101
|
Von Bank H, Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev 2021; 67:101259. [PMID: 33515751 PMCID: PMC8379680 DOI: 10.1016/j.arr.2021.101259] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Adipose tissue has a variety of diverse functions that maintain energy homeostasis. In conditions of excess energy availability, adipose tissue increases its lipid storage and communicates the nutritional abundance to various organs in the body. In conditions of energy depletion, such as fasting, cold exposure, or prolonged exercise, triglycerides stored in adipose tissue are released as free fatty acids to support the shift to catabolic metabolism. These diverse functions of storage, communication, and energy homeostasis are shared between numerous adipose depots including subcutaneous, visceral, brown, beige, intramuscular, marrow, and dermal adipose tissue. As organisms age, the cellular composition of these depots shifts to facilitate increased inflammatory cell infiltration, decreased vasculature, and increased adipocyte quantity and lipid droplet size. The purpose of this review is to give a comprehensive overview of the molecular and cellular changes that occur in various aged adipose depots and discuss their impact on physiology. The molecular signature of aged adipose leads to higher prevalence of metabolic disease in aged populations including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and certain types of cancer.
Collapse
Affiliation(s)
- Helaina Von Bank
- Department of Biochemistry, University of Wisconsin Madison, USA.
| | - Charlie Kirsh
- Department of Biochemistry, University of Wisconsin Madison, USA.
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin Madison, USA.
| |
Collapse
|
102
|
vonderEmbse AN, Elmore SE, Jackson KB, Habecker BA, Manz KE, Pennell KD, Lein PJ, La Merrill MA. Developmental exposure to DDT or DDE alters sympathetic innervation of brown adipose in adult female mice. Environ Health 2021; 20:37. [PMID: 33794904 PMCID: PMC8017793 DOI: 10.1186/s12940-021-00721-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Exposure to the bioaccumulative pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) has been associated with increased risk of insulin resistance and obesity in humans and experimental animals. These effects appear to be mediated by reduced brown adipose tissue (BAT) thermogenesis, which is regulated by the sympathetic nervous system. Although the neurotoxicity of DDT is well-established, whether DDT alters sympathetic innervation of BAT is unknown. We hypothesized that perinatal exposure to DDT or DDE promotes thermogenic dysfunction by interfering with sympathetic regulation of BAT thermogenesis. METHODS Pregnant C57BL/6 J mice were administered environmentally relevant concentrations of DDTs (p,p'-DDT and o,p'-DDT) or DDE (p,p'-DDE), 1.7 mg/kg and 1.31 mg/kg, respectively, from gestational day 11.5 to postnatal day 5 by oral gavage, and longitudinal body temperature was recorded in male and female offspring. At 4 months of age, metabolic parameters were measured in female offspring via indirect calorimetry with or without the β3 adrenergic receptor agonist, CL 316,243. Immunohistochemical and neurochemical analyses of sympathetic neurons innervating BAT were evaluated. RESULTS We observed persistent thermogenic impairment in adult female, but not male, mice perinatally exposed to DDTs or p,p'-DDE. Perinatal DDTs exposure significantly impaired metabolism in adult female mice, an effect rescued by treatment with CL 316,243 immediately prior to calorimetry experiments. Neither DDTs nor p,p'-DDE significantly altered BAT morphology or the concentrations of norepinephrine and its metabolite DHPG in the BAT of DDTs-exposed mice. However, quantitative immunohistochemistry revealed a 20% decrease in sympathetic axons innervating BAT in adult female mice perinatally exposed to DDTs, but not p,p'-DDE, and 48 and 43% fewer synapses in stellate ganglia of mice exposed to either DDTs or p,p'-DDE, respectively, compared to control. CONCLUSIONS These data demonstrate that perinatal exposure to DDTs or p,p'-DDE impairs thermogenesis by interfering with patterns of connectivity in sympathetic circuits that regulate BAT.
Collapse
Affiliation(s)
- Annalise N. vonderEmbse
- Department of Environmental Toxicology, University of California-Davis College of Agricultural and Environmental Sciences, One Shields Avenue, Davis, CA 95616 USA
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Sarah E. Elmore
- Department of Environmental Toxicology, University of California-Davis College of Agricultural and Environmental Sciences, One Shields Avenue, Davis, CA 95616 USA
- Present address: Office of Environmental Health Hazard Assessment, California EPA, Oakland, CA USA
| | - Kyle B. Jackson
- Department of Environmental Toxicology, University of California-Davis College of Agricultural and Environmental Sciences, One Shields Avenue, Davis, CA 95616 USA
- Integrative Genetics and Genomics Graduate Group, University of California-Davis, Davis, CA USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Katherine E. Manz
- School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 USA
| | - Kurt D. Pennell
- School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California-Davis College of Agricultural and Environmental Sciences, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
103
|
Afonso MS, Verma N, van Solingen C, Cyr Y, Sharma M, Perie L, Corr EM, Schlegel M, Shanley LC, Peled D, Yoo JY, Schmidt AM, Mueller E, Moore KJ. MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging. Arterioscler Thromb Vasc Biol 2021; 41:1360-1373. [PMID: 33657886 PMCID: PMC8011606 DOI: 10.1161/atvbaha.120.315798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Milessa Silva Afonso
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Narendra Verma
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Yannick Cyr
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Monika Sharma
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Luce Perie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Emma M. Corr
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Martin Schlegel
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Lianne C. Shanley
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Daniel Peled
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Jenny Y. Yoo
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| | - Ann Marie Schmidt
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Elisabetta Mueller
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, 10016, USA
- NYU Cardiovascular Research Center, New York University School of Medicine, New York, 10016, USA
| |
Collapse
|
104
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
105
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
106
|
Latorre-Muro P, O'Malley KE, Bennett CF, Perry EA, Balsa E, Tavares CDJ, Jedrychowski M, Gygi SP, Puigserver P. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab 2021; 33:598-614.e7. [PMID: 33592173 PMCID: PMC7962155 DOI: 10.1016/j.cmet.2021.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
107
|
Yang X, Liu Q, Li Y, Ding Y, Zhao Y, Tang Q, Wu T, Chen L, Pu S, Cheng S, Zhang J, Zhang Z, Huang Y, Li R, Zhao Y, Zou M, Shi X, Jiang W, Wang R, He J. Inhibition of the sodium-glucose co-transporter SGLT2 by canagliflozin ameliorates diet-induced obesity by increasing intra-adipose sympathetic innervation. Br J Pharmacol 2021; 178:1756-1771. [PMID: 33480065 DOI: 10.1111/bph.15381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces hypoglycaemia by increasing urinary glucose excretion and increasing the use of fat. However, the underlying mechanism is poorly understood. This study was aimed to determine the effects of canagliflozin, a selective SGLT2 inhibitor, on diet-induced obesity and the underlying mechanism(s). EXPERIMENTAL APPROACH Adult C57BL/6J male mice were fed with a standard chow diet or high-fat diet supplemented with vehicle or canagliflozin. Whole body energy expenditure was monitored by metabolic cages, noradrenaline levels were measured by HPLC, glucose uptake was measured by PET/CT, and mRNA and protein expression were measured by RT-PCR and western blotting analysis. KEY RESULTS Mice treated with canagliflozin were resistant to high-fat diet-induced obesity and its metabolic consequences. Canagliflozin treatment decreased fat mass and increased energy expenditure via increasing thermogenesis and lipolysis in adipose tissue. Mechanistically, SGLT2 inhibition by canagliflozin elevated adipose sympathetic innervation and fat mobilization via a β3 -adrenoceptor-cAMP-PKA signalling pathway. Finally, we showed that canagliflozin improved insulin resistance and hepatic steatosis in mice fed with a high-fat diet. CONCLUSIONS AND IMPLICATIONS Chronic inhibition of SGLT2 increased energy consumption by increasing intra-adipose sympathetic innervation to counteract diet-induced obesity. The present study reveals a new therapeutic function for SGLT2 inhibitors in regulating energy homeostasis.
Collapse
Affiliation(s)
- Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ding
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yan Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shihai Cheng
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiongjie Shi
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Cardiology, Yangpu Hospital, Tongji University, Shanghai, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
108
|
Bugler-Lamb AR, Hasib A, Weng X, Hennayake CK, Lin C, McCrimmon RJ, Stimson RH, Ashford MLJ, Wasserman DH, Kang L. Adipocyte integrin-linked kinase plays a key role in the development of diet-induced adipose insulin resistance in male mice. Mol Metab 2021; 49:101197. [PMID: 33647469 PMCID: PMC8027775 DOI: 10.1016/j.molmet.2021.101197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Increased deposition of the extracellular matrix (ECM) in adipose tissue (AT) during obesity contributes to insulin resistance. The integrin receptors transmit changes in the extracellular environment causing corresponding intracellular adaptations. Integrin-linked kinase (ILK), an adaptor protein, is a central hub for intracellular signaling of integrins. This study determined the role of ILK in adipose function and insulin resistance. Methods The pathogenic role of ILK in obesity and insulin resistance was studied in human adipose tissue and adipocyte-specific ILK-deficient mice (ILKlox/loxAdCre). ILKlox/loxAdCre mice together with wild-type littermates (ILKlox/lox) were fed a chow diet or 60% high-fat (HF) diet for 16 weeks. In vivo insulin sensitivity was determined by hyperinsulinemic-euglycemic clamps. Results AT ILK expression was increased by HF diet feeding in mice and increased in visceral fat of morbidly obese humans. The HF-fed ILKlox/loxAdCre mice displayed reduced fat mass and improved glucose tolerance relative to the HF-fed ILKlox/lox mice. During a hyperinsulinemic-euglycemic clamp, the HF-fed ILKlox/loxAdCre mice exhibited partially improved insulin resistance in AT. Lipolysis was suppressed to a greater extent by insulin and glucose uptake in brown AT (BAT) increased. Increased inhibition of lipolysis may have been attributed to increased vascularization in white AT, while increased glucose uptake in BAT was associated with increased Akt phosphorylation and P38/JNK dephosphorylation. Notably, AT insulin sensitivity in lean mice was not affected by ILK deletion. Moreover, reduced fat mass in the HF-fed ILKlox/loxAdCre mice may have been attributed to decreased free fatty acid uptake into adipocytes via the downregulation of CD36 gene expression. Consistent with the results in the mice, knockdown and knockout of ILK in 3T3-L1 cells decreased lipid accumulation and CD36 gene expression during adipogenesis. Conclusions These data show that adipocyte ILK is important for regulating HF diet-mediated insulin resistance in AT in a manner consistent with AT function. ILK protein increased in visceral adipose tissue of obese humans and mice. Mice lacking adipocyte ILK had less fat and improved glucose tolerance in obesity. Adipocyte ILK deletion improved anti-lipolytic action of insulin in obese mice. Adipocyte ILK deletion stimulated brown adipose tissue glucose uptake in obese mice.
Collapse
Affiliation(s)
- Aimée R Bugler-Lamb
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Annie Hasib
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Chandani K Hennayake
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Chenshi Lin
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Roland H Stimson
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Michael L J Ashford
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
109
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, Wang X, Wang J, Pan X, Liao X, Zhu Y, Chen Q. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep 2021; 22:e50629. [PMID: 33554448 DOI: 10.15252/embr.202050629] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mitophagy is an essential cellular autophagic process that selectively removes superfluous and damaged mitochondria, and it is coordinated with mitochondrial biogenesis to fine tune the quantity and quality of mitochondria. Coordination between these two opposing processes to maintain the functional mitochondrial network is of paramount importance for normal cellular and organismal metabolism. However, the underlying mechanism is not completely understood. Here we report that PGC-1α and nuclear respiratory factor 1 (NRF1), master regulators of mitochondrial biogenesis and metabolic adaptation, also transcriptionally upregulate the gene encoding FUNDC1, a previously characterized mitophagy receptor, in response to cold stress in brown fat tissue. NRF1 binds to the classic consensus site in the promoter of Fundc1 to upregulate its expression and to enhance mitophagy through its interaction with LC3. Specific knockout of Fundc1 in BAT results in reduced mitochondrial turnover and accumulation of functionally compromised mitochondria, leading to impaired adaptive thermogenesis. Our results demonstrate that FUNDC1-dependent mitophagy is directly coupled with mitochondrial biogenesis through the PGC-1α/NRF1 pathway, which dictates mitochondrial quantity, quality, and turnover and contributes to adaptive thermogenesis.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Ta
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
110
|
Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021; 184:26-39. [PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, 94300, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
111
|
Lee DH, Park SH, Lee E, Seo HD, Ahn J, Jang YJ, Ha TY, Im SS, Jung CH. Withaferin A exerts an anti-obesity effect by increasing energy expenditure through thermogenic gene expression in high-fat diet-fed obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153457. [PMID: 33444942 DOI: 10.1016/j.phymed.2020.153457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. PURPOSE To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. METHODS C57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. RESULTS Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. CONCLUSION WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.
Collapse
Affiliation(s)
- Da-Hye Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Hyun Park
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eunyoung Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Hyo-Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Tae-Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
112
|
Cho YH, Ku CR, Choi YS, Lee HJ, Lee EJ. Danshen Extracts Prevents Obesity and Activates Mitochondrial Function in Brown Adipose Tissue. Endocrinol Metab (Seoul) 2021; 36:185-195. [PMID: 33677939 PMCID: PMC7937848 DOI: 10.3803/enm.2020.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Danshen has been widely used in oriental medicine to improve body function. The purpose of this study is to investigate the effect of water-soluble Danshen extract (DE) on weight loss and on activation proteins involved in mitochondrial biogenesis in brown adipose tissue (BAT) in obese mice. METHODS BAT was isolated from 7-week-old male Sprague-Dawley rats, and expression of proteins related to mitochondrial biogenesis was confirmed in both brown preadipocytes and mature brown adipocytes treated with DE. For the in vivo study, low-density lipoprotein receptor knock out mice were divided into three groups and treated for 17 weeks with: standard diet; high fat diet (HFD); HFD+DE. Body weight was measured every week, and oral glucose tolerance test was performed after DE treatment in streptozotocin-induced diabetic mice. To observe the changes in markers related to thermogenesis and adipogenesis in the BAT, white adipose tissue (WAT) and liver of experimental animals, tissues were removed and immediately frozen in liquid nitrogen. RESULTS DE increased the expression of uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in brown preadipocytes, and also promoted the brown adipocyte differentiation and mitochondrial function in the mature brown adipocytes. Reactive oxygen species production in brown preadipocytes was increased depending on the concentration of DE. DE activates thermogenesis in BAT and normalizes increased body weight and adipogenesis in the liver due to HFD. Browning of WAT was increased in WAT of DE treatment group. CONCLUSION DE protects against obesity and activates mitochondrial function in BAT.
Collapse
Affiliation(s)
- Yoon Hee Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Suk Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeon Jeong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
113
|
Zhou H, Peng X, Hu J, Wang L, Luo H, Zhang J, Zhang Y, Li G, Ji Y, Zhang J, Bai J, Liu M, Zhou Z, Liu F. DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production. Nat Commun 2021; 12:326. [PMID: 33436607 PMCID: PMC7804451 DOI: 10.1038/s41467-020-20665-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/10/2020] [Indexed: 01/17/2023] Open
Abstract
Adipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.
Collapse
MESH Headings
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Diet, High-Fat
- Down-Regulation/drug effects
- Energy Metabolism/drug effects
- Feeding Behavior
- Glutathione Transferase/deficiency
- Glutathione Transferase/metabolism
- Insulin Resistance
- Interferon-gamma/administration & dosage
- Interferon-gamma/biosynthesis
- Interferon-gamma/pharmacology
- Male
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Obesity/genetics
- Obesity/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/metabolism
- Mice
Collapse
Affiliation(s)
- Haiyan Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Xinyi Peng
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Jie Hu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Liwen Wang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Junyan Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yacheng Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Guobao Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Juli Bai
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
114
|
Sun B, Hayashi M, Kudo M, Wu L, Qin L, Gao M, Liu T. Madecassoside Inhibits Body Weight Gain via Modulating SIRT1-AMPK Signaling Pathway and Activating Genes Related to Thermogenesis. Front Endocrinol (Lausanne) 2021; 12:627950. [PMID: 33767670 PMCID: PMC7985537 DOI: 10.3389/fendo.2021.627950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pre-clinical research studies have shown that Madecassoside (MA) has favorable therapeutic effects on arthritis, acne, vitiligo and other diseases. However, the effects of MA on obesity have not yet been studied. This study mainly aimed to investigate the effects of MA in protecting against obesity and its underlying mechanism in reducing obesity. METHODS Obese diabetic KKay/TaJcl mice model was adopted to the study. The body weight of all animals was recorded daily, and the blood glucose, blood lipid, and serum aminotransferase levels were examined, respectively. The expression of P-AMPK, SIRT1, P-LKB1, P-ACC, and P-HSL in abdominal fat, mesenteric fat, and epididymal fat was measured by western blotting, and the levels of PPARα, CPT1a, PGC-1α, UCP-1, Cidea, Cox7a1, and Cox8b were examined by real-time quantitative PCR (RT-qPCR). RESULTS The results revealed that the body weight of the mice in MA group was significantly reduced, and the body mass index (BMI) showed significant difference between the two groups after 8 weeks of MA treatment. Further research revealed that it affected the mesenteric fat and epididymis fat by activating SIRT1/AMPK signaling pathway, and then promoted fatty acid oxidation of epididymal fat (PPARα ↑, CPT1a↑, and PGC-1α↑). Last but not the least, it also promoted the expression of UCP-1 and stimulated thermoregulatory genes (Cidea, Cox7a1, and Cox8b) in brown fat and mesenteric fat. CONCLUSIONS Taken together, these findings suggest that MA can inhibit the weight gain in obese diabetic mice, and reduce triglyceride levels, inhibit lipogenesis of mesenteric fat, promote epididymal fat lipolysis and fatty acid oxidation. Furthermore, MA treatment might promote mesenteric fat browning and activate mitochondrial function in brown fat as well as mesenteric fat.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
- Institute for Biosciences, Mukogawa Women’s University, Hyogo, Japan
- *Correspondence: Ming Gao, ; Tonghua Liu,
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ming Gao, ; Tonghua Liu,
| |
Collapse
|
115
|
Pilkington AC, Paz HA, Wankhade UD. Beige Adipose Tissue Identification and Marker Specificity-Overview. Front Endocrinol (Lausanne) 2021; 12:599134. [PMID: 33776911 PMCID: PMC7996049 DOI: 10.3389/fendo.2021.599134] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue (AT) is classified based on its location, physiological and functional characteristics. Although there is a clear demarcation of anatomical and molecular features specific to white (WAT) and brown adipose tissue (BAT), the factors that uniquely differentiate beige AT (BeAT) remain to be fully elaborated. The ubiquitous presence of different types of AT and the inability to differentiate brown and beige adipocytes because of similar appearance present a challenge when classifying them one way or another. Here we will provide an overview of the latest advances in BeAT, BAT, and WAT identification based on transcript markers described in the literature. The review paper will highlight some of the difficulties these markers pose and will offer new perspectives on possible transcript-specific identification of BeAT. We hope that this will advance the understanding of the biology of different ATs. In addition, concrete strategies to distinguish different types of AT may be relevant to track the efficacy and mechanisms around interventions aimed to improve metabolic health and thwart excessive weight gain.
Collapse
Affiliation(s)
- Anna-Claire Pilkington
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Henry A. Paz
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Umesh D. Wankhade
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Umesh D. Wankhade,
| |
Collapse
|
116
|
Shan Y, Zhang S, Gao B, Liang S, Zhang H, Yu X, Zhao J, Ye L, Yang Q, Shang W. Adipose Tissue SIRT1 Regulates Insulin Sensitizing and Anti-Inflammatory Effects of Berberine. Front Pharmacol 2020; 11:591227. [PMID: 33390968 PMCID: PMC7774030 DOI: 10.3389/fphar.2020.591227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), which is an active component of Coptis chinensis Franch, has been reported to improve glucose metabolism and insulin resistance in animal and human studies, predominantly via activation of the 5′-adenosine monophosphate kinase (AMPK) pathway and suppression of the inflammation response. However, the mechanisms underlying the effects of BBR on AMPK and inflammation remain unclear. In this present study, we found that BBR upregulated SIRT1 expression in 3T3L-1 adipocytes and adipose tissue. Inhibition of SIRT1 blunted the BBR-induced increase in glucose consumption and uptake in adipocytes. The BBR-induced activation of the AMPK pathway and AKT phosphorylation in adipocytes and adipose tissue were also attenuated by inhibition or knockout of Sirt1. The BBR-induced improvement of systemic insulin sensitivity was impaired by Sirt1 knockout in HFD-induced obese mice. The suppressing effects of BBR on systemic and local inflammatory responses, such as serum concentrations and expression of inflammatory cytokines, phosphorylation of c-Jun N-terminal kinase (JNK) and IKKβ, and the accumulation of F4/80-positive macrophages in adipose tissue were also attenuated in Sirt1 knockout mice. The BBR-induced decrease in PGC-1α acetylation was reversed by inhibition or knockout of Sirt1 in adipocytes and adipose tissue. Together, these results indicate that adipose tissue SIRT1 is a key regulator of the insulin sensitizing and anti-inflammatory effects of BBR, which contributes to the improvement of metabolic dysregulation.
Collapse
Affiliation(s)
- Yun Shan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuchen Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Gao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Liang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lifang Ye
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Yang
- Department of Medicine and Physiology, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California at Irvine, Irvine, CA, United States
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
117
|
Cheng H, Pablico SJ, Lee J, Chang JS, Yu S. Zinc Finger Transcription Factor Zbtb16 Coordinates the Response to Energy Deficit in the Mouse Hypothalamus. Front Neurosci 2020; 14:592947. [PMID: 33335471 PMCID: PMC7736175 DOI: 10.3389/fnins.2020.592947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
The central nervous system controls feeding behavior and energy expenditure in response to various internal and external stimuli to maintain energy balance. Here we report that the newly identified transcription factor zinc finger and BTB domain containing 16 (Zbtb16) is induced by energy deficit in the paraventricular (PVH) and arcuate (ARC) nuclei of the hypothalamus via glucocorticoid (GC) signaling. In the PVH, Zbtb16 is expressed in the anterior half of the PVH and co-expressed with many neuronal markers such as corticotropin-releasing hormone (Crh), thyrotropin-releasing hormone (Trh), oxytocin (Oxt), arginine vasopressin (Avp), and nitric oxide synthase 1 (Nos1). Knockdown (KD) of Zbtb16 in the PVH results in attenuated cold-induced thermogenesis and improved glucose tolerance without affecting food intake. In the meantime, Zbtb16 is predominantly expressed in agouti-related neuropeptide/neuropeptide Y (Agrp/Npy) neurons in the ARC and its KD in the ARC leads to reduced food intake. We further reveal that chemogenetic stimulation of PVH Zbtb16 neurons increases energy expenditure while that of ARC Zbtb16 neurons increases food intake. Taken together, we conclude that Zbtb16 is an important mediator that coordinates responses to energy deficit downstream of GCs by contributing to glycemic control through the PVH and feeding behavior regulation through the ARC, and additionally reveal its function in controlling energy expenditure during cold-evoked thermogenesis via the PVH. As a result, we hypothesize that Zbtb16 may be involved in promoting weight regain after weight loss.
Collapse
Affiliation(s)
- Helia Cheng
- ’Department of Neurobiology of Nutrition and Metabolism, Louisiana State University System, Baton Rouge, LA, United States
| | - Schuyler J. Pablico
- ’Department of Neurobiology of Nutrition and Metabolism, Louisiana State University System, Baton Rouge, LA, United States
| | - Jisu Lee
- Department of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Ji Suk Chang
- Department of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Sangho Yu
- ’Department of Neurobiology of Nutrition and Metabolism, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
118
|
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson's Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11:1608-1622. [PMID: 33269110 PMCID: PMC7673849 DOI: 10.14336/ad.2020.0216] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Silence information regulator 1 (SIRT1), a member of the sirtuin family, targets histones and many non-histone proteins and participates in various physiological functions. The enzymatic activity of SIRT1 is decreased in patients with Parkinson’s disease (PD), which may reduce their ability to resist neuronal damage caused by various neurotoxins. As far as we know, SIRT1 can induce autophagy by regulating autophagy related proteins such as AMP-activated protein kinase, light chain 3, mammalian target of rapamycin, and forkhead transcription factor 1. Furthermore, SIRT1 can regulate mitochondrial function and inhibit oxidative stress mainly by maintaining peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a deacetylated state and thus maintaining a constant level of PGC-1α. Other studies have demonstrated that SIRT1 may play a role in the pathophysiology of PD by regulating neuroinflammation. SIRT1 deacetylases nuclear factor-kappa B and thus reduces its transcriptional activity, inhibits inducible nitric oxide synthase expression, and decreases tumor necrosis factor-alpha and interleukin-6 levels. SIRT1 can also upregulate heat shock protein 70 by deacetylating heat shock factor 1 to increase the degradation of α-synuclein oligomers. Few studies have focused on the relationship between SIRT1 single nucleotide polymorphisms and PD risk, so this topic requires further research. Based on the neuroprotective effects of SIRT1 on PD, many in vitro and in vivo experiments have demonstrated that some SIRT1 activators, notably resveratrol, have potential neuroprotective effects against dopaminergic neuronal damage caused by various neurotoxins. Thus, SIRT1 plays a critical role in PD development and might be a potential target for PD therapy.
Collapse
Affiliation(s)
- Xuan Li
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Feng
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xi-Xi Wang
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daniel Truong
- 2The Truong Neurosciences Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA.,3Department of Neurosciences and Psychiatry, University of California, Riverside, CA, USA
| | - Yun-Cheng Wu
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
119
|
Fan H, Zhang Y, Zhang J, Yao Q, Song Y, Shen Q, Lin J, Gao Y, Wang X, Zhang L, Zhang Y, Liu P, Zhao J, Cui Q, Li JZ, Chang Y. Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat. Diabetes 2020; 69:2603-2618. [PMID: 32994275 DOI: 10.2337/db19-1153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/16/2020] [Indexed: 11/13/2022]
Abstract
Promoting development and function of brown and beige fat may represent an attractive treatment of obesity. In the current study, we show that fat Klf9 expression is markedly induced by cold exposure and a β-adrenergic agonist. Moreover, Klf9 expression levels in human white adipose tissue (WAT) are inversely correlated with adiposity, and Klf9 overexpression in primary fat cells stimulates cellular thermogenesis, which is Ucp1 dependent. Fat-specific Klf9 transgenic mice gain less weight and have smaller fat pads due to increased thermogenesis of brown and beige fat. Moreover, Klf9 transgenic mice displayed lower fasting blood glucose levels and improved glucose tolerance and insulin sensitivity under the high-fat diet condition. Conversely, Klf9 mutation in brown adipocytes reduces the expression of thermogenic genes, causing a reduction in cellular respiration. Klf9-mutant mice exhibited obesity and cold sensitivity due to impairments in the thermogenic function of fat. Finally, fat Klf9 deletion inhibits the β3 agonist-mediated induction of WAT browning and brown adipose tissue thermogenesis. Mechanistically, cold-inducible Klf9 stimulates expression of Pgc1α, a master regulator of fat thermogenesis, by a direct binding to its gene promoter region, subsequently promoting energy expenditure. The current study reveals a critical role for KLF9 in mediating thermogenesis of brown and beige fat.
Collapse
Affiliation(s)
- Heng Fan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhang
- Department of Basic Medicine, School of Medicine, Shihezi University, Xinjiang, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanxu Gao
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiuyun Wang
- Key Laboratory of Rare Metabolic Disease, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinliang Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - John Zhong Li
- Key Laboratory of Rare Metabolic Disease, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
120
|
Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020; 9:E2544. [PMID: 33256005 PMCID: PMC7760380 DOI: 10.3390/cells9122544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) hold great potential as a regenerative therapeutic but have met numerous challenges in treating systemic muscle diseases. Muscle stem cell-derived extracellular vesicles (MuSC-EVs) may overcome these limitations. We assessed the number and size distribution of extracellular vesicles (EVs) released by MuSCs ex vivo, determined the extent to which MuSC-EVs deliver molecular cargo to myotubes in vitro, and quantified MuSC-EV-mediated restoration of mitochondrial function following oxidative injury. MuSCs released an abundance of EVs in culture. MuSC-EVs delivered protein cargo into myotubes within 2 h of incubation. Fluorescent labeling of intracellular mitochondria showed co-localization of delivered protein and mitochondria. Oxidatively injured myotubes demonstrated a significant decline in maximal oxygen consumption rate and spare respiratory capacity relative to untreated myotubes. Remarkably, subsequent treatment with MuSC-EVs significantly improved maximal oxygen consumption rate and spare respiratory capacity relative to the myotubes that were damaged but received no subsequent treatment. Surprisingly, MuSC-EVs did not affect mitochondrial function in undamaged myotubes, suggesting the cargo delivered is able to repair but does not expand the existing mitochondrial network. These data demonstrate that MuSC-EVs rapidly deliver proteins into myotubes, a portion of which co-localizes with mitochondria, and reverses mitochondria dysfunction in oxidatively-damaged myotubes.
Collapse
Affiliation(s)
- Kyle T. Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Brittany E. Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Andrew D. Mitchell
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, 2356G Kildee Hall, Ames, IA 50011, USA;
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| |
Collapse
|
121
|
Salazar-Torres FJ, Medina-Perez M, Melo Z, Mendoza-Cerpa C, Echavarria R. Urinary expression of long non-coding RNA TUG1 in non-diabetic patients with glomerulonephritides. Biomed Rep 2020; 14:17. [PMID: 33365127 DOI: 10.3892/br.2020.1393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Metabolic alterations serve a significant role in the pathogenesis of kidney disease. Long non-coding RNA (lncRNA) taurine upregulated gene 1 (TUG1) is a known regulator of podocyte health and mitochondrial biogenesis. Although TUG1 protects against podocyte loss in models of diabetic nephropathy, it is unknown if urinary TUG1 expression is associated with clinical and histopathological findings in non-diabetic patients diagnosed with glomerulonephritides. In the present study, the expression of TUG1, podocyte-specific markers (nephrin and podocin) and mitochondrial biogenesis-associated mRNAs (transcription factor A mitochondrial, cytochrome C oxidase subunit 5A and peroxisome proliferator-activated receptor γ coactivator 1α) were examined in urinary sediment of non-diabetic patients with biopsy-confirmed glomerulonephritides and healthy controls. Urinary expression of TUG1 was significantly lower in patients with glomerulonephritides, particularly those diagnosed with Focal Segmental Glomerulosclerosis (FSGS). Furthermore, TUG1 levels were associated with urinary expression of podocyte-specific markers and mRNAs associated with mitochondrial biogenesis. Loss of TUG1 expression in urinary sediment was strongly associated with FSGS, highlighting the potential of this lncRNA and its mitochondrial biogenesis-associated targets as non-invasive biomarkers of assessing podocytopathy.
Collapse
Affiliation(s)
- Fernando Javier Salazar-Torres
- Departamento de Nefrología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México.,Unidad de Medicina Familiar con Unidad Médica de Atención Ambulatoria UMF/UMAA 39, Instituto Mexicano del Seguro Social, Matamoros, Tamaulipas 87344, México
| | - Miguel Medina-Perez
- Departamento de Nefrología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Zesergio Melo
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Claudia Mendoza-Cerpa
- Departamento de Patología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Raquel Echavarria
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| |
Collapse
|
122
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
123
|
Hossain M, Imran KM, Rahman MS, Yoon D, Marimuthu V, Kim YS. Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes. BMB Rep 2020. [PMID: 31401979 PMCID: PMC7118353 DOI: 10.5483/bmbrep.2020.53.3.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation–related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene–silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element–binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation.
Collapse
Affiliation(s)
- Monir Hossain
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Khan Mohammad Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dahyeon Yoon
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Vignesh Marimuthu
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
124
|
Abstract
Ubiquitin C-terminal Hydrolase L1 (UCHL1) is a deubiquitinating enzyme that was originally identified in neurons. Our recent study showed that UCHL1 was expressed in C2C12 myoblast cells and mouse skeletal muscle. Here we report that in mouse skeletal muscle, UCHL1 is primarily expressed in oxidative muscle fibers. Skeletal muscle specific gene knockout (smKO) of UCHL1 in mice reduced oxidative activity in skeletal muscle measured by SDH staining. The in situ muscle contraction test revealed that gastrocnemius muscle from UCHL1 smKO mice was more prone to fatigue in response to the repetitive stimulation. This data suggests that UCHL1 plays a role in maintenance of muscle oxidative metabolism. Moreover, UCHL1 smKO caused a significant reduction in key proteins that are involved in mitochondrial oxidative phosphorylation in soleus muscles, suggesting that UCHL1 may be involved in regulation of mitochondrial content and function. Immunostaining showed the co-localization of UCHL1 and mitochondrial marker VDAC in skeletal muscle. Mitochondrial fractionation assay revealed that, although UCHL1 was primarily present in the cytosolic fraction, a low level of UCHL1 protein was present in mitochondrial fraction. The level of phosphorylation of AMPKα, a master regulator of mitochondrial biogenesis, were unchanged in UCHL1 smKO muscle. On the other hand, immunoprecipitation from soleus muscle sample indicated the interaction between UCHL1 and HSP60, a chaperon protein that is involved in mitochondrial protein transport. There was a trend of downregulation of HSP60 in UCHL1 smKO muscle. Overall, our data suggests UCHL1 is a novel regulator of mitochondrial function and oxidative activity in skeletal muscle.
Collapse
|
125
|
Wang L, Sinnott-Armstrong N, Wagschal A, Wark AR, Camporez JP, Perry RJ, Ji F, Sohn Y, Oh J, Wu S, Chery J, Moud BN, Saadat A, Dankel SN, Mellgren G, Tallapragada DSP, Strobel SM, Lee MJ, Tewhey R, Sabeti PC, Schaefer A, Petri A, Kauppinen S, Chung RT, Soukas A, Avruch J, Fried SK, Hauner H, Sadreyev RI, Shulman GI, Claussnitzer M, Näär AM. A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell 2020; 183:684-701.e14. [PMID: 33058756 PMCID: PMC8092355 DOI: 10.1016/j.cell.2020.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.
Collapse
Affiliation(s)
- Lifeng Wang
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,These authors contributed equally,Present address: Cardiovascular & Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Alexandre Wagschal
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Abigail R. Wark
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao-Paulo Camporez
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA,Present address: Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo 14049-90, Brazil
| | - Rachel J. Perry
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yoojin Sohn
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vanderbilt University, Nashville, TN 37235, USA
| | - Justin Oh
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Su Wu
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Chery
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bahareh Nemati Moud
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alham Saadat
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Sophie Madlen Strobel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Mi-Jeong Lee
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Ryan Tewhey
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Present address: The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School ofMedicine atMount Sinai, New York, New York 10029, USA
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Raymond T. Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Soukas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Susan K. Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Diabetes, Obesity and Metabolism Institute, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Hans Hauner
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gerald I. Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA,Lead Contact,Correspondence: https://doi.org/10.1016/j.cell.2020.09.017
| |
Collapse
|
126
|
Embryonic exposure to hyper glucocorticoids suppresses brown fat development and thermogenesis via REDD1. Sci Bull (Beijing) 2020; 66:478-489. [PMID: 33936858 DOI: 10.1016/j.scib.2020.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal stress during pregnancy is prevailing worldwide, which exposes fetuses to intrauterine hyper glucocorticoids (GC), programming offspring to obesity and metabolic diseases. Despite the importance of brown adipose tissue (BAT) in maintaining long-term metabolic health, impacts of prenatal hyper GC on postnatal BAT thermogenesis and underlying regulations remain poorly defined. Pregnant mice were administrated with synthetic GC dexamethasone (DEX) at levels comparable to fetal GC exposure of stressed mothers. Prenatal GC exposure dose-dependently reduced BAT thermogenic activity, contributing to lower body temperature and higher mortality of neonates; such difference was abolished under thermoneutrality, underscoring BAT deficiency was the major contributor to adverse changes in postnatal thermogenesis due to excessive GC. Prenatal GC exposure highly activated Redd1 expression and reduced Ppargc1a transcription from the alternative promoter (Ppargc1a-AP) in neonatal BAT. During brown adipocyte differentiation, ectopic Redd1 expression reduced Ppargc1a-AP expression and mitochondrial biogenesis; and the inhibitory effects of GC on mitochondrial biogenesis and Ppargc1a-AP expression were blocked by Redd1 ablation. Redd1 reduced protein kinase A phosphorylation and suppressed cyclic adenosine monophosphate (cAMP) -responsive element-binding protein (CREB) binding to the cAMP regulatory element (CRE) in Ppargc1a-AP promoter, leading to Ppargc1a-AP inactivation. In summary, excessive maternal GC exposure during pregnancy dysregulates Redd1-Ppargc1a-AP axis, which impairs fetal BAT development, hampering postnatal thermogenic adaptation and metabolic health of offspring.
Collapse
|
127
|
da Silva JT, Cella PS, Testa MTDJ, Perandini LA, Festuccia WT, Deminice R, Chimin P. Mild-cold water swimming does not exacerbate white adipose tissue browning and brown adipose tissue activation in mice. J Physiol Biochem 2020; 76:663-672. [PMID: 33051822 DOI: 10.1007/s13105-020-00771-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
The present study investigated the effects of swimming physical training either thermoneutral or below thermoneutral water temperature on white (WAT) and brown (BAT) adipose tissue metabolism, morphology, and function. C57BL/6J male mice (n = 40; weight 25.3 ± 0.1 g) were divided into control (CT30), cold control (CT20), trained (TR30), and cold trained (TR20) groups. Swimming training consisted of 30-min exercise at 30°C (control) or 20°C (cold) water temperature. After 8-week training, adipose tissues were excised and inguinal (ingWAT) and BAT were processed for histology, lipolysis, and protein contents of total OXPHOS, PGC1α, and UCP1 by western blotting analysis. Swimming training reduced body weight gain independently of water temperature (P < 0.05). ingWAT mass was decreased for TR30 in comparison to other groups (P < 0.05), while for BAT, there was a significant increase in CT20 in relation to CT30, and both trained groups were significantly increased in relation to control groups (P < 0.05). ingWAT mean adipocyte area was smaller for trained groups, and seemed to present multilocular adipocytes. Lipolytic activity and protein content of UCP1, PGC1α, and mitochondrial markers were increased in trained groups for ingWAT (P < 0.05), independent of water temperature (P > 0.05), and these patterns were not observed for BAT (P > 0.05). Our findings suggest that mild-cold water exposure and swimming physical exercise seem to, independently, promote browning in ingWAT with no effects on BAT; however, the association of exercise and mild-cold water did not exacerbate these effects.
Collapse
Affiliation(s)
- Jhonattan Toniatto da Silva
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil
| | - Paola Sanches Cella
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil
| | - Mayra Tardelli de Jesus Testa
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil
| | - Luiz Augusto Perandini
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Rafael Deminice
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Cx Postal 6001, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
128
|
Lugo Leija HA, Velickovic K, Bloor I, Sacks H, Symonds ME, Sottile V. Cold-induced beigeing of stem cell-derived adipocytes is not fully reversible after return to normothermia. J Cell Mol Med 2020; 24:11434-11444. [PMID: 32902117 PMCID: PMC7576274 DOI: 10.1111/jcmm.15749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023] Open
Abstract
Beige adipocytes possess the morphological and biochemical characteristics of brown adipocytes, including the mitochondrial uncoupling protein (UCP)1. Mesenchymal stem cells (MSCs) are somatic multipotent progenitors which differentiate into lipid-laden adipocytes. Induction of MSC adipogenesis under hypothermic culture conditions (ie 32°C) promotes the appearance of a beige adipogenic phenotype, but the stability of this phenotypic switch after cells are returned to normothermic conditions of 37°C has not been fully examined. Here, cells transferred from 32°C to 37°C retained their multilocular beige-like morphology and exhibited an intermediate gene expression profile, with both beige-like and white adipocyte characteristics while maintaining UCP1 protein expression. Metabolic profile analysis indicated that the bioenergetic status of cells initially differentiated at 32°C adapted post-transfer to 37°C, showing an increase in mitochondrial respiration and glycolysis. The ability of the transferred cells to respond under stress conditions (eg carbonyl cyanide-4-phenylhydrazone (FCCP) treatment) demonstrated higher functional capacity of enzymes involved in the electron transport chain and capability to supply substrate to the mitochondria. Overall, MSC-derived adipocytes incubated at 32°C were able to remain metabolically active and retain brown-like features after 3 weeks of acclimatization at 37°C, indicating these phenotypic characteristics acquired in response to environmental conditions are not fully reversible.
Collapse
Affiliation(s)
| | - Ksenija Velickovic
- Wolfson STEM CentreSchool of MedicineThe University of NottinghamNottinghamUK
| | - Ian Bloor
- The Early Life Research UnitDivision of Child Health, Obstetrics and GynaecologyThe University of NottinghamNottinghamUK
| | - Harold Sacks
- VA Endocrinology and Diabetes DivisionDepartment of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Michael E. Symonds
- The Early Life Research UnitDivision of Child Health, Obstetrics and GynaecologyThe University of NottinghamNottinghamUK
- Nottingham Digestive Disease Centre and Biomedical Research CentreSchool of MedicineThe University of NottinghamNottinghamUK
| | - Virginie Sottile
- Wolfson STEM CentreSchool of MedicineThe University of NottinghamNottinghamUK
- Department of Molecular MedicineThe University of PaviaPaviaItaly
| |
Collapse
|
129
|
Tapia PJ, Figueroa AM, Eisner V, González-Hódar L, Robledo F, Agarwal AK, Garg A, Cortés V. Absence of AGPAT2 impairs brown adipogenesis, increases IFN stimulated gene expression and alters mitochondrial morphology. Metabolism 2020; 111:154341. [PMID: 32810486 DOI: 10.1016/j.metabol.2020.154341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biallelic loss of function variants in AGPAT2, encoding 1-acylglycerol-3-phosphate O-acyltransferase 2, cause congenital generalized lipodystrophy type 1, a disease characterized by near total loss of white adipose tissue and metabolic complications. Agpat2 deficient (Agpat2-/-) mice completely lacks both white and interscapular brown adipose tissue (iBAT). The objective of the present study was to characterize the effects of AGPAT2 deficiency in brown adipocyte differentiation. METHODS Preadipocytes obtained from newborn (P0.5) Agpat2-/- and wild type mice iBAT were differentiated into brown adipocytes, compared by RNA microarray, RT-qPCR, High-Content Screening (HCS), western blotting and electron microscopy. RESULTS 1) Differentiated Agpat2-/- brown adipocytes have fewer lipid-laden cells and lower abundance of Pparγ, Pparα, C/ebpα and Pgc1α, both at the mRNA and protein levels, compared those to wild type cells. Prmd16 levels were equivalent in both, Agpat2-/- and wild type, while Ucp1 was only induced in wild type cells, 2) These differences were not due to lower abundance of preadipocytes, 3) Differentiated Agpat2-/- brown adipocytes are enriched in the mRNA abundance of genes participating in interferon (IFN) type I response, whereas genes involved in mitochondrial homeostasis were decreased, 4) Mitochondria in differentiated Agpat2-/- brown adipocytes had altered morphology and lower mass and contacting sites with lipid droplets concomitant with lower levels of Mitofusin 2 and Perlipin 5. CONCLUSION AGPAT2 is necessary for normal brown adipose differentiation. Its absence results in a lower proportion of lipid-laden cells, increased expression of interferon-stimulated genes (ISGs) and alterations in mitochondrial morphology, mass and fewer mitochondria to lipid droplets contacting sites in differentiated brown adipocytes.
Collapse
Affiliation(s)
- Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | - Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
130
|
Mooli RGR, Mukhi D, Chen Z, Buckner N, Ramakrishnan SK. An indispensable role for dynamin-related protein 1 in beige and brown adipogenesis. J Cell Sci 2020; 133:jcs247593. [PMID: 32843579 PMCID: PMC10390025 DOI: 10.1242/jcs.247593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that proper mitochondrial dynamics are critical for adipocyte differentiation and functional thermogenic capacity. We found that the mitochondrial fission protein dynamin-related protein 1 (DRP1, also known as DNML1) is highly expressed in brown adipose tissue compared to expression in white adipose tissue, and these expression levels increase during brown adipocyte differentiation. Our results reveal that the inhibition of DRP1 using mdivi-1 mitigates beige adipocyte differentiation and differentiation-associated mitochondrial biogenesis. We found that DRP1 is essential for the induction of the early-phase beige adipogenic transcriptional program. Intriguingly, inhibition of DRP1 is dispensable following the induction of beige adipogenesis and adipogenesis-associated mitochondrial biogenesis. Altogether, we demonstrate that DRP1 in preadipocytes plays an essential role in beige and brown adipogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhonghe Chen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nia Buckner
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
131
|
Zhang X, Wang X, Yin H, Zhang L, Feng A, Zhang QX, Lin Y, Bao B, Hernandez LL, Shi GP, Liu J. Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Rep 2020; 28:792-803.e4. [PMID: 31315055 DOI: 10.1016/j.celrep.2019.06.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue browning and systemic energy expenditure provide a defense mechanism against obesity and associated metabolic diseases. In high-cholesterol Western diet-fed mice, mast cell (MC) inactivation ameliorates obesity and insulin resistance and improves the metabolic rate, but a direct role of adipose tissue MCs in thermogenesis and browning remains unproven. Here, we report that adrenoceptor agonist norepinephrine-stimulated metabolic rate and subcutaneous adipose tissue (SAT) browning are enhanced in MC-deficient Kitw-sh/w-sh mice and MC-stabilized wild-type mice on a chow diet. MC reconstitution to SAT in Kitw-sh/w-sh mice blocks these changes. Mechanistic studies demonstrate that MC inactivation elevates SAT platelet-derived growth factor receptor A (PDGFRα+) adipocyte precursor proliferation and accelerates beige adipocyte differentiation. Using the tryptophan hydroxylase 1 (TPH1) inhibitor and TPH1-deficient MCs, we show that MC-derived serotonin inhibits SAT browning and systemic energy expenditure. Functional inactivation of MCs or inhibition of MC serotonin synthesis in SAT promotes adipocyte browning and systemic energy metabolism in mice.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Airong Feng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qiu-Xia Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Bao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | - Guo-Ping Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
132
|
Vergnes L, Lin JY, Davies GR, Church CD, Reue K. Induction of UCP1 and thermogenesis by a small molecule via AKAP1/PKA modulation. J Biol Chem 2020; 295:15054-15069. [PMID: 32855239 DOI: 10.1074/jbc.ra120.013322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Strategies to increase energy expenditure are an attractive approach to reduce excess fat storage and body weight to improve metabolic health. In mammals, uncoupling protein-1 (UCP1) in brown and beige adipocytes uncouples fatty acid oxidation from ATP generation in mitochondria and promotes energy dissipation as heat. We set out to identify small molecules that enhance UCP1 levels and activity using a high-throughput screen of nearly 12,000 compounds in mouse brown adipocytes. We identified a family of compounds that increase Ucp1 expression and mitochondrial activity (including un-coupled respiration) in mouse brown adipocytes and human brown and white adipocytes. The mechanism of action may be through compound binding to A kinase anchoring protein (AKAP) 1, modulating its localization to mitochondria and its interaction with protein kinase A (PKA), a known node in the β-adrenergic signaling pathway. In mice, the hit compound increased body temperature, UCP1 protein levels, and thermogenic gene expression. Some of the compound effects on mitochondrial function were UCP1- or AKAP1-independent, suggesting compound effects on multiple nodes of energy regulation. Overall, our results highlight a role for AKAP1 in thermogenesis, uncoupled respiration, and regulation energy balance.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA.
| | - Jason Y Lin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA
| | - Graeme R Davies
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Christopher D Church
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA; Department of Medicine, and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California USA
| |
Collapse
|
133
|
Rahman MS, Imran KM, Hossain M, Lee TJ, Kim YS. Biochanin A induces a brown-fat phenotype via improvement of mitochondrial biogenesis and activation of AMPK signaling in murine C3H10T1/2 mesenchymal stem cells. Phytother Res 2020; 35:920-931. [PMID: 32840919 DOI: 10.1002/ptr.6845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the effect of Biochanin A (BioA), an O-methylated isoflavone on the brown-fat phenotype formation and on the associated thermogenic program including mitochondrial biogenesis and lipolysis in C3H10T1/2 MSCs. Our data demonstrates that Treatment with BioA in an adipogenic differentiation cocktail induced formation of brown-fat-like adipocytes from C3H10T1/2 MSCs without treatment with a known browning inducer (rosiglitazone or T3) at an early stage of differentiation. The formation of brown-fat-like adipocytes by BioA treatment was evidenced by upregulation of key thermogenic markers: Ucp1, Pgc1α, Prdm16, and Pparγ. BioA also increased the expression of beige (Cd137 and Fgf21) and brown (Elovl3 and Zic1)-specific markers. Additionally, BioA treatment promoted mitochondrial biogenesis, judging by the upregulation of genes; Cox8b, Cidea, Dio2, Sirt1, Opa1, and Fis1. BioA treatment increased the amount of mitochondrial DNA and its encoded proteins: oxidative phosphorylation complexes (I-V); this change was associated with high oxygen consumption by C3H10T1/2 MSCs. A small-interfering-RNA-induced gene knockdown and experiments with dorsomorphin-driven competitive inhibition revealed that BioA exerts the thermogenic action via activation of AMPK signaling. Our study shows the mechanism of BioA-induced promotion of a brown-fat phenotype. Nonetheless, clinical research is necessary to validate BioA as a brown-fat-like signature inducer.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea
| | - Khan Mohammad Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea
| | - Monir Hossain
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea.,Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, South Korea
| |
Collapse
|
134
|
Chen YT, Hu Y, Yang QY, Son JS, Liu XD, de Avila JM, Zhu MJ, Du M. Excessive Glucocorticoids During Pregnancy Impair Fetal Brown Fat Development and Predispose Offspring to Metabolic Dysfunctions. Diabetes 2020; 69:1662-1674. [PMID: 32409491 PMCID: PMC7372078 DOI: 10.2337/db20-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Maternal stress during pregnancy exposes fetuses to hyperglucocorticoids, which increases the risk of metabolic dysfunctions in offspring. Despite being a key tissue for maintaining metabolic health, the impacts of maternal excessive glucocorticoids (GC) on fetal brown adipose tissue (BAT) development and its long-term thermogenesis and energy expenditure remain unexamined. For testing, pregnant mice were administered dexamethasone (DEX), a synthetic GC, in the last trimester of gestation, when BAT development is the most active. DEX offspring had glucose, insulin resistance, and adiposity and also displayed cold sensitivity following cold exposure. In BAT of DEX offspring, Ppargc1a expression was suppressed, together with reduced mitochondrial density, and the brown progenitor cells sorted from offspring BAT demonstrated attenuated brown adipogenic capacity. Increased DNA methylation in Ppargc1a promoter had a fetal origin; elevated DNA methylation was also detected in neonatal BAT and brown progenitors. Mechanistically, fetal GC exposure increased GC receptor/DNMT3b complex in binding to the Ppargc1a promoter, potentially driving its de novo DNA methylation and transcriptional silencing, which impaired fetal BAT development. In summary, maternal GC exposure during pregnancy increases DNA methylation in the Ppargc1a promoter, which epigenetically impairs BAT thermogenesis and energy expenditure, predisposing offspring to metabolic dysfunctions.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Yun Hu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Qi-Yuan Yang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Xiang-Dong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
135
|
Sandeman LY, Kang WX, Wang X, Jensen KB, Wong D, Bo T, Gao L, Zhao J, Byrne CD, Page AJ, Proud CG. Disabling MNK protein kinases promotes oxidative metabolism and protects against diet-induced obesity. Mol Metab 2020; 42:101054. [PMID: 32712434 PMCID: PMC7476876 DOI: 10.1016/j.molmet.2020.101054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Diet-driven obesity is increasingly widespread. Its consequences pose major challenges to human health and health care systems. There are MAP kinase-interacting kinases (MNKs) in mice, MNK1 and MNK2. Studies have demonstrated that mice lacking either MNK1 or MNK2 were partially protected against high-fat diet (HFD)-induced weight gain and insulin resistance. The aims of this study were to evaluate the phenotype of mice lacking both MNKs when given an HFD, to assess whether pharmacological inhibition of MNK function also protects against diet-induced obesity (DIO) and its consequences and to probe the mechanisms underlying such protection. Methods Male wild-type (WT) C57Bl6 mice or mice lacking both MNK1 and MNK2 (double knockout, DKO) were fed an HFD or control diet (CD) for up to 16 weeks. In a separate study, WT mice were also given an HFD for 6 weeks, after which half were treated with the recently-developed MNK inhibitor ETC-206 daily for 10 more weeks while continuing an HFD. Metabolites and other parameters were measured, and the expression of selected mRNAs and proteins was assessed. Results MNK-DKO mice were almost completely protected from HFD-induced obesity. Higher energy expenditure (EE) in MNK-DKO mice was observed, which probably reflects the changes in a number of genes or proteins linked to lipolysis, mitochondrial function/biogenesis, oxidative metabolism, and/or ATP consumption. The MNK inhibitor ETC-206 also prevented HFD-induced weight gain, confirming that the activity of the MNKs facilitates weight gain due to excessive caloric consumption. Conclusions Disabling MNKs in mice, either genetically or pharmacologically, strongly prevents weight gain on a calorie-rich diet. This finding likely results from increased energy utilisation, involving greater ATP consumption, mitochondrial oxidative metabolism, and other processes. Knockout of MNK1/MNK2 protects mice against diet-induced obesity. MNK1/2 DKO mice have higher energy expenditure. MNK1/2 DKO increases the expression of genes of lipid and mitochondrial metabolism. Pharmacological inhibition of MNKs has similar effects.
Collapse
Affiliation(s)
- Lauren Y Sandeman
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Wan Xian Kang
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kirk B Jensen
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Derick Wong
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Tao Bo
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia; Shandong-South Australia Joint Laboratory of Metabolic Disease Research, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ling Gao
- Shandong-South Australia Joint Laboratory of Metabolic Disease Research, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Shandong-South Australia Joint Laboratory of Metabolic Disease Research, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Christopher D Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, Hampshire, SO17 1BJ, UK
| | - Amanda J Page
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia; Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, Adelaide, SA, 5000, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
136
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
137
|
Brown adipocyte-derived exosomal miR-132-3p suppress hepatic Srebf1 expression and thereby attenuate expression of lipogenic genes. Biochem Biophys Res Commun 2020; 530:500-507. [PMID: 32595040 DOI: 10.1016/j.bbrc.2020.05.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Recent evidence has revealed a novel signaling mechanism through which brown adipose tissue (BAT)-derived exosomal microRNAs (miRNAs) influence hepatic gene expression. Here, we uncover neuronal control of these miRNAs and identify exosomal miR-132-3p as a regulator of hepatic lipogenesis under cold stress conditions. Norepinephrine, a sympathetic nervous system neurotransmitter mediating cold-induced BAT activation, altered the composition of brown adipocyte (BAC)-derived exosomal miRNAs; among them, miR-132-3p was significantly induced. The isolated BAC-derived exosomes suppressed expression of hepatic Srebf1, a predicted target of miR-132-3p. In an indirect co-culture system, BACs suppressed expression of hepatic Srebf1 and its target lipogenic genes; this effect was not seen with miR-132-3p-inhibited BACs. Srebf1 was experimentally validated as an miR-132-3p target. Cold stimuli consistently induced miR-132-3p expression in BAT and attenuated Srebf1 expression in the liver. Our results suggest that BAT-derived exosomal miR-132-3p acts as an endocrine factor that regulates hepatic lipogenesis for cold adaptation.
Collapse
|
138
|
Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, Egorov AD, Shidlovskii YV. Association of uncoupling protein (Ucp) gene polymorphisms with cardiometabolic diseases. Mol Med 2020; 26:51. [PMID: 32450815 PMCID: PMC7249395 DOI: 10.1186/s10020-020-00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D). A significant number of studies in the field focus on the UCP family. The Ucp genes code for electron transport carriers. UCP1 (thermogenin) is the most abundant protein of the UCP superfamily and is expressed in BAT, contributing to its capability of generating heat. Single nucleotide polymorphisms (SNPs) of Ucp1-Ucp3 were recently associated with risk of cardiometabolic diseases. This review covers the main Ucp SNPs A-3826G, A-1766G, A-112C, Met229Leu, Ala64Thr (Ucp1), Ala55Val, G-866A (Ucp2), and C-55 T (Ucp3), which may be associated with the development of obesity, disturbance in lipid metabolism, T2D, and cardiovascular diseases.
Collapse
Affiliation(s)
- Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Y. Shevchenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Manana R. Skhirtladze
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana N. Larina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Egorov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
139
|
Suntar I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, Sobarzo-Sánchez E, Nabavi SF, Shirooie S, Dehpour AR, Xu S, Yousefi B, Majidinia M, Daglia M, D'Antona G, Nabavi SM. Natural products, PGC-1 α , and Duchenne muscular dystrophy. Acta Pharm Sin B 2020; 10:734-745. [PMID: 32528825 PMCID: PMC7276681 DOI: 10.1016/j.apsb.2020.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcriptional coactivator that binds to a diverse range of transcription factors. PPARγ coactivator 1 (PGC-1) coactivators possess an extensive range of biological effects in different tissues, and play a key part in the regulation of the oxidative metabolism, consequently modulating the production of reactive oxygen species, autophagy, and mitochondrial biogenesis. Owing to these findings, a large body of studies, aiming to establish the role of PGC-1 in the neuromuscular system, has shown that PGC-1 could be a promising target for therapies targeting neuromuscular diseases. Among these, some evidence has shown that various signaling pathways linked to PGC-1α are deregulated in muscular dystrophy, leading to a reduced capacity for mitochondrial oxidative phosphorylation and increased reactive oxygen species (ROS) production. In the light of these results, any intervention aimed at activating PGC-1 could contribute towards ameliorating the progression of muscular dystrophies. PGC-1α is influenced by different patho-physiological/pharmacological stimuli. Natural products have been reported to display modulatory effects on PPARγ activation with fewer side effects in comparison to synthetic drugs. Taken together, this review summarizes the current knowledge on Duchenne muscular dystrophy, focusing on the potential effects of natural compounds, acting as regulators of PGC-1α.
Collapse
Key Words
- AAV, adeno-associated virus
- AMP, adenosine monophosphate
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- ASO, antisense oligonucleotides
- ATF2, activating transcription factor 2
- ATP, adenosine triphosphate
- BMD, Becker muscular dystrophy
- COPD, chronic obstructive pulmonary disease
- CREB, cyclic AMP response element-binding protein
- CnA, calcineurin a
- DAGC, dystrophin-associated glycoprotein complex
- DGC, dystrophin–glycoprotein complex
- DMD, Duchenne muscular dystrophy
- DRP1, dynamin-related protein 1
- DS, Down syndrome
- ECM, extracellular matrix
- EGCG, epigallocatechin-3-gallate
- ERRα, estrogen-related receptor alpha
- FDA, U. S. Food and Drug Administration
- FGF, fibroblast growth factor
- FOXO1, forkhead box class-O1
- GABP, GA-binding protein
- GPX, glutathione peroxidase
- GSK3b, glycogen synthase kinase 3b
- HCT, hydrochlorothiazide
- HDAC, histone deacetylase
- HIF-1α, hypoxia-inducible factors
- IL, interleukin
- LDH, lactate dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- MD, muscular dystrophy
- MEF2, myocyte enhancer factor 2
- MSCs, mesenchymal stem cells
- Mitochondrial oxidative phosphorylation
- Muscular dystrophy
- MyoD, myogenic differentiation
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NMJ, neuromuscular junctions
- NO, nitric oxide
- NOS, NO synthase
- Natural product
- PDGF, platelet derived growth factor
- PGC-1, peroxisome proliferator-activated receptor γ coactivator 1
- PPARγ activation
- PPARγ, peroxisome proliferator-activated receptor γ
- Peroxisome proliferator-activated receptor γ coactivator 1α
- ROS, reactive oxygen species
- Reactive oxygen species
- SIRT1, silent mating type information regulation 2 homolog 1
- SOD, superoxide dismutase
- SPP1, secreted phosphoprotein 1
- TNF-α, tumor necrosis factor-α
- UCP, uncoupling protein
- VEGF, vascular endothelial growth factor
- cGMP, cyclic guanosine monophosphate
- iPSCs, induced pluripotent stem cells
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
|
140
|
Hussain MF, Roesler A, Kazak L. Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J 2020; 287:3370-3385. [PMID: 32301220 DOI: 10.1111/febs.15331] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Adipocyte biology has been intensely researched in recent years due to the emergence of obesity as a serious global health concern and because of the realization that adipose tissue is more than simply a cell type that stores and releases lipids. The plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. The capacity for white adipocytes to store chemical energy in lipid droplets is key for protecting other organs from the toxic effects of ectopic lipid deposition. In contrast, thermogenic (brown and beige) adipocytes combust macronutrients to generate heat. The thermogenic activity of adipocytes allows them to protect themselves and other tissues from lipid overaccumulation. Advances in brown fat biology have uncovered key molecular players involved in adipocyte determination, differentiation, and thermogenic activation. It is now, well appreciated that three distinct adipocyte types exist: white, beige, and brown. Moreover, functional differences are present within adipocyte subtypes located in anatomically distinct locations. Adding to this complexity is the recent realization from single-cell sequencing studies that adipocyte progenitors are also heterogeneous. Understanding the molecular details of how to increase the number of thermogenic fat cells and their activation may delineate some of the pathophysiological basis of obesity and obesity-related diseases. Here, we review recent advances that have extended our understanding of the central role that adipose tissue plays in energy balance and the mechanisms that control their amount and function.
Collapse
Affiliation(s)
- Mohammed Faiz Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
141
|
Vonhögen IG, el Azzouzi H, Olieslagers S, Vasilevich A, de Boer J, Tinahones FJ, da Costa Martins PA, de Windt LJ, Murri M. MiR-337-3p Promotes Adipocyte Browning by Inhibiting TWIST1. Cells 2020; 9:cells9041056. [PMID: 32340411 PMCID: PMC7226112 DOI: 10.3390/cells9041056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) and obesity is an alarming health issue worldwide. Obesity is characterized by an excessive accumulation of white adipose tissue (WAT), and it is associated with diminished brown adipose tissue (BAT) activity. Twist1 acts as a negative feedback regulator of BAT metabolism. Therefore, targeting Twist1 could become a strategy for obesity and metabolic disease. Here, we have identified miR-337-3p as an upstream regulator of Twist1. Increased miR-337-3p expression paralleled decreased expression of TWIST1 in BAT compared to WAT. Overexpression of miR-337-3p in brown pre-adipocytes provoked a reduction in Twist1 expression that was accompanied by increased expression of brown/mitochondrial markers. Luciferase assays confirmed an interaction between the miR-337 seed sequence and Twist1 3′UTR. The inverse relationship between the expression of TWIST1 and miR-337 was finally validated in adipose tissue samples from non-MetS and MetS subjects that demonstrated a dysregulation of the miR-337-Twist1 molecular axis in MetS. The present study demonstrates that adipocyte miR-337-3p suppresses Twist1 repression and enhances the browning of adipocytes.
Collapse
Affiliation(s)
- Indira G.C. Vonhögen
- Department of Molecular Genetics, Faculty of Sciences and Engineering, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (I.G.C.V.); (H.e.A.); (S.O.); (P.A.d.C.M.)
| | - Hamid el Azzouzi
- Department of Molecular Genetics, Faculty of Sciences and Engineering, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (I.G.C.V.); (H.e.A.); (S.O.); (P.A.d.C.M.)
- Department of Molecular Genetics, Erasmus University MC, 3015 GD Rotterdam, The Netherlands
| | - Servé Olieslagers
- Department of Molecular Genetics, Faculty of Sciences and Engineering, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (I.G.C.V.); (H.e.A.); (S.O.); (P.A.d.C.M.)
| | - Aliaksei Vasilevich
- BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (A.V.); (J.d.B.)
| | - Jan de Boer
- BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (A.V.); (J.d.B.)
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; (F.J.T.); (M.M.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (I.G.C.V.); (H.e.A.); (S.O.); (P.A.d.C.M.)
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Sciences and Engineering, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (I.G.C.V.); (H.e.A.); (S.O.); (P.A.d.C.M.)
- Correspondence:
| | - Mora Murri
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; (F.J.T.); (M.M.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
142
|
Ijaz MU, Ahmad MI, Hussain M, Khan IA, Zhao D, Li C. Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3933-3946. [PMID: 32148030 DOI: 10.1021/acs.jafc.0c00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endocannabinoids modulate insulin and adipokine expression in adipocytes through cannabinoid receptors and their levels are elevated during hyperglycemia and obesity, but little is known about how diets affect them. We assessed the effects of dietary casein, chicken, beef, and pork proteins in a high-fat diet mode, on endocannabinoids, adipogenesis, and biomarkers associated with dyslipemdia. A high-fat beef or chicken diet upregulated cannabinoid 1 receptor, N-acyl phosphatidylethanolamine-selective phospholipase-D and diacylglycerol lipase α in adipose tissue and reduced the immunoreactivity of mitochondrial uncoupling protein 1 in brown adipose tissue. In addition, the high-fat diets with beef and chicken protein had a significant impact on adipocyte differentiation and mitochondrial biogenesis in obese mice. A 16S rRNA gene sequencing indicated that high-fat diets, regardless of the protein source, significantly enhanced the ratio of Firmicutes to Bacteroidetes in colon. Meat proteins in a high-fat diet significantly decreased the relative abundances of Akkermansia and Bifidobacteria but enhanced the lipopolysaccharides level in the serum, which promoted the adipogenesis process by causing dysregulation in the endocannabinoid receptors. Consumption of meat protein with high-fat-induced adiposity, visceral obesity, and dyslipidemia reduced the thermogenesis and had a distinctive effect on the mitochondrial biogenesis compared with casein protein.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Iftikhar Ali Khan
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
- International Joint Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- National Center for International Research on Animal Gut Nutrition, MOST, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
143
|
The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients 2020; 12:nu12040925. [PMID: 32230849 PMCID: PMC7231004 DOI: 10.3390/nu12040925] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023] Open
Abstract
This study compares the effect of two types of exercise training, i.e., moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) on the browning of subcutaneous white adipose tissue (scWAT) in obese male rats. Effects on fat composition, metabolites, and molecular markers of differentiation and energy expenditure were examined. Forty male Wistar rats were assigned to lean (n = 8) or obese (n = 32) groups and fed either a standard chow or high-fat obesogenic diet for 10 weeks. Eight lean and obese rats were then blood and tissue sampled, and the remaining obese animals were randomly allocated into sedentary, MICT, or HIIT (running on a treadmill 5 days/week) groups that were maintained for 12 weeks. Obesity increased plasma glucose and insulin and decreased irisin and FGF-21. In scWAT, this was accompanied with raised protein abundance of markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and PPAR-γ, whereas brown fat-related genes, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, were reduced as was UCP1 and markers of fatty acid transport, i.e., CD36 and CPT1. Exercise training increased protein expression of brown fat-related markers, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, and UCP1, together with gene expression of fatty acid transport, i.e., CD36 and CPT1, but decreased markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and plasma glucose. The majority of these adaptations were greater with HIIT compared to MICT. Our findings indicate that prolonged exercise training promotes the browning of white adipocytes, possibly through suppression of adipogenesis together with white to beige trans-differentiation and is dependent on the intensity of exercise.
Collapse
|
144
|
Molecular Characterization of PGC-1β (PPAR Gamma Coactivator 1β) and its Roles in Mitochondrial Biogenesis in Blunt Snout Bream ( Megalobrama amblycephala). Int J Mol Sci 2020; 21:ijms21061935. [PMID: 32178369 PMCID: PMC7139572 DOI: 10.3390/ijms21061935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed at achieving the molecular characterization of peroxisome proliferator-activated receptor-gamma coactivator 1β (PGC-1β) and exploring its modulatory roles in mitochondria biogenesis in blunt snout bream (Megalobrama amblycephala). A full-length cDNA of PGC-1β was cloned from liver which covered 3110 bp encoding 859 amino acids. The conserved motifs of PGC-1β family proteins were gained by MEME software, and the phylogenetic analyses showed motif loss and rearrangement of PGC-1β in fish. The function of PGC-1β was evaluated through overexpression and knockdown of PGC-1β in primary hepatocytes of blunt snout bream. We observed overexpression of PGC-1β along with enhanced mitochondrial transcription factor A (TFAM) expression and mtDNA copies in hepatocytes, and its knockdown led to slightly reduced NRF1 expression. However, knockdown of PGC-1β did not significantly influence TFAM expression or mtDNA copies. The alterations in mitochondria biogenesis were assessed following high-fat intake, and the results showed that it induces downregulation of PGC-1β. Furthermore, significant decreases in mitochondrial respiratory chain activities and mitochondria biogenesis were observed by high-fat intake. Our findings demonstrated that overexpression of PGC-1β induces the enhancement of TFAM expression and mtDNA amount but not NRF-1. Therefore, it could be concluded that PGC-1β is involved in mitochondrial biogenesis in blunt snout bream but not through PGC-1β/NRF-1 pathway.
Collapse
|
145
|
Hossain M, Imran KM, Rahman MS, Yoon D, Marimuthu V, Kim YS. Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes. BMB Rep 2020; 53:142-147. [PMID: 31401979 PMCID: PMC7118353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 03/29/2024] Open
Abstract
Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation-related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene-silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element-binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation. [BMB Reports 2020; 53(3): 142-147].
Collapse
Affiliation(s)
- Monir Hossain
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Khan Mohammad Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Md. Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dahyeon Yoon
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Vignesh Marimuthu
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Chenan 31151, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
146
|
Peroxisome proliferator-activated receptor-coactivator 1-beta (PGC-1β) modulates the expression of genes involved in adipogenesis during preadipocyte differentiation in chicken. Gene 2020; 741:144516. [PMID: 32119914 DOI: 10.1016/j.gene.2020.144516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022]
Abstract
To study the influence of the PGC-1β gene on chicken adipocyte proliferation and differentiation, we constructed RNA interference (RNAi) vectors that target the PGC-1β gene and transfected these vectors into adipocytes. Oil Red O staining and a CCK-8 cell kit were used to determine cell triglyceride accumulation status and cell proliferation after transfection, respectively. The mRNA abundances of PGC-1β and adipocyte-differentiation-related genes (PPARγ, C/EBPα, SREBP-1c, FAS, and A-FABP) were detected by real-time PCR. The results showed that the mRNA and protein abundances of PGC-1β in PGC-1β-shRNA transfected adipocytes were significantly lower than those in the control. Interference decreased cell differentiation, but did not depress the cell proliferation. PGC-1β interference impeded the triglyceride accumulation, the mRNA expression levels of nuclear receptors PPARγ and SREBP-1c, and fatty acid synthetase (FAS), and both proteins PPARγ and SREBP-1c, and the fatty acids transporting protein A-FABP. Generally, PGC-1β modulated the cell differentiation and triglyceride accumulation in chicken adipocytes.
Collapse
|
147
|
Huang J, Liu X, Feng X, Zhang M, Qu K, Liu J, Wei X, Huang B, Ma Y. Characterization of different adipose depots in fattened buffalo: histological features and expression profiling of adipocyte markers. Arch Anim Breed 2020; 63:61-67. [PMID: 32175464 PMCID: PMC7059603 DOI: 10.5194/aab-63-61-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue (AT) is a multi-depot organ in mammals. AT from various depots differs in composition and function. Revealing the composition feature of AT depots will provide valuable information for further research on the development and fat deposition patterns in buffalo. This study explored the cellular morphology and gene expression profiles of brown and beige markers in seven AT depots of fattened buffalo: three subcutaneous depots (back, sternum, and inguinal) and four visceral depots (perirenal, mesenteric, pericardial, and omental). Histological results showed unilocular adipocytes in all seven AT depots. Uncoupling protein 1 (UCP1) mRNA, a brown and beige adipocyte gene, was detected in all depots with the highest level in VAT depots, and a limited number of UCP1-positive unilocular adipocytes were observed in the three VAT depots. The mRNAs of PPARG coactivator 1 alpha (PGC1 α ) and transmembrane protein 26 (TMEM26), brown or beige adipocyte markers, were identified in all seven depots and were mainly expressed in VAT depots. However, the mRNA of zinc finger protein of the cerebellum 1 (ZIC1), a brown adipocyte-specific marker, was almost undetectable. Our results demonstrated that all seven AT depots are white adipose tissue (WAT), with potential function of non-shivering thermogenesis in fattened buffalo. Beige adipocytes are more active in VAT depots than in WAT depots. These results improve our knowledge on the feature of different adipose tissue depots in buffalo, which will be useful for the research of fat deposition.
Collapse
Affiliation(s)
- Jieping Huang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Xiaoyan Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Mingming Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Kaixing Qu
- Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - Jianyong Liu
- Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - Xuefeng Wei
- Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - Bizhi Huang
- Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China.,School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
148
|
Lee JH, Go Y, Kim DY, Lee SH, Kim OH, Jeon YH, Kwon TK, Bae JH, Song DK, Rhyu IJ, Lee IK, Shong M, Oh BC, Petucci C, Park JW, Osborne TF, Im SS. Isocitrate dehydrogenase 2 protects mice from high-fat diet-induced metabolic stress by limiting oxidative damage to the mitochondria from brown adipose tissue. Exp Mol Med 2020; 52:238-252. [PMID: 32015410 PMCID: PMC7062825 DOI: 10.1038/s12276-020-0379-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Isocitrate dehydrogenase 2 (IDH2) is an NADP+-dependent enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate in the mitochondrial matrix, and is critical for the production of NADPH to limit the accumulation of mitochondrial reactive oxygen species (ROS). Here, we showed that high-fat diet (HFD) feeding resulted in accelerated weight gain in the IDH2KO mice due to a reduction in whole-body energy expenditure. Moreover, the levels of NADP+, NADPH, NAD+, and NADH were significantly decreased in the brown adipose tissue (BAT) of the HFD-fed IDH2KO animals, accompanied by decreased mitochondrial function and reduced expression of key genes involved in mitochondrial biogenesis, energy expenditure, and ROS resolution. Interestingly, these changes were partially reversed when the antioxidant butylated hydroxyanisole was added to the HFD. These observations reveal a crucial role for IDH2 in limiting ROS-dependent mitochondrial damage when BAT metabolism is normally enhanced to limit weight gain in response to dietary caloric overload.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Younghoon Go
- Department of Internal Medicine, School of Medicine Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944 Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404 South Korea
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062 Republic of Korea
| | - Do-Young Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Sun Hee Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Younsoo-gu, Inchon, 21999 Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841 Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944 Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404 South Korea
| | - Minho Shong
- Research Center for Endocrinology and Metabolism, Chungnam National University Hospital (CNUH), 282 Munhwaro, Daejeon, 35015 Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Younsoo-gu, Inchon, 21999 Republic of Korea
| | - Christopher Petucci
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Science, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Timothy F. Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701 USA
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| |
Collapse
|
149
|
Oka SI, Sabry AD, Cawley KM, Warren JS. Multiple Levels of PGC-1α Dysregulation in Heart Failure. Front Cardiovasc Med 2020; 7:2. [PMID: 32083094 PMCID: PMC7002390 DOI: 10.3389/fcvm.2020.00002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic adaption is crucial for the heart to sustain its contractile activity under various physiological and pathological conditions. At the molecular level, the changes in energy demand impinge on the expression of genes encoding for metabolic enzymes. Among the major components of an intricate transcriptional circuitry, peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) plays a critical role as a metabolic sensor, which is responsible for the fine-tuning of transcriptional responses to a plethora of stimuli. Cumulative evidence suggests that energetic impairment in heart failure is largely attributed to the dysregulation of PGC-1α. In this review, we summarize recent studies revealing how PGC-1α is regulated by a multitude of mechanisms, operating at different regulatory levels, which include epigenetic regulation, the expression of variants, post-transcriptional inhibition, and post-translational modifications. We further discuss how the PGC-1α regulatory cascade can be impaired in the failing heart.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Amira D Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Keiko M Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
150
|
Min BK, Kang HJ, Choi BJ, Jeon YH, Cho JY, Lee IK, Kim DW. Phenylbutyrate Ameliorates High-Fat Diet-Induced Obesity via Brown Adipose Tissue Activation. Biol Pharm Bull 2020; 42:1554-1561. [PMID: 31474715 DOI: 10.1248/bpb.b19-00346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity, which is characterized by an excessive accumulation of body fat, is one of the critical factors causing metabolic syndrome. Many studies have been performed to identify appropriate agents to control obesity, but toxicity remains a problem. Herein, we identified that phenylbutyrate (PBA), which has been used to treat urea cycle disorder with very low toxicity for a long time, efficiently inhibited high fat-induced body weight gain in a diet-induced obesity mouse model (DIO model). PBA treatment decreased body fat mass and increased lean composition. Moreover, PBA increased brown adipose tissue (BAT) activity by increasing glucose uptake, thereby improving glucose tolerance and insulin tolerance. Interestingly, PBA could induce the expression of liver type phosphofructokinase (PFKL), a key enzyme in the glycolytic pathway, and knocking down PFKL dramatically repressed the expression level of Ucp1 as well as those of Prdm16, Cidea, Pgc1α, and Pparγ, which are marker genes for BAT activation. These results strongly suggested that PBA could increase energy expenditure by increasing BAT activity via the induction of PFKL. Taken together, PBA could be used as a therapeutic agent for people with obesity to prevent the development of metabolic syndrome.
Collapse
Affiliation(s)
- Byong-Keol Min
- Research Institute of Aging and Metabolism, Kyungpook National University
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University
| | - Byung-Jun Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital
| | - Dong Wook Kim
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital
| |
Collapse
|