101
|
Mehraeen E, Dadras O, Afsahi AM, Karimi A, Pour MM, Mirzapour P, Barzegary A, Behnezhad F, Habibi P, Salehi MA, Vahedi F, Heydari M, Kianzad S, Moradmand-Badie B, Javaherian M, SeyedAlinaghi S, Sabatier JM. Vaccines for COVID-19: A Systematic Review of Feasibility and Effectiveness. Infect Disord Drug Targets 2022; 22:e230921196758. [PMID: 34554905 DOI: 10.2174/1871526521666210923144837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many potential vaccines for COVID-19 are being studied and developed. Several studies have reported on the safety and efficacy of these vaccines. This systematic review aimed to report on the current evidence concerning the feasibility and effectiveness of vaccines for COVID-19. METHODS A systematic search was carried out utilizing the keywords in the online databases, including Scopus, Web of Science, PubMed, Embase, and Cochrane. We included both human and non-human studies because of the vaccine novelty, limiting our ability to include sufficient human studies. RESULTS This review showed several SARS-CoV-2 vaccines to be currently under development using different platforms, including eight vaccines that are adenovirus-based vectors, six vaccines that are RNA-based formulations, one vaccine being DNA-based formulation, and other vaccines using other platforms, including lipid nanoparticles. Although the safety and efficacy profiles of these vaccines are still under debate, some countries have allowed for emergency use of some vaccines in at-risk populations, such as healthcare workers and the elderly. CONCLUSION It is crucial to gather as much clinically relevant evidence as possible regarding the immunogenicity, efficacy, and safety profiles of available vaccines and adhere wisely to CDC protocols and guidelines for vaccine production.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Omid Dadras
- The Excellent Center for Dengue and Community Public Helath (EC for DACH), School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego [UCSD], California, USA
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mohsseni Pour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Pegah Mirzapour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Salehi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Vahedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydari
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Shaghayegh Kianzad
- School of Medicine, Iran University of Medical Sciences, Tehran 7134845794, Iran
| | | | - Mohammad Javaherian
- Department of Physiotherapy, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut deNeuro-physiopathologie [INP], UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385Marseille Cedex, France
| |
Collapse
|
102
|
Larsen JC. Dynamical Aspects of Corona Virus Infection. INT J BIOMATH 2021. [DOI: 10.1142/s1793524522500115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we consider five mathematical models of corona virus infection. The first model is a mathematical model of corona virus entry. The second model is a mathematical model for interactions of virus N-protein and viral RNA. Here, we prove that phosphorylated N protein increases the affinity of viral RNA. The third model is a mathematical model of virion assembly. It is a six-dimensional model. But there is an invariant three-dimensional submodel, which we can prove has a positive stable equilibrium. The fourth model is a model of an enzyme inhibitor that blocks viral replication. The fifth model is a model of a virus and a vaccine.
Collapse
Affiliation(s)
- Jens Christian Larsen
- The Royal Veterinary and Agricultural University of Denmark, Vanløse Alle 50 2. mf. tv., Vanløse, 2720 Copenhagen, Denmark
| |
Collapse
|
103
|
Chung NH, Chen YC, Yang SJ, Lin YC, Dou HY, Hui-Ching Wang L, Liao CL, Chow YH. Induction of Th1 and Th2 in the protection against SARS-CoV-2 through mucosal delivery of an adenovirus vaccine expressing an engineered spike protein. Vaccine 2021; 40:574-586. [PMID: 34952759 PMCID: PMC8677488 DOI: 10.1016/j.vaccine.2021.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
A series of recombinant human type 5 adenoviruses that express the full-length or membrane-truncated spike protein (S) of SARS-CoV-2 (AdCoV2-S or AdCoV2-SdTM, respectively) was tested the efficacy against SARS-CoV-2 via intranasal (i.n.) or subcutaneous (s.c.) immunization in a rodent model. Mucosal delivery of adenovirus (Ad) vaccines could induce anti-SARS-CoV-2 IgG and IgA in the serum and in the mucosal, respectively as indicated by vaginal wash (vw) and bronchoalveolar lavage fluid (BALF). Serum anti-SARS-CoV-2 IgG but not IgA in the vw and BALF was induced by AdCoV2-S s.c.. Administration of AdCoV2-S i.n. was able to induce higher anti-SARS-CoV-2 binding and neutralizing antibody levels than s.c. injection. AdCoV2-SdTM i.n. induced a lower antibody responses than AdCoV2-S i.n.. Induced anti-S antibody responses by AdCoV2-S via i.n. or s.c. were not influenced by the pre-existing serum anti-Ad antibody. Novelty, S-specific IgG1 which represented Th2-mediated humoral response was dominantly induced in Ad i.n.-immunized serum in contrast to more IgG2a which represented Th1-mediated cellular response found in Ad s.c.-immunized serum. The activation of S-specific IFN-ɣ and IL-4 in splenic Th1 and Th2 cells, respectively, was observed in the AdCoV2-S i.n. and s.c. groups, indicating the Th1 and Th2 immunity were activated. AdCoV2-S and AdCoV2-SdTM significantly prevented body weight loss and reduced pulmonary viral loads in hamsters. A reduction in inflammation in the lungs was observed in AdCoV-S via i.n. or s.c.-immunized hamsters following a SARS-CoV-2 challenge. It correlated to Th1 cytokine but no inflammatory cytokines secretions found in AdCoV-S i.n. -immunized BALF. These results indicate that intranasal delivery of AdCoV2-S vaccines is safe and potent at preventing SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Graduate Program of Biotechnology in Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shiu-Ju Yang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Ching Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
104
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|
105
|
Najjar H, Al-Jighefee HT, Qush A, Ahmed MN, Awwad S, Kamareddine L. COVID-19 Vaccination: The Mainspring of Challenges and the Seed of Remonstrance. Vaccines (Basel) 2021; 9:1474. [PMID: 34960220 PMCID: PMC8707780 DOI: 10.3390/vaccines9121474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
As of March 2020, the time when the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, our existence has been threatened and the lives of millions have been claimed. With this ongoing global issue, vaccines are considered of paramount importance in curtailing the outbreak and probably a prime gamble to bring us back to 'ordinary life'. To date, more than 200 vaccine candidates have been produced, many of which were approved by the Food and Drug Administration (FDA) for emergency use, with the research and discovery phase of their production process passed over. Capering such a chief practice in COVID-19 vaccine development, and manufacturing vaccines at an unprecedented speed brought many challenges into play and raised COVID-19 vaccine remonstrance. In this review, we highlight relevant challenges to global COVID-19 vaccine development, dissemination, and deployment, particularly at the level of large-scale production and distribution. We also delineate public perception on COVID-19 vaccination and outline the main facets affecting people's willingness to get vaccinated.
Collapse
Affiliation(s)
- Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
| | - Hadeel T. Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abeer Qush
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
| | - Muna Nizar Ahmed
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
| | - Sara Awwad
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.N.); (H.T.A.-J.); (A.Q.); (M.N.A.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
106
|
Cao H, Mai J, Zhou Z, Li Z, Duan R, Watt J, Chen Z, Bandara RA, Li M, Ahn SK, Poon B, Christie-Holmes N, Gray-Owen SD, Banerjee A, Mossman K, Kozak R, Mubareka S, Rini JM, Hu J, Liu J. Intranasal HD-Ad vaccine protects the upper and lower respiratory tracts of hACE2 mice against SARS-CoV-2. Cell Biosci 2021; 11:202. [PMID: 34879865 PMCID: PMC8653804 DOI: 10.1186/s13578-021-00723-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Results Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. Conclusion Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00723-0.
Collapse
Affiliation(s)
- Huibi Cao
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Juntao Mai
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhichang Zhou
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rongqi Duan
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ziyan Chen
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ranmal Avinash Bandara
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ming Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Betty Poon
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Karen Mossman
- Department of Medicine Institute for Infectious Disease Research, McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
| | - Rob Kozak
- Sunnybrook Heath Sciences Centre, Toronto, ON, Canada
| | | | - James M Rini
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jim Hu
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jun Liu
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
107
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
108
|
Sanchez S, Palacio N, Dangi T, Ciucci T, Penaloza-MacMaster P. Fractionating a COVID-19 Ad5-vectored vaccine improves virus-specific immunity. Sci Immunol 2021; 6:eabi8635. [PMID: 34648369 DOI: 10.1126/sciimmunol.abi8635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicole Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thomas Ciucci
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA.,Department of Microbiology and Immunology, Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
109
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
110
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
111
|
Li Y, Bi Y, Xiao H, Yao Y, Liu X, Hu Z, Duan J, Yang Y, Li Z, Li Y, Zhang H, Ding C, Yang J, Li H, He Z, Liu L, Hu G, Liu S, Che Y, Wang S, Li Q, Lu S, Cun W. A novel DNA and protein combination COVID-19 vaccine formulation provides full protection against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect 2021; 10:342-355. [PMID: 33555988 PMCID: PMC7928010 DOI: 10.1080/22221751.2021.1887767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
The current study aims to develop a safe and highly immunogenic COVID-19 vaccine. The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine induced high level neutralizing antibody and T cell immune responses in both small and large animal models. More significantly, the co-delivery of DNA and protein components at the same time elicited full protection against intratracheal challenge of SARS-CoV-2 viruses in immunized rhesus macaques. As both DNA and protein vaccines have been proven safe in previous human studies, and DNA vaccines are capable of eliciting germinal center B cell development, which is critical for high-affinity memory B cell responses, the DNA and protein co-delivery vaccine approach has great potential to serve as a safe and effective approach to develop COVID-19 vaccines that provide long-term protection.
Collapse
Affiliation(s)
- Yuzhong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yanwei Bi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hongjian Xiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Xiaojuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Zhengrong Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Jinmei Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yaoyun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Zhihua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yadong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Heng Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Chen Ding
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Jianbo Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Haiwei Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| |
Collapse
|
112
|
Cho A, Muecksch F, Schaefer-Babajew D, Wang Z, Finkin S, Gaebler C, Ramos V, Cipolla M, Mendoza P, Agudelo M, Bednarski E, DaSilva J, Shimeliovich I, Dizon J, Daga M, Millard KG, Turroja M, Schmidt F, Zhang F, Tanfous TB, Jankovic M, Oliveria TY, Gazumyan A, Caskey M, Bieniasz PD, Hatziioannou T, Nussenzweig MC. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature 2021; 600:517-522. [PMID: 34619745 PMCID: PMC8674133 DOI: 10.1038/s41586-021-04060-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1,2. Here we examine memory B cell evolution five months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccine in a cohort of SARS-CoV-2-naive individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge five months after vaccination of naive individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with equivalent breadth to those obtained by vaccinating convalescent individuals.
Collapse
Affiliation(s)
- Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mridushi Daga
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Thiago Y Oliveria
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
113
|
Yuan L, Tang Q, Zhu H, Guan Y, Cheng T, Xia N. SARS-CoV-2 infection and disease outcomes in non-human primate models: advances and implications. Emerg Microbes Infect 2021; 10:1881-1889. [PMID: 34490832 PMCID: PMC8451603 DOI: 10.1080/22221751.2021.1976598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 has been the causative pathogen of the pandemic of COVID-19, resulting in catastrophic health issues globally. It is important to develop human-like animal models for investigating the mechanisms that SARS-CoV-2 uses to infect humans and cause COVID-19. Several studies demonstrated that the non-human primate (NHP) is permissive for SARS-CoV-2 infection to cause typical clinical symptoms including fever, cough, breathing difficulty, and other diagnostic abnormalities such as immunopathogenesis and hyperplastic lesions in the lung. These NHP models have been used for investigating the potential infection route and host immune response to SARS-CoV-2, as well as testing vaccines and drugs. This review aims to summarize the benefits and caveats of NHP models currently available for SARS-CoV-2, and to discuss key topics including model optimization, extended application, and clinical translation.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People’s Republic of China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, People’s Republic of China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People’s Republic of China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, People’s Republic of China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, People’s Republic of China
| |
Collapse
|
114
|
Xu K, An Y, Li Q, Huang W, Han Y, Zheng T, Fang F, Liu H, Liu C, Gao P, Xu S, Liu X, Zhang R, Zhao X, Liu WJ, Bi Y, Wang Y, Zhou D, Wang Q, Hou W, Xia Q, Gao GF, Dai L. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect 2021; 10:1574-1588. [PMID: 34289779 PMCID: PMC8366625 DOI: 10.1080/22221751.2021.1959270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
A safe and effective vaccine is urgently needed to control the unprecedented COVID-19 pandemic. Four adenovirus-vectored vaccines expressing spike (S) protein have been approved for use. Here, we generated several recombinant chimpanzee adenovirus (AdC7) vaccines expressing S, receptor-binding domain (RBD), or tandem-repeat dimeric RBD (RBD-tr2). We found vaccination via either intramuscular or intranasal route was highly immunogenic in mice to elicit both humoral and cellular immune responses. AdC7-RBD-tr2 showed higher antibody responses compared to either AdC7-S or AdC7-RBD. Intranasal administration of AdC7-RBD-tr2 additionally induced mucosal immunity with neutralizing activity in bronchoalveolar lavage fluid. Either single-dose or two-dose mucosal administration of AdC7-RBD-tr2 protected mice against SARS-CoV-2 challenge, with undetectable subgenomic RNA in lung and relieved lung injury. AdC7-RBD-tr2-elicted sera preserved the neutralizing activity against the circulating variants, especially the Delta variant. These results support AdC7-RBD-tr2 as a promising COVID-19 vaccine candidate.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qunlong Li
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tianyi Zheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fang Fang
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Hui Liu
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Chuanyu Liu
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Ping Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Senyu Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xueyuan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rong Zhang
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - William J. Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qinghan Wang
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Wenli Hou
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lianpan Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
115
|
Chen J, Vitetta L, Henson JD, Hall S. The intestinal microbiota and improving the efficacy of COVID-19 vaccinations. J Funct Foods 2021; 87:104850. [PMID: 34777578 PMCID: PMC8578005 DOI: 10.1016/j.jff.2021.104850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Most COVID-19 cases are mild or asymptomatic and recover well, suggesting that effective immune responses ensue, which successfully eliminate SARS-CoV-2 viruses. However, a small proportion of patients develop severe COVID-19 with pathological immune responses. This indicates that a strong immune system balanced with anti-inflammatory mechanisms is critical for the recovery from SARS-CoV-2 infections. Many vaccines against SARS-CoV-2 have now been developed for eliciting effective immune responses to protect from SARS-CoV-2 infections or reduce the severity of the disease if infected. Although uncommon, serious morbidity and mortality have resulted from both COVID-19 vaccine adverse reactions and lack of efficacy, and further improvement of efficacy and prevention of adverse effects are urgently warranted. Many factors could affect efficacy of these vaccines to achieve optimal immune responses. Dysregulation of the gut microbiota (gut dysbiosis) could be an important risk factor as the gut microbiota is associated with the development and maintenance of an effective immune system response. In this narrative review, we discuss the immune responses to SARS-CoV-2, how COVID-19 vaccines elicit protective immune responses, gut dysbiosis involvement in inefficacy and adverse effects of COVID-19 vaccines and the modulation of the gut microbiota by functional foods to improve COVID-19 vaccine immunisations.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| | - Luis Vitetta
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia
| | - Jeremy D Henson
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of New South Wales, Faculty of Medicine, Prince of Wales Clinical School, Sydney, Australia
| | - Sean Hall
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| |
Collapse
|
116
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
117
|
Xiao WS. The Role of Collectivism-Individualism in Attitudes Toward Compliance and Psychological Responses During the COVID-19 Pandemic. Front Psychol 2021; 12:600826. [PMID: 34777076 PMCID: PMC8581252 DOI: 10.3389/fpsyg.2021.600826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
This study examined the role of individual differences in horizontal and vertical individualism and collectivism, trust and worries, and concerns about COVID-19 in predicting the attitudes toward compliance of health advice and psychological responses during the COVID-19 pandemic. Chinese university students (N=384, 324 female) completed measures of individualism and collectivism, trust, attitudes toward compliance, and psychological responses to the pandemic. Results showed that not only vertical collectivist orientation but also horizontal individualist orientation significantly predicted higher willingness to comply, whereas vertical individualist orientation significantly predicted lower willingness to comply. Vertical individualist and vertical collectivist orientations predicted higher psychological response in terms of distress, anxiety, and depression, while horizontal collectivistic orientation significantly predicted less psychological problems. Implications of the effect of individual-level cultural orientations on attitudes toward public health compliance and psychological well-being during global health crises are discussed.
Collapse
Affiliation(s)
- Wen S. Xiao
- Teacher Education School, Shaoguan University, Shaoguan, China
| |
Collapse
|
118
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
119
|
Horvitz D, Milrot E, Luria N, Makdasi E, Beth-Din A, Glinert I, Dombrovsky A, Laskar O. Nanodissection of Selected Viral Particles by Scanning Transmission Electron Microscopy/Focused Ion Beam for Genetic Identification. Anal Chem 2021; 93:13126-13133. [PMID: 34551252 DOI: 10.1021/acs.analchem.1c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents the development of a new correlative workflow to bridge the gap between electron microscopy imaging and genetic analysis of viruses. The workflow enables the assignment of genetic information to a specific biological entity by harnessing the nanodissection capability of focused ion beam (FIB). This correlative workflow is based on scanning transmission electron microscopy (STEM) and FIB followed by a polymerase chain reaction (PCR). For this purpose, we studied the tomato brown rugose fruit virus (ToBRFV) and the adenovirus that have significant impacts on plant integrity and human health, respectively. STEM imaging was used for the identification and localization of virus particles on a transmission electron microscopy (TEM) grid followed by FIB milling of the desired region of interest. The final-milled product was subjected to genetic analysis by the PCR. The results prove that the FIB-milling process maintains the integrity of the genetic material as confirmed by the PCR. We demonstrate the identification of RNA and DNA viruses extracted from a few micrometers of an FIB-milled TEM grid. This workflow enables the genetic analysis of specifically imaged viral particles directly from heterogeneous clinical samples. In addition to viral diagnostics, the ability to isolate and to genetically identify specific submicrometer structures may prove valuable in additional fields, including subcellular organelle and granule research.
Collapse
Affiliation(s)
- Dror Horvitz
- Electron Microscopy, Thermo Fisher Israel Ltd., HaYarden 1 street, Airport City 7019900, Israel
| | - Elad Milrot
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Neta Luria
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Efi Makdasi
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Orly Laskar
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| |
Collapse
|
120
|
Pereira-Silva M, Chauhan G, Shin MD, Hoskins C, Madou MJ, Martinez-Chapa SO, Steinmetz NF, Veiga F, Paiva-Santos AC. Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opin Drug Deliv 2021; 18:1395-1414. [PMID: 33944644 PMCID: PMC8182831 DOI: 10.1080/17425247.2021.1922387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a particular coronavirus strain responsible for the coronavirus disease 2019 (COVID-19), accounting for more than 3.1 million deaths worldwide. Several health-related strategies have been successfully developed to contain the rapidly-spreading virus across the globe, toward reduction of both disease burden and infection rates. Particularly, attention has been focused on either the development of novel drugs and vaccines, or by adapting already-existing drugs for COVID-19 treatment, mobilizing huge efforts to block disease progression and to overcome the shortage of effective measures available at this point.Areas covered: This perspective covers the breakthrough of multifunctional biomimetic cell membrane-based nanoparticles as next-generation nanosystems for cutting-edge COVID-19 therapeutics and vaccination, specifically cell membrane-derived nanovesicles and cell membrane-coated nanoparticles, both tailorable cell membrane-based nanosystems enriched with the surface repertoire of native cell membranes, toward maximized biointerfacing, immune evasion, cell targeting and cell-mimicking properties.Expert opinion: Nano-based approaches have received widespread interest regarding enhanced antigen delivery, prolonged blood circulation half-life and controlled release of drugs. Cell membrane-based nanoparticles comprise interesting antiviral multifunctional nanoplatforms for blocking SARS-CoV-2 binding to host cells, reducing inflammation through cytokine neutralization and improving drug delivery toward COVID-19 treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Matthew D. Shin
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Marc J. Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, United States
| | | | - Nicole F. Steinmetz
- Department of Nanoengineering, University of California, San Diego, San Diego, United States
- Department of Bioengineering, University of California, San Diego, United States
- Department of Radiology, UC San Diego Health, University of California, San Diego, United States
- Center for Nano-ImmunoEngineering (Nanoie), University of California, San Diego, United States
- Moores Cancer Center, UC San Diego Health, University of California, San Diego, United States
| | - Francisco Veiga
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
121
|
Trichel AM. Overview of Nonhuman Primate Models of SARS-CoV-2 Infection. Comp Med 2021; 71:411-432. [PMID: 34548126 PMCID: PMC8594265 DOI: 10.30802/aalas-cm-20-000119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
COVID-19, the disease caused by the SARS-CoV-2 betacoronavirus, was declared a pandemic by the World Health Organization on March 11, 2020. Since then, SARS-CoV-2 has triggered a devastating global health and economic emergency. In response, a broad range of preclinical animal models have been used to identify effective therapies and vaccines. Current animal models do not express the full spectrum of human COVID-19 disease and pathology, with most exhibiting mild to moderate disease without mortality. NHPs are physiologically, genetically, and immunologically more closely related to humans than other animal species; thus, they provide a relevant model for SARS-CoV-2 investigations. This overview summarizes NHP models of SARS-CoV-2 and their role in vaccine and therapeutic development.
Collapse
Key Words
- ace2, angiotensin l converting enzyme 2
- ade, antibody dependent enhancement
- agm, african green monkey
- ards, acute respiratory distress syndrome
- balf, bronchoalveolar lavage fluid
- cj, conjunctival
- cm, cynomolgus macaque
- covid-19, coronavirus disease 19
- cp, convalescent plasma
- dad, diffuse alveolar damage
- dpc, days post challenge
- dpi, days post infection
- ggos, ground glass opacities
- grna, genomic ribonucleic acid
- hcq, hydroxychloroquine
- it, intratracheal
- nab, neutralizing antibodies
- ptm, pigtail macaque
- rbd, receptor binding domain
- rm, rhesus macaque
- s, spike
- sgrna, subgenomic ribonucleic acid
- th1, type 1 t helper cell
- vrna, viral ribonucleic acid
Collapse
Affiliation(s)
- Anita M Trichel
- Division of Laboratory Animal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
122
|
Wang S, Li L, Yan F, Gao Y, Yang S, Xia X. COVID-19 Animal Models and Vaccines: Current Landscape and Future Prospects. Vaccines (Basel) 2021; 9:1082. [PMID: 34696190 PMCID: PMC8537799 DOI: 10.3390/vaccines9101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) has become an unprecedented challenge to global public health. With the intensification of the COVID-19 epidemic, the development of vaccines and therapeutic drugs against the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also widespread. To prove the effectiveness and safety of these preventive vaccines and therapeutic drugs, available animal models that faithfully recapitulate clinical hallmarks of COVID-19 are urgently needed. Currently, animal models including mice, golden hamsters, ferrets, nonhuman primates, and other susceptible animals have been involved in the study of COVID-19. Moreover, 117 vaccine candidates have entered clinical trials after the primary evaluation in animal models, of which inactivated vaccines, subunit vaccines, virus-vectored vaccines, and messenger ribonucleic acid (mRNA) vaccines are promising vaccine candidates. In this review, we summarize the landscape of animal models for COVID-19 vaccine evaluation and advanced vaccines with an efficacy range from about 50% to more than 95%. In addition, we point out future directions for COVID-19 animal models and vaccine development, aiming at providing valuable information and accelerating the breakthroughs confronting SARS-CoV-2.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao 266000, China;
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (X.X.)
| |
Collapse
|
123
|
Xu K, Dai L, Gao GF. Humoral and cellular immunity and the safety of COVID-19 vaccines: a summary of data published by 21 May 2021. Int Immunol 2021; 33:529-540. [PMID: 34491327 PMCID: PMC8499872 DOI: 10.1093/intimm/dxab061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused millions of deaths, and serious consequences to public health, economies and societies. Rapid responses in vaccine development have taken place since the isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the release of the viral genome sequence. By 21 May 2021, 101 vaccines were under clinical trials, and published data were available for 18 of them. Clinical study results from some vaccines indicated good immunogenicity and acceptable reactogenicity. Here, we focus on these 18 vaccines that had published clinical data to dissect the induced humoral and cellular immune responses as well as their safety profiles and protection efficacy.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan 571199, China
| | - Lianpan Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan 571199, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
124
|
Performance of a Surrogate SARS-CoV-2-Neutralizing Antibody Assay in Natural Infection and Vaccination Samples. Diagnostics (Basel) 2021; 11:diagnostics11101757. [PMID: 34679455 PMCID: PMC8534648 DOI: 10.3390/diagnostics11101757] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibody (NAb) production is a crucial humoral response that can reduce re-infection or breakthrough infection. The conventional test used to measure NAb production capacity levels is the live virus-neutralizing assay. However, this test must be conducted under biosafety level-3 containment. Pseudovirus or surrogate NAb tests, such as angiotensin-converting enzyme 2 inhibition tests, can be performed under level-2 containment. The aim of this study was to evaluate the performance of a surrogate SARS-CoV-2 NAb assay (sNAb) using samples from naturally infected individuals and vaccine recipients in comparison with the live virus microneutralization assay (vMN). Three hundred and eighty serum samples which were collected from 197 patients with COVID-19, 96 vaccine recipients and 84 normal individuals were analyzed. Overall, the sensitivity, specificity, positive predictive value, and negative predictive value of the sNAb (iFlash-2019-NAb assay, Shenzhen, China) were 97.9%, 94.9%, 98.2%, and 93.8%, respectively. Agreement for the assay relative to vMN for naturally infected individuals and vaccine recipients were 98.5% and 93.9%, respectively. A correlation analysis between sNAb and the vMN for both of these groups yielded an R2 value of 0.83. The iFlash RBD NAb assay is found to be sensitive and reliable for neutralizing antibody measurement in patients with the 2019 coronavirus disease and those who have been vaccinated against it.
Collapse
|
125
|
Patarroyo ME, Patarroyo MA, Alba MP, Pabon L, Rugeles MT, Aguilar-Jimenez W, Florez L, Bermudez A, Rout AK, Griesinger C, Suarez CF, Aza-Conde J, Reyes C, Avendaño C, Samacá J, Camargo A, Silva Y, Forero M, Gonzalez E. The First Chemically-Synthesised, Highly Immunogenic Anti-SARS-CoV-2 Peptides in DNA Genotyped Aotus Monkeys for Human Use. Front Immunol 2021; 12:724060. [PMID: 34539660 PMCID: PMC8446425 DOI: 10.3389/fimmu.2021.724060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRβ1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world’s population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides’ potential coverage for the world populations up to 62.9%. These peptides’ 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology’s potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad Santo Tomás, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabon
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | | | - Lizdany Florez
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ashok K Rout
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlos F Suarez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jhoan Samacá
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yolanda Silva
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Edgardo Gonzalez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| |
Collapse
|
126
|
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine 2021; 39:5719-5726. [PMID: 34426024 PMCID: PMC8354792 DOI: 10.1016/j.vaccine.2021.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19-recovered patients. Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine. In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
127
|
Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. LE INFEZIONI IN MEDICINA 2021; 29:328-338. [PMID: 35146337 PMCID: PMC8805485 DOI: 10.53854/liim-2903-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022]
Abstract
The concept of viral vector-based vaccine was introduced in 1972 by Jackson et al and in 1982 Moss et al introduced the use of vaccinia virus as a transient gene expression vector. The technology has been used to make Ebola vaccines and now COVID-19 vaccines. There are two types of viral vector-based vaccines i.e. replicating and non-replicating. Non-replicating viral vector-based vaccines use replication-deficient viral vectors to deliver genetic material of a particular antigen to the host cell to induce immunity against the desired antigen. Replicating vector vaccines produce new viral particles in the cells they enter, which then go on to enter more new cells which will also make the vaccine antigen. Non-replicating vector-based vaccines are more commonly utilized. Adenovirus, vesicular stomatitis virus, vaccinia virus, adenovirus associated virus, retrovirus, lentivirus, cytomegalovirus, and sendai virus have been used as vectors. Current adenovirus vector-based vaccines being administered against SARS-CoV-2 infection are JNJ-78435735 by Johnson and Johnson (Janssen) along with Beth Israel Deaconess Medical Center, AZD1222 by Oxford-AstraZeneca, Sputnik V and Sputnik Light by Gamaleya Research Institute of Epidemiology and Microbiology, and Convidecia vaccine by CanSino Biologics. Of the five vaccines, the United States Food and Drug Administration (FDA) has approved Janssen vaccine for emergency use. Efficacy against COVID-19 variants has been found in all but the Convidecia vaccine so far. Heterologous prime-boost COVID-19 vaccination regimen may be the new face and more efficient immunization approach for enhanced immunity against COVID-19.
Collapse
Affiliation(s)
| | - Gisha Mohan
- Department of Medicine, Suburban Community Hospital, East Norristown, Pennsylvania, USA
| | - Deepa Vasireddy
- Department of Pediatrics, Pediatric Group of Acadiana, Lafayette, Louisiana, USA
| | - Paavani Atluri
- Department of Medicine, Bay Area Hospital, Coos Bay, Oregon, USA
| |
Collapse
|
128
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
129
|
Zabaleta N, Dai W, Bhatt U, Hérate C, Maisonnasse P, Chichester JA, Sanmiguel J, Estelien R, Michalson KT, Diop C, Maciorowski D, Dereuddre-Bosquet N, Cavarelli M, Gallouët AS, Naninck T, Kahlaoui N, Lemaitre J, Qi W, Hudspeth E, Cucalon A, Dyer CD, Pampena MB, Knox JJ, LaRocque RC, Charles RC, Li D, Kim M, Sheridan A, Storm N, Johnson RI, Feldman J, Hauser BM, Contreras V, Marlin R, Tsong Fang RH, Chapon C, van der Werf S, Zinn E, Ryan A, Kobayashi DT, Chauhan R, McGlynn M, Ryan ET, Schmidt AG, Price B, Honko A, Griffiths A, Yaghmour S, Hodge R, Betts MR, Freeman MW, Wilson JM, Le Grand R, Vandenberghe LH. An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host Microbe 2021; 29:1437-1453.e8. [PMID: 34428428 PMCID: PMC8346325 DOI: 10.1016/j.chom.2021.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.
Collapse
Affiliation(s)
- Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Wenlong Dai
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cécile Hérate
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Jessica A Chichester
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristofer T Michalson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dawid Maciorowski
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nidhal Kahlaoui
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Wenbin Qi
- Novartis Gene Therapies, San Diego, CA, USA
| | | | - Allison Cucalon
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Betina Pampena
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dan Li
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Maya Kim
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Abigail Sheridan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rebecca I Johnson
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vanessa Contreras
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Raphaël Ho Tsong Fang
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aisling Ryan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dione T Kobayashi
- Translational Innovation Fund, Mass General Brigham Innovation, Cambridge, MA, USA
| | - Ruchi Chauhan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Marion McGlynn
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | - Anna Honko
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Michael R Betts
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mason W Freeman
- Center for Computational & Integrative Biology, Department of Medicine, and Translational Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
130
|
Dangi T, Class J, Palacio N, Richner JM, Penaloza MacMaster P. Combining spike- and nucleocapsid-based vaccines improves distal control of SARS-CoV-2. Cell Rep 2021; 36:109664. [PMID: 34450033 PMCID: PMC8367759 DOI: 10.1016/j.celrep.2021.109664] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 infection causes respiratory insufficiency and neurological manifestations, including loss of smell and psychiatric disorders, and can be fatal. Most vaccines are based on the spike antigen alone, and although they have shown efficacy at preventing severe disease and death, they do not always confer sterilizing immunity. Here, we interrogate whether SARS-CoV-2 vaccines could be improved by incorporating nucleocapsid as an antigen. We show that, after 72 h of challenge, a spike-based vaccine confers acute protection in the lung, but not in the brain. However, combining a spike-based vaccine with a nucleocapsid-based vaccine confers acute protection in both the lung and brain. These findings suggest that nucleocapsid-specific immunity can improve the distal control of SARS-CoV-2, warranting the inclusion of nucleocapsid in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Tanushree Dangi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacob Class
- Department of Microbiology & Immunology, University of Illinois, Chicago College of Medicine, Chicago, IL 60612, USA
| | - Nicole Palacio
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Justin M Richner
- Department of Microbiology & Immunology, University of Illinois, Chicago College of Medicine, Chicago, IL 60612, USA.
| | - Pablo Penaloza MacMaster
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
131
|
Fan YJ, Chan KH, Hung IFN. Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Different Vaccines at Phase 3. Vaccines (Basel) 2021; 9:vaccines9090989. [PMID: 34579226 PMCID: PMC8473448 DOI: 10.3390/vaccines9090989] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
This systematic review and meta-analysis was conducted to compare the safety and efficacy of 2019 novel coronavirus disease (COVID-19) vaccines according to vaccine platform and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection severity. Articles published between 24 January 2020 and 30 May 2021 were retrieved via a PubMed and EMBASE search. A total of 12 reports on phase-3 clinical trials and observational studies of COVID-19 vaccines were included in the review. In terms of vaccine safety, mRNA vaccines showed more relevance to serious adverse events than viral vector and inactivated vaccines, but no solid evidence indicated that COVID-19 vaccines directly caused serious adverse events. Serious metabolic, musculoskeletal, immune-system, and renal disorders were more common among inactivated vaccine recipients, and serious gastrointestinal complications and infections were more common among viral vector and inactivated vaccine recipients. The occurrence of serious vessel disorders was more frequent in mRNA vaccines. In terms of efficacy, two mRNA vaccine doses conferred a lesser risk of SARS-COV-2 infection (odds ratio: 0.05; 95% confidence interval: 0.02-0.13) than did vaccination with viral vector and inactivated vaccines. All vaccines protected more against symptomatic than asymptomatic cases (risk ratio, 0.11 vs. 0.34), but reduced the risk of severe SARS-COV-2 infection. The COVID-19 vaccines assessed in this study are sufficiently safe and effective. The results indicate that two mRNA vaccine doses prevent SARS-COV-2 infection most effectively, but further research is needed due to the high degree of heterogeneity among studies in this sample. Interventions should be implemented continuously to reduce the risks of infection after one vaccine dose and asymptomatic infection.
Collapse
Affiliation(s)
- Yu-Jing Fan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
132
|
Vandeputte J, Van Damme P, Neyts J, Audonnet JC, Baay M, Neels P. Animal experiments show impact of vaccination on reduction of SARS-CoV-2 virus circulation: A model for vaccine development? Biologicals 2021; 73:1-7. [PMID: 34489162 PMCID: PMC8414133 DOI: 10.1016/j.biologicals.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the pre-clinical phase, SARS-CoV-2 vaccines were tested in animal models, including exposure trials, to investigate protection against SARS-CoV-2. These studies paved the way for clinical development. The objective of our review was to provide an overview of published animal exposure results, focussing on the capacity of vaccines to reduce/prevent viral shedding. METHOD Using Medline, we retrieved eighteen papers on eight different vaccine platforms in four animal models. Data were extracted on presence/absence of viral RNA in nose, throat, or lungs, and neutralizing antibody levels in the blood. RESULTS All vaccines showed a tendency of reduced viral load after exposure. Particularly nasal swab results are likely to give an indication about the impact on virus excretion in the environment. Similarly, the reduction or prevention of viral replication in the bronchoalveolar environment might be related with disease prevention, explaining the high efficacy in clinical trials. DISCUSSION Although it remains difficult to compare the results directly, the potential for a strong reduction of transmission was shown, indicating that the animal models predicted what is observed in the field after large scale human vaccination. This merits further attention for standardization of exposure experiments, with the intention to speed up future vaccine development.
Collapse
Affiliation(s)
- J Vandeputte
- International Alliance for Biological Standardization, Geneve, Switzerland; International Alliance for Biological Standardization Europe, Lyon, France.
| | - P Van Damme
- Centre for the Evaluation of Vaccination and Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - J Neyts
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - J C Audonnet
- Boehringer Ingelheim Animal Health, Saint Priest, France
| | - M Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | - P Neels
- International Alliance for Biological Standardization, Geneve, Switzerland; International Alliance for Biological Standardization Europe, Lyon, France
| |
Collapse
|
133
|
Feng F, Hao H, Zhao J, Li Y, Zhang Y, Li R, Wen Z, Wu C, Li M, Li P, Chen L, Tang R, Wang X, Sun C. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials 2021; 276:121062. [PMID: 34418816 DOI: 10.1016/j.biomaterials.2021.121062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023]
Abstract
Adenovirus (Ad) has been extensively developed as a gene delivery vector, but the potential side effect caused by systematic immunization remains one major obstacle for its clinical application. Needle-free mucosal immunization with Ad-based vaccine shows advantages but still faces poor mucosal responses. We herein report that the chemical engineering of single live viral-based vaccine effectively modulated the location and pattern of the subsequently elicited immunity. Through precisely assembly of functional materials onto single live Ad particle, the modified virus entered host cell in a phagocytosis-dependent manner, which is completely distinct from the receptor-mediated entry of native Ad. RNA-Seq data further demonstrated that the modified Ad-induced innate immunity was sharply reshaped via phagocytosis-related pathway, therefore promoting the activation and mature of antigen presentation cells (APC). Moreover, the functional shell enabled the modified Ad-based vector with enhanced muco-adhesion to nasal tissues in mice, and then prolonged resident time onto mucosal surface, leading to the robust mucosal IgA production and T cell immunity at local and even remote mucosal-associated lymphoid tissues. This study demonstrated that vaccine-induced immunity can be well modulated by chemistry engineering, and this method provides the rational design for needle-free mucosa-targeting vaccine against a variety of emerging infectious diseases.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ying Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China.
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China.
| |
Collapse
|
134
|
|
135
|
Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 2021; 6:97. [PMID: 34354082 PMCID: PMC8342436 DOI: 10.1038/s41541-021-00356-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Adenoviral vectors have been explored as vaccine agents for a range of infectious diseases, and their ability to induce a potent and balanced immune response made them logical candidates to apply to the COVID-19 pandemic. The unique molecular characteristics of these vectors enabled the rapid development of vaccines with advanced designs capable of overcoming the biological challenges faced by early adenoviral vector systems. These successes and the urgency of the COVID-19 situation have resulted in a flurry of candidate adenoviral vector vaccines for COVID-19 from both academia and industry. These vaccines represent some of the lead candidates currently supported by Operation Warp Speed and other government agencies for rapid translational development. This review details adenoviral vector COVID-19 vaccines currently in human clinical trials and provides an overview of the new technologies employed in their design. As these vaccines have formed a cornerstone of the COVID-19 global vaccination campaign, this review provides a full consideration of the impact and development of this emerging platform.
Collapse
Affiliation(s)
- Samir Andrade Mendonça
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - Reka Lorincz
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - Paul Boucher
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - David T Curiel
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA.
| |
Collapse
|
136
|
Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O'Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W, Pasqualini R. Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proc Natl Acad Sci U S A 2021; 118:e2105739118. [PMID: 34234013 PMCID: PMC8325333 DOI: 10.1073/pnas.2105739118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.
Collapse
Affiliation(s)
- Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fenny H F Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Virginia J Yao
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fernanda I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054, Brazil
| | - Deodate Davis
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Paul O'Brien
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Nazia Habib
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tracey L Smith
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Natalie Bruiners
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA 02115
| | - Maria L Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Paul C Whitford
- Department of Physics and Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115
| | - Stephen K Burley
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92067
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Biosciences, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101;
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101;
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
137
|
Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, Zhu T, Zhang J, Luo L, Fan P, Wang B, Chen C, Chen Y, Song X, Wang Y, Si W, Sun T, Wang X, Hou L, Chen W. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1654-1664. [PMID: 34324836 PMCID: PMC8313090 DOI: 10.1016/s1473-3099(21)00396-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Background SARS-CoV-2 has caused millions of deaths, and, since Aug 11, 2020, 20 intramuscular COVID-19 vaccines have been approved for use. We aimed to evaluate the safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China. Method This was a randomised, single-centre, open-label, phase 1 trial done in Zhongnan Hospital (Wuhan, China), to evaluate the safety and immunogenicity of the Ad5-nCoV vaccine by aerosol inhalation in adults (≥18 years) seronegative for SARS-CoV-2. Breastfeeding or pregnant women and people with major chronic illnesses or history of allergies were excluded. Participants were enrolled and randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both. Randomisation was stratified by sex and age (18–55 years or ≥56 years) using computer-generated randomisation sequences (block sizes of five). Only laboratory staff were masked to group assignment. The participants in the two aerosol groups received an initial high dose (2 × 1010 viral particles; HDmu group) or low dose (1 × 1010 viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28. The mixed vaccination group received an initial intramuscular (5 × 1010 viral particles) vaccine on day 0, followed by an aerosolised booster (2 × 1010 viral particles) vaccine on day 28 (MIX group). The intramuscular groups received one dose (5 × 1010 viral particles; 1Dim group) or two doses (10 × 1010 viral particles; 2Dim group) of Ad5-nCoV on day 0. The primary safety outcome was adverse events 7 days after each vaccination, and the primary immunogenicity outcome was anti-SARS-CoV-2 spike receptor IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28 after last vaccination. This trial is registered with ClinicalTrials.gov, number NCT04552366. Findings Between Sept 28, 2020, and Sept 30, 2020, 230 individuals were screened for inclusion, of whom 130 (56%) participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group). Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group. The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%] participants), and headache (46 [35%] participants). More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%] of 78 participants), than those who received aerosol vaccine (13 [25%] of 52 participants) after the first vaccine vaccination. No serious adverse events were noted within 56 days after the first vaccine. At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47–245) in the HDmu group, 105 (47–232) in the LDmu group, 396 (207–758) in the MIX group, 95 (61–147) in the 1Dim group, and 180 (113–288) in the 2Dim group. The geometric mean concentrations of receptor binding domain-binding IgG was 261 EU/mL (95% CI 121–563) in the HDmu group, 289 EU/mL (138–606) in the LDmu group, 2013 EU/mL (1180–3435) in the MIX group, 915 EU/mL (588–1423) in the 1Dim group, and 1190 EU/mL (776–1824) in the 2Dim group. Interpretation Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection. An aerosolised booster vaccination at 28 days after first intramuscular injection induced strong IgG and neutralising antibody responses. The efficacy and cost-effectiveness of aerosol vaccination should be evaluated in future studies. Funding National Key Research and Development Programme of China and National Science and Technology Major Project. Translation For the Chinese translation of the Summary see Supplementary Material.
Collapse
Affiliation(s)
- Shipo Wu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jianying Huang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinlong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Hanning Hu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Zhu
- CanSino Biologics, Tianjin, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lin Luo
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Fan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Busen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Chang Chen
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaohong Song
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | | | - Tianjian Sun
- Shanghai Stem Pharmaceutical Development, Shanghai, China
| | - Xinghuan Wang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Lihua Hou
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
138
|
Bricker TL, Darling TL, Hassan AO, Harastani HH, Soung A, Jiang X, Dai YN, Zhao H, Adams LJ, Holtzman MJ, Bailey AL, Case JB, Fremont DH, Klein R, Diamond MS, Boon ACM. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep 2021; 36:109400. [PMID: 34245672 PMCID: PMC8238649 DOI: 10.1016/j.celrep.2021.109400] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
The development of an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is a global priority. Here, we compare the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (chimpanzee adenovirus [ChAd]-SARS-CoV-2-S) in Golden Syrian hamsters. Although immunization with ChAd-SARS-CoV-2-S induces robust spike-protein-specific antibodies capable of neutralizing the virus, antibody levels in serum are higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S-immunized hamsters are protected against less weight loss and have reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provides superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.
Collapse
Affiliation(s)
- Traci L Bricker
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamarand L Darling
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed O Hassan
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Houda H Harastani
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Allison Soung
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adam L Bailey
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - James Brett Case
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Biophysics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Robyn Klein
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
139
|
Abstract
Under the pressure of the COVID-19 pandemic, vaccines were developed and rolled out into mass vaccination campaigns at incredible speed. What normally takes a decade was worked out within a year. Vaccines were produced along many different platforms ranging from inactivated whole virus vaccines over adenovirus-vectored vaccines, recombinant protein vaccines and nanoparticles to mRNA vaccines. Several vaccines went through preclinical testing and completed successful phase 1 to phase 3 clinical trials. The first evaluations of national vaccination campaigns document astonishing high levels of protection against disease. The present article summarizes the published reports leading to these striking achievements with vaccines based on different concepts.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
140
|
Pandey K, Acharya A, Mohan M, Ng CL, Reid SP, Byrareddy SN. Animal models for SARS-CoV-2 research: A comprehensive literature review. Transbound Emerg Dis 2021; 68:1868-1885. [PMID: 33128861 PMCID: PMC8085186 DOI: 10.1111/tbed.13907] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Emerging and re-emerging viral diseases can create devastating effects on human lives and may also lead to economic crises. The ongoing COVID-19 pandemic due to the novel coronavirus (nCoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has caused a global public health emergency. To date, the molecular mechanism of transmission of SARS-CoV-2, its clinical manifestations and pathogenesis is not completely understood. The global scientific community has intensified its efforts in understanding the biology of SARS-CoV-2 for development of vaccines and therapeutic interventions to prevent the rapid spread of the virus and to control mortality and morbidity associated with COVID-19. To understand the pathophysiology of SARS-CoV-2, appropriate animal models that mimic the biology of human SARS-CoV-2 infection are urgently needed. In this review, we outline animal models that have been used to study previous human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Importantly, we discuss models that are appropriate for SARS-CoV-2 as well as the advantages and disadvantages of various available methods.
Collapse
Affiliation(s)
- Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX, USA
| | - Caroline L Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centre, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
141
|
Lai C, Liu X, Yan Q, Lv H, Zhou L, Hu L, Cai Y, Wang G, Chen Y, Chai R, Liu Z, Xu Y, Huang W, Xiao F, Hu L, Li Y, Huang J, Zhou Q, Li L, Peng T, Zhang H, Zhang Z, Chen L, Chen C, Ji T. Low Innate Immunity and Lagged Adaptive Immune Response in the Re-Tested Viral RNA Positivity of a COVID-19 Patient. Front Immunol 2021; 12:664619. [PMID: 34305895 PMCID: PMC8295488 DOI: 10.3389/fimmu.2021.664619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies have highlighted observations regarding re-tested positivity (RP) of SARS-CoV-2 RNA in discharged COVID-19 patients, however, the immune mechanisms underlying SARS-CoV-2 RNA RP in immunocompetent patients remain elusive. Herein, we describe the case of an immunocompetent COVID-19 patient with moderate symptoms who was twice re-tested as positive for SARS-CoV-2 RNA, and the period between first and third viral RNA positivity was 95 days, longer than previously reported (18–25 days). The chest computed tomography findings, plasma anti-SARS-CoV-2 antibody, neutralizing antibodies (NAbs) titer, and whole blood transcriptic characteristics in the viral RNA RP patient and other COVID-19 patients were analyzed. During the SARS-CoV-2 RNA RP period, new lung lesions were observed. The COVID-19 patient with viral RNA RP had delayed seroconversion of anti-spike/receptor-binding domain (RBD) IgA antibody and NAbs and were accompanied with disappearance of the lung lesions. Further experimental data validated that NAbs titer was significantly associated with anti-RBD IgA and IgG, and anti-spike IgG. The RP patient had lower interferon-, T cells- and B cell-related genes expression than non-RP patients with mild-to-moderate symptoms, and displayed lower cytokines and chemokines gene expression than severe patients. Interestingly, the RP patient had low expression of antigen presentation-related genes and low B cell counts which might have contributed to the delayed anti-RBD specific antibody and low CD8+ cell response. Collectively, delayed antigen presentation-related gene expression was found related to delayed adaptive immune response and contributed to the SARS-CoV-2 RNA RP in this described immunocompetent patient.
Collapse
Affiliation(s)
- Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China.,Department of Emergency, Maoming People's Hospital, Maoming, China.,Clinical Laboratory Medicine Department, Xinyi People's Hospital, Xinyi, China
| | - Xinglong Liu
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qihong Yan
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hualiang Lv
- Pulmonary and Critical Care Medicine Department, Maoming People's Hospital, Maoming, China
| | - Lei Zhou
- Pathology Laboratory Department, Maoming People's Hospital, Maoming, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yong Cai
- CT Department, Maoming People's Hospital, Maoming, China
| | - Guoqiang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Renjie Chai
- Cardiovascular Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhua Xu
- Vaccine Research and Development Department, Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Wendong Huang
- Scientific Research Center, Maoming People's Hospital, Maoming, China
| | - Fei Xiao
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Linhui Hu
- Clinical Research Center, Maoming People's Hospital, Maoming, China
| | - Yaocai Li
- Infection Department, Maoming People's Hospital, Maoming, China
| | - Jianhong Huang
- Medical Department, Maoming People's Hospital, Maoming, China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luqian Li
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Haiye Zhang
- Clinical Laboratory Medicine Department, Xinyi People's Hospital, Xinyi, China
| | - Zhenhui Zhang
- Critical Care Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Bioland Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunbo Chen
- Department of Emergency, Maoming People's Hospital, Maoming, China.,Scientific Research Center, Maoming People's Hospital, Maoming, China
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
142
|
Yan Q, He P, Huang X, Luo K, Zhang Y, Yi H, Wang Q, Li F, Hou R, Fan X, Li P, Liu X, Liang H, Deng Y, Chen Z, Chen Y, Mo X, Feng L, Xiong X, Li S, Han J, Qu L, Niu X, Chen L. Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerg Microbes Infect 2021; 10:1097-1111. [PMID: 33944697 PMCID: PMC8183521 DOI: 10.1080/22221751.2021.1925594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies (mAbs) encoded by IGHV3-53 (VH3-53) targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients’ antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigen-specific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.
Collapse
Affiliation(s)
- Qihong Yan
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Ping He
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Xiaohan Huang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Yudi Zhang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Haisu Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Feng Li
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruitian Hou
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Xiaodi Fan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinglong Liu
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoming Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yunfei Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiaoneng Mo
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liqiang Feng
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiaoli Xiong
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Song Li
- iRepertoire Inc. , Huntsville, AL, USA.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, People's Republic of China
| | - Jian Han
- iRepertoire Inc. , Huntsville, AL, USA
| | - Linbing Qu
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
143
|
Harbour JC, Lyski ZL, Schell JB, Thomas A, Messer WB, Slifka MK, Nolz JC. Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2596-2604. [PMID: 33972374 PMCID: PMC8165000 DOI: 10.4049/jimmunol.2100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice. Both CD8+ and CD4+ T cells specific to the SARS-CoV-2 spike protein underwent robust expansion, contraction, and persisted for at least 40 d following a single immunization with VacV-S. Vaccination also caused the rapid emergence of spike-specific IgG-neutralizing Abs. Interestingly, both the cellular and humoral immune responses strongly targeted the S1 domain of spike following VacV-S immunization. Notably, immunization with VacV-expressing spike conjugated to the MHC class II invariant chain, a strategy previously reported by us and others to enhance the immunogenicity of antigenic peptides, did not promote stronger spike-specific T cell or Ab responses in vivo. Overall, these findings demonstrate that an immunization approach using VacV or attenuated versions of VacV expressing the native, full-length SARS-CoV-2 spike protein could be used for further vaccine development to prevent the spread of COVID-19.
Collapse
Affiliation(s)
- Jake C Harbour
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - John B Schell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Archana Thomas
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR
- Program in Epidemiology, Oregon Health & Science University-Portland State University School of Public Health, Oregon Health & Science University, Portland, OR
| | - Mark K Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR;
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR; and
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
144
|
Lee CY, Lowen AC. Animal models for SARS-CoV-2. Curr Opin Virol 2021; 48:73-81. [PMID: 33906125 PMCID: PMC8023231 DOI: 10.1016/j.coviro.2021.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Since its first detection in December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread worldwide, resulting in over 79.2 million documented cases in one year. Lack of pre-existing immunity against this newly emerging virus has pushed the urgent development of anti-viral therapeutics and vaccines to reduce the spread of the virus and alleviate disease. Appropriate animal models recapitulating the pathogenesis of and host responses to SARS-CoV-2 infection in humans have and will continue to accelerate this development process. Several animal models including mice, hamsters, ferrets, and non-human primates have been evaluated and actively applied in preclinical studies. However, since each animal model has unique features, it is necessary to weigh the strengths and weaknesses of each according to the goals of the study. Here, we summarize the key features, strengths and weaknesses of animal models for SARS-CoV-2, focusing on their application in anti-viral therapeutic and vaccine development.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States.
| |
Collapse
|
145
|
Park JH, Lee HK. Delivery Routes for COVID-19 Vaccines. Vaccines (Basel) 2021; 9:524. [PMID: 34069359 PMCID: PMC8158705 DOI: 10.3390/vaccines9050524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2, which causes COVID-19, has resulted in a pandemic with millions of deaths. To eradicate SARS-CoV-2 and prevent further infections, many vaccine candidates have been developed. These vaccines include not only traditional subunit vaccines and attenuated or inactivated viral vaccines but also nucleic acid and viral vector vaccines. In contrast to the diversity in the platform technology, the delivery of vaccines is limited to intramuscular vaccination. Although intramuscular vaccination is safe and effective, mucosal vaccination could improve the local immune responses that block the spread of pathogens. However, a lack of understanding of mucosal immunity combined with the urgent need for a COVID-19 vaccine has resulted in only intramuscular vaccinations. In this review, we summarize the history of vaccines, current progress in COVID-19 vaccine technology, and the status of intranasal COVID-19 vaccines. Future research should determine the most effective route for vaccine delivery based on the platform and determine the mechanisms that underlie the efficacy of different delivery routes.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
146
|
Harris PE, Brasel T, Massey C, Herst CV, Burkholz S, Lloyd P, Blankenberg T, Bey TM, Carback R, Hodge T, Ciotlos S, Wang L, Comer JE, Rubsamen RM. A Synthetic Peptide CTL Vaccine Targeting Nucleocapsid Confers Protection from SARS-CoV-2 Challenge in Rhesus Macaques. Vaccines (Basel) 2021; 9:520. [PMID: 34070152 PMCID: PMC8158516 DOI: 10.3390/vaccines9050520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Persistent transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a COVID-19 pandemic. Several vaccines, conceived in 2020, that evoke protective spike antibody responses are being deployed in mass public health vaccination programs. Recent data suggests, however, that as sequence variation in the spike genome accumulates, some vaccines may lose efficacy. METHODS Using a macaque model of SARS-CoV-2 infection, we tested the efficacy of a peptide-based vaccine targeting MHC class I epitopes on the SARS-CoV-2 nucleocapsid protein. We administered biodegradable microspheres with synthetic peptides and adjuvants to rhesus macaques. Unvaccinated control and vaccinated macaques were challenged with 1 × 108 TCID50 units of SARS-CoV-2, followed by assessment of clinical symptoms and viral load, chest radiographs, and sampling of peripheral blood and bronchoalveolar lavage (BAL) fluid for downstream analysis. RESULTS Vaccinated animals were free of pneumonia-like infiltrates characteristic of SARS-CoV-2 infection and presented with lower viral loads relative to controls. Gene expression in cells collected from BAL samples of vaccinated macaques revealed a unique signature associated with enhanced development of adaptive immune responses relative to control macaques. CONCLUSIONS We demonstrate that a room temperature stable peptide vaccine based on known immunogenic HLA class I bound CTL epitopes from the nucleocapsid protein can provide protection against SARS-CoV-2 infection in nonhuman primates.
Collapse
Affiliation(s)
- Paul E. Harris
- Department of Medicine, Columbia University, P&S 10-502, 650 West 168th Street, New York, NY 10032, USA;
| | - Trevor Brasel
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - Christopher Massey
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - C. V. Herst
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Scott Burkholz
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Peter Lloyd
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
- Dignity Health Mercy Medical Center, Redding, CA 96001, USA;
| | - Thomas M. Bey
- Dignity Health Mercy Medical Center, Redding, CA 96001, USA;
| | - Richard Carback
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Thomas Hodge
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Serban Ciotlos
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Lu Wang
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Jason E. Comer
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - Reid M. Rubsamen
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
- The Department of Anesthesiology and Perioperative Medicine, Case Western Reserve School of Medicine, Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 96001, USA
| |
Collapse
|
147
|
McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines 2021; 6:74. [PMID: 33986272 PMCID: PMC8116645 DOI: 10.1038/s41541-021-00336-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
As SARS-CoV-2 vaccines are deployed worldwide, a comparative evaluation is important to underpin decision-making. We here report a systematic literature review and meta-analysis of Phase I/II/III human trials and non-human primates (NHP) studies, comparing reactogenicity, immunogenicity and efficacy across different vaccine platforms for comparative evaluation (updated to March 22, 2021). Twenty-three NHP and 32 human studies are included. Vaccines result in mostly mild, self-limiting adverse events. Highest spike neutralizing antibody (nAb) responses are identified for the mRNA-1273-SARS-CoV and adjuvanted NVX-CoV2373-SARS-CoV-2 vaccines. ChAdOx-SARS-CoV-2 produces the highest T cell ELISpot responses. Pre-existing nAb against vaccine viral vector are identified following AdH-5-SARS-CoV-2 vaccination, halving immunogenicity. The mRNA vaccines depend on boosting to achieve optimal immunogenicity especially in the elderly. BNT162b2, and mRNA-1273 achieve >94%, rAd26/5 > 91% and ChAdOx-SARS-CoV-2 > 66.7% efficacy. Across different vaccine platforms there are trade-offs between antibody binding, functional nAb titers, T cell frequency, reactogenicity and efficacy. Emergence of variants makes rapid mass rollout of high efficacy vaccines essential to reduce any selective advantage.
Collapse
Affiliation(s)
- Ian McDonald
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sam M Murray
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Catherine J Reynolds
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK.
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Lung Division, Royal Brompton and Harefield Hospitals, London, UK.
| |
Collapse
|
148
|
A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nat Commun 2021; 12:2623. [PMID: 33976198 PMCID: PMC8113581 DOI: 10.1038/s41467-021-22926-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.
Collapse
|
149
|
Sui Y, Li J, Zhang R, Prabhu SK, Andersen H, Venzon D, Cook A, Brown R, Teow E, Velasco J, Greenhouse J, Putman-Taylor T, Campbell TA, Pessaint L, Moore IN, Lagenaur L, Talton J, Breed MW, Kramer J, Bock KW, Minai M, Nagata BM, Lewis MG, Wang LX, Berzofsky JA. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight 2021; 6:148494. [PMID: 33908897 PMCID: PMC8262352 DOI: 10.1172/jci.insight.148494] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum–only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Laurel Lagenaur
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jim Talton
- Alchem Laboratories Corporation, Alachua, Florida, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
150
|
Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. Review of COVID-19 Vaccines Approved in the United States of America for Emergency Use. J Clin Med Res 2021; 13:204-213. [PMID: 34007358 PMCID: PMC8110223 DOI: 10.14740/jocmr4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus causing a global pandemic. Coronaviruses are a large family of single-stranded ribonucleic acid (RNA) viruses. The virus has four essential structural proteins which include the spike (S) glycoprotein, matrix (M) protein, nucleocapsid (N) protein and small envelope (E) protein. Different technologies are being used for vaccine development to battle the pandemic. There are messenger ribonucleic acid (mRNA)-based vaccines, deoxyribonucleic acid (DNA) vaccines, inactivated viral vaccines, live attenuated vaccines, protein subunit-based vaccines, viral vector-based vaccines and virus-like particle-based vaccines. Vaccine development has five stages. In the clinical developmental stage, vaccine development can be sped up by combining phase 1 and 2. The vaccines can also be approved more swiftly on an emergent basis and released sooner for usage. The United States Food and Drug Administration (USFDA) has approved Pfizer-BioNTech, Moderna and Janssen coronavirus disease 2019 (COVID-19) vaccines for emergency use. There are other vaccines that have been approved around the world. The mRNA vaccines have been created using a novel technology and they contain a synthetically created RNA sequence of virus fragments encoding the S-protein which is injected. These vaccines have a relatively low cost of production and faster manufacturing time but can have comparatively lower immunogenicity and more than one dose of vaccine may be required. In the case of viral vector-based vaccines, genes encoding the SARS-CoV-2 S protein are isolated and following gene sequencings are introduced into the adenovirus vector. These vaccines have a relatively fast manufacturing time but the efficacy of the vaccine is variable based on the host’s immune response to the viral vector. At the time of this paper, there were 81 vaccines in clinical development stage and 182 vaccines in preclinical development stage. Vaccines are an essential tool in our battle against COVID-19. Some of the COVID-19 vaccines have completed their phase III trials while many other potential vaccines are still in developmental stages. It used to take close to a decade for a vaccine to be developed and undergo rigorous testing until its production and availability to the public, but over the past year, we have seen multiple vaccines in different phases of testing against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Deepa Vasireddy
- Department of Pediatrics, Pediatric Group of Acadiana, Lafayette, LA, USA
| | | | | | | | - Gisha Mohan
- Physicians for American Health Care Access, Philadelphia, PA, USA
| |
Collapse
|