51
|
Taghipour YD, Zarebkohan A, Salehi R, Talebi M, Rahbarghazi R, Khordadmehr M, Khavandkari S, Badparvar F, Torchilin VP. Enhanced docetaxel therapeutic effect using dual targeted SRL-2 and TA1 aptamer conjugated micelles in inhibition Balb/c mice breast cancer model. Sci Rep 2024; 14:24603. [PMID: 39427007 PMCID: PMC11490543 DOI: 10.1038/s41598-024-75042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Effective targeting and delivery of large amounts of medications into the cancer cells enhance their therapeutic efficacy through saturation of cellular defensive mechanisms, which is the most privilege of nano drug delivery systems (NDDS) compared to traditional approaches. Herein, we designed dual-pH/redox responsive DTX-loaded poly (β-amino ester) (PBAS) micelles decorated with a chimeric peptide and TA1 aptamer. In vitro and in vivo results demonstrated that the designed nanoplatform possessed an undetectable nature in the blood circulation, but after exposure to the tumor microenvironment (TME) of 4T1 breast cancer, it suddenly changed into dual targeting nanoparticles (NPs) (containing two ligands, SRL-2 and TA1 aptamer). The dual targeting NPs destruction in the high GSH and low pH conditions of the cancer cells led to amplified DTX release (around 70% at 24 h). The IC50 value of DTX-loaded MMP-9 sensitive heptapeptide/TA1 aptamer-modified poly (β-amino ester) (MST@PBAS) micelles and free DTX after 48 h of exposure was determined to be 1.5 µg/ml and 7.5 µg/ml, respectively. The nano-formulated DTX exhibited cytotoxicity that was 5-fold stronger than free DTX (Pvalue˂0.001). Cell cycle assay test results showed that following exposure to MST@PBAS micelles, a considerable rise in the sub G1 population (48%) suggested that apoptosis by cell cycle arrest had occurred. DTX-loaded MST@PBAS micelles revealed significantly higher (Pvalue ˂ 0.001) levels of early apoptosis (59.8%) than free DTX (44.7%). Interestingly, in vitro uptake studies showed a significantly higher TME accumulation of dual targeted NPs (6-fold) compared to single targeted NPs (Pvalue < 0.001) which further confirmed by in vivo biodistribution and fluorescent TUNEL assay experiments. NPs treated groups demonstrated notable tumor growth inhibition in 4T1 tumor bearing Balb/c mice by only 1/10th of the DTX therapeutic dose (TD) as a drug model. In conclusion, cleverly designed nanostructures here demonstrated improved anticancer effects by enhancing tumor targeting, delivering chemotherapeutic agents more accurately, promoting drug release, reducing the therapeutic dosage, and lowering side effects of anticancer drugs.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Amir Zarebkohan
- Drug Applied Research Center, Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran.
| | - Roya Salehi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran.
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, 51666-18559, Iran.
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sharareh Khavandkari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Chemical Engineering, Northeastern University, Boston, USA
| |
Collapse
|
52
|
Wong ECN, Zhang Y, Yang T, Liu Y, Abtahi M, Chen X, Ajayi AJ, Li X, Majonis D, Winnik MA. Optimizing the Structure of a Pt Metal-Chelating Polymer to Reduce Nonspecific Binding for Mass Cytometry. Biomacromolecules 2024; 25:6716-6726. [PMID: 39325685 DOI: 10.1021/acs.biomac.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Mass cytometry is a bioanalytic tool based on atomic mass spectrometry for detecting biomarker expression on individual cells. Current reagents employ metal-chelating polymers binding isotopes of hard metal ions. Polymers bearing chelators for soft metal ions offer the promise for a large increase in multiplexing capabilities, but examples reported so far often have unacceptably high levels of nonspecific binding (NSB). We recently reported a new class of metal-chelating polymers with dipicolylamine (DPA) chelators that could bind Re and Pt. They also showed significant levels of NSB. Here, to reduce the NSB of the Pt-DPA polymer, we grafted water-soluble oligomers to the distal end of the dipicolylamine pendant group. Methoxy(polyethylene glycol) (DP = 24) was effective as was poly(sulfobetaine methacrylate) (DP = 29). Reacting the Pt-Cl bond of the metalated polymer with glutathione was remarkably effective at suppressing NSB. These results open the door to Pt-isotope-based metal-chelating polymers as new mass tags for mass cytometry.
Collapse
Affiliation(s)
- Edmond C N Wong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tianjia Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xu Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ayonitemi J Ajayi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
53
|
Tagad H, Marin A, Hlushko R, Andrianov AK. Hydrolytically Degradable Zwitterionic Polyphosphazene Containing HEPES Moieties as Side Groups. Biomacromolecules 2024; 25:6791-6800. [PMID: 39315416 PMCID: PMC11480972 DOI: 10.1021/acs.biomac.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Zwitterionic polymers, ampholytic macromolecules containing ionic moieties of opposite sign on the same pendant groups, exhibit strong protein-repulsive properties and an inherent biological inertness. For that reason, these highly hydrated inner salt macromolecules have emerged as some of the most viable alternatives to poly(ethylene glycol) (PEG), a gold standard in enabling stealth behavior in life science applications. However, the structural diversity of polymer zwitterions remains limited, and currently available macromolecules do not possess an intrinsic ability to undergo hydrolytical degradation, an important prerequisite for use in drug delivery applications. The present paper reports on the synthesis of a zwitterionic polymer, a multimerized form (two thousand copies), of a biologically benign buffering agent, HEPES, which is covalently assembled on a polyphosphazene backbone. The polymer exhibits typical polyzwitterionic solution behavior, an environmentally dependent hydrolytic degradation pattern, and excellent in vitro compatibility, features that highlight its potential utility for life science applications.
Collapse
Affiliation(s)
- Harichandra
D. Tagad
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander Marin
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Raman Hlushko
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander K. Andrianov
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
54
|
Digiacomo L, Renzi S, Pirrottina A, Amenitsch H, De Lorenzi V, Pozzi D, Cardarelli F, Caracciolo G. PEGylation-Dependent Cell Uptake of Lipid Nanoparticles Revealed by Spatiotemporal Correlation Spectroscopy. ACS Pharmacol Transl Sci 2024; 7:3004-3010. [PMID: 39421655 PMCID: PMC11480925 DOI: 10.1021/acsptsci.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Polyethylene glycol (PEG) is a common surface modification for lipid nanoparticles (LNPs) to improve their stability and in vivo circulation time. However, the impact of PEGylation on LNP cellular uptake remains poorly understood. To tackle this issue, we systematically compared plain and PEGylated LNPs by combining dynamic light scattering, electrophoretic light scattering, and synchrotron small-angle X-ray scattering (SAXS) that unveils a striking similarity in size and core structure but a significant reduction in surface charge. Upon administration to human embryonic kidney (HEK 293) cells, plain and PEGylated LNPs were internalized through different endocytic routes, as revealed by spatiotemporal correlation spectroscopy. An imaging-derived mean square displacement (iMSD) analysis shows that PEGylated LNPs exhibit a significantly stronger preference for caveolae-mediated endocytosis (CAV) and clathrin-mediated endocytosis (CME) pathways compared to plain LNPs, with these latter being better tailored to MCR-dependent internalization and trafficking. This suggests that PEG plays a crucial role in directing LNPs toward specific cellular uptake routes. Further studies should explore how PEG-mediated endocytosis impacts intracellular trafficking and ultimately translates to therapeutic efficacy, guiding the design of next-generation LNP delivery systems.
Collapse
Affiliation(s)
- Luca Digiacomo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Andrea Pirrottina
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | | | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | | | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| |
Collapse
|
55
|
Asadikorayem M, Surman F, Weber P, Weber D, Zenobi-Wong M. Zwitterionic Granular Hydrogel for Cartilage Tissue Engineering. Adv Healthc Mater 2024; 13:e2301831. [PMID: 37501337 DOI: 10.1002/adhm.202301831] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Zwitterionic hydrogels have high potential for cartilage tissue engineering due to their ultra-hydrophilicity, nonimmunogenicity, and superior antifouling properties. However, their application in this field has been limited so far, due to the lack of injectable zwitterionic hydrogels that allow for encapsulation of cells in a biocompatible manner. Herein, a novel strategy is developed to engineer cartilage employing zwitterionic granular hydrogels that are injectable, self-healing, in situ crosslinkable and allow for direct encapsulation of cells with biocompatibility. The granular hydrogel is produced by mechanical fragmentation of bulk photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA), or a mixture of CBAA and zwitterionic sulfobetaine methacrylate (SBMA). The produced microgels are enzymatically crosslinkable using horseradish peroxidase, to quickly stabilize the construct, resulting in a microporous hydrogel. Encapsulated human primary chondrocytes are highly viable and able to proliferate, migrate, and produce cartilaginous extracellular matrix (ECM) in the zwitterionic granular hydrogel. It is also shown that by increasing hydrogel porosity and incorporation of SBMA, cell proliferation and ECM secretion are further improved. This strategy is a simple and scalable method, which has high potential for expanding the versatility and application of zwitterionic hydrogels for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel Weber
- Division of Hand Surgery, University Children's Hospital, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
56
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
57
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
58
|
Shah MM, Layhadi JA, Hourcade DE, Fulton WT, Tan TJ, Dunham D, Chang I, Vel MS, Fernandes A, Lee AS, Liu J, Arunachalam PS, Galli SJ, Boyd SD, Pulendran B, Davis MM, O’Hara R, Park H, Mitchell LM, Akk A, Patterson A, Jerath MR, Monroy JM, Ren Z, Kendall PL, Durham SR, Fedina A, Gibbs BF, Agache I, Chinthrajah S, Sindher SB, Heider A, Akdis CA, Shamji MH, Pham CT, Nadeau KC. Elucidating allergic reaction mechanisms in response to SARS-CoV-2 mRNA vaccination in adults. Allergy 2024; 79:2502-2523. [PMID: 39033312 PMCID: PMC11368657 DOI: 10.1111/all.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, novel nanoparticle-based mRNA vaccines were developed. A small number of individuals developed allergic reactions to these vaccines although the mechanisms remain undefined. METHODS To understand COVID-19 vaccine-mediated allergic reactions, we enrolled 19 participants who developed allergic events within 2 h of vaccination and 13 controls, nonreactors. Using standard hemolysis assays, we demonstrated that sera from allergic participants induced stronger complement activation compared to nonallergic subjects following ex vivo vaccine exposure. RESULTS Vaccine-mediated complement activation correlated with anti-polyethelyne glycol (PEG) IgG (but not IgM) levels while anti-PEG IgE was undetectable in all subjects. Depletion of total IgG suppressed complement activation in select individuals. To investigate the effects of vaccine excipients on basophil function, we employed a validated indirect basophil activation test that stratified the allergic populations into high and low responders. Complement C3a and C5a receptor blockade in this system suppressed basophil response, providing strong evidence for complement involvement in vaccine-mediated basophil activation. Single-cell multiome analysis revealed differential expression of genes encoding the cytokine response and Toll-like receptor (TLR) pathways within the monocyte compartment. Differential chromatin accessibility for IL-13 and IL-1B genes was found in allergic and nonallergic participants, suggesting that in vivo, epigenetic modulation of mononuclear phagocyte immunophenotypes determines their subsequent functional responsiveness, contributing to the overall physiologic manifestation of vaccine reactions. CONCLUSION These findings provide insights into the mechanisms underlying allergic reactions to COVID-19 mRNA vaccines, which may be used for future vaccine strategies in individuals with prior history of allergies or reactions and reduce vaccine hesitancy.
Collapse
Affiliation(s)
- Mihir M. Shah
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- These authors contributed equally to this work
| | - Janice A. Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
- These authors contributed equally to this work
| | - Dennis E. Hourcade
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - William T. Fulton
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Tiak Ju Tan
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Diane Dunham
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Iris Chang
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Monica S. Vel
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Andrea Fernandes
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Alexandra S. Lee
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - James Liu
- Stanford Health Library; Stanford, CA, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
| | - Stephen J. Galli
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Ruth O’Hara
- Department of Veteran’s Administration and
Dean’s Office, Stanford University; Stanford, CA, USA
| | - Helen Park
- Veterans Affairs Palo Alto Health Care System; Palo Alto,
CA, USA
| | - Lynne M. Mitchell
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
| | - Antonina Akk
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
| | - Alexander Patterson
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Maya R. Jerath
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jennifer M. Monroy
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Zhen Ren
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Peggy L. Kendall
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Stephen R. Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Aleksandra Fedina
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Bernhard F Gibbs
- Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University of Oldenburg; Oldenburg,
Germany
- Canterbury Christ Church University, UK
| | - Ioana Agache
- Faculty of Medicine, Transilvania University; Brasov,
Romania
| | | | | | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF),
University of Zurich; Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF),
University of Zurich; Davos, Switzerland
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
- These authors contributed equally to this work
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Kari C. Nadeau
- Harvard T.H. Chan School of Public Health, Harvard
University; Cambridge, Massachusetts
- These authors contributed equally to this work
| |
Collapse
|
59
|
Zhu X, Luo W, Zhang D, Liu R. An Assay for Immunogenic Detection of Anti-PEG Antibody. Chembiochem 2024; 25:e202400316. [PMID: 38867605 DOI: 10.1002/cbic.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
With the increasing use of polyethylene glycol (PEG) based proteins and drug delivery systems, anti-PEG antibodies have commonly been detected among the population, causing the accelerated blood clearance and hypersensitivity reactions, poses potential risks to the clinical efficacy and safety of PEGylated drugs. Therefore, vigilant monitoring of anti-PEG antibodies is crucial for both research and clinical guidance regarding PEGylated drugs. The enzyme-linked immunosorbent assay (ELISA) is a common method for detecting anti-PEG antibodies. However, diverse coating methods, blocking solutions and washing solutions have been employed across different studies, and unsuitable use of Tween 20 as the surfactant even caused biased results. In this study, we established the optimal substrate coating conditions, and investigated the influence of various surfactants and blocking solutions on the detection accuracy. The findings revealed that incorporating 1 % bovine serum albumin into the serum dilution in the absence of surfactants will result the credible outcomes of anti-PEG antibody detection.
Collapse
Affiliation(s)
- Xiang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weizhe Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
60
|
Nilchan N, Kraivong R, Luangaram P, Phungsom A, Tantiwatcharakunthon M, Traewachiwiphak S, Prommool T, Punyadee N, Avirutnan P, Duangchinda T, Malasit P, Puttikhunt C. An Engineered N-Glycosylated Dengue Envelope Protein Domain III Facilitates Epitope-Directed Selection of Potently Neutralizing and Minimally Enhancing Antibodies. ACS Infect Dis 2024; 10:2690-2704. [PMID: 38943594 PMCID: PMC11320570 DOI: 10.1021/acsinfecdis.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.
Collapse
Affiliation(s)
- Napon Nilchan
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Romchat Kraivong
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Prasit Luangaram
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Anunyaporn Phungsom
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Mongkhonphan Tantiwatcharakunthon
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Somchoke Traewachiwiphak
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaneeya Duangchinda
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prida Malasit
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
61
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
62
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
63
|
Wang Y, Zhang C, Cheng J, Yan T, He Q, Huang D, Liu J, Wang Z. Cutting-Edge Biomaterials in Intervertebral Disc Degeneration Tissue Engineering. Pharmaceutics 2024; 16:979. [PMID: 39204324 PMCID: PMC11359550 DOI: 10.3390/pharmaceutics16080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities encompass both conservative approaches and surgical interventions; however, the former falls short in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels, microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability, biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage, and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue engineering are emphasized, and potential avenues for future research are suggested.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| |
Collapse
|
64
|
Sardo C, Auriemma G, Mazzacano C, Conte C, Piccolo V, Ciaglia T, Denel-Bobrowska M, Olejniczak AB, Fiore D, Proto MC, Gazzerro P, Aquino RP. Inulin Amphiphilic Copolymer-Based Drug Delivery: Unraveling the Structural Features of Graft Constructs. Pharmaceutics 2024; 16:971. [PMID: 39204316 PMCID: PMC11359108 DOI: 10.3390/pharmaceutics16080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, the structural attributes of nanoparticles obtained by a renewable and non-immunogenic "inulinated" analog of the "pegylated" PLA (PEG-PLA) were examined, together with the potential of these novel nanocarriers in delivering poorly water-soluble drugs. Characterization of INU-PLA assemblies, encompassing critical aggregation concentration (CAC), NMR, DLS, LDE, and SEM analyses, was conducted to elucidate the core/shell architecture of the carriers and in vitro cyto- and hemo-compatibility were assayed. The entrapment and in vitro delivery of sorafenib tosylate (ST) were also studied. INU-PLA copolymers exhibit distinctive features: (1) Crew-cut aggregates are formed with coronas of 2-4 nm; (2) a threshold surface density of 1 INU/nm2 triggers a configuration change; (3) INU surface density influences PLA core dynamics, with hydrophilic segment stretching affecting PLA distribution towards the interface. INU-PLA2NPs demonstrated an outstanding loading of ST and excellent biological profile, with effective internalization and ST delivery to HepG2 cells, yielding a comparable IC50.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Carmela Mazzacano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Virgilio Piccolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Marta Denel-Bobrowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| |
Collapse
|
65
|
Jiang K, Tian K, Yu Y, Wu E, Yang M, Pan F, Qian J, Zhan C. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat Commun 2024; 15:6136. [PMID: 39033145 PMCID: PMC11271521 DOI: 10.1038/s41467-024-50568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Intrahepatic accumulation dominates organ distribution for most nanomedicines. However, obscure intrahepatic fate largely hampers regulation on their in vivo performance. Herein, PEGylated liposomal doxorubicin is exploited to clarify the intrahepatic fate of both liposomes and the payload in male mice. Kupffer cells initiate and dominate intrahepatic capture of liposomal doxorubicin, following to deliver released doxorubicin to hepatocytes with zonated distribution along the lobule porto-central axis. Increasing Kupffer cells capture promotes doxorubicin accumulation in hepatocytes, revealing the Kupffer cells capture-payload release-hepatocytes accumulation scheme. In contrast, free doxorubicin is overlooked by Kupffer cells, instead quickly distributing into hepatocytes by directly crossing fenestrated liver sinusoid endothelium. Compared to free doxorubicin, liposomal doxorubicin exhibits sustained metabolism/excretion due to the extra capture-release process. This work unveils the pivotal role of Kupffer cells in intrahepatic traffic of PEGylated liposomal therapeutics, and quantitively describes the intrahepatic transport/distribution/elimination process, providing crucial information for guiding further development of nanomedicines.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200030, P.R. China.
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
66
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
67
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
68
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
69
|
Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater 2024; 37:86-93. [PMID: 38523704 PMCID: PMC10957522 DOI: 10.1016/j.bioactmat.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
Collapse
Affiliation(s)
- Diana D. Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leiming Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
70
|
Kojima C, Yao J, Nakajima K, Suzuki M, Tsujimoto A, Kuge Y, Ogawa M, Matsumoto A. Attenuated polyethylene glycol immunogenicity and overcoming accelerated blood clearance of a fully PEGylated dendrimer. Int J Pharm 2024; 659:124193. [PMID: 38703934 DOI: 10.1016/j.ijpharm.2024.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Junjie Yao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Ayako Tsujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
71
|
Padilla‐Flores T, Sampieri A, Vaca L. Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1224. [PMID: 38864106 PMCID: PMC11167235 DOI: 10.1002/prp2.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was declared a pandemic by the World Health Organization. The health crisis imposed by a new virus and its rapid spread worldwide prompted the fast development of vaccines. For the first time in human history, two vaccines based on recombinant genetic material technology were approved for human use. These mRNA vaccines were applied in massive immunization programs around the world, followed by other vaccines based on more traditional approaches. Even though all vaccines were tested in clinical trials prior to their general administration, serious adverse events, usually of very low incidence, were mostly identified after application of millions of doses. Establishing a direct correlation (the cause-effect paradigm) between vaccination and the appearance of adverse effects has proven challenging. This review focuses on the main adverse effects observed after vaccination, including anaphylaxis, myocarditis, vaccine-induced thrombotic thrombocytopenia, Guillain-Barré syndrome, and transverse myelitis reported in the context of COVID-19 vaccination. We highlight the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline the recommended treatments for these adverse effects. The aim of this work is to increase awareness among healthcare personnel about the serious adverse events that may arise post-vaccination. Regardless of the ongoing discussion about the safety of COVID-19 vaccination, these adverse effects must be identified promptly and treated effectively to reduce the risk of complications.
Collapse
Affiliation(s)
- Teresa Padilla‐Flores
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Luis Vaca
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
72
|
Guo D, Shi C, Suo L, Ji X, Yue H, Yuan D, Luo J. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. J Control Release 2024; 370:626-642. [PMID: 38734314 PMCID: PMC11923797 DOI: 10.1016/j.jconrel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Hao Yue
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Dekai Yuan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Sepsis Interdisciplinary Research Center (SIRC), State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
73
|
Chen R, Sandeman L, Nankivell V, Tan JTM, Rashidi M, Psaltis PJ, Zheng G, Bursill C, McLaughlin RA, Li J. Detection of atherosclerotic plaques with HDL-like porphyrin nanoparticles using an intravascular dual-modality optical coherence tomography and fluorescence system. Sci Rep 2024; 14:12359. [PMID: 38811670 PMCID: PMC11136962 DOI: 10.1038/s41598-024-63132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.
Collapse
Affiliation(s)
- Rouyan Chen
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Victoria Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mohammad Rashidi
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, ON, M5G 1L7, Toronto, Canada
| | - Christina Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert A McLaughlin
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
74
|
Mietzner R, Barbey C, Lehr H, Ziegler CE, Peterhoff D, Wagner R, Goepferich A, Breunig M. Prolonged delivery of HIV-1 vaccine nanoparticles from hydrogels. Int J Pharm 2024; 657:124131. [PMID: 38643811 DOI: 10.1016/j.ijpharm.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Christian E Ziegler
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
75
|
Lee Y, Jeong M, Lee G, Park J, Jung H, Im S, Lee H. Development of Lipid Nanoparticle Formulation for the Repeated Administration of mRNA Therapeutics. Biomater Res 2024; 28:0017. [PMID: 38779139 PMCID: PMC11109479 DOI: 10.34133/bmr.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024] Open
Abstract
During the COVID-19 pandemic, mRNA vaccines emerged as a rapid and effective solution for global immunization. The success of COVID-19 mRNA vaccines has increased interest in the use of lipid nanoparticles (LNPs) for the in vivo delivery of mRNA therapeutics. Although mRNA exhibits robust expression profiles, transient protein expression is often observed, raising uncertainty regarding the frequency of its administration. Additionally, various RNA therapeutics may necessitate repeated dosing to achieve optimal therapeutic outcomes. Nevertheless, the impact of repeated administrations of mRNA/LNP on immune responses and protein expression efficacy remains unclear. In this study, we investigated the influence of the formulation parameters, specifically ionizable lipids and polyethylene glycol (PEG) lipids, on the repeat administration of mRNA/LNP. Our findings revealed that ionizable lipids had no discernible impact on the dose-responsive efficacy of repeat administrations, whereas the lipid structure and molar ratio of PEG lipids were primary factors that affected mRNA/LNP performance. The optimization of the LNP formulation with PEG lipid confirmed the sustained dose-responsive efficacy of mRNA after repeated administrations. This study highlights the critical importance of optimizing LNP formulations for mRNA therapeutics requiring repeated administrations.
Collapse
Affiliation(s)
- Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyeongseok Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeongeun Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyein Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seongeun Im
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
76
|
Gordon GL, Raybould MIJ, Wong A, Deane CM. Prospects for the computational humanization of antibodies and nanobodies. Front Immunol 2024; 15:1399438. [PMID: 38812514 PMCID: PMC11133524 DOI: 10.3389/fimmu.2024.1399438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To be viable therapeutics, antibodies must be tolerated by the human immune system. Rational approaches to reduce the risk of unwanted immunogenicity involve maximizing the 'humanness' of the candidate drug. However, despite the emergence of new discovery technologies, many of which start from entirely human gene fragments, most antibody therapeutics continue to be derived from non-human sources with concomitant humanization to increase their human compatibility. Early experimental humanization strategies that focus on CDR loop grafting onto human frameworks have been critical to the dominance of this discovery route but do not consider the context of each antibody sequence, impacting their success rate. Other challenges include the simultaneous optimization of other drug-like properties alongside humanness and the humanization of fundamentally non-human modalities such as nanobodies. Significant efforts have been made to develop in silico methodologies able to address these issues, most recently incorporating machine learning techniques. Here, we outline these recent advancements in antibody and nanobody humanization, focusing on computational strategies that make use of the increasing volume of sequence and structural data available and the validation of these tools. We highlight that structural distinctions between antibodies and nanobodies make the application of antibody-focused in silico tools to nanobody humanization non-trivial. Furthermore, we discuss the effects of humanizing mutations on other essential drug-like properties such as binding affinity and developability, and methods that aim to tackle this multi-parameter optimization problem.
Collapse
Affiliation(s)
| | | | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
77
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
78
|
Pan F, Liu M, Li G, Chen B, Chu Y, Yang Y, Wu E, Yu Y, Lin S, Ding T, Wei X, Zhan C, Qian J. Phospholipid Type Regulates Protein Corona Composition and In Vivo Performance of Lipid Nanodiscs. Mol Pharm 2024; 21:2272-2283. [PMID: 38607681 DOI: 10.1021/acs.molpharmaceut.3c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.
Collapse
Affiliation(s)
- Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Guanghui Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Boqian Chen
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yuxiu Chu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yang Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Shiqi Lin
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Tianhao Ding
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoli Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
79
|
Joma N, Bielawski P, Saini A, Kakkar A, Maysinger D. Nanocarriers for natural polyphenol senotherapeutics. Aging Cell 2024; 23:e14178. [PMID: 38685568 PMCID: PMC11113259 DOI: 10.1111/acel.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Senescence is a heterogenous and dynamic process in which various cell types undergo cell-cycle arrest due to cellular stressors. While senescence has been implicated in aging and many human pathologies, therapeutic interventions remain inadequate due to the absence of a comprehensive set of biomarkers in a context-dependent manner. Polyphenols have been investigated as senotherapeutics in both preclinical and clinical settings. However, their use is hindered by limited stability, toxicity, modest bioavailability, and often inadequate concentration at target sites. To address these limitations, nanocarriers such as polymer nanoparticles and lipid vesicles can be utilized to enhance the efficacy of senolytic polyphenols. Focusing on widely studied senolytic agents-specifically fisetin, quercetin, and resveratrol-we provide concise summaries of their physical and chemical properties, along with an overview of preclinical and clinical findings. We also highlight common signaling pathways and potential toxicities associated with these agents. Addressing challenges linked to nanocarriers, we present examples of senotherapeutic delivery to various cell types, both with and without nanocarriers. Finally, continued research and development of senolytic agents and nanocarriers are encouraged to reduce the undesirable effects of senescence on different cell types and organs. This review underscores the need for establishing reliable sets of senescence biomarkers that could assist in evaluating the effectiveness of current and future senotherapeutic candidates and nanocarriers.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| | | | - Anjali Saini
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Ashok Kakkar
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
80
|
Liu C, Yan Q, Ding X, Zhao M, Chen C, Zheng Q, Yang H, Xie Y. Functional modification of recombinant brain-derived neurotrophic factor and its protective effect against neurotoxicity. Int J Biol Macromol 2024; 267:131610. [PMID: 38621565 DOI: 10.1016/j.ijbiomac.2024.131610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophic protein that promotes neuronal survival, increases neurotransmitter synthesis, and has potential therapeutic effects in neurodegenerative and psychiatric diseases, but its drug development has been limited by the fact that recombinant proteins of BDNF are unstable and do not penetrate the blood-brain barrier (BBB). In this study, we fused a TAT membrane-penetrating peptide with BDNF to express a recombinant protein (TBDNF), which was then PEG-modified to P-TBDNF. Protein characterization showed that P-TBDNF significantly improved the stability of the recombinant protein and possessed the ability to penetrate the BBB, and in cellular experiments, P-TBDNF prevented MPTP-induced nerve cell oxidative stress damage, apoptosis and inflammatory response, and its mechanism of action was closely related to the activation of tyrosine kinase B (TrkB) receptor and inhibition of microglia activation. In animal experiments, P-TBDNF improved motor and cognitive deficits in MPTP mice and inhibited pathological changes in Parkinson's disease (PD). In conclusion, this paper is expected to reveal the mechanism of action of P-TBDNF in inhibiting neurotoxicity, provide a new way for treating PD, and lay the foundation for the future development of recombinant P-TBDNF.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Qi Yan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Chen Chen
- Affiliated Hospital of Yanbian university, Yanji, Jilin 133002, PR China
| | - Qian Zheng
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
81
|
Hu M, Li X, You Z, Cai R, Chen C. Physiological Barriers and Strategies of Lipid-Based Nanoparticles for Nucleic Acid Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303266. [PMID: 37792475 DOI: 10.1002/adma.202303266] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Lipid-based nanoparticles (LBNPs) are currently the most promising vehicles for nucleic acid drug (NAD) delivery. Although their clinical applications have achieved success, the NAD delivery efficiency and safety are still unsatisfactory, which are, to a large extent, due to the existence of multi-level physiological barriers in vivo. It is important to elucidate the interactions between these barriers and LBNPs, which will guide more rational design of efficient NAD vehicles with low adverse effects and facilitate broader applications of nucleic acid therapeutics. This review describes the obstacles and challenges of biological barriers to NAD delivery at systemic, organ, sub-organ, cellular, and subcellular levels. The strategies to overcome these barriers are comprehensively reviewed, mainly including physically/chemically engineering LBNPs and directly modifying physiological barriers by auxiliary treatments. Then the potentials and challenges for successful translation of these preclinical studies into the clinic are discussed. In the end, a forward look at the strategies on manipulating protein corona (PC) is addressed, which may pull off the trick of overcoming those physiological barriers and significantly improve the efficacy and safety of LBNP-based NADs delivery.
Collapse
Affiliation(s)
- Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
| | - Xiaoyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
82
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
83
|
Fu R, Xu J, Guo Q, Liu T, Su X, Xu M, Zhao X, Wang F, Ji L, Qian W, Hou S, Li J, Zhang D, Guo H. Highly drug/target-tolerant neutralizing antibody (NAb) assay development through target-based drug depletion and drug-based NAb extraction for an anti-EGFR therapeutic monoclonal antibody. J Pharm Biomed Anal 2024; 241:116006. [PMID: 38309099 DOI: 10.1016/j.jpba.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The reduction of immunogenicity is fundamental for the development of biobetter Erbitux, given that the development of an immune response reduces treatment efficacy and may lead to potential side effects. One of the requirements for the clinical research of a Erbitux biobetter candidate (CMAB009) is to develop a neutralizing antibody (NAb) assay, and sufficient drug and target tolerance for the assay is necessary. Here, we describe the development of a competitive ligand binding (CLB) assay for CMAB009 with high drug and target tolerance through target-based drug depletion and drug-based NAb extraction, the integrated experimental strategy was implemented to simultaneously mitigate drug interference and enhance target tolerance. Following troubleshooting and optimization, the NAb assay was validated for clinical sample analysis with the sensitivity of 92 ng/mL, drug tolerance of 70 μg/mL and target tolerance of 798 ng/mL. The innovative drug depletion and NAb extraction achieved though the combination of drug and target beads would enable the development of reliable NAb assays for many other therapeutics that overcome drug and its target interference for more precise and sensitive NAb assessment.
Collapse
Affiliation(s)
- Rongrong Fu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingcheng Guo
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Tao Liu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Su
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Mengjiao Xu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xiang Zhao
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Lusha Ji
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weizhu Qian
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Hou
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Li
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Dapeng Zhang
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huaizu Guo
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China.
| |
Collapse
|
84
|
Marques C, Borchard G, Jordan O. Unveiling the challenges of engineered protein corona from the proteins' perspective. Int J Pharm 2024; 654:123987. [PMID: 38467206 DOI: 10.1016/j.ijpharm.2024.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
It is well known that protein corona affects the "biological identity" of nanoparticles (NPs), which has been seen as both a challenge and an opportunity. Approaches have moved from avoiding protein adsorption to trying to direct it, taking advantage of the formation of a protein corona to favorably modify the pharmacokinetic parameters of NPs. Although promising, the results obtained with engineered NPs still need to be completely understood. While much effort has been put into understanding how the surface of nanomaterials affects protein absorption, less is known about how proteins can affect corona formation due to their specific physicochemical properties. This review addresses this knowledge gap, examining key protein factors influencing corona formation, highlighting current challenges in studying protein-protein interactions, and discussing future perspectives in the field.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1211, Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet 1211, Geneva, Switzerland
| |
Collapse
|
85
|
Go EB, Lee JH, Cho JH, Kwon NH, Choi JI, Kwon I. Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation. J Biol Eng 2024; 18:23. [PMID: 38576037 PMCID: PMC10996255 DOI: 10.1186/s13036-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is the most abundant protein in human serum, known to have an exceptionally long serum half-life. However, conjugating a macromolecular half-life extender to a small protein, such as scFv, often results in a significant loss of its critical properties. RESULTS In this study, we conjugated the HSA to a permissive site of scFv to improve pharmacokinetic profiles. To ensure minimal damage to the antigen-binding capacity of scFv upon HSA conjugation, we employed a site-specific conjugation approach using a heterobifunctional crosslinker that facilitates thiol-maleimide reaction and inverse electron-demand Diels-Alder reaction (IEDDA). As a model protein, we selected 4D5scFv, derived from trastuzumab, a therapeutic antibody used in human epithermal growth factor 2 (HER2)-positive breast cancer treatment. We introduced a phenylalanine analog containing a very reactive tetrazine group (frTet) at conjugation site candidates predicted by computational methods. Using the linker TCO-PEG4-MAL, a single HSA molecule was site-specifically conjugated to the 4D5scFv (4D5scFv-HSA). The 4D5scFv-HSA conjugate exhibited HER2 binding affinity comparable to that of unmodified 4D5scFv. Furthermore, in pharmacokinetic profile in mice, the serum half-life of 4D5scFv-HSA was approximately 12 h, which is 85 times longer than that of 4D5scFv. CONCLUSIONS The antigen binding results and pharmacokinetic profile of 4D5scFv-HSA demonstrate that the site-specifically albumin-conjugated scFv retained its binding affinity with a prolonged serum half-life. In conclusion, we developed an effective strategy to prepare site-specifically albumin-conjugated 4D5scFv, which can have versatile clinical applications with improved efficacy.
Collapse
Affiliation(s)
- Eun Byeol Go
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeong Haeng Cho
- ProAbTech, Gwangju, 61005, Republic of Korea
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na Hyun Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
86
|
Tang X, Zhang J, Sui D, Xu Z, Yang Q, Wang T, Li X, Liu X, Deng Y, Song Y. Durable protective efficiency provide by mRNA vaccines require robust immune memory to antigens and weak immune memory to lipid nanoparticles. Mater Today Bio 2024; 25:100988. [PMID: 38379935 PMCID: PMC10877184 DOI: 10.1016/j.mtbio.2024.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The Pegylated lipids in lipid nanoparticle (LNPs) vaccines have been found to cause acute hypersensitivity reactions in recipients, and generate anti-LNPs immunity after repeated administration, thereby reducing vaccine effectiveness. To overcome these challenges, we developed a new type of LNPs vaccine (SAPC-LNPs) which was co-modified with sialic acid (SA) - lipid derivative and cleavable PEG - lipid derivative. This kind of mRNA vaccine can target dendritic cells (DCs) and rapidly escape from early endosomes (EE) and lysosomes with a total endosomal escape rate up to 98 %. Additionally, the PEG component in SAPC-LNPs was designed to detach from the LNPs under the catalysis of carboxylesterase in vivo, which reduced the probability of PEG being attached to LNPs entering antigen-presenting cells. Compared with commercially formulated vaccines (1.5PD-LNPs), mice treated with SAPC-LNPs generated a more robust immune memory to tumor antigens and a weaker immune memory response to LNPs, and showed lower side effects and long-lasting protective efficiency. We also discovered that the anti-tumor immune memory formed by SAPC-LNPs mRNA vaccine was directly involved in the immune cycle to rattack tumor. This immune memory continued to strengthen with multiple cycles, supporting that the immune memory should be incorporated into the theory of tumor immune cycle.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qiongfen Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Tianyu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiaoya Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | | | | |
Collapse
|
87
|
Zhang B, Li L, Huang M, Zhao E, Li Y, Sun J, He Z, Fu C, Liu G, Sun B. Probing the Impact of Surface Functionalization Module on the Performance of Mitoxantrone Prodrug Nanoassemblies: Improving the Effectiveness and Safety. NANO LETTERS 2024; 24:3759-3767. [PMID: 38478977 DOI: 10.1021/acs.nanolett.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Prodrug nanoassemblies are emerging as a novel drug delivery system for chemotherapy, comprising four fundamental modules: a drug module, a modification module, a response module, and a surface functionalization module. Among these modules, surface functionalization is an essential process to enhance the biocompatibility and stability of the nanoassemblies. Here, we selected mitoxantrone (MTO) as the drug module and DSPE-PEG2K as surface functionalization module to develop MTO prodrug nanoassemblies. We systematically evaluated the effect of surface functionalization module ratios (10%, 20%, 40%, and 60% of prodrug, WDSPE-mPEG2000/Wprodrug) on the prodrug nanoassemblies. The results indicated that 40% NPs significantly improved the self-assembly stability and cellular uptake of prodrug nanoassemblies. Compared with MTO solution, 40% NPs showed better tumor specificity and pharmacokinetics, resulting in potent antitumor activity with a good safety profile. These findings highlighted the pivotal role of the surface functionalization module in regulating the performance of mitoxantrone prodrug nanoassemblies for cancer treatment.
Collapse
Affiliation(s)
- Bowen Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minglong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Erwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Chunwang Fu
- Shenyang Xingqi Pharmaceutical Co., Ltd., Shenyang 110162, China
| | - Guojie Liu
- Department of Chemistry, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
88
|
Shen L, Li Z, Ma A, Cruz-Teran C, Talkington A, Shipley ST, Lai SK. Free PEG Suppresses Anaphylaxis to PEGylated Nanomedicine in Swine. ACS NANO 2024; 18:8733-8744. [PMID: 38469811 DOI: 10.1021/acsnano.3c11165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Covalent conjugation of poly(ethylene glycol) (PEG) is frequently employed to enhance the pharmacokinetics and biodistribution of various protein and nanoparticle therapeutics. Unfortunately, some PEGylated drugs can induce elevated levels of antibodies that can bind PEG, i.e., anti-PEG antibodies (APA), in some patients. APA in turn can reduce the efficacy and increase the risks of allergic reactions, including anaphylaxis. There is currently no intervention available in the clinic that specifically mitigates allergic reactions to PEGylated drugs without the use of broad immunosuppression. We previously showed that infusion of high molecular weight free PEG could safely and effectively suppress the induction of APA in mice and restore prolonged circulation of various PEGylated therapeutics. Here, we explored the effectiveness of free PEG as a prophylaxis against anaphylaxis induced by PEG-specific allergic reactions in swine. Injection of PEG-liposomes (PL) resulted in anaphylactoid shock (pseudoanaphylaxis) within 1-3 min in both naïve and PL-sensitized swine. In contrast, repeated injection of free PEG alone did not result in allergic reactions, and injection of free PEG effectively suppressed allergic reactions to PL, including in previously PL-sensitized swine. These results strongly support the further investigation of free PEG for reducing APA and allergic responses to PEGylated therapeutics.
Collapse
Affiliation(s)
- Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhongbo Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alice Ma
- Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anne Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Steven T Shipley
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Immunology and Microbiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
89
|
Kabil MF, Azzazy HMES, Nasr M. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. Int J Pharm 2024; 653:123871. [PMID: 38301810 DOI: 10.1016/j.ijpharm.2024.123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
90
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
91
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
92
|
Toussaint F, Lepeltier E, Franconi F, Pautu V, Jérôme C, Passirani C, Debuigne A. Diversely substituted poly(N-vinyl amide) derivatives towards non-toxic, stealth and pH-responsive lipid nanocapsules. Colloids Surf B Biointerfaces 2024; 235:113788. [PMID: 38335770 DOI: 10.1016/j.colsurfb.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Surface modification of lipid nanocapsules (LNC) is necessary to impart stealth properties to these drug carriers and enhance their accumulation into the tumor microenvironment. While pegylation is commonly used to prolong the circulation time of LNC, the increased presence of anti-PEG antibodies in the human population and the internalization issues associated to the PEG shell are strong incentives to search alternatives. This work describes the development of amphiphilic poly(N-vinyl amide)-based (co)polymers, including pH-responsive ones, and their use as LNC modifiers towards improved drug delivery systems. RAFT polymerization gave access to a series of LNC modifiers composed of poly(N-methyl-N-vinyl acetamide), poly(N-vinyl pyrrolidone) or pH-responsive vinylimidazole-based sequence bearing a variety of lipophilic end-groups, namely octadecyl, dioctadecyl or phospholipid groups, for anchoring to the LNC. Decoration of the LNC with these families of poly(N-vinyl amide) derivatives was achieved via both post-insertion and per-formulation methods. This offered valuable and non-toxic LNC protection from opsonization by complement activation, emphasized the benefit of dioctadecyl in the per-formulation approach and highlighted the great potential of poly(N-methyl-N-vinyl acetamide) as PEG alternative. Moreover, incorporation of imidazole moieties in the shell of the carrier imparted pH-responsiveness to the LNC likely to increase the cellular uptake in the acidic tumor microenvironment, opening up new possibilities in the field of active targeting.
Collapse
Affiliation(s)
- François Toussaint
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France; Institut Universitaire de France (IUF), France
| | - Florence Franconi
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Vincent Pautu
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles (MINT), University of Angers, INSERM 1066, CNRS 6021, Angers, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Complex and Entangled Systems from Atoms to Materials Research Unit (CESAM), University of Liège (ULiege), 4000 Liège, Belgium.
| |
Collapse
|
93
|
Yu YF, Wu EC, Lin SQ, Chu YX, Yang Y, Pan F, Ding TH, Qian J, Jiang K, Zhan CY. Reexamining the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin. Acta Pharmacol Sin 2024; 45:646-659. [PMID: 37845342 PMCID: PMC10834505 DOI: 10.1038/s41401-023-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Higher drug loading employed in nanoscale delivery platforms is a goal that researchers have long sought after. But such viewpoint remains controversial because the impacts that nanocarriers bring about on bodies have been seriously overlooked. In the present study we investigated the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin (PLD). We prepared PLDs with two different drug loading rates: high drug loading rate, H-Dox, 12.9% w/w Dox/HSPC; low drug loading rate, L-Dox, 2.4% w/w Dox/HSPC (L-Dox had about 5 folds drug carriers of H-Dox at the same Dox dose). The pharmaceutical properties and biological effects of H-Dox and L-Dox were compared in mice, rats or 4T1 subcutaneous tumor-bearing mice. We showed that the lowering of doxorubicin loading did not cause substantial shifts to the pharmaceutical properties of PLDs such as in vitro and in vivo stability (stable), anti-tumor effect (equivalent effective), as well as tissue and cellular distribution. Moreover, it was even more beneficial for mitigating the undesired biological effects caused by PLDs, through prolonging blood circulation and alleviating cutaneous accumulation in the presence of pre-existing anti-PEG Abs due to less opsonins (e.g. IgM and C3) deposition on per particle. Our results warn that the effects of drug loading would be much more convoluted than expected due to the complex intermediation between nanocarriers and bodies, urging independent investigation for each individual delivery platform to facilitate clinical translation and application.
Collapse
Affiliation(s)
- Yi-Fei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Er-Can Wu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Shi-Qi Lin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Yu-Xiu Chu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Tian-Hao Ding
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China.
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China.
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Chang-You Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
94
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
95
|
Davis E, Caparco AA, Jones E, Steinmetz NF, Pokorski JK. Study of uricase-polynorbornene conjugates derived from grafting-from ring-opening metathesis polymerization. J Mater Chem B 2024; 12:2197-2206. [PMID: 38323642 DOI: 10.1039/d3tb02726k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PEGylation has been the 'gold standard' in bioconjugation due to its ability to improve the pharmacokinetics and pharmacodynamics of native proteins. However, growing clinical evidence of hypersensitivity reactions to PEG due to pre-existing anti-PEG antibodies in healthy humans have raised concerns. Advancements in controlled polymerization techniques and conjugation chemistries have paved the way for the development of protein-polymer conjugates that can circumvent these adverse reactions while retaining the benefits of such modifications. Herein, we show the development of polynorbornene based bioconjugates of therapeutically relevant urate oxidase (UO) enzymes used in the treatment of gout synthesized by grafting-from ring-opening metathesis polymerization (ROMP). Notably, these conjugates exhibit comparable levels of bioactivity to PEGylated UO and demonstrate increased stability across varying temperatures and pH conditions. Immune recognition of conjugates by anti-UO antibodies reveal low protein immunogenicity following the conjugation process. Additionally, UO conjugates employing zwitterionic polynorbornene successfully avoid recognition by anti-PEG antibodies, further highlighting a potential replacement for PEG.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Adam A Caparco
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Jones
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
96
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
97
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
98
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
99
|
Davis E, Caparco AA, Steinmetz NF, Pokorski JK. Poly(Oxanorbornene)-Protein Conjugates Prepared by Grafting-to ROMP as Alternatives for PEG. Macromol Biosci 2024; 24:e2300255. [PMID: 37688508 DOI: 10.1002/mabi.202300255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Indexed: 09/11/2023]
Abstract
PEGylation is the gold standard in protein-polymer conjugation, improving circulation half-life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti-PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti-PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine-reactive poly(oxanorbornene) (PONB) imide-based water-soluble block co-polymers are synthesized using ring-opening metathesis polymerization (ROMP). The synthesized block-copolymers include PEG-based PONB-PEG and sulfobetaine-based PONB-Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting-to bioconjugation technique. Both Lyz-PONB and UO-PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO-PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG-specific immune recognition is negligible for UO-PONB-Zwit conjugates, as expected. These polymers provide a new alternative for PEG-based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
100
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|