101
|
Xiao X, Guo P, Shiota C, Zhang T, Coudriet GM, Fischbach S, Prasadan K, Fusco J, Ramachandran S, Witkowski P, Piganelli JD, Gittes GK. Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 2018; 22:78-90.e4. [PMID: 29304344 PMCID: PMC5757249 DOI: 10.1016/j.stem.2017.11.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
Successful strategies for treating type 1 diabetes need to restore the function of pancreatic beta cells that are destroyed by the immune system and overcome further destruction of insulin-producing cells. Here, we infused adeno-associated virus carrying Pdx1 and MafA expression cassettes through the pancreatic duct to reprogram alpha cells into functional beta cells and normalized blood glucose in both beta cell-toxin-induced diabetic mice and in autoimmune non-obese diabetic (NOD) mice. The euglycemia in toxin-induced diabetic mice and new insulin+ cells persisted in the autoimmune NOD mice for 4 months prior to reestablishment of autoimmune diabetes. This gene therapy strategy also induced alpha to beta cell conversion in toxin-treated human islets, which restored blood glucose levels in NOD/SCID mice upon transplantation. Hence, this strategy could represent a new therapeutic approach, perhaps complemented by immunosuppression, to bolster endogenous insulin production. Our study thus provides a potential basis for further investigation in human type 1 diabetes.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Gina M Coudriet
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
102
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
103
|
Abstract
Objective Actin cytoskeleton remodeling is necessary for glucose-stimulated insulin secretion in pancreatic β-cells. A mechanistic understanding of actin dynamics in the islet is paramount to a better comprehension of β-cell dysfunction in diabetes. Here, we investigate the Rho GTPase regulator Stard13 and its role in F-actin cytoskeleton organization and islet function in adult mice. Methods We used Lifeact-EGFP transgenic animals to visualize actin cytoskeleton organization and dynamics in vivo in the mouse islets. Furthermore, we applied this model to study actin cytoskeleton and insulin secretion in mutant mice deleted for Stard13 selectively in pancreatic cells. We isolated transgenic islets for 3D-imaging and perifusion studies to measure insulin secretion dynamics. In parallel, we performed histological and morphometric analyses of the pancreas and used in vivo approaches to study glucose metabolism in the mouse. Results In this study, we provide the first genetic evidence that Stard13 regulates insulin secretion in response to glucose. Postnatally, Stard13 expression became restricted to the mouse pancreatic islets. We showed that Stard13 deletion results in a marked increase in actin polymerization in islet cells, which is accompanied by severe reduction of insulin secretion in perifusion experiments. Consistently, Stard13-deleted mice displayed impaired glucose tolerance and reduced glucose-stimulated insulin secretion. Conclusions Taken together, our results suggest a previously unappreciated role for the RhoGAP protein Stard13 in the interplay between actin cytoskeletal remodeling and insulin secretion. Lifeact-EGFP mice allow in vivo labeling of the actin cytoskeleton in islets. The RhoGAP Stard13 regulates actin cytoskeleton organization in mouse islets. Stard13 deficiency hampers glucose-induced insulin secretion by mouse β-cells.
Collapse
|
104
|
Jiang FX, Harrison LC. Transient Impairment of Islet Architectural Development in Pancreas-Specific Bmpr1a-Deleted Prenatal Mice Involves Reduced Expression of E-Cadherin. Stem Cells Dev 2017; 26:1706-1714. [PMID: 28922976 DOI: 10.1089/scd.2017.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays critical roles on the development of a large array of embryonic organs and promotes the in vitro formation of pancreatic cystoid colonies containing insulin-producing cells. However, this signaling and its underlying mechanism on in vivo development of prenatal pancreas have not been clearly understood. To address these questions, we analyzed, with a variety of techniques, the prenatal mouse pancreas after Pdx1 (the pancreas and duodenum homeobox factor 1 gene)-driving deletion of the BMP receptor type 1a gene (Bmpr1a). In this study, we report that the Pdx1-driving deletion of Bmpr1a transiently disrupted only the assembly of architectural structure of prenatal islets. The differentiation of endocrine lineage cells and the development of pancreatic acinar tissue were comparable between Bmpr1a-deleted fetuses and -undeleted Controls throughout the period examined. Molecular studies revealed that among many proteins surveyed, the key cell-cell interaction molecule E-cadherin (E-cad) only was expressed significantly less at both messenger RNA (mRNA) and protein levels in Bmpr1a-deleted than Control fetal endocrine cells. We thus conclude that BMP signaling transiently regulates the expression of E-cad and the establishment of prenatal islet architecture.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia , Nedlands, Australia .,2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| | - Leonard C Harrison
- 2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| |
Collapse
|
105
|
Shiota C, Prasadan K, Guo P, Fusco J, Xiao X, Gittes GK. Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia 2017; 60:2399-2408. [PMID: 28884202 PMCID: PMC5671347 DOI: 10.1007/s00125-017-4425-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS The Cre/loxP system, which enables tissue-specific manipulation of genes, is widely used in mice for diabetes research. Our aim was to develop a new Cre-driver mouse line for the specific and efficient manipulation of genes in pancreatic alpha cells. METHODS A Gcg CreERT2 knockin mouse, which expresses a tamoxifen-inducible form of Cre from the endogenous preproglucagon (Gcg) gene locus, was generated by homologous recombination. The new Gcg CreERT2 mouse line was crossed to the Rosa26 tdTomato (R26 tdTomato ) Cre reporter mouse line in order to evaluate the tissue specificity, efficiency and tamoxifen dependency of Gcg CreERT2 -mediated recombination. Cell types of pancreatic islets were identified using immunohistochemistry. Biochemical and physiological data, including blood glucose levels, plasma glucagon and glucagon-like peptide (GLP)-1 levels, and pancreatic glucagon content, were collected and used to assess the overall effect of Gcg gene targeting on Gcg CreERT2/w heterozygous mice. RESULTS Tamoxifen-treated Gcg CreERT2/w ;R26 tdTomato/w mice displayed Cre reporter activity, i.e. expression of tdTomato red fluorescent protein (RFP) in all known cells that produce proglucagon-derived peptides. In the adult pancreas, RFP was detected in 94-97% of alpha cells, whereas it was detected in a negligible (~ 0.2%) proportion of beta cells. While more than 98% of cells labelled with tamoxifen-induced RFP were glucagon-positive cells, 14-25% of pancreatic polypeptide (PP)-positive cells were also positive for RFP, indicating the presence of glucagon/PP bihormonal cell population. Tamoxifen-independent expression of RFP occurred in approximately 6% of alpha cells. In contrast to alpha cells and GLP-1-producing neurons, in which RFP expression persisted for at least 5 months after tamoxifen administration (presumably due to rare neogenesis in these cell types in adulthood), nearly half of RFP-positive intestinal L cells were replaced with RFP-negative L cells over the first 2 weeks after tamoxifen administration. Heterozygous Gcg CreERT2/w mice showed reduced Gcg mRNA levels in islets, but maintained normal levels of pancreatic and plasma glucagon. The mice did not exhibit any detectable baseline physiological abnormalities, at least in young adulthood. CONCLUSIONS/INTERPRETATION The newly developed Gcg CreERT2 knockin mouse shows faithful expression of CreERT2 in pancreatic alpha cells, intestinal L cells and GLP-1-producing neurons. This mouse line will be particularly useful for manipulating genes in alpha cells, due to highly specific and efficient CreERT2-mediated recombination in this cell type in the pancreas.
Collapse
Affiliation(s)
- Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
106
|
Traub S, Meier DT, Schulze F, Dror E, Nordmann TM, Goetz N, Koch N, Dalmas E, Stawiski M, Makshana V, Thorel F, Herrera PL, Böni-Schnetzler M, Donath MY. Pancreatic α Cell-Derived Glucagon-Related Peptides Are Required for β Cell Adaptation and Glucose Homeostasis. Cell Rep 2017; 18:3192-3203. [PMID: 28355570 DOI: 10.1016/j.celrep.2017.03.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/22/2017] [Accepted: 03/01/2017] [Indexed: 02/04/2023] Open
Abstract
Pancreatic α cells may process proglucagon not only to glucagon but also to glucagon-like peptide-1 (GLP-1). However, the biological relevance of paracrine GLP-1 for β cell function remains unclear. We studied effects of locally derived insulin secretagogues on β cell function and glucose homeostasis using mice with α cell ablation and with α cell-specific GLP-1 deficiency. Normally, intestinal GLP-1 compensates for the lack of α cell-derived GLP-1. However, upon aging and metabolic stress, glucose tolerance is impaired. This was partly rescued with the DPP-4 inhibitor sitagliptin, but not with glucagon administration. In isolated islets from these mice, glucose-stimulated insulin secretion was heavily impaired and exogenous GLP-1 or glucagon rescued insulin secretion. These data highlight the importance of α cell-derived GLP-1 for glucose homeostasis during metabolic stress and may impact on the clinical use of systemic GLP-1 agonists versus stabilizing local α cell-derived GLP-1 by DPP-4 inhibitors in type 2 diabetes.
Collapse
Affiliation(s)
- Shuyang Traub
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Erez Dror
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Thierry M Nordmann
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nicole Goetz
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Norina Koch
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Elise Dalmas
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marc Stawiski
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Valmir Makshana
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; Centre facultaire du diabète, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; Centre facultaire du diabète, University of Geneva, 1211 Geneva, Switzerland
| | - Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
107
|
Tschen SI, Zeng C, Field L, Dhawan S, Bhushan A, Georgia S. Cyclin D2 is sufficient to drive β cell self-renewal and regeneration. Cell Cycle 2017; 16:2183-2191. [PMID: 28763258 PMCID: PMC5736344 DOI: 10.1080/15384101.2017.1319999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes results from an inadequate mass of functional β cells, due to either β cell loss caused by autoimmune destruction (type I diabetes) or β cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate β cell mass may be key to developing new techniques that foster β cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal β cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive β cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in β cells, we show that cyclin D2 overexpression increases β cell self-renewal post-weaning and results in increased β cell mass. β cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. β cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive β cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in β cells of cyclin D2−/− mice. Transgenic overexpression of cyclin D2 in cyclin D2−/− β cells was sufficient to restore β cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2−/− littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate β cell self-renewal and that manipulation of its expression could be used to enhance β cell regeneration.
Collapse
Affiliation(s)
- Shuen-Ing Tschen
- a Department of Medicine , University of California, Los Angeles , Los Angeles , CA
| | - Chun Zeng
- b Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center , University of California San Diego , La Jolla , CA
| | - Loren Field
- c Krannert Institute of Cardiology, and the Riley Heart Research Center, Wells Center for Pediatric Research, and Indiana University School of Medicine , Indianapolis , IN
| | - Sangeeta Dhawan
- a Department of Medicine , University of California, Los Angeles , Los Angeles , CA
| | - Anil Bhushan
- d Diabetes Center , University of California, San Francisco , San Francisco , CA
| | - Senta Georgia
- e Department of Pediatrics, Keck School of Medicine , University of Southern California; Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles , Los Angeles , California
| |
Collapse
|
108
|
Undank S, Kaiser J, Sikimic J, Düfer M, Krippeit-Drews P, Drews G. Atrial Natriuretic Peptide Affects Stimulus-Secretion Coupling of Pancreatic β-Cells. Diabetes 2017; 66:2840-2848. [PMID: 28864549 DOI: 10.2337/db17-0392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
Atrial natriuretic peptide (ANP) influences glucose homeostasis and possibly acts as a link between the cardiovascular system and metabolism, especially in metabolic disorders like diabetes. The current study evaluated effects of ANP on β-cell function by the use of a β-cell-specific knockout of the ANP receptor with guanylate cyclase activity (βGC-A-KO). ANP augmented insulin secretion at the threshold glucose concentration of 6 mmol/L and decreased KATP single-channel activity in β-cells of control mice but not of βGC-A-KO mice. In wild-type β-cells but not β-cells lacking functional KATP channels (SUR1-KO), ANP increased electrical activity, suggesting no involvement of other ion channels. At 6 mmol/L glucose, ANP readily elicited Ca2+ influx in control β-cells. This effect was blunted in β-cells of βGC-A-KO mice, and the maximal cytosolic Ca2+ concentration was lower. Experiments with inhibitors of protein kinase G (PKG), protein kinase A (PKA), phosphodiesterase 3B (PDE3B), and a membrane-permeable cyclic guanosine monophosphate (cGMP) analog on KATP channel activity and insulin secretion point to participation of the cGMP/PKG and cAMP/PKA/Epac (exchange protein directly activated by cAMP) directly activated by cAMP Epac pathways in the effects of ANP on β-cell function; the latter seems to prevail. Moreover, ANP potentiated the effect of glucagon-like peptide 1 (GLP-1) on glucose-induced insulin secretion, which could be caused by a cGMP-mediated inhibition of PDE3B, which in turn reduces cAMP degradation.
Collapse
Affiliation(s)
- Sabrina Undank
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Julia Kaiser
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Jelena Sikimic
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Martina Düfer
- Department of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Gisela Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
109
|
Murao N, Yokoi N, Honda K, Han G, Hayami T, Gheni G, Takahashi H, Minami K, Seino S. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion. PLoS One 2017; 12:e0187213. [PMID: 29091932 PMCID: PMC5665537 DOI: 10.1371/journal.pone.0187213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.
Collapse
Affiliation(s)
- Naoya Murao
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (NY); (SS)
| | - Kohei Honda
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Guirong Han
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
- Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Ghupurjan Gheni
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohtaro Minami
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (NY); (SS)
| |
Collapse
|
110
|
Chan LK, Gerstenlauer M, Konukiewitz B, Steiger K, Weichert W, Wirth T, Maier HJ. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis. Gut 2017; 66:1995-2007. [PMID: 27464707 DOI: 10.1136/gutjnl-2015-311028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. DESIGN Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. RESULTS In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. CONCLUSIONS Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis.
Collapse
Affiliation(s)
- Lap Kwan Chan
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | | | - Björn Konukiewitz
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | | |
Collapse
|
111
|
Gnatenko DA, Kopantzev EP, Sverdlov ED. [Fibroblast growth factors and their effects in pancreas organogenesis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:211-218. [PMID: 28781254 DOI: 10.18097/pbmc20176303211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Collapse
Affiliation(s)
- D A Gnatenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E P Kopantzev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|
112
|
Shi X, Chacko S, Li F, Li D, Burrin D, Chan L, Guan X. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity. Mol Metab 2017; 6:1350-1359. [PMID: 29107283 PMCID: PMC5681239 DOI: 10.1016/j.molmet.2017.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. METHODS We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. RESULTS We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neuronsNTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. CONCLUSIONS We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity.
Collapse
Affiliation(s)
- Xuemei Shi
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shangdong 256603, China; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shaji Chacko
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Depei Li
- Department of Critical Care, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lawrence Chan
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinfu Guan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
113
|
Avrahami D, Wang YJ, Klochendler A, Dor Y, Glaser B, Kaestner KH. β-Cells are not uniform after all-Novel insights into molecular heterogeneity of insulin-secreting cells. Diabetes Obes Metab 2017; 19 Suppl 1:147-152. [PMID: 28880481 PMCID: PMC5659199 DOI: 10.1111/dom.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023]
Abstract
While the β-cells of the endocrine pancreas are defined as cells with high levels of insulin production and tight stimulus-secretion coupling, the existence of functional heterogeneity among them has been known for decades. Recent advances in molecular technologies, in particular single-cell profiling on both the protein and messenger RNA level, have uncovered that β-cells exist in several antigenically and molecularly definable states. Using antibodies to cell surface markers or multidimensional clustering of β-cells using more than 20 protein markers by mass cytometry, 4 distinct groups of β-cells could be differentiated. However, whether these states represent permanent cell lineages or are readily interconvertible from one group to another remains to be determined. Nevertheless, future analysis of the pathogenesis of type 1 and type 2 diabetes will certainly benefit from a growing appreciation of β-cell heterogeneity. Here, we aim to summarize concisely the recent advances in the field and their possible impact on our understanding of β-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Dana Avrahami
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yue J. Wang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
114
|
Avrahami D, Klochendler A, Dor Y, Glaser B. Beta cell heterogeneity: an evolving concept. Diabetologia 2017; 60:1363-1369. [PMID: 28597073 PMCID: PMC5554543 DOI: 10.1007/s00125-017-4326-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Beta cells are primarily defined by their ability to produce insulin and secrete it in response to appropriate stimuli. It has been known for some time, however, that beta cells are not functionally identical to each other and that the rates of insulin synthesis and release differ from cell to cell, although the functional significance of this variability remains unclear. Recent studies have used heterogeneous gene expression to isolate and evaluate different subpopulations of beta cells and to demonstrate alterations in these subpopulations in diabetes. In the last few years, novel technologies have emerged that permit the detailed evaluation of the proteome (e.g. time-of-flight mass spectroscopy, [CyTOF]) and transcriptome (e.g. massively parallel RNA sequencing) at the single-cell level, and tools for single beta cell metabolomics and epigenomics are quickly maturing. The first wave of single beta cell proteome and transcriptome studies were published in 2016, giving a glimpse into the power, but also the limitations, of these approaches. Despite this progress, it remains unclear if the observed heterogeneity of beta cells represents stable, distinct beta cell types or, alternatively, highly dynamic beta cell states. Here we provide a concise overview of recent developments in the emerging field of beta cell heterogeneity and the implications for our understanding of beta cell biology and pathology.
Collapse
Affiliation(s)
- Dana Avrahami
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
115
|
Alejandro EU, Bozadjieva N, Blandino-Rosano M, Wasan MA, Elghazi L, Vadrevu S, Satin L, Bernal-Mizrachi E. Overexpression of Kinase-Dead mTOR Impairs Glucose Homeostasis by Regulating Insulin Secretion and Not β-Cell Mass. Diabetes 2017; 66:2150-2162. [PMID: 28546423 PMCID: PMC5521866 DOI: 10.2337/db16-1349] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Regulation of glucose homeostasis by insulin depends on β-cell growth and function. Nutrients and growth factor stimuli converge on the conserved protein kinase mechanistic target of rapamycin (mTOR), existing in two complexes, mTORC1 and mTORC2. To understand the functional relevance of mTOR enzymatic activity in β-cell development and glucose homeostasis, we generated mice overexpressing either one or two copies of a kinase-dead mTOR mutant (KD-mTOR) transgene exclusively in β-cells. We examined glucose homeostasis and β-cell function of these mice fed a control chow or high-fat diet. Mice with two copies of the transgene [RIPCre;KD-mTOR (Homozygous)] develop glucose intolerance due to a defect in β-cell function without alterations in β-cell mass with control chow. Islets from RIPCre;KD-mTOR (Homozygous) mice showed reduced mTORC1 and mTORC2 signaling along with transcripts and protein levels of Pdx-1. Islets with reduced mTORC2 signaling in their β-cells (RIPCre;Rictorfl/fl) also showed reduced Pdx-1. When challenged with a high-fat diet, mice carrying one copy of KD-mTOR mutant transgene developed glucose intolerance and β-cell insulin secretion defect but showed no changes in β-cell mass. These findings suggest that the mTOR-mediated signaling pathway is not essential to β-cell growth but is involved in regulating β-cell function in normal and diabetogenic conditions.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Nadejda Bozadjieva
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Manuel Blandino-Rosano
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Endocrinology, Metabolism and Diabetes, University of Miami, Miami, FL
| | - Michelle Ann Wasan
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Lynda Elghazi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Leslie Satin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Endocrinology, Metabolism and Diabetes, University of Miami, Miami, FL
- VA Ann Arbor Healthcare System, Ann Arbor, MI
- Miami VA Healthcare System, Miami, FL
| |
Collapse
|
116
|
Napolitano T, Avolio F, Vieira A, Ben-Othman N, Courtney M, Gjernes E, Hadzic B, Druelle N, Navarro Sanz S, Silvano S, Mansouri A, Collombat P. GABA signaling stimulates α-cell-mediated β-like cell neogenesis. Commun Integr Biol 2017; 10:e1300215. [PMID: 28702122 PMCID: PMC5501192 DOI: 10.1080/19420889.2017.1300215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/27/2022] Open
Abstract
Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.
Collapse
Affiliation(s)
| | - Fabio Avolio
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | | | | | | | | | | | | | - Ahmed Mansouri
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
117
|
Lineage conversion of mouse fibroblasts to pancreatic α-cells. Exp Mol Med 2017; 49:e350. [PMID: 28665920 PMCID: PMC5519020 DOI: 10.1038/emm.2017.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022] Open
Abstract
α-cells, which synthesize glucagon, also support β-cell survival and have the capacity to transdifferentiate into β-cells. However, the role of α-cells in pathological conditions and their putative clinical applications remain elusive due in large part to the lack of mature α-cells. Here, we present a new technique to generate functional α-like cells. α-like cells (iAlpha cells) were generated from mouse fibroblasts by transduction of transcription factors, including Hhex, Foxa3, Gata4, Pdx1 and Pax4, which induce α-cell-specific gene expression and glucagon secretion in response to KCl and Arg stimulation. The cell functions in vivo and in vitro were evaluated. Lineage-specific and functional-related gene expression was tested by realtime PCR, insulin tolerance test (ITT), glucose tolerance test (GTT), Ki67 and glucagon immunohistochemistry analysis were done in iAlpha cells transplanted nude mice. iAlpha cells possess α-cell function in vitro and alter blood glucose levels in vivo. Transplantation of iAlpha cells into nude mice resulted in insulin resistance and increased β-cell proliferation. Taken together, we present a novel strategy to generate functional α-like cells for the purposes of disease modeling and regenerative medicine.
Collapse
|
118
|
Lavagnino Z, Dwight J, Ustione A, Nguyen TU, Tkaczyk TS, Piston DW. Snapshot Hyperspectral Light-Sheet Imaging of Signal Transduction in Live Pancreatic Islets. Biophys J 2017; 111:409-417. [PMID: 27463142 DOI: 10.1016/j.bpj.2016.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/30/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023] Open
Abstract
The observation of ionic signaling dynamics in intact pancreatic islets has contributed greatly to our understanding of both α- and β-cell function. Insulin secretion from β-cells depends on the firing of action potentials and consequent rises of intracellular calcium activity ([Ca(2+)]i). Zinc (Zn(2+)) is cosecreted with insulin, and has been postulated to play a role in cell-to-cell cross talk within an islet, in particular inhibiting glucagon secretion from α-cells. Thus, measuring [Ca(2+)]i and Zn(2+) dynamics from both α- and β-cells will elucidate mechanisms underlying islet hormone secretion. [Ca(2+)]i and intracellular Zn(2+) can be measured using fluorescent biosensors, but the most efficient sensors have overlapping spectra that complicate their discrimination. Hyperspectral imaging can be used to distinguish signals from multiple fluorophores, but available hyperspectral implementations are either too slow to measure the dynamics of ionic signals or not suitable for thick samples. We have developed a five-dimensional (x,y,z,t,λ) imaging system that leverages a snapshot hyperspectral imaging method, image mapping spectrometry, and light-sheet microscopy. This system provides subsecond temporal resolution from deep within multicellular structures. Using a single excitation wavelength (488 nm) we acquired images from triply labeled samples with two biosensors and a genetically expressing fluorescent protein (spectrally overlapping with one of the biosensors) with high temporal resolution. Measurements of [Ca(2+)]i and Zn(2+) within both α- and β-cells as a function of glucose concentration show heterogeneous uptake of Zn(2+) into α-cells that correlates to the known heterogeneities in [Ca(2+)]i. These differences in intracellular Zn(2+) among α-cells may contribute to the inhibition in glucagon secretion observed at elevated glucose levels.
Collapse
Affiliation(s)
- Zeno Lavagnino
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jason Dwight
- Department of Bioengineering, Rice University, Houston, Texas
| | - Alessandro Ustione
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | | | | | - David W Piston
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
119
|
Fenske RJ, Cadena MT, Harenda QE, Wienkes HN, Carbajal K, Schaid MD, Laundre E, Brill AL, Truchan NA, Brar H, Wisinski J, Cai J, Graham TE, Engin F, Kimple ME. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice. Endocrinology 2017; 158:1645-1658. [PMID: 28419211 PMCID: PMC5460933 DOI: 10.1210/en.2016-1700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Female
- GTP-Binding Protein alpha Subunits/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Streptozocin
Collapse
Affiliation(s)
- Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Mark T. Cadena
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quincy E. Harenda
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Haley N. Wienkes
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Kathryn Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michael D. Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Erin Laundre
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Allison L. Brill
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Nathan A. Truchan
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Harpreet Brar
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jaclyn Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jinjin Cai
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Timothy E. Graham
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Feyza Engin
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
120
|
da Silva Xavier G, Mondragon A, Mourougavelou V, Cruciani-Guglielmacci C, Denom J, Herrera PL, Magnan C, Rutter GA. Pancreatic alpha cell-selective deletion of Tcf7l2 impairs glucagon secretion and counter-regulatory responses to hypoglycaemia in mice. Diabetologia 2017; 60:1043-1050. [PMID: 28343277 PMCID: PMC5423960 DOI: 10.1007/s00125-017-4242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/15/2017] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Transcription factor 7-like 2 (TCF7L2) is a high mobility group (HMG) box-containing transcription factor and downstream effector of the Wnt signalling pathway. SNPs in the TCF7L2 gene have previously been associated with an increased risk of type 2 diabetes in genome-wide association studies. In animal studies, loss of Tcf7l2 function is associated with defective islet beta cell function and survival. Here, we explore the role of TCF7L2 in the control of the counter-regulatory response to hypoglycaemia by generating mice with selective deletion of the Tcf7l2 gene in pancreatic alpha cells. METHODS Alpha cell-selective deletion of Tcf7l2 was achieved by crossing mice with floxed Tcf7l2 alleles to mice bearing a Cre recombinase transgene driven by the preproglucagon promoter (PPGCre), resulting in Tcf7l2AKO mice. Glucose homeostasis and hormone secretion in vivo and in vitro, and islet cell mass were measured using standard techniques. RESULTS While glucose tolerance was unaffected in Tcf7l2AKO mice, glucose infusion rates were increased (AUC for glucose during the first 60 min period of hyperinsulinaemic-hypoglycaemic clamp test was increased by 1.98 ± 0.26-fold [p < 0.05; n = 6] in Tcf7l2AKO mice vs wild-type mice) and glucagon secretion tended to be lower (plasma glucagon: 0.40 ± 0.03-fold vs wild-type littermate controls [p < 0.01; n = 6]). Tcf7l2AKO mice displayed reduced fasted plasma glucose concentration. Glucagon release at low glucose was impaired in islets isolated from Tcf7l2AKO mice (0.37 ± 0.02-fold vs islets from wild-type littermate control mice [p < 0.01; n = 6). Alpha cell mass was also reduced (72.3 ± 20.3% [p < 0.05; n = 7) in Tcf7l2AKO mice compared with wild-type mice. CONCLUSIONS/INTERPRETATION The present findings demonstrate an alpha cell-autonomous role for Tcf7l2 in the control of pancreatic glucagon secretion and the maintenance of alpha cell mass and function.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Angeles Mondragon
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Vishnou Mourougavelou
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | - Jessica Denom
- Université Paris Diderot Paris 7 - CNRS UMR 8251, Paris, France
| | - Pedro Luis Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
121
|
Extensive phenotypic characterization of a new transgenic mouse reveals pleiotropic perturbations in physiology due to mesenchymal hGH minigene expression. Sci Rep 2017; 7:2397. [PMID: 28546545 PMCID: PMC5445072 DOI: 10.1038/s41598-017-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.
Collapse
|
122
|
Mitochondrial transcription factor B2 is essential for mitochondrial and cellular function in pancreatic β-cells. Mol Metab 2017; 6:651-663. [PMID: 28702322 PMCID: PMC5485242 DOI: 10.1016/j.molmet.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Objective Insulin release from pancreatic β-cells is controlled by plasma glucose levels via mitochondrial fuel metabolism. Therefore, insulin secretion is critically dependent on mitochondrial DNA (mtDNA) and the genes it encodes. Mitochondrial transcription factor B2 (TFB2M) controls transcription of mitochondrial-encoded genes. However, its precise role in mitochondrial metabolism in pancreatic β-cells and, consequently, in insulin secretion remains unknown. Methods To elucidate the role of TFB2M in mitochondrial function and insulin secretion in vitro and in vivo, mice with a β-cell specific homozygous or heterozygous knockout of Tfb2m and rat clonal insulin-producing cells in which the gene was silenced were examined with an array of metabolic and functional assays. Results There was an effect of gene dosage on Tfb2m expression and function. Loss of Tfb2m led to diabetes due to disrupted transcription of mitochondrial DNA (mtDNA) and reduced mtDNA content. The ensuing mitochondrial dysfunction activated compensatory mechanisms aiming to limit cellular dysfunction and damage of β-cells. These processes included the mitochondrial unfolded protein response, mitophagy, and autophagy. Ultimately, however, these cell-protective systems were overridden, leading to mitochondrial dysfunction and activation of mitochondrial-dependent apoptotic pathways. In this way, β-cell function and mass were reduced. Together, these perturbations resulted in impaired insulin secretion, progressive hyperglycemia, and, ultimately, development of diabetes. Conclusions Loss of Tfb2m in pancreatic β-cells results in progressive mitochondrial dysfunction. Consequently, insulin secretion in response to metabolic stimuli is impaired and β-cell mass reduced. Our findings indicate that TFB2M plays an important functional role in pancreatic β-cells. Perturbations of its actions may lead to loss of functional β-cell mass, a hallmark of T2D. Loss of TFB2M leads to mitochondrial dysfunction and impaired insulin secretion. There was an effect of gene dosage on Tfb2m expression and function. TFB2M plays a key role in cellular and mitochondrial function in pancreatic β-cells.
Collapse
|
123
|
Matsuoka TA, Kawashima S, Miyatsuka T, Sasaki S, Shimo N, Katakami N, Kawamori D, Takebe S, Herrera PL, Kaneto H, Stein R, Shimomura I. Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo. Diabetes 2017; 66:1293-1300. [PMID: 28223284 PMCID: PMC5399608 DOI: 10.2337/db16-0887] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Among the therapeutic avenues being explored for replacement of the functional islet β-cell mass lost in type 1 diabetes (T1D), reprogramming of adult cell types into new β-cells has been actively pursued. Notably, mouse islet α-cells will transdifferentiate into β-cells under conditions of near β-cell loss, a condition similar to T1D. Moreover, human islet α-cells also appear to poised for reprogramming into insulin-positive cells. Here we have generated transgenic mice conditionally expressing the islet β-cell-enriched Mafa and/or Pdx1 transcription factors to examine their potential to transdifferentiate embryonic pan-islet cell Ngn3-positive progenitors and the later glucagon-positive α-cell population into β-cells. Mafa was found to both potentiate the ability of Pdx1 to induce β-cell formation from Ngn3-positive endocrine precursors and enable Pdx1 to produce β-cells from α-cells. These results provide valuable insight into the fundamental mechanisms influencing islet cell plasticity in vivo.
Collapse
Affiliation(s)
- Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Kawashima
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Miyatsuka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Shimo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Dan Kawamori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satomi Takebe
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
124
|
van der Meulen T, Mawla AM, DiGruccio MR, Adams MW, Nies V, Dólleman S, Liu S, Ackermann AM, Cáceres E, Hunter AE, Kaestner KH, Donaldson CJ, Huising MO. Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets. Cell Metab 2017; 25:911-926.e6. [PMID: 28380380 PMCID: PMC8586897 DOI: 10.1016/j.cmet.2017.03.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Postnatal maintenance or regeneration of pancreatic beta cells is considered to occur exclusively via the replication of existing beta cells, but clinically meaningful restoration of human beta cell mass by proliferation has never been achieved. We discovered a population of immature beta cells that is present throughout life and forms from non-beta precursors at a specialized micro-environment or "neogenic niche" at the islet periphery. These cells express insulin, but lack other key beta cell markers, and are transcriptionally immature, incapable of sensing glucose, and unable to support calcium influx. They constitute an intermediate stage in the transdifferentiation of alpha cells to cells that are functionally indistinguishable from conventional beta cells. We thus identified a lifelong source of new beta cells at a specialized site within healthy islets. By comparing co-existing immature and mature beta cells within healthy islets, we stand to learn how to mature insulin-expressing cells into functional beta cells.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Alex M Mawla
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael R DiGruccio
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael W Adams
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vera Nies
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sophie Dólleman
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Siming Liu
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Elena Cáceres
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Anna E Hunter
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
125
|
Elghazi L, Blandino-Rosano M, Alejandro E, Cras-Méneur C, Bernal-Mizrachi E. Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Mol Metab 2017; 6:560-573. [PMID: 28580286 PMCID: PMC5444096 DOI: 10.1016/j.molmet.2017.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Poor fetal nutrition increases the risk of type 2 diabetes in the offspring at least in part by reduced embryonic β-cell growth and impaired function. However, it is not entirely clear how fetal nutrients and growth factors impact β-cells during development to alter glucose homeostasis and metabolism later in life. The current experiments aimed to test the impact of fetal nutrients and growth factors on endocrine development and how these signals acting on mTOR signaling regulate β-cell mass and glucose homeostasis. METHOD Pancreatic rudiments in culture were used to study the role of glucose, growth factors, and amino acids on β-cell development. The number and proliferation of pancreatic and endocrine progenitor were assessed in the presence or absence of rapamycin. The impact of mTOR signaling in vivo on pancreas development and glucose homeostasis was assessed in models deficient for mTOR or Raptor in Pdx1 expressing pancreatic progenitors. RESULTS We found that amino acid concentrations, and leucine in particular, enhance the number of pancreatic and endocrine progenitors and are essential for growth factor induced proliferation. Rapamycin, an mTORC1 complex inhibitor, reduced the number and proliferation of pancreatic and endocrine progenitors. Mice lacking mTOR in pancreatic progenitors exhibited hyperglycemia in neonates, hypoinsulinemia and pancreatic agenesis/hypoplasia with pancreas rudiments containing ductal structures lacking differentiated acinar and endocrine cells. In addition, loss of mTORC1 by deletion of raptor in pancreatic progenitors reduced pancreas size with reduced number of β-cells. CONCLUSION Together, these results suggest that amino acids concentrations and in particular leucine modulates growth responses of pancreatic and endocrine progenitors and that mTOR signaling is critical for these responses. Inactivation of mTOR and raptor in pancreatic progenitors suggested that alterations in some of the components of this pathway during development could be a cause of pancreatic agenesis/hypoplasia and hyperglycemia.
Collapse
Affiliation(s)
- Lynda Elghazi
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
| | - Manuel Blandino-Rosano
- University of Miami Miller School of Medicine and Miami VA Health Care System, Division of Endocrinology, Diabetes and Metabolism, Miami, FL, USA
| | - Emilyn Alejandro
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
- University of Minnesota, Department of Integrative Biology & Physiology, Minneapolis, MN, USA
| | - Corentin Cras-Méneur
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
| | - Ernesto Bernal-Mizrachi
- University of Miami Miller School of Medicine and Miami VA Health Care System, Division of Endocrinology, Diabetes and Metabolism, Miami, FL, USA
- Corresponding author. Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, USA. Fax: +1 (305) 243 4039.Department of Internal MedicineDivision of Endocrinology, Diabetes and MetabolismUniversity of Miami Miller School of Medicine and Miami VA Health Care SystemUSA
| |
Collapse
|
126
|
Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem MC, Bertolino P, Lu J, Zhang CX. Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol 2017; 242:90-101. [PMID: 28188614 DOI: 10.1002/path.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 11/10/2022]
Abstract
Foxa2, known as one of the pioneer factors, plays a crucial role in islet development and endocrine functions. Its expression and biological functions are regulated by various factors, including, in particular, insulin and glucagon. However, its expression and biological role in adult pancreatic α-cells remain elusive. In the current study, we showed that Foxa2 was overexpressed in islets from α-cell-specific Men1 mutant mice, at both the transcriptional level and the protein level. More importantly, immunostaining analyses showed its prominent nuclear accumulation, specifically in α-cells, at a very early stage after Men1 disruption. Similar nuclear FOXA2 expression was also detected in a substantial proportion (12/19) of human multiple endocrine neoplasia type 1 (MEN1) glucagonomas. Interestingly, our data revealed an interaction between Foxa2 and menin encoded by the Men1 gene. Furthermore, using several approaches, we demonstrated the relevance of this interaction in the regulation of two tested Foxa2 target genes, including the autoregulation of the Foxa2 promoter by Foxa2 itself. The current study establishes menin, a novel protein partner of Foxa2, as a regulator of Foxa2, the biological functions of which extend beyond the pancreatic endocrine cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rémy Bonnavion
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Romain Teinturier
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Samuele Gherardi
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Emmanuelle Leteurtre
- Institut de Pathologie, CHRU de Lille, Lille, France.,Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France
| | - Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martine Cordier-Bussat
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Rui Du
- The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - François Pattou
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrine Surgery, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrinology, Lille, France
| | - Philippe Bertolino
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Jieli Lu
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - Chang Xian Zhang
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China
| |
Collapse
|
127
|
Ackermann AM, Zhang J, Heller A, Briker A, Kaestner KH. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Mol Metab 2017; 6:236-244. [PMID: 28271030 PMCID: PMC5323890 DOI: 10.1016/j.molmet.2017.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreERT2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. METHODS We utilized CRISPR-Cas9 technology to insert an IRES-CreERT2 sequence into the 3' UTR of the Glucagon (Gcg) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreERT2 mice. Recombination efficiency in GCG+ pancreatic α-cells and glucagon-like peptide 1 positive (GLP1+) enteroendocrine L-cells was measured in Gcg-CreERT2 ;Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. RESULTS Tamoxifen injection of Gcg-CreERT2 ;Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreERT2 allele were phenotypically normal. CONCLUSIONS We successfully derived a Gcg-CreERT2 mouse line that expresses CreERT2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing temporally controlled genetic manipulation specifically in these cell types.
Collapse
Key Words
- CRISPR
- CRISPR, clustered regularly interspaced short palindromic repeat
- Cre, Cre recombinase
- CreERT2, tamoxifen-inducible Cre recombinase-estrogen receptor fusion protein
- DAPI, 4′,6-diamidino-2-phenylindole
- ESC, embryonic stem cell
- Enteroendocrine L-cell
- FACS, fluorescence-activated cell sorting
- GCG, glucagon
- GLP1
- GLP1, glucagon-like peptide 1
- Glucagon
- IRES, internal ribosomal entry site
- Islet
- LSL, loxP-stop-loxP
- UTR, untranslated region
- YFP, yellow fluorescent protein
- gRNA, guide RNA
- α-cell
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Jia Zhang
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Aryel Heller
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Anna Briker
- Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
128
|
Liang T, Qin T, Xie L, Dolai S, Zhu D, Prentice KJ, Wheeler M, Kang Y, Osborne L, Gaisano HY. New Roles of Syntaxin-1A in Insulin Granule Exocytosis and Replenishment. J Biol Chem 2016; 292:2203-2216. [PMID: 28031464 DOI: 10.1074/jbc.m116.769885] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 01/14/2023] Open
Abstract
In type-2 diabetes (T2D), severely reduced islet syntaxin-1A (Syn-1A) levels contribute to insulin secretory deficiency. We generated β-cell-specific Syn-1A-KO (Syn-1A-βKO) mice to mimic β-cell Syn-1A deficiency in T2D. Glucose tolerance tests showed that Syn-1A-βKO mice exhibited blood glucose elevation corresponding to reduced blood insulin levels. Perifusion of Syn-1A-βKO islets showed impaired first- and second-phase glucose-stimulated insulin secretion (GSIS) resulting from reduction in readily releasable pool and granule pool refilling. To unequivocally determine the β-cell exocytotic defects caused by Syn-1A deletion, EM and total internal reflection fluorescence microscopy showed that Syn-1A-KO β-cells had a severe reduction in the number of secretory granules (SGs) docked onto the plasma membrane (PM) at rest and reduced SG recruitment to the PM after glucose stimulation, the latter indicating defects in replenishment of releasable pools required to sustain second-phase GSIS. Whereas reduced predocked SG fusion accounted for reduced first-phase GSIS, selective reduction of exocytosis of short-dock (but not no-dock) newcomer SGs accounted for the reduced second-phase GSIS. These Syn-1A actions on newcomer SGs were partly mediated by Syn-1A interactions with newcomer SG VAMP8.
Collapse
Affiliation(s)
- Tao Liang
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tairan Qin
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Xie
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Subhankar Dolai
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dan Zhu
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kacey J Prentice
- Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael Wheeler
- Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Youhou Kang
- From the Departments of Medicine.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lucy Osborne
- From the Departments of Medicine.,Molecular Genetics, and
| | - Herbert Y Gaisano
- From the Departments of Medicine, .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
129
|
Kragl M, Schubert R, Karsjens H, Otter S, Bartosinska B, Jeruschke K, Weiss J, Chen C, Alsteens D, Kuss O, Speier S, Eberhard D, Müller DJ, Lammert E. The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nat Commun 2016; 7:13560. [PMID: 27995929 PMCID: PMC5187430 DOI: 10.1038/ncomms13560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. Vasculature is denser in soft than in stiff tissues. Kragl et al. suggest a mechanistic link between biomechanical tissue properties and vascularization by showing that integrin-linked kinase reduces the contractile forces of the cell cortex in endocrine pancreatic cells, facilitating their adhesion to blood vessels and enabling pancreatic islet vascularization.
Collapse
Affiliation(s)
- Martin Kragl
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rajib Schubert
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Chunguang Chen
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David Alsteens
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stephan Speier
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Daniel J Müller
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
130
|
The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS One 2016; 11:e0166703. [PMID: 27973548 PMCID: PMC5156359 DOI: 10.1371/journal.pone.0166703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022] Open
Abstract
Type I diabetes is caused by loss of insulin-secreting beta cells. To identify novel, pharmacologically-targetable histone-modifying proteins that enhance beta cell production from pancreatic progenitors, we performed a screen for histone modifications induced by signal transduction pathways at key pancreatic genes. The screen led us to investigate the temporal dynamics of ser-28 phosphorylated histone H3 (H3S28ph) and its upstream kinases, MSK1 and MSK2 (MSK1/2). H3S28ph and MSK1/2 were enriched at the key endocrine and acinar promoters in E12.5 multipotent pancreatic progenitors. Pharmacological inhibition of MSK1/2 in embryonic pancreatic explants promoted the specification of endocrine fates, including the beta-cell lineage, while depleting acinar fates. Germline knockout of both Msk isoforms caused enhancement of alpha cells and a reduction in acinar differentiation, while monoallelic loss of Msk1 promoted beta cell mass. Our screen of chromatin state dynamics can be applied to other developmental contexts to reveal new pathways and approaches to modulate cell fates.
Collapse
|
131
|
Abstract
In light of the emerging diabetes epidemic, new experimental approaches in islet research are needed to elucidate the mechanisms behind pancreatic islet dysfunction and to facilitate the development of more effective therapies. Optogenetics has created numerous new experimental tools enabling us to gain insights into processes little was known about before. The spatial and temporal precision that it can achieve is also attractive for studying the cells of the pancreatic islet and we set out to explore the possibilities of this technology for our purposes. We here describe how to use the islets of an "optogenetic beta-cell" mouse line in islet batch incubations and Ca(2+) imaging experiments. This protocol enables light-induced insulin release and provides an all-optical solution to control and measure intracellular Ca(2+) levels in pancreatic beta-cells. The technique is easy to set up and provides a useful tool for controlling the activity of distinct islet cell populations.
Collapse
Affiliation(s)
- Thomas M Reinbothe
- Department of Physiology, University of Gothenburg, Box 432, Medicinaregatan 11-13, 40530, Gothenburg, Sweden.
| | - Inês G Mollet
- Department of Clinical Sciences, Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| |
Collapse
|
132
|
Gutiérrez GD, Bender AS, Cirulli V, Mastracci TL, Kelly SM, Tsirigos A, Kaestner KH, Sussel L. Pancreatic β cell identity requires continual repression of non-β cell programs. J Clin Invest 2016; 127:244-259. [PMID: 27941248 DOI: 10.1172/jci88017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Loss of β cell identity, the presence of polyhormonal cells, and reprogramming are emerging as important features of β cell dysfunction in patients with type 1 and type 2 diabetes. In this study, we have demonstrated that the transcription factor NKX2.2 is essential for the active maintenance of adult β cell identity as well as function. Deletion of Nkx2.2 in β cells caused rapid onset of a diabetic phenotype in mice that was attributed to loss of insulin and downregulation of many β cell functional genes. Concomitantly, NKX2.2-deficient murine β cells acquired non-β cell endocrine features, resulting in populations of completely reprogrammed cells and bihormonal cells that displayed hybrid endocrine cell morphological characteristics. Molecular analysis in mouse and human islets revealed that NKX2.2 is a conserved master regulatory protein that controls the acquisition and maintenance of a functional, monohormonal β cell identity by directly activating critical β cell genes and actively repressing genes that specify the alternative islet endocrine cell lineages. This study demonstrates the highly volatile nature of the β cell, indicating that acquiring and sustaining β cell identity and function requires not only active maintaining of the expression of genes involved in β cell function, but also continual repression of closely related endocrine gene programs.
Collapse
|
133
|
Chen Y, Tian L, Wan S, Xie Y, Chen X, Ji X, Zhao Q, Wang C, Zhang K, Hock JM, Tian H, Yu X. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol Cell Endocrinol 2016; 437:213-223. [PMID: 27568466 DOI: 10.1016/j.mce.2016.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
MiR-17-92 cluster contributes to the regulation of mammalian development, aging and tumorigenesis. The functional roles of miR-17-92 in pancreatic beta-cells are largely unknown. In this study, we found that conditional deletion of miR-17-92 in mouse pancreatic beta-cells (miR-17-92βKO) significantly reduces glucose tolerance and the first phase of insulin secretion, despite normal ad libitum fed and fasting glucose levels. Proliferation is down-regulated in pancreatic beta-cells after deleting miR-17-92. MiR-17-92βKO mice show higher phosphatase and tensin homologue (PTEN) and lower phosphorylated AKT in islets. Under high fat diet challenge for 16 weeks, miR-17-92βKO mice lose compensation and exhibit higher glucose levels, and lower insulin secretion. Collectively, these data suggest that miR-17-92 is a critical contributor to molecular mechanisms regulating glucose-stimulated insulin secretion and pancreatic beta-cell adaptation under metabolic stress.
Collapse
Affiliation(s)
- Yaxi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Qian Zhao
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Chunyu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Janet M Hock
- The Polis Center, Indiana University-Purdue University Indianapolis, 1200 Waterway Blvd # 100, Indianapolis, IN 46202, USA
| | - Haoming Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China.
| |
Collapse
|
134
|
Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis. Cell 2016; 168:73-85.e11. [PMID: 27916274 DOI: 10.1016/j.cell.2016.11.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/04/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
The recent discovery that genetically modified α cells can regenerate and convert into β-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-β-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into β-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated β-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in β-like cell counts, suggestive of α-to-β-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated β-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.
Collapse
|
135
|
Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, Huber KVM, Schmitner N, Kimmel RA, Romanov RA, Sturtzel C, Lardeau CH, Klughammer J, Farlik M, Sdelci S, Vieira A, Avolio F, Briand F, Baburin I, Májek P, Pauler FM, Penz T, Stukalov A, Gridling M, Parapatics K, Barbieux C, Berishvili E, Spittler A, Colinge J, Bennett KL, Hering S, Sulpice T, Bock C, Distel M, Harkany T, Meyer D, Superti-Furga G, Collombat P, Hecksher-Sørensen J, Kubicek S. Artemisinins Target GABA A Receptor Signaling and Impair α Cell Identity. Cell 2016; 168:86-100.e15. [PMID: 27916275 PMCID: PMC5236063 DOI: 10.1016/j.cell.2016.11.010] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells. Artemisinins inhibit ARX function and impair α cell identity Compounds act by stabilizing gephyrin, thus enhancing GABAA receptor signaling Artemisinins increase β cell mass in zebrafish and rodent models Functional and transcriptional data indicate a conserved phenotype in human islets
Collapse
Affiliation(s)
- Jin Li
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Thomas Frogne
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | | | | | - Monica Courtney
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - Kilian V M Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Caterina Sturtzel
- Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Sara Sdelci
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Andhira Vieira
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - Fabio Avolio
- Université Côte d'Azur, INSERM, CNRS, iBV, 06108 Nice, France
| | - François Briand
- Physiogenex S.A.S., Prologue Biotech, 516, rue Pierre et Marie Curie, 31670 Labege, France
| | - Igor Baburin
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; Institute of Medical Research, Ilia State University, Tbilisi 0162, Georgia
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria
| | - Steffen Hering
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thierry Sulpice
- Physiogenex S.A.S., Prologue Biotech, 516, rue Pierre et Marie Curie, 31670 Labege, France
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Martin Distel
- Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dirk Meyer
- Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Lazarettgasse 14, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
136
|
Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I, Minichiello L, Pera EM. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling. Endocrinology 2016; 157:4615-4631. [PMID: 27740873 DOI: 10.1210/en.2016-1745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Collapse
Affiliation(s)
- Igor Arregi
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Maria Climent
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Dobromir Iliev
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jürgen Strasser
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Nadège Gouignard
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jenny K Johansson
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Tania Singh
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Magdalena Mazur
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Henrik Semb
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Isabella Artner
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Liliana Minichiello
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Edgar M Pera
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| |
Collapse
|
137
|
Lin W, Francis JM, Li H, Gao X, Pedamallu CS, Ernst P, Meyerson M. Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther 2016; 17:1274-1281. [PMID: 27801610 PMCID: PMC5199165 DOI: 10.1080/15384047.2016.1250986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The reported incidence of pancreatic neuroendocrine tumors (PanNETs) has increased, due in large part to improvements in detection and awareness. However, therapeutic options are limited and a critical need exists for understanding a more thorough characterization of the molecular pathology underlying this disease. The Men1 knockout mouse model recapitulates the early stage of human PanNET development and can serve as a foundation for the development of advanced mouse models that are necessary for preclinical testing. Menin, the product of the MEN1 gene, has been shown to physically interact with the KMT2A and KMT2B histone methyltransferases. Both the KMT2A and MEN1 genes are located on chromosome 11q, which frequently undergoes loss of heterozygosity (LOH) in PanNETs. We report herein that inactivation of Kmt2a in Men1-deficient mice accelerated pancreatic islet tumorigenesis and shortened the average life span. Increases in cell proliferation were observed in mouse pancreatic islet tumors upon inactivation of both Kmt2a and Men1. The Kmt2a/Men1 double knockout mouse model can be used as a mouse model to study advanced PanNETs.
Collapse
Affiliation(s)
- Wenchu Lin
- a High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei , Anhui , P.R. China.,b Department of Medical Oncology & Center for Cancer Genome Discovery , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Joshua M Francis
- b Department of Medical Oncology & Center for Cancer Genome Discovery , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA.,c Cancer Program, Broad Institute of Harvard and MIT , Cambridge , MA , USA
| | - Hong Li
- a High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei , Anhui , P.R. China
| | - Xiaoping Gao
- a High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei , Anhui , P.R. China
| | - Chandra Sekhar Pedamallu
- b Department of Medical Oncology & Center for Cancer Genome Discovery , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA.,c Cancer Program, Broad Institute of Harvard and MIT , Cambridge , MA , USA
| | - Patricia Ernst
- d Department of Pediatrics , The University of Colorado Anschutz Medical Campus , Aurora , USA
| | - Matthew Meyerson
- b Department of Medical Oncology & Center for Cancer Genome Discovery , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA.,c Cancer Program, Broad Institute of Harvard and MIT , Cambridge , MA , USA
| |
Collapse
|
138
|
Kunii M, Ohara-Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, Shimizu T, Simizu S, Lin B, Nunomura K, Aoyagi K, Ohno M, Ohmuraya M, Sato T, Yoshimura SI, Sato K, Harada R, Kim YJ, Osada H, Nemoto T, Kasai H, Kitamura T, Nagamatsu S, Harada A. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol 2016; 215:121-138. [PMID: 27697926 PMCID: PMC5057288 DOI: 10.1083/jcb.201604030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.
Collapse
Affiliation(s)
- Masataka Kunii
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Ryosuke Kawakami
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Bangzhong Lin
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Ohmuraya
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Reiko Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Judo Therapy, Takarazuka University of Medical and Health Care, Hyogo 666-0152, Japan
| | - Yoon-Jeong Kim
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Akihiro Harada
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
139
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
140
|
Semplici F, Mondragon A, Macintyre B, Madeyski-Bengston K, Persson-Kry A, Barr S, Ramne A, Marley A, McGinty J, French P, Soedling H, Yokosuka R, Gaitan J, Lang J, Migrenne-Li S, Philippe E, Herrera PL, Magnan C, da Silva Xavier G, Rutter GA. Cell type-specific deletion in mice reveals roles for PAS kinase in insulin and glucagon production. Diabetologia 2016; 59:1938-47. [PMID: 27338626 PMCID: PMC4969360 DOI: 10.1007/s00125-016-4025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Per-Arnt-Sim kinase (PASK) is a nutrient-regulated domain-containing protein kinase previously implicated in the control of insulin gene expression and glucagon secretion. Here, we explore the roles of PASK in the control of islet hormone release, by generating mice with selective deletion of the Pask gene in pancreatic beta or alpha cells. METHODS Floxed alleles of Pask were produced by homologous recombination and animals bred with mice bearing beta (Ins1 (Cre); PaskBKO) or alpha (Ppg (Cre) [also known as Gcg]; PaskAKO) cell-selective Cre recombinase alleles. Glucose homeostasis and hormone secretion in vivo and in vitro, gene expression and islet cell mass were measured using standard techniques. RESULTS Ins1 (Cre)-based recombination led to efficient beta cell-targeted deletion of Pask. Beta cell mass was reduced by 36.5% (p < 0.05) compared with controls in PaskBKO mice, as well as in global Pask-null mice (38%, p < 0.05). PaskBKO mice displayed normal body weight and fasting glycaemia, but slightly impaired glucose tolerance, and beta cell proliferation, after maintenance on a high-fat diet. Whilst glucose tolerance was unaffected in PaskAKO mice, glucose infusion rates were increased, and glucagon secretion tended to be lower, during hypoglycaemic clamps. Although alpha cell mass was increased (21.9%, p < 0.05), glucagon release at low glucose was impaired (p < 0.05) in PaskAKO islets. CONCLUSIONS/INTERPRETATION The findings demonstrate cell-autonomous roles for PASK in the control of pancreatic endocrine hormone secretion. Differences between the glycaemic phenotype of global vs cell type-specific null mice suggest important roles for tissue interactions in the control of glycaemia by PASK.
Collapse
Affiliation(s)
- Francesca Semplici
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK
| | - Angeles Mondragon
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK
| | - Benedict Macintyre
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK
| | - Katja Madeyski-Bengston
- AstraZeneca R&D, DECS, AstraZeneca R&D, Mölndal, Sweden
- AstraZeneca R&D, HC3020, AstraZeneca R&D, Mölndal, Sweden
| | - Anette Persson-Kry
- AstraZeneca R&D, DECS, AstraZeneca R&D, Mölndal, Sweden
- AstraZeneca R&D, HC3020, AstraZeneca R&D, Mölndal, Sweden
| | - Sara Barr
- AstraZeneca R&D, DECS, AstraZeneca R&D, Mölndal, Sweden
- AstraZeneca R&D, HC3020, AstraZeneca R&D, Mölndal, Sweden
| | - Anna Ramne
- AstraZeneca R&D, DECS, AstraZeneca R&D, Mölndal, Sweden
- AstraZeneca R&D, HC3020, AstraZeneca R&D, Mölndal, Sweden
| | | | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Paul French
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Helen Soedling
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK
| | - Ryohsuke Yokosuka
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK
| | - Julien Gaitan
- Université de Bordeaux, Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248, Pessac, France
| | - Jochen Lang
- Université de Bordeaux, Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248, Pessac, France
| | - Stephanie Migrenne-Li
- Paris Diderot University, Unit of Functional and Adaptive Biology (BFA), CNRS UMR 8251, Paris, France
| | - Erwann Philippe
- Paris Diderot University, Unit of Functional and Adaptive Biology (BFA), CNRS UMR 8251, Paris, France
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christophe Magnan
- Paris Diderot University, Unit of Functional and Adaptive Biology (BFA), CNRS UMR 8251, Paris, France
| | - Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
141
|
McCommis KS, Hodges WT, Bricker DK, Wisidagama DR, Compan V, Remedi MS, Thummel CS, Finck BN. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Mol Metab 2016; 5:602-614. [PMID: 27656398 PMCID: PMC5021712 DOI: 10.1016/j.molmet.2016.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. METHODS To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. RESULTS In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP) channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. CONCLUSIONS Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia.
Collapse
Key Words
- DILP2, Drosophila insulin-like peptide 2
- Diabetes
- Drosophila
- GSIS, glucose-stimulated insulin secretion
- GTT, glucose tolerance test
- IMM, inner mitochondrial membrane
- IPCs, Insulin-producing Cells
- ITT, insulin tolerance test
- Insulin
- MPC1 and MPC2, Mitochondrial Pyruvate Carrier 1 and 2
- Mitochondria
- OCR, oxygen consumption rates
- Pdx1, pancreatic and duodenal homeobox 1
- Pyruvate
- RESPYR, REporter Sensitive to PYRuvate
- Stimulus-coupled secretion
- β-Cell
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wesley T Hodges
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel K Bricker
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dona R Wisidagama
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent Compan
- Institute of Functional Genomics, Labex ICST; INSERM U1191, CNRS UMR5203; University of Montpellier, Montpellier, France
| | - Maria S Remedi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
142
|
Banerjee RR, Cyphert HA, Walker EM, Chakravarthy H, Peiris H, Gu X, Liu Y, Conrad E, Goodrich L, Stein RW, Kim SK. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells. Diabetes 2016; 65:2331-41. [PMID: 27217483 PMCID: PMC4955982 DOI: 10.2337/db15-1527] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Harini Chakravarthy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Lisa Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
143
|
Sojoodi M, Stradiot L, Tanaka K, Heremans Y, Leuckx G, Besson V, Staels W, Van de Casteele M, Marazzi G, Sassoon D, Heimberg H, Bonfanti P. The zinc finger transcription factor PW1/PEG3 restrains murine beta cell cycling. Diabetologia 2016; 59:1474-1479. [PMID: 27130279 PMCID: PMC4901110 DOI: 10.1007/s00125-016-3954-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Leslie Stradiot
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karo Tanaka
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mark Van de Casteele
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Paola Bonfanti
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
- Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
144
|
Chera S, Herrera PL. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 2016; 40:1-10. [PMID: 27266969 DOI: 10.1016/j.gde.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
The impaired ability to produce or respond to insulin, a hormone synthetized by the pancreatic β-cells, leads to diabetes. There is an excruciating need of finding new approaches to protect or restore these cells once they are lost. Replacement and ex vivo directed reprogramming methods have an undeniable therapeutic potential, yet they exhibit crucial flaws. The in vivo conversion of adult cells to functional insulin-producing cells is a promising alternative for regenerative treatments in diabetes. The stunning natural transdifferentiation potential of the adult endocrine pancreas was recently uncovered. Modulating molecular targets involved in β-cell fate maintenance or in general differentiation mechanisms can further potentiate this intrinsic cell plasticity, which leads to insulin production reconstitution.
Collapse
Affiliation(s)
- Simona Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland.
| |
Collapse
|
145
|
Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metab 2016; 5:449-458. [PMID: 27408771 PMCID: PMC4921781 DOI: 10.1016/j.molmet.2016.04.007] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Complex local crosstalk amongst endocrine cells within the islet ensures tight coordination of their endocrine output. This is illustrated by the recent demonstration that the negative feedback control by delta cells within pancreatic islets determines the homeostatic set-point for plasma glucose during mouse postnatal development. However, the close association of islet endocrine cells that facilitates paracrine crosstalk also complicates the distinction between effects mediated directly on beta cells from indirect effects mediated via local intermediates, such as somatostatin from delta cells. METHODS To resolve this problem, we generated reporter mice that allow collection of pure pancreatic delta cells along with alpha and beta cells from the same islets and generated comprehensive transcriptomes for each islet endocrine cell type. These transcriptomes afford an unparalleled view of the receptors expressed by delta, alpha and beta cells, and allow the prediction of which signal targets which endocrine cell type with great accuracy. RESULTS From these transcriptomes, we discovered that the ghrelin receptor is expressed exclusively by delta cells within the islet, which was confirmed by fluorescent in situ hybridization and qPCR. Indeed, ghrelin increases intracellular calcium in delta cells in intact mouse islets, measured by GCaMP6 and robustly potentiates glucose-stimulated somatostatin secretion on mouse and human islets in both static and perfusion assays. In contrast, des-acyl-ghrelin at the same dose had no effect on somatostatin secretion and did not block the actions of ghrelin. CONCLUSIONS These results offer a straightforward explanation for the well-known insulinostatic actions of ghrelin. Rather than engaging beta cells directly, ghrelin engages delta cells to promote local inhibitory feedback that attenuates insulin release. These findings illustrate the power of our approach to resolve some of the long-standing conundrums with regard to the rich feedback that occurs within the islet that is integral to islet physiology and therefore highly relevant to diabetes.
Collapse
|
146
|
Rabhi N, Denechaud PD, Gromada X, Hannou SA, Zhang H, Rashid T, Salas E, Durand E, Sand O, Bonnefond A, Yengo L, Chavey C, Bonner C, Kerr-Conte J, Abderrahmani A, Auwerx J, Fajas L, Froguel P, Annicotte JS. KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response. Cell Rep 2016; 15:1051-1061. [DOI: 10.1016/j.celrep.2016.03.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023] Open
|
147
|
Yi Y, Sun X, Gibson-Corley K, Xie W, Liang B, He N, Tyler SR, Uc A, Philipson LH, Wang K, Hara M, Ode KL, Norris AW, Engelhardt JF. A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology 2016; 157:1852-65. [PMID: 26862997 PMCID: PMC4870869 DOI: 10.1210/en.2015-1935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystic fibrosis (CF)-related diabetes in humans is intimately related to exocrine pancreatic insufficiency, yet little is known about how these 2 disease processes simultaneously evolve in CF. In this context, we examined CF ferrets during the evolution of exocrine pancreatic disease. At 1 month of age, CF ferrets experienced a glycemic crisis with spontaneous diabetic-level hyperglycemia. This occurred during a spike in pancreatic inflammation that was preceded by pancreatic fibrosis and loss of β-cell mass. Surprisingly, there was spontaneous normalization of glucose levels at 2-3 months, with intermediate hyperglycemia thereafter. Mixed meal tolerance was impaired at all ages, but glucose intolerance was not detected until 4 months. Insulin secretion in response to hyperglycemic clamp and to arginine was impaired. Insulin sensitivity, measured by euglycemic hyperinsulinemic clamp, was normal. Pancreatic inflammation rapidly diminished after 2 months of age during a period where β-cell mass rose and gene expression of islet hormones, peroxisome proliferator-activated receptor-γ, and adiponectin increased. We conclude that active CF exocrine pancreatic inflammation adversely affects β-cells but is followed by islet resurgence. We predict that very young humans with CF may experience a transient glycemic crisis and postulate that pancreatic inflammatory to adipogenic remodeling may facilitate islet adaptation in CF.
Collapse
Affiliation(s)
- Yaling Yi
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Xingshen Sun
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katherine Gibson-Corley
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Weiliang Xie
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Bo Liang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Nan He
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Scott R Tyler
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Aliye Uc
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Louis H Philipson
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Kai Wang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Manami Hara
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katie Larson Ode
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Andrew W Norris
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - John F Engelhardt
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
148
|
Dash SN, Hakonen E, Ustinov J, Otonkoski T, Andersson O, Lehtonen S. sept7b is required for the differentiation of pancreatic endocrine progenitors. Sci Rep 2016; 6:24992. [PMID: 27114183 PMCID: PMC4845001 DOI: 10.1038/srep24992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Protection or restoration of pancreatic β-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specific developmental processes. However, their role in pancreatic endocrine cell differentiation remains unknown. Here we show by functional manipulation techniques in transgenic zebrafish lines that suppression of sept7b, the zebrafish ortholog of human SEPT7, profoundly increases the number of endocrine progenitors but limits their differentiation, leading to reduction in β- and α-cell mass. Furthermore, we discovered that shh (sonic hedgehog) expression in the endoderm, essential for the development of pancreatic progenitors of the dorsal pancreatic bud, is absent in larvae depleted of sept7b. We also discovered that sept7b is important for the differentiation of ventral pancreatic bud-derived cells: sept7b-depleted larvae exhibit downregulation of Notch receptors notch1a and notch1b and show precocious differentiation of NeuroD-positive endocrine cells in the intrapancreatic duct and gut epithelium. Collectively, this study provides a novel insight into the development of pancreatic endocrine progenitors, revealing an essential role for sept7b in endocrine progenitor differentiation.
Collapse
Affiliation(s)
| | - Elina Hakonen
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
149
|
Sayers SR, Reimann F, Gribble FM, Parker H, Zac-Varghese S, Bloom SR, Foretz M, Viollet B, Rutter GA. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. PLoS One 2016; 11:e0149549. [PMID: 27010458 PMCID: PMC4806996 DOI: 10.1371/journal.pone.0149549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. METHOD Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. RESULTS Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). CONCLUSION AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.
Collapse
Affiliation(s)
- Sophie R. Sayers
- Department of Cell Biology and Functional Genomics, Imperial College London, London, W12 ONN, United Kingdom
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M. Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Helen Parker
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Sagen Zac-Varghese
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, United Kingdom
| | - Stephen R. Bloom
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, United Kingdom
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Guy A. Rutter
- Department of Cell Biology and Functional Genomics, Imperial College London, London, W12 ONN, United Kingdom
- * E-mail:
| |
Collapse
|
150
|
Rekittke NE, Ang M, Rawat D, Khatri R, Linn T. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3764681. [PMID: 27047547 PMCID: PMC4800095 DOI: 10.1155/2016/3764681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy.
Collapse
Affiliation(s)
- Nadine E. Rekittke
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Meidjie Ang
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Divya Rawat
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Rahul Khatri
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Zentrum für Innere Medizin, Fachbereich Medizin, Justus Liebig Universität Giessen, 35392 Giessen, Germany
| |
Collapse
|