
Collapse
Affiliation(s)
- Jérôme Avouac
- Université de Paris, Service de Rhumatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre Université de Paris, Paris, France
| | - Elodie Drumez
- ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Université de Lille, CHU Lille, Lille, France
| | - Eric Hachulla
- Université de Lille, INSERM, CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Autoimmunes Systémiques Rares Du Nord et Nord-Ouest de France, U1286-INFINITE: Institute for Translational Research in Inflammation, Le Kremlin-Bicêtre, France
| | - Raphaèle Seror
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Service de Rhumatologie, Centre de Référence des Maladies Autoimmunes Systémiques Rares, Hôpital Bicêtre, INSERM UMR 1184, Le Kremlin-Bicêtre, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, Service de Médecine Interne, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Soumaya El Mahou
- Service de Rhumatologie, Centre Hospitalier de Tourcoing, Tourcoing, France
| | - Edouard Pertuiset
- Service de Rhumatologie, Centre Hospitalier René Dubos, Pontoise, France
| | - Thao Pham
- Service de Rhumatologie, Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hubert Marotte
- INSERM 1059, Université de Lyon, Saint-Etienne, France.,Service de Rhumatologie and CIC-1408, CHU de Saint-Etienne, Saint-Etienne, France.,CHU de Saint-Etienne, Saint-Etienne, France
| | - Amélie Servettaz
- Service de Médecine Interne, Maladies Infectieuses et Immunologie Clinique, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Fanny Domont
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Service de Médecine Interne et Immunologie Clinique, Paris, France
| | - Pascal Chazerain
- Service de Rhumatologie et Médecine Interne, Groupe Hospitalier Diaconesses-croix St-Simon, Paris, France
| | - Mathilde Devaux
- Service de Médecine Interne, CHI Poissy Saint Germain, Poissy, France
| | - Pascal Claudepierre
- EpiDermE, Université Paris Est Créteil, Service de Rhumatologie, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Vincent Langlois
- Service de Maladies Infectieuses et Médecine Interne, Groupe Hospitalier du Havre, Le Havre, France
| | - Arsène Mekinian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Service de Médecine Interne et Inflammation- (DMU i3), Paris, France
| | | | - Béatrice Banneville
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Rhumatologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bruno Fautrel
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Rhumatologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jacques Pouchot
- Hôpital Européen Georges-Pompidou, Médecine Interne, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thierry Thomas
- Service de Rhumatologie, Hôpital Nord, CHU de Saint-Etienne, INSERM U1059, Université de Lyon-Université Jean Monnet, Saint Etienne, France
| | | | - Christophe Richez
- Service de Rhumatologie, Centre de Référence des Maladies Autoimmunes Systémiques Rares de l'Est et du Sud-Ouest de France, CHU de Bordeaux and UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
910
|
Influence of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. PLoS One 2021; 16:e0245424. [PMID: 33760825 PMCID: PMC7990309 DOI: 10.1371/journal.pone.0245424] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the influence of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Our hypothesis is that obesity is associated with reduced amounts of specific IgG antibodies. Results have confirmed our hypothesis and have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known influence of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein), and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction. Inflammatory markers identified may subsequently be targeted to improve humoral immunity in individuals with obesity and in individuals with other chronic inflammatory conditions.
Collapse
|
911
|
Yu KK, Fischinger S, Smith MT, Atyeo C, Cizmeci D, Wolf CR, Layton ED, Logue JK, Aguilar MS, Shuey K, Loos C, Yu J, Franko N, Choi RY, Wald A, Barouch DH, Koelle DM, Lauffenburger D, Chu HY, Alter G, Seshadri C. Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insight 2021; 6:146242. [PMID: 33621211 PMCID: PMC8026190 DOI: 10.1172/jci.insight.146242] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multiparameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n = 20) or not hospitalized (n = 40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4+ T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4+ T cells and antibodies targeting the S1 domain of spike among subjects who were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2, which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19.
Collapse
Affiliation(s)
- Krystle Kq Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Malisa T Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erik D Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer K Logue
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Melissa S Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kiel Shuey
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Franko
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Epidemiology and.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dan H Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA.,Benaroya Research Institute, Seattle, Washington, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
912
|
Abstract
In the year since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and with understanding of the etiology of the coronavirus disease 2019 (COVID-19) pandemic, it has become clear that most infected individuals achieve some form of immunity against the virus with relatively few reported reinfections. A number of vaccines have already achieved emergency use authorization based on data from large phase 3 field efficacy clinical trials. However, our knowledge about the extent and durability of this immunity, and the breadth of vaccine coverage against SARS-CoV-2 variants is still evolving. In this narrative review, we summarize the latest and rapidly developing understanding of immunity to SARS-CoV-2 infection, including what we have learned about the key antigens of SARS-CoV-2 (i.e., the spike protein and its receptor-binding domain), their importance in vaccine development, the immediate immune response to SARS-CoV-2, breadth of coverage of emerging SARS-CoV-2 variants, contributions of preexisting immunity to related coronaviruses, and duration of immunity. We also discuss lessons from newer approaches, such as systems serology, that provide insights into molecular and cellular immune responses elicited and how they relate to the trajectory of infection, and potentially inform immune correlates of protection. We also briefly examine the limited research literature on immune responses in special populations, such as pregnant women and children.
Collapse
Affiliation(s)
- Jaime Fergie
- Department of Pediatric Infectious Diseases, Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, United States
| |
Collapse
|
913
|
Putri DU, Wang CH, Tseng PC, Lee WS, Chen FL, Kuo HP, Lee CH, Lin CF. Profiles of Peripheral Immune Cells of Uncomplicated COVID-19 Cases with Distinct Viral RNA Shedding Periods. Viruses 2021; 13:v13030514. [PMID: 33808906 PMCID: PMC8003740 DOI: 10.3390/v13030514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.
Collapse
Affiliation(s)
- Denise Utami Putri
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Cheng-Hui Wang
- Department of Laboratory Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Sen Lee
- Divisions of Infectious Diseases, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan; (W.-S.L.); (F.-L.C.)
| | - Fu-Lun Chen
- Divisions of Infectious Diseases, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan; (W.-S.L.); (F.-L.C.)
| | - Han-Pin Kuo
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Divisions of Pulmonary Medicine, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: (C.-H.L.); (C.-F.L.); Tel.: +886-2-27361661 (ext. 7156) (C.-F.L.)
| | - Chiou-Feng Lin
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-H.L.); (C.-F.L.); Tel.: +886-2-27361661 (ext. 7156) (C.-F.L.)
| |
Collapse
|
914
|
Alrubayyi A, Gea-Mallorquí E, Touizer E, Hameiri-Bowen D, Kopycinski J, Charlton B, Fisher-Pearson N, Muir L, Rosa A, Roustan C, Earl C, Cherepanov P, Pellegrino P, Waters L, Burns F, Kinloch S, Dong T, Dorrell L, Rowland-Jones S, McCoy LE, Peppa D. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. RESEARCH SQUARE 2021:rs.3.rs-309746. [PMID: 33758833 PMCID: PMC7987102 DOI: 10.21203/rs.3.rs-309746/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). We show that the majority of PLWH, controlled on ART, mount a functional adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleocapsid are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH, in whom disparate antibody and T cell responses are observed. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH.
Collapse
Affiliation(s)
| | | | - Emma Touizer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Dan Hameiri-Bowen
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
| | - Jakub Kopycinski
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
| | - Bethany Charlton
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
| | | | - Luke Muir
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Chloe Roustan
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christopher Earl
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Pierre Pellegrino
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Fiona Burns
- Institute for Global Health UCL, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sabine Kinloch
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Tao Dong
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
| | - Lucy Dorrell
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
| | | | - Laura E. McCoy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Dimitra Peppa
- Nuffield Dept of Clinical Medicine, University of Oxford, United Kingdom
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| |
Collapse
|
915
|
Sefik E, Israelow B, Zhao J, Qu R, Song E, Mirza H, Kaffe E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19 to evaluate disease mechanisms and treatment options. RESEARCH SQUARE 2021:rs.3.rs-279341. [PMID: 33758831 PMCID: PMC7987100 DOI: 10.21203/rs.3.rs-279341/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus-associated acute respiratory disease, called coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 90 million people have been infected with SARS-CoV-2 and more than 2 million people have died of complications due to COVID-19 worldwide. COVID-19, in its severe form, presents with an uncontrolled, hyperactive immune response and severe immunological injury or organ damage that accounts for morbidity and mortality. Even in the absence of complications, COVID-19 can last for several months with lingering effects of an overactive immune system. Dysregulated myeloid and lymphocyte compartments have been implicated in lung immunopathology. Currently, there are limited clinically-tested treatments of COVID-19 with disparities in the apparent efficacy in patients. Accurate model systems are essential to rapidly evaluate promising discoveries but most currently available in mice, ferrets and hamsters do not recapitulate sustained immunopathology described in COVID19 patients. Here, we present a comprehensively humanized mouse COVID-19 model that faithfully recapitulates the innate and adaptive human immune responses during infection with SARS-CoV-2 by adapting recombinant adeno-associated virus (AAV)-driven gene therapy to deliver human ACE2 to the lungs 1 of MISTRG6 mice. Our unique model allows for the first time the study of chronic disease due to infection with SARS-CoV-2 in the context of patient-derived antibodies to characterize in real time the potential culprits of the observed human driving immunopathology; most importantly this model provides a live view into the aberrant macrophage response that is thought to be the effector of disease morbidity and ARDS in patients. Application of therapeutics such as patient-derived antibodies and steroids to our model allowed separation of the two aspects of the immune response, infectious viral clearance and immunopathology. Inflammatory cells seeded early in infection drove immune-patholgy later, but this very same early anti-viral response was also crucial to contain infection.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ben Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT,USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
916
|
Thompson EA, Cascino K, Ordonez AA, Zhou W, Vaghasia A, Hamacher-Brady A, Brady NR, Sun IH, Wang R, Rosenberg AZ, Delannoy M, Rothman R, Fenstermacher K, Sauer L, Shaw-Saliba K, Bloch EM, Redd AD, Tobian AAR, Horton M, Smith K, Pekosz A, D'Alessio FR, Yegnasubramanian S, Ji H, Cox AL, Powell JD. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Rep 2021; 34:108863. [PMID: 33691089 PMCID: PMC7908880 DOI: 10.1016/j.celrep.2021.108863] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.
Collapse
Affiliation(s)
- Elizabeth A Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katherine Cascino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Ajay Vaghasia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anne Hamacher-Brady
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Nathan R Brady
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Im-Hong Sun
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rulin Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kathyrn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew D Redd
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD 21205, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maureen Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kellie Smith
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Franco R D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Andrea L Cox
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
917
|
Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M, Popa A, Genger JW, Endler L, Florian DM, Mühlgrabner V, Graninger M, Aberle SW, Husa AM, Shaw LE, Lercher A, Gattinger P, Torralba-Gombau R, Trapin D, Penz T, Barreca D, Fae I, Wenda S, Traugott M, Walder G, Pickl WF, Thiel V, Allerberger F, Stockinger H, Puchhammer-Stöckl E, Weninger W, Fischer G, Hoepler W, Pawelka E, Zoufaly A, Valenta R, Bock C, Paster W, Geyeregger R, Farlik M, Halbritter F, Huppa JB, Aberle JH, Bergthaler A. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 + T cell responses. Sci Immunol 2021; 6:6/57/eabg6461. [PMID: 33664060 PMCID: PMC8224398 DOI: 10.1126/sciimmunol.abg6461] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.
Collapse
Affiliation(s)
- Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Husa
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa Ellen Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Ricard Torralba-Gombau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Gernot Walder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Erich Pawelka
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - René Geyeregger
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
918
|
Arthur HM. Report of the British Society for Cardiovascular Research Inaugural Online Autumn Meeting 2020. Cardiovasc Drugs Ther 2021; 35:407-409. [PMID: 33713210 PMCID: PMC7955210 DOI: 10.1007/s10557-021-07161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Helen M Arthur
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
919
|
Zenarruzabeitia O, Astarloa-Pando G, Terrén I, Orrantia A, Pérez-Garay R, Seijas-Betolaza I, Nieto-Arana J, Imaz-Ayo N, Pérez-Fernández S, Arana-Arri E, Borrego F. T Cell Activation, Highly Armed Cytotoxic Cells and a Shift in Monocytes CD300 Receptors Expression Is Characteristic of Patients With Severe COVID-19. Front Immunol 2021; 12:655934. [PMID: 33777054 PMCID: PMC7991729 DOI: 10.3389/fimmu.2021.655934] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 manifests with a wide diversity of clinical phenotypes characterized by dysfunctional and exaggerated host immune responses. Many results have been described on the status of the immune system of patients infected with SARS-CoV-2, but there are still aspects that have not been fully characterized or understood. In this study, we have analyzed a cohort of patients with mild, moderate and severe disease. We performed flow cytometric studies and correlated the data with the clinical characteristics and clinical laboratory values of the patients. Both conventional and unsupervised data analyses concluded that patients with severe disease are characterized, among others, by a higher state of activation in all T cell subsets (CD4, CD8, double negative and T follicular helper cells), higher expression of perforin and granzyme B in cytotoxic cells, expansion of adaptive NK cells and the accumulation of activated and immature dysfunctional monocytes which are identified by a low expression of HLA-DR and an intriguing shift in the expression pattern of CD300 receptors. More importantly, correlation analysis showed a strong association between the alterations in the immune cells and the clinical signs of severity. These results indicate that patients with severe COVID-19 have a broad perturbation of their immune system, and they will help to understand the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Raquel Pérez-Garay
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iratxe Seijas-Betolaza
- Intensive Care Medicine Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Javier Nieto-Arana
- Infectious Disease Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
920
|
Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, Liew F, Russell CD, Moore SC, Fairfield C, Carter E, Abrams S, Short CE, Thaventhiran T, Bergstrom E, Gardener Z, Ascough S, Chiu C, Docherty AB, Hunt D, Crow YJ, Solomon T, Taylor GP, Turtle L, Harrison EM, Dunning J, Semple MG, Baillie JK, Openshaw PJ. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci Immunol 2021; 6:eabg9873. [PMID: 33692097 PMCID: PMC8128298 DOI: 10.1126/sciimmunol.abg9873] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19.
Collapse
Affiliation(s)
- Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, U.K
| | | | | | - Felicity Liew
- National Heart and Lung Institute, Imperial College London, U.K
| | - Clark D Russell
- University of Edinburgh Centre for Inflammation Research, Edinburgh, U.K
| | - Shona C Moore
- Dept of Clinical Infection, Microbiology and Immunology, University of Liverpool, U.K
| | - Cameron Fairfield
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, U.K
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Simon Abrams
- Dept of Clinical Infection, Microbiology and Immunology, University of Liverpool, U.K
| | - Charlotte-Eve Short
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | | | - Emma Bergstrom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | - Zoe Gardener
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | - Stephanie Ascough
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | - Christopher Chiu
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | - Annemarie B Docherty
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, U.K
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, U.K
| | - David Hunt
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Tom Solomon
- Dept of Clinical Infection, Microbiology and Immunology, University of Liverpool, U.K
| | - Graham P Taylor
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, U.K
| | - Lance Turtle
- Dept of Clinical Infection, Microbiology and Immunology, University of Liverpool, U.K
- Tropical and infectious disease unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), U.K
| | - Ewen M Harrison
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, U.K
| | - Jake Dunning
- National Infection Service, Public Health England, London, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, U.K.
- Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, U.K
| | - J Kenneth Baillie
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, U.K.
- Roslin Institute, University of Edinburgh, Edinburgh, U.K
| | | |
Collapse
|
921
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
922
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
923
|
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437-453. [PMID: 33691134 PMCID: PMC8026106 DOI: 10.1016/j.immuni.2021.01.018] [Citation(s) in RCA: 473] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Autophagy is a quality-control, metabolic, and innate immunity process. Normative autophagy affects many cell types, including hematopoietic as well as non-hematopoietic, and promotes health in model organisms and humans. When autophagy is perturbed, this has repercussions on diseases with inflammatory components, including infections, autoimmunity and cancer, metabolic disorders, neurodegeneration, and cardiovascular and liver diseases. As a cytoplasmic degradative pathway, autophagy protects from exogenous hazards, including infection, and from endogenous sources of inflammation, including molecular aggregates and damaged organelles. The focus of this review is on the role of autophagy in inflammation, including type I interferon responses and inflammasome outputs, from molecules to immune cells. A special emphasis is given to the intersections of autophagy with innate immunity, immunometabolism, and functions of organelles such as mitochondria and lysosomes that act as innate immunity and immunometabolic signaling platforms.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
924
|
Pala D, Pistis M. Anti-IL5 Drugs in COVID-19 Patients: Role of Eosinophils in SARS-CoV-2-Induced Immunopathology. Front Pharmacol 2021; 12:622554. [PMID: 33767626 PMCID: PMC7985166 DOI: 10.3389/fphar.2021.622554] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection stimulates a complex activation of the immune system. Eosinophils belong to the host’s defense equipment against respiratory viruses. In the first phase of the infection, eosinophils contribution is probably appropriate and beneficial, as they facilitate the suppression of the viral replication. However, in severe COVID-19 patients, during the second and third phases of the disease, eosinophils may participate in a maladaptive immune response and directly contribute to immunopathology. In fact, in severe patients, the immune response is prevalently T helper 1 type, but T helper 2 is also present. Eosinophils’ expansion and activation are stimulated by Type 2 cytokines, especially IL-5. Moreover, bronchial asthma, in which eosinophils play a central role, seems not to be a major risk factor for severe COVID-19. Among possible explanations, asthmatic patients are often treated with corticosteroids, which have been demonstrated to reduce the progression to critical COVID-19 in hospitalized patients. In addition to steroids, severe asthmatic patients are currently treated with biological drugs that target Type 2 immune response. Because IL-5 is necessary for the growth, survival, and activation of eosinophils, IL-5 inhibitors, such as mepolizumab, decrease the peripheral blood count of eosinophils, but do not influence eosinophils activation in the airway. In severe COVID-19 patients, the blockade of eosinophils’ activation might contrast harmful immunity.
Collapse
Affiliation(s)
- Daniele Pala
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, Cagliari, Italy
| |
Collapse
|
925
|
Gao L, Zhou J, Yang S, Wang L, Chen X, Yang Y, Li R, Pan Z, Zhao J, Li Z, Huang Q, Tang J, Hu L, Liu P, Zhang G, Chen Y, Ye L. The dichotomous and incomplete adaptive immunity in COVID-19 patients with different disease severity. Signal Transduct Target Ther 2021; 6:113. [PMID: 33686064 PMCID: PMC7938043 DOI: 10.1038/s41392-021-00525-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
The adaptive immunity that protects patients from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not well characterized. In particular, the asymptomatic patients have been found to induce weak and transient SARS-CoV-2 antibody responses, but the underlying mechanisms remain unknown; meanwhile, the protective immunity that guide the recovery of these asymptomatic patients is elusive. Here, we characterized SARS-CoV-2-specific B-cell and T-cell responses in 10 asymptomatic patients and 64 patients with other disease severity (mild, n = 10, moderate, n = 32, severe, n = 12) and found that asymptomatic or mild symptomatic patients failed to mount virus-specific germinal center (GC) B cell responses that result in robust and prolonged humoral immunity, assessed by GC response indicators including follicular helper T (TFH) cell and memory B cell responses as well as serum CXCL13 levels. Alternatively, these patients mounted potent virus-specific TH1 and CD8+ T cell responses. In sharp contrast, patients of moderate or severe disease induced vigorous virus-specific GC B cell responses and associated TFH responses; however, the virus-specific TH1 and CD8+ T cells were minimally induced in these patients. These results, therefore, uncovered the protective immunity in asymptomatic patients and also revealed the strikingly dichotomous and incomplete humoral and cellular immune responses in COVID-19 patients with different disease severity, providing important insights into rational design of effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Leiqiong Gao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Sen Yang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ren Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiwei Pan
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Pinghuang Liu
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
926
|
Pandey M, Ozberk V, Eskandari S, Shalash AO, Joyce MA, Saffran HA, Day CJ, Lepletier A, Spillings BL, Mills JL, Calcutt A, Fan F, Williams JT, Stanisic DI, Hattingh L, Gerrard J, Skwarczynski M, Mak J, Jennings MP, Toth I, Tyrrell DL, Good MF. Antibodies to neutralising epitopes synergistically block the interaction of the receptor-binding domain of SARS-CoV-2 to ACE 2. Clin Transl Immunology 2021; 10:e1260. [PMID: 33732459 PMCID: PMC7937407 DOI: 10.1002/cti2.1260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives A major COVID‐19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor‐binding domain (RBD) and angiotensin‐converting enzyme 2 (ACE2). These vaccines will also induce T‐cell responses. However, concerns were raised that aberrant vaccine‐induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. Methods We procured a series of overlapping 20‐amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID‐19 convalescent patients. Identified epitopes were conjugated to diphtheria‐toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. Results Seven putative vaccine epitopes were identified. Memory B‐cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. Conclusion COVID‐19 convalescent patients have SARS‐CoV‐2‐specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope‐specific antibodies synergistically block RBD–ACE2 interaction.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Victoria Ozberk
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | | | | | | | - Christopher J Day
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Ailin Lepletier
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | - Jamie-Lee Mills
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Ainslie Calcutt
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Fan Fan
- Olymvax Biopharmaceuticals Chengdu China
| | | | | | | | - John Gerrard
- Gold Coast Hospital and Health Service Gold Coast QLD Australia
| | | | - Johnson Mak
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | - Istvan Toth
- University of Queensland Brisbane QLD Australia
| | | | - Michael F Good
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| |
Collapse
|
927
|
Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, Gouma S, Kuri-Cervantes L, Meng W, Adamski S, Baxter AE, Giles JR, Weirick ME, McAllister CM, Hicks A, Korte S, Dougherty J, Long S, D’Andrea K, Hamilton JT, Prak ETL, Betts MR, Bates P, Hensley SE, Greenplate AR, Wherry EJ. Longitudinal Analysis Reveals Distinct Antibody and Memory B Cell Responses in SARS-CoV2 Naïve and Recovered Individuals Following mRNA Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.03.21252872. [PMID: 33688691 PMCID: PMC7941668 DOI: 10.1101/2021.03.03.21252872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel mRNA vaccines for SARS-CoV2 have been authorized for emergency use and are currently being administered to millions of individuals worldwide. Despite their efficacy in clinical trials, there is limited data on vaccine-induced immune responses in individuals with a prior SARS-CoV2 infection compared to SARS-CoV2 naïve subjects. Moreover, how mRNA vaccines impact the development of antibodies as well as memory B cells in COVID-19 experienced versus COVID-19 naïve subjects remains poorly understood. In this study, we evaluated antibody responses and antigen-specific memory B cell responses over time in 33 SARS-CoV2 naïve and 11 SARS-CoV2 recovered subjects. mRNA vaccination induced significant antibody and memory B cell responses against full-length SARS-CoV2 spike protein and the spike receptor binding domain (RBD). SARS-CoV2 naïve individuals benefitted from both doses of mRNA vaccine with additional increases in antibodies and memory B cells following booster immunization. In contrast, SARS-CoV2 recovered individuals had a significant immune response after the first dose with no increase in circulating antibodies or antigen-specific memory B cells after the second dose. Moreover, the magnitude of the memory B cell response induced by vaccination was lower in older individuals, revealing an age-dependence to mRNA vaccine-induced B cell memory. Side effects also tended to associate with post-boost antibody levels, but not with post-boost memory B cells, suggesting that side effect severity may be a surrogate of short-term antibody responses. The frequency of pre-vaccine antigen-specific memory B cells in SARS-CoV2 recovered individuals strongly correlated with post-vaccine antibody levels, supporting a key role for memory B cells in humoral recall responses to SARS-CoV2. This observation may have relevance for future booster vaccines and for responses to viral variants that partially escape pre-existing antibodies and require new humoral responses to be generated from memory B cells. Finally, post-boost antibody levels were not correlated with post-boost memory responses in SARS-CoV2 naïve individuals, indicating that short-term antibody levels and memory B cells are complementary immunological endpoints that should be examined in tandem when evaluating vaccine response. Together, our data provide evidence of both serological response and immunological memory following mRNA vaccination that is distinct based on prior SARS-CoV2 exposure. These findings may inform vaccine distribution in a resource-limited setting.
Collapse
Affiliation(s)
- Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E. Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M. McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T. Hamilton
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R. Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
928
|
Han X, Li X, Xiao Y, Yang R, Wang Y, Wei X. Distinct Characteristics of COVID-19 Infection in Children. Front Pediatr 2021; 9:619738. [PMID: 33748041 PMCID: PMC7969512 DOI: 10.3389/fped.2021.619738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2, a member of the family coronaviridae, has triggered a lethal pandemic termed coronavirus disease 2019 (COVID-19). Pediatric patients, mainly from families with a cluster of infection or a history of exposure to epidemic areas, get infected via direct contacts or air-borne droplets. Children (aged below 18 years) are susceptible to COVID-19, with an average incubation period of about 6.5 days. Most cases present asymptomatic or common cold symptoms such as fever, cough, and myalgia or fatigue, which is milder than adult patients. Besides, most abnormal laboratory and radiologic findings in children with COVID-19 are non-specific. Since no specific chemotherapeutic agents have been approved for children, timely preventive methods could effectively forestall the transmission of SARS-CoV-2. To date, mostly studied cases have been adults with COVID-19, whereas data on pediatrics patients remain poorly defined. We herein conducted a literature review for papers published in PubMed and medRxiv (preprints) between December 2019 and December 2020 that reported on pediatrics patients (aged below 18 years) with a confirmed COVID-19 diagnosis. In this review, we summarized and discussed the pathogenesis, epidemiology, and clinical management of COVID-19 in pediatrics patients to improve our understanding of this new disease in children.
Collapse
Affiliation(s)
- Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Li
- Quality Management Department, Southwestern Hospital, Army Medical University, Chongqing, China
| | - Yinan Xiao
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoning Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
929
|
Sokal A, Chappert P, Barba-Spaeth G, Roeser A, Fourati S, Azzaoui I, Vandenberghe A, Fernandez I, Meola A, Bouvier-Alias M, Crickx E, Beldi-Ferchiou A, Hue S, Languille L, Michel M, Baloul S, Noizat-Pirenne F, Luka M, Mégret J, Ménager M, Pawlotsky JM, Fillatreau S, Rey FA, Weill JC, Reynaud CA, Mahévas M. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 2021; 184:1201-1213.e14. [PMID: 33571429 PMCID: PMC7994111 DOI: 10.1016/j.cell.2021.01.050] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Memory B cells play a fundamental role in host defenses against viruses, but to date, their role has been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late, remarkably stable, memory B cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.
Collapse
Affiliation(s)
- Aurélien Sokal
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Pascal Chappert
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France; Inovarion, Paris, France
| | | | - Anais Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Slim Fourati
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Imane Azzaoui
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alexis Vandenberghe
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Ignacio Fernandez
- Institut Pasteur, Unité de Virologie Structurale, CNRS UMR 3569, Paris, France
| | - Annalisa Meola
- Institut Pasteur, Unité de Virologie Structurale, CNRS UMR 3569, Paris, France
| | - Magali Bouvier-Alias
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Etienne Crickx
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Asma Beldi-Ferchiou
- Département Immunologie-Hématologie, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France; INSERM U955, équipe immunorégulation et biothérapie (I-BIOT), Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Sophie Hue
- Département Immunologie-Hématologie, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France; Institut de Recherche Vaccinale (VRI), Université Paris-Est Créteil (UPEC), Faculté de Médecine, Créteil, France; INSERM U955, équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Samia Baloul
- Département de Santé Publique, Unité de Recherche Clinique (URC), CEpiA (Clinical Epidemiology and Ageing), EA 7376, Institut Mondor de Recherche Biomédicale (IMRB), Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - France Noizat-Pirenne
- Etablissement Français du Sang, INSERM U955, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Marine Luka
- Réponses inflammatoires et réseaux transcriptomiques dans les maladies, Institut Imagine, INSERM UMR1163, ATIP-Avenir Team, Université de Paris, Paris, France; Labtech Single-cell@Imagine, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Jérôme Mégret
- Plateforme de Cytométrie en Flux, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UMS3633, Paris, France
| | - Mickaël Ménager
- Réponses inflammatoires et réseaux transcriptomiques dans les maladies, Institut Imagine, INSERM UMR1163, ATIP-Avenir Team, Université de Paris, Paris, France; Labtech Single-cell@Imagine, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Jean-Michel Pawlotsky
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Simon Fillatreau
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, CNRS UMR 3569, Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France.
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France.
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, Université de Paris, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France.
| |
Collapse
|
930
|
Yang J, Zhong M, Hong K, Yang Q, Zhang E, Zhou D, Xia J, Chen Y, Sun M, Zhao B, Xiang J, Liu Y, Han Y, Xu M, Zhou X, Huang C, Shang Y, Yan H. Characteristics of T-cell responses in COVID-19 patients with prolonged SARS-CoV-2 positivity - a cohort study. Clin Transl Immunology 2021; 10:e1259. [PMID: 33728049 PMCID: PMC7932004 DOI: 10.1002/cti2.1259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE SARS-CoV-2 has caused a worldwide pandemic of COVID-19. The existence of prolonged SARS-CoV-2 positivity (PP) has further increased the burden on the health system. Since T cells are vital for viral control, we aimed to evaluate the characteristics of T-cell responses associated with PP. METHODS We established a PP cohort and two age- and sex-matched control cohorts: a regular clinical recovery (CR) cohort and a healthy donor (HD) cohort. The mean time for RNA negativity conversion in the PP cohort was markedly longer than that in the CR cohort (66.2 vs 25.3 days), while the time from illness onset to sampling was not significantly different. T-cell responses in the PP cohort were assayed, analysed and compared with those in the CR and HD cohorts by flow cytometry and ELISpot analysis of peripheral blood mononuclear cells. RESULTS Compared with the CR cohort, the proliferation, activation and functional potential of CD8+ and CD4+ T cells in the PP cohort were not significantly different. However, the frequencies and counts of Teff and Tem in CD8+ but not in CD4+ T cells of the PP cohort were prominently lower. Moreover, a weaker SARS-CoV-2 N protein-specific IFN-γ+ T-cell response and a higher frequency of Tregs were detected in the PP cohort. CONCLUSION Suppressed CD8+ T-cell differentiation is associated with PP and may be an indicator for the prediction of prolonged SARS-CoV-2 positivity in COVID-19 patients. The association between suppressed CD8+ T-cell differentiation and elevated Tregs warrants studies in the future.
Collapse
|
931
|
Lu Y, Liu F, Tong G, Qiu F, Song P, Wang X, Zou X, Wan D, Cui M, Xu Y, Zheng Z, Hong P. Clinical evidence of an interferon-glucocorticoid therapeutic synergy in COVID-19. Signal Transduct Target Ther 2021; 6:107. [PMID: 33658482 PMCID: PMC7925812 DOI: 10.1038/s41392-021-00496-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Synthetic glucocorticoid dexamethasone is the first trial-proven drug that reduces COVID-19 mortality by suppressing immune system. In contrast, interferons are a crucial component of host antiviral immunity and can be directly suppressed by glucocorticoids. To investigate whether therapeutic interferons can compensate glucocorticoids-induced loss of antiviral immunity, we retrospectively analyzed a cohort of 387 PCR-confirmed COVID-19 patients with quasi-random exposure to interferons and conditional exposure to glucocorticoids. Among patients receiving glucocorticoids, early interferon therapy was associated with earlier hospital discharge (adjusted HR 1.68, 95% CI 1.19-2.37) and symptom relief (adjusted HR 1.48, 95% CI 1.06-2.08), while these associations were insignificant among glucocorticoids nonusers. Early interferon therapy was also associated with lower prevalence of prolonged viral shedding (adjusted OR 0.24, 95% CI 0.10-0.57) only among glucocorticoids users. Additionally, these associations were glucocorticoid cumulative dose- and timing-dependent. These findings reveal potential therapeutic synergy between interferons and glucocorticoids in COVID-19 that warrants further investigation.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Biomedical Science, Shenzhen Research Institute, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Department of Nephrology, Center of Nephrology and Urology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, China
| | - Feng Liu
- Department of Infectious Diseases, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Gangling Tong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Feng Qiu
- Department of Infectious Diseases, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Pinhong Song
- Department of Infectious Diseases, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Xiaolin Wang
- Intensive Care Unit, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Xiafei Zou
- Intensive Care Unit, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Deyun Wan
- Department of Respiratory Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Miao Cui
- Department of Pathology, Mount Sinai St. Luke's Roosevelt Hospital Center, New York, NY, USA
| | - Yunsheng Xu
- Department of Dermatology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Nephrology and Urology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, China
| | - Peng Hong
- Department of Nephrology, Center of Nephrology and Urology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, China.
- Division of Research and Development, US Department of Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
932
|
Vella LA, Giles JR, Baxter AE, Oldridge DA, Diorio C, Kuri-Cervantes L, Alanio C, Pampena MB, Wu JE, Chen Z, Huang YJ, Anderson EM, Gouma S, McNerney KO, Chase J, Burudpakdee C, Lee JH, Apostolidis SA, Huang AC, Mathew D, Kuthuru O, Goodwin EC, Weirick ME, Bolton MJ, Arevalo CP, Ramos A, Jasen CJ, Conrey PE, Sayed S, Giannini HM, D'Andrea K, Meyer NJ, Behrens EM, Bassiri H, Hensley SE, Henrickson SE, Teachey DT, Betts MR, Wherry EJ. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. Sci Immunol 2021; 6:eabf7570. [PMID: 33653907 PMCID: PMC8128303 DOI: 10.1126/sciimmunol.abf7570] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.
Collapse
Affiliation(s)
- Laura A Vella
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Caroline Diorio
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - M Betina Pampena
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer E Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth M Anderson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sigrid Gouma
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kevin O McNerney
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julie Chase
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chakkapong Burudpakdee
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jessica H Lee
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eileen C Goodwin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Madison E Weirick
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marcus J Bolton
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Claudia P Arevalo
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Andre Ramos
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - C J Jasen
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,19104, USA
| | - Peyton E Conrey
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,19104, USA
| | - Samir Sayed
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,19104, USA
| | - Heather M Giannini
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Edward M Behrens
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hamid Bassiri
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sarah E Henrickson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,19104, USA
| | - David T Teachey
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
933
|
Napoli C, Benincasa G, Criscuolo C, Faenza M, Liberato C, Rusciano M. Immune reactivity during COVID-19: Implications for treatment. Immunol Lett 2021; 231:28-34. [PMID: 33421440 PMCID: PMC7787505 DOI: 10.1016/j.imlet.2021.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
Clinical symptoms of COVID-19 include fever, cough, and fatigue which may progress to acute respiratory distress syndrome (ARDS). The main hematological laboratory findings associated with the severe form of disease are represented by lymphopenia and eosinopenia which mostly occur in the elderly population characterized by cardiovascular comorbidities and immunosenescence. Besides, increased levels of D-dimer, procalcitonin, and C reactive protein (CRP) seem to be powerful prognostic biomarkers helping to predict the onset of coagulopathy. The host immune response to SARS-CoV-2 can lead to an aberrant inflammatory response or "cytokine storm" which contributes to the severity of illness. At immunological level, patients affected by a severe form of COVID-19 show poor clinical trajectories characterized by differential "immunotypes" for which T cell response seems to play a critical role in understanding pathogenic mechanisms of disease. Also, patients with mild to severe COVID-19 displayed macrophage activation syndrome (MAS), very low human leukocyte antigen D related (HLA-DR) expression with a parallel reduction of CD04+ lymphocytes, CD19 lymphocytes, and natural killer (NK) cells. Corticosteroids resulted the best therapy for the immune dysregulation whereas repurposing of tocilizumab (IL-6 receptor antagonist) appears to have mixed results in patients with COVID-19. Besides, anticoagulative therapy was associated with reduced in-hospital mortality and need of intubation among COVID-19 patients. Furthermore, the beneficial use of intravenous immunoglobulin (IVIG) and passive immunotherapy with convalescent plasma needs to be validated in large controlled clinical trials. In this review, we summarize the main hematological parameters with a prognostic value in COVID-19 and the basis of immunological reactivity during COVID-19, with a focus on ongoing clinical trials evaluating immune targets as possible therapeutic strategies.
Collapse
Affiliation(s)
- Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy; Clinical Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Transfusion Medicine and Transplant Immunology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Clelia Criscuolo
- Division of Hematology, Hospital of Aversa (ASLCE), Aversa, Italy
| | - Mario Faenza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, Universityof Campania "Luigi Vanvitelli", Naples, Italy
| | - Cinzia Liberato
- Clinical Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Transfusion Medicine and Transplant Immunology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariangela Rusciano
- Clinical Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Transfusion Medicine and Transplant Immunology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
934
|
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021; 170:1-25. [PMID: 33359141 PMCID: PMC7759095 DOI: 10.1016/j.addr.2020.12.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Melissa N Thone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States of America; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
935
|
Ong EZ, Kalimuddin S, Chia WC, Ooi SH, Koh CW, Tan HC, Zhang SL, Low JG, Ooi EE, Chan KR. Temporal dynamics of the host molecular responses underlying severe COVID-19 progression and disease resolution. EBioMedicine 2021; 65:103262. [PMID: 33691247 PMCID: PMC7937043 DOI: 10.1016/j.ebiom.2021.103262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The coronavirus disease-19 (COVID-19) pandemic has cost lives and economic hardships globally. Various studies have found a number of different factors, such as hyperinflammation and exhausted/suppressed T cell responses to the etiological SARS coronavirus-2 (SARS-CoV-2), being associated with severe COVID-19. However, sieving the causative from associative factors of respiratory dysfunction has remained rudimentary. METHODS We postulated that the host responses causative of respiratory dysfunction would track most closely with disease progression and resolution and thus be differentiated from other factors that are statistically associated with but not causative of severe COVID-19. To track the temporal dynamics of the host responses involved, we examined the changes in gene expression in whole blood of 6 severe and 4 non-severe COVID-19 patients across 15 different timepoints spanning the nadir of respiratory function. FINDINGS We found that neutrophil activation but not type I interferon signaling transcripts tracked most closely with disease progression and resolution. Moreover, transcripts encoding for protein phosphorylation, particularly the serine-threonine kinases, many of which have known T cell proliferation and activation functions, were increased after and may thus contribute to the upswing of respiratory function. Notably, these associative genes were targeted by dexamethasone, but not methylprednisolone, which is consistent with efficacy outcomes in clinical trials. INTERPRETATION Our findings suggest neutrophil activation as a critical factor of respiratory dysfunction in COVID-19. Drugs that target this pathway could be potentially repurposed for the treatment of severe COVID-19. FUNDING This study was sponsored in part by a generous gift from The Hour Glass. EEO and JGL are funded by the National Medical Research Council of Singapore, through the Clinician Scientist Awards awarded by the National Research Foundation of Singapore.
Collapse
Affiliation(s)
- Eugenia Z Ong
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Centre (ViREMiCS), 169856 Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore; Department of Infectious Diseases, Singapore General Hospital, 169608 Singapore
| | - Wen Chong Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Sarah H Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Clara Wt Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Summer L Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Jenny G Low
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Centre (ViREMiCS), 169856 Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore; Department of Infectious Diseases, Singapore General Hospital, 169608 Singapore.
| | - Eng Eong Ooi
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Centre (ViREMiCS), 169856 Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore; Department of Infectious Diseases, Singapore General Hospital, 169608 Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore.
| |
Collapse
|
936
|
Palmer S, Cunniffe N, Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production. J R Soc Interface 2021; 18:20200982. [PMID: 33726544 PMCID: PMC8086881 DOI: 10.1098/rsif.2020.0982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we report that COVID-19 hospitalization rates follow an exponential relationship with age, doubling for every 16 years of age or equivalently increasing by 4.5% per year of life (R2 = 0.98). This mirrors the well-studied exponential decline of both thymus volume and T-cell production, which halve every 16 years. COVID-19 can therefore be added to the list of other diseases with this property, including those caused by methicillin-resistant Staphylococcus aureus, MERS-CoV, West Nile virus, Streptococcus pneumoniae and certain cancers, such as chronic myeloid leukaemia and brain cancers. In addition, the incidence of severe disease and mortality due to COVID-19 are both higher in men, consistent with the degree to which thymic involution (and the decrease in T-cell production with age) is more severe in men compared to women. Since these properties are shared with some non-contagious diseases, we hypothesized that the age dependence does not come from social-mixing patterns, i.e. that the probability of hospitalization given infection rises exponentially, doubling every 16 years. A Bayesian analysis of daily hospitalizations, incorporating contact matrices, found that this relationship holds for every age group except for the under 20s. While older adults have fewer contacts than young adults, our analysis suggests that there is an approximate cancellation between the effects of fewer contacts for the elderly and higher infectiousness due to a higher probability of developing severe disease. Our model fitting suggests under 20s have 49-75% additional immune protection beyond that predicted by strong thymus function alone, consistent with increased juvenile cross-immunity from other viruses. We found no evidence for differences between age groups in susceptibility to infection or infectiousness to others (given disease state), i.e. the only important factor in the age dependence of hospitalization rates is the probability of hospitalization given infection. These findings suggest the existence of a T-cell exhaustion threshold, proportional to thymic output and that clonal expansion of peripheral T-cells does not affect disease risk. The strikingly simple inverse relationship between risk and thymic T-cell output adds to the evidence that thymic involution is an important factor in the decline of the immune system with age and may also be an important clue in understanding disease progression, not just for COVID-19 but other diseases as well.
Collapse
Affiliation(s)
- Sam Palmer
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
937
|
Kratzer B, Trapin D, Ettel P, Körmöczi U, Rottal A, Tuppy F, Feichter M, Gattinger P, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier‐Pfistershammer K, Tauber PA, Gerdov M, Mühl B, Perkmann T, Fae I, Wenda S, Führer H, Henning R, Valenta R, Pickl WF. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations. Allergy 2021; 76:751-765. [PMID: 33128792 PMCID: PMC7984452 DOI: 10.1111/all.14647] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Background SARS‐CoV‐2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID‐19‐infected patients during disease but little is known regarding a possible protracted impact of COVID‐19 on the adaptive and innate immune system in COVID‐19 convalescent patients. Methods We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS‐CoV‐2‐specific antibody levels against the S‐protein, its RBD‐subunit, and viral nucleocapsid in a cohort of COVID‐19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. Results Even ten weeks after disease COVID‐19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA‐DR and CD38 expression. Multiparametric regression analyses showed that in COVID‐19‐infected patients both CD3+CD4+ and CD3+CD8+ effector memory cells were higher, while CD25+Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID‐19‐infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti‐S and anti‐RBD, but not anti‐NC antibody levels. Moreover, a “young immunological age” as determined by numbers of CD3+CD45RA+CD62L+CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. Conclusion Acute SARS‐CoV‐2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Doris Trapin
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Paul Ettel
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrike Körmöczi
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Arno Rottal
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Friedrich Tuppy
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Melanie Feichter
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Kristina Borochova
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Yulia Dorofeeva
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Inna Tulaeva
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Laboratory for Immunopathology Department of Clinical Immunology and Allergology I. M. Sechenov First Moscow State Medical University (Sechenov University) Moscow Russia
| | - Milena Weber
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Peter A. Tauber
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Marika Gerdov
- Department of Laboratory Medicine Medical University of Vienna Vienna Austria
| | | | - Thomas Perkmann
- Department of Laboratory Medicine Medical University of Vienna Vienna Austria
| | - Ingrid Fae
- Department for Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| | - Sabine Wenda
- Department for Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| | | | | | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Laboratory for Immunopathology Department of Clinical Immunology and Allergology I. M. Sechenov First Moscow State Medical University (Sechenov University) Moscow Russia
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Winfried F. Pickl
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
938
|
Combes AJ, Courau T, Kuhn NF, Hu KH, Ray A, Chen WS, Chew NW, Cleary SJ, Kushnoor D, Reeder GC, Shen A, Tsui J, Hiam-Galvez KJ, Muñoz-Sandoval P, Zhu WS, Lee DS, Sun Y, You R, Magnen M, Rodriguez L, Im KW, Serwas NK, Leligdowicz A, Zamecnik CR, Loudermilk RP, Wilson MR, Ye CJ, Fragiadakis GK, Looney MR, Chan V, Ward A, Carrillo S, Matthay M, Erle DJ, Woodruff PG, Langelier C, Kangelaris K, Hendrickson CM, Calfee C, Rao AA, Krummel MF. Global absence and targeting of protective immune states in severe COVID-19. Nature 2021; 591:124-130. [PMID: 33494096 PMCID: PMC8567458 DOI: 10.1038/s41586-021-03234-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
| | - Tristan Courau
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas F Kuhn
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth H Hu
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Arja Ray
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - William S Chen
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Nayvin W Chew
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Simon J Cleary
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Divyashree Kushnoor
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Gabriella C Reeder
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Alan Shen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Kamir J Hiam-Galvez
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Priscila Muñoz-Sandoval
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Wandi S Zhu
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - David S Lee
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Sun
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ran You
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Mélia Magnen
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Lauren Rodriguez
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - K W Im
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Nina K Serwas
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Aleksandra Leligdowicz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Colin R Zamecnik
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Rita P Loudermilk
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Chun J Ye
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Looney
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Chan
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa Ward
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sidney Carrillo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael Matthay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - David J Erle
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Prescott G Woodruff
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Charles Langelier
- Division of Infectious Disease, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten Kangelaris
- Division of Hospital Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Carolyn Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
939
|
Ravichandran S, Lee Y, Grubbs G, Coyle EM, Klenow L, Akasaka O, Koga M, Adachi E, Saito M, Nakachi I, Ogura T, Baba R, Ito M, Kiso M, Yasuhara A, Yamada S, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Yamayoshi S, Yotsuyanagi H, Kawaoka Y, Khurana S. Longitudinal antibody repertoire in "mild" versus "severe" COVID-19 patients reveals immune markers associated with disease severity and resolution. SCIENCE ADVANCES 2021; 7:7/10/eabf2467. [PMID: 33674317 PMCID: PMC7935365 DOI: 10.1126/sciadv.abf2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Limited knowledge exists on immune markers associated with disease severity or recovery in patients with coronavirus disease 2019 (COVID-19). Here, we elucidated longitudinal evolution of SARS-CoV-2 antibody repertoire in patients with acute COVID-19. Differential kinetics was observed for immunoglobulin M (IgM)/IgG/IgA epitope diversity, antibody binding, and affinity maturation in "severe" versus "mild" COVID-19 patients. IgG profile demonstrated immunodominant antigenic sequences encompassing fusion peptide and receptor binding domain (RBD) in patients with mild COVID-19 who recovered early compared with "fatal" COVID-19 patients. In patients with severe COVID-19, high-titer IgA were observed, primarily against RBD, especially in patients who succumbed to SARS-CoV-2 infection. The patients with mild COVID-19 showed marked increase in antibody affinity maturation to prefusion SARS-CoV-2 spike that associated with faster recovery from COVID-19. This study revealed antibody markers associated with disease severity and resolution of clinical disease that could inform development and evaluation of effective immune-based countermeasures against COVID-19.
Collapse
Affiliation(s)
- Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Youri Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Osamu Akasaka
- Emergency Medical Center, Fujisawa City Hospital 2-6-1 Fujisawa, Fujisawa City, Kanagawa 251-8550, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Eisuke Adachi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital 911-1 Takebayashimachi, Utsunomiya 321-0974, Japan
| | - Takayuki Ogura
- Department of Emergency & Intensive care, Saiseikai Utsunomiya Hospital 911-1 Takebayashimachi, Utsunomiya 321-0974, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Saiseikai Utsunomiya Hospital 911-1 Takebayashimachi, Utsunomiya 321-0974, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA.
| |
Collapse
|
940
|
Goldman JD, Ascierto PA. Perspectives on COVID-19 and cancer immunotherapy: a review series. J Immunother Cancer 2021; 9:e002489. [PMID: 33688023 PMCID: PMC7944412 DOI: 10.1136/jitc-2021-002489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA
- Providence St. Joseph Health, Renton, WA, USA
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA
| | | |
Collapse
|
941
|
Conca W, Alabdely M, Albaiz F, Foster MW, Alamri M, Alkaff M, Al-Mohanna F, Nagelkerke N, Almaghrabi RS. Serum β2-microglobulin levels in Coronavirus disease 2019 (Covid-19): Another prognosticator of disease severity? PLoS One 2021; 16:e0247758. [PMID: 33647017 PMCID: PMC7920360 DOI: 10.1371/journal.pone.0247758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
β2-microglobulin (β2-m), a 11.8 kDa protein, pairs non-covalently with the α3 domain of the major histocompatibility class (MHC) I α-chain and is essential for the conformation of the MHC class I protein complex. Shed β2-m is measurable in circulation, and various disorders are accompanied by increases in β2-m levels, including several viral infections. Therefore, we explored whether β2-m levels could also be elevated in Coronavirus disease 2019 (Covid-19) and whether they predict disease severity. Serum β2-m levels were measured in a cohort of 34 patients infected with SARS-CoV-2 on admission to a tertiary care hospital in Riyadh, Saudi Arabia, as well as in an approximately age-sex matched group of 34 uninfected controls. Mean β2-m level was 3.25±1.68 mg/l (reference range 0.8-2.2 mg/l) in patients (mean age 48.2±21.6) and 1.98±0.61 mg/l in controls (mean age 48.2±21.6). 17 patients (mean age 36.9± 18.0) with mean β2-m levels of 2.27±0.64 mg/l had mild disease by WHO severity categorization, 12 patients (mean age 53.3±18.1) with mean β2-m levels of 3.57±1.39 mg/l had moderate disease, and five patients (of whom 2 died; mean age 74.4±13.8) with mean β2-m levels of 5.85±1.85 mg/l had severe disease (P < = 0.001, by ANOVA test for linear trend). In multivariate ordinal regression β2-m levels were the only significant predictor of disease severity. Our findings suggest that higher β2-m levels could be an early indicator of severity of disease and predict outcome of Covid-19. As the main limitations of the study are a single-center study, sample size and ethnicity, these results need confirmation in larger cohorts outside the Arabian Peninsula in order to delineate the value of β2-m measurements. The role of β2-m in the etiology and pathogenesis of severe Covid-19 remains to be elucidated.
Collapse
Affiliation(s)
- Walter Conca
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mayyadah Alabdely
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Faisal Albaiz
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Michael Warren Foster
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alamri
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Morad Alkaff
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nicolaas Nagelkerke
- Department of Community Medicine, United Arab University, Al Ain, United Arab Emirates
| | - Reem Saad Almaghrabi
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
942
|
AbdelMassih AF, Menshawey R, Hozaien R, Kamel A, Mishriky F, Husseiny RJ, Hanoura AM, Yacoub E, AlShehry N, Menshawey E, El-Husseiny N, Yasser R, Arsanyous M, Nathan L, Seyam M, Massoud D, Ali N, Kassim A, AmanAllah M, Elsayed R, Sheashaa H, Husseiny Y, Hassan NH, Badr K, Elkhateb A, Fouad V, Elfishawy M, Medhat O, Mustafa M, Khalil N, Elsayed R, Nada Y, Elshawarbi P, Abdelmoneim N, Gamal N, Messiha M, Ghazy M, Abdelfatah E, Nasry F, Gayed R, Eesa M, Luis M, Eskandar E, Yacoub S, Saud A, Rajab M, Abdelaziz M, Elgamal N, Jaber H, Tayssir S, Michael M, Sabry A, Shehata J, Abdelaziz R, Rateb S, El-Maghraby A, Mahjoub Y, Amr A, Mabrouk A, Kelada P, Ragab S, Eltaher B, Hassan Galal R, Aly OM, Aly T, AbdelHaleem R, ElShaarawy A, Mohamed O. The potential use of lactate blockers for the prevention of COVID-19 worst outcome, insights from exercise immunology. Med Hypotheses 2021; 148:110520. [PMID: 33561624 PMCID: PMC7840393 DOI: 10.1016/j.mehy.2021.110520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Following the decline in Physical Activity (PA) due to COVID-19 restrictions in the form of government mandated lockdowns and closures of public spaces, the modulatory effect of physical exercise on immunity is being heavily revisited. In an attempt to comprehend the wide discrepancy in patient response to COVID-19 and the factors that potentially modulate it, we summarize the findings relating PA to inflammation and immunity. A distinction is drawn between moderate intensity and high intensity physical exercise based on the high lactate production observed in the latter. We hypothesize that, the lactate production associated with high intensity anaerobic exercise is implicated in the modulation of several components of the innate and adaptive immunity. In this review, we also summarize these immunomodulatory effects of lactate. These include increasing serum IL-6 levels, the main mediator of cytokine storms, as well as affecting NK cells, Macrophages, Dendritic cells and cytotoxic T-lymphocytes. The implications of high lactate levels in athletic performance are highlighted where athletes should undergo endurance training to increase VO2 max and minimize lactate production. Tumor models of hypoxia were also reported where lactate levels are elevated leading to increased invasiveness and angiogenesis. Accordingly, the novel lactate blocking strategy employed in cancer treatment is evaluated for its potential benefit in COVID-19 in addition to the readily available beta-blockers as an antagonist to lactate. Finally, we suggest the diagnostic/prognostic purpose of the elevated lactate levels that can be determined through sweat lactate testing. It is the detrimental effect of lactate on immunity and its presence in sweat that qualify it to be used as a potential non-invasive marker of poor COVID-19 outcome.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt; Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt (57357), Egypt.
| | - Rahma Menshawey
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rafeef Hozaien
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Aya Kamel
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Fady Mishriky
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Reem J Husseiny
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | | | - Elaria Yacoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada AlShehry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Esraa Menshawey
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Egypt; Pixagon Graphic Design Agency, Cairo, Egypt
| | - Reem Yasser
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Padova University, Padova, Italy
| | - Mariem Arsanyous
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Lauren Nathan
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mahmoud Seyam
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Doaa Massoud
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada Ali
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Assem Kassim
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mostafa AmanAllah
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rokaya Elsayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Hesham Sheashaa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Yousef Husseiny
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, New Giza University, Egypt
| | - Nourhan Hatem Hassan
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Kirollos Badr
- Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Amr Elkhateb
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Verina Fouad
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mayada Elfishawy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omar Medhat
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mai Mustafa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Noha Khalil
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rawan Elsayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Youssef Nada
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Passant Elshawarbi
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Noha Abdelmoneim
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada Gamal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Messiha
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Marihan Ghazy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Emmy Abdelfatah
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Febronia Nasry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ramy Gayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Marian Eesa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Merna Luis
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Alexandria University, Egypt
| | - Estfana Eskandar
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Shenoda Yacoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Alaa Saud
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Maram Rajab
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Abdelaziz
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nadine Elgamal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Hutaf Jaber
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Sara Tayssir
- Pediatric Residency Program, Faculty of Medicine, Cairo University, Egypt
| | - Mark Michael
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed Sabry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Joseph Shehata
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rania Abdelaziz
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Sherry Rateb
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed El-Maghraby
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Yara Mahjoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Alaa Amr
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Amin Mabrouk
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Peter Kelada
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Shahd Ragab
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Basant Eltaher
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Ain Shams University, Egypt
| | - Rahma Hassan Galal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omnya Mahmoud Aly
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Taquwa Aly
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rana AbdelHaleem
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Areeg ElShaarawy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omnia Mohamed
- Sports Medicine, Faculty of Physiotherapy, Cairo University, Egypt
| |
Collapse
|
943
|
Kandasamy M. NF-κB signalling as a pharmacological target in COVID-19: potential roles for IKKβ inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:561-567. [PMID: 33394134 PMCID: PMC7780215 DOI: 10.1007/s00210-020-02035-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been characterized by lymphopenia as well as a proinflammatory cytokine storm, which are responsible for the poor prognosis and multiorgan defects. The transcription factor nuclear factor-κB (NF-κB) modulates the functions of the immune cells and alters the gene expression profile of different cytokines in response to various pathogenic stimuli, while many proinflammatory factors have been known to induce NF-κB signalling cascade. Besides, NF-κB has been known to potentiate the production of reactive oxygen species (ROS) leading to apoptosis in various tissues in many diseases and viral infections. Though the reports on the involvement of the NF-κB signalling pathway in COVID-19 are limited, the therapeutic benefits of NF-κB inhibitors including dexamethasone, a synthetic form of glucocorticoid, have increasingly been realized. Considering the fact, the abnormal activation of the NF-κB resulting from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection might be associated with the pathogenic profile of immune cells, cytokine storm and multiorgan defects. Thus, the pharmacological inactivation of the NF-κB signalling pathway can strongly represent a potential therapeutic target to treat the symptomatology of COVID-19. This article signifies pharmacological blockade of the phosphorylation of inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), a key downstream effector of NF-κB signalling, for a therapeutic consideration to attenuate COVID-19.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| |
Collapse
|
944
|
Rowntree LC, Chua BY, Nicholson S, Koutsakos M, Hensen L, Douros C, Selva K, Mordant FL, Wong CY, Habel JR, Zhang W, Jia X, Allen L, Doolan DL, Jackson DC, Wheatley AK, Kent SJ, Amanat F, Krammer F, Subbarao K, Cheng AC, Chung AW, Catton M, Nguyen THO, van de Sandt CE, Kedzierska K. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features. Clin Transl Immunology 2021; 10:e1258. [PMID: 33680466 PMCID: PMC7916820 DOI: 10.1002/cti2.1258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Brendon Y Chua
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Marios Koutsakos
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Luca Hensen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Celia Douros
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Kevin Selva
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Francesca L Mordant
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Chinn Yi Wong
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jennifer R Habel
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Wuji Zhang
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Xiaoxiao Jia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Lily Allen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Denise L Doolan
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| | - David C Jackson
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
- Infectious Diseases DepartmentMelbourne Sexual Health CentreAlfred HealthCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Fatima Amanat
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Florian Krammer
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Kanta Subbarao
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Allen C Cheng
- School of Public Health and Preventive MedicineMonash UniversityMelbourneVICAustralia
- Infection Prevention and Healthcare Epidemiology UnitAlfred HealthMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Mike Catton
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Thi HO Nguyen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Carolien E van de Sandt
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
945
|
Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, Mishra GC, Srivastava RK. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int Rev Immunol 2021; 41:171-206. [PMID: 33641587 PMCID: PMC7919479 DOI: 10.1080/08830185.2021.1883600] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Chaman Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Zaffar Azam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-NIREH, Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan C. Mishra
- Lab # 1, National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
946
|
Affiliation(s)
- Jennifer L Hope
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, and Immunity and Pathogenesis Program, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Linda M Bradley
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, and Immunity and Pathogenesis Program, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
947
|
Jeong H, Choi YM, Seo H, Kim BJ. A Novel DNA Vaccine Against SARS-CoV-2 Encoding a Chimeric Protein of Its Receptor-Binding Domain (RBD) Fused to the Amino-Terminal Region of Hepatitis B Virus preS1 With a W4P Mutation. Front Immunol 2021; 12:637654. [PMID: 33732258 PMCID: PMC7959807 DOI: 10.3389/fimmu.2021.637654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
A coronavirus SARS-CoV-2, which has caused the pandemic viral pneumonia disease COVID-19, significantly threatens global public health, highlighting the need to develop effective and safe vaccines against its infection. In this study, we developed a novel DNA vaccine candidate against SARS-CoV-2 by expressing a chimeric protein of its receptor-binding domain (RBD) fused to a 33-bp sequence (11 aa) from the hepatitis B virus (HBV) preS1 region with a W4P mutation (W4P-RBD) at the N-terminal region and evaluated its immunogenicity. In vitro transfection experiments in multiple cell lines demonstrated that W4P-RBD vs. wild-type RBD protein (W-RBD) led to enhanced production of IL-6 and TNFα at the transcription and translation levels, suggesting the adjuvant potential of N-terminal HBV preS1 sequences for DNA vaccines against SARS-CoV-2. W4P-RBD also led to enhanced production of IgG and IgA, which can neutralize and block SARS-CoV-2 infection in both blood sera and bronchoalveolar lavage (BAL) fluid from the lung in vaccinated mice. Additionally, W4P-RBD led to an enhanced T-cell-mediated cellular immune response under S1 protein stimulation. In summary, W4P-RBD led to robust humoral and cell-mediated immune responses against SARS-CoV-2 in vaccinated mice, highlighting its feasibility as a novel DNA vaccine to protect against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Bum-Joon Kim
- Department of Biomedical Sciences, College of Medicine, Microbiology and Immunology and Liver Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
948
|
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the Coronavirus Disease 2019 (COVID-19) worldwide pandemic in 2020. In response, most countries in the world implemented lockdowns, restricting their population's movements, work, education, gatherings, and general activities in attempt to "flatten the curve" of COVID-19 cases. The public health goal of lockdowns was to save the population from COVID-19 cases and deaths, and to prevent overwhelming health care systems with COVID-19 patients. In this narrative review I explain why I changed my mind about supporting lockdowns. The initial modeling predictions induced fear and crowd-effects (i.e., groupthink). Over time, important information emerged relevant to the modeling, including the lower infection fatality rate (median 0.23%), clarification of high-risk groups (specifically, those 70 years of age and older), lower herd immunity thresholds (likely 20-40% population immunity), and the difficult exit strategies. In addition, information emerged on significant collateral damage due to the response to the pandemic, adversely affecting many millions of people with poverty, food insecurity, loneliness, unemployment, school closures, and interrupted healthcare. Raw numbers of COVID-19 cases and deaths were difficult to interpret, and may be tempered by information placing the number of COVID-19 deaths in proper context and perspective relative to background rates. Considering this information, a cost-benefit analysis of the response to COVID-19 finds that lockdowns are far more harmful to public health (at least 5-10 times so in terms of wellbeing years) than COVID-19 can be. Controversies and objections about the main points made are considered and addressed. Progress in the response to COVID-19 depends on considering the trade-offs discussed here that determine the wellbeing of populations. I close with some suggestions for moving forward, including focused protection of those truly at high risk, opening of schools, and building back better with a economy.
Collapse
Affiliation(s)
- Ari R. Joffe
- Division of Critical Care Medicine, Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
- John Dossetor Health Ethics Center, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
949
|
Wu L, Zhang C, Zhao X. The Impact of COVID-19 Pandemic on Lung Cancer Community. World J Oncol 2021; 12:1-6. [PMID: 33738000 PMCID: PMC7935618 DOI: 10.14740/wjon1367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
Since the outbreak of 2019 novel coronavirus disease (COVID-19) induced by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic has become a global catastrophe. Patients with cancer especially lung cancer are more vulnerable and susceptible to get infected by the virus SARS-CoV-2. The overwhelming impact of COVID-19 on lung cancer community may result in rise of the incidence and mortality of lung cancer. It would become more obvious in future retrospective studies. Lung cancer patients are believed at higher risk of COVID-19 due to immunosuppression and should be protected by vaccination with priority. Better understanding of SARS-CoV-2 could help develop more effective vaccines to eradicate this disease in the near future.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON, M5G 2C4, Canada
| | - Chengke Zhang
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Ji'nan 250033, Shandong Province, China
| | - Xiaogang Zhao
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Ji'nan 250033, Shandong Province, China.,Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250033, Shandong Province, China
| |
Collapse
|
950
|
Lee E, Sandgren K, Duette G, Stylianou VV, Khanna R, Eden JS, Blyth E, Gottlieb D, Cunningham AL, Palmer S. Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity. J Virol 2021; 95:e02002-20. [PMID: 33443088 PMCID: PMC8579755 DOI: 10.1128/jvi.02002-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022] Open
Abstract
Developing optimal T-cell response assays to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is critical for measuring the duration of immunity to this disease and assessing the efficacy of vaccine candidates. These assays need to target conserved regions of SARS-CoV-2 global variants and avoid cross-reactivity to seasonal human coronaviruses. To contribute to this effort, we employed an in silico immunoinformatics analysis pipeline to identify immunogenic peptides resulting from conserved and highly networked regions with topological importance from the SARS-CoV-2 nucleocapsid and spike proteins. A total of 57 highly networked T-cell epitopes that are conserved across geographic viral variants were identified from these viral proteins, with a binding potential to diverse HLA alleles and 80 to 100% global population coverage. Importantly, 18 of these T-cell epitope derived peptides had limited homology to seasonal human coronaviruses making them promising candidates for SARS-CoV-2-specific T-cell immunity assays. Moreover, two of the NC-derived peptides elicited effector/polyfunctional responses of CD8+ T cells derived from SARS-CoV-2 convalescent patients.IMPORTANCE The development of specific and validated immunologic tools is critical for understanding the level and duration of the cellular response induced by SARS-CoV-2 infection and/or vaccines against this novel coronavirus disease. To contribute to this effort, we employed an immunoinformatics analysis pipeline to define 57 SARS-CoV-2 immunogenic peptides within topologically important regions of the nucleocapsid (NC) and spike (S) proteins that will be effective for detecting cellular immune responses in 80 to 100% of the global population. Our immunoinformatics analysis revealed that 18 of these peptides had limited homology to circulating seasonal human coronaviruses and therefore are promising candidates for distinguishing SARS-CoV-2-specific immune responses from pre-existing coronavirus immunity. Importantly, CD8+ T cells derived from SARS-CoV-2 survivors exhibited polyfunctional effector responses to two novel NC-derived peptides identified as HLA-binders. These studies provide a proof of concept that our immunoinformatics analysis pipeline identifies novel immunogens which can elicit polyfunctional SARS-CoV-2-specific T-cell responses.
Collapse
Affiliation(s)
- Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kerrie Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Vicki V Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rajiv Khanna
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Emily Blyth
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- BMT and Cell Therapies Program, Westmead Hospital, Westmead, New South Wales, Australia
| | - David Gottlieb
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- BMT and Cell Therapies Program, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|