1
|
Padiyappa SD, Avalappa H, Somegowda M, Sridhara S, Venkatesh YP, Prabhakar BT, Pramod SN, Almujaydil MS, Shokralla S, Abdelbacki AMM, Elansary HO, El-Sabrout AM, Mahmoud EA. Immunoadjuvant and Humoral Immune Responses of Garlic ( Allium sativum L.) Lectins upon Systemic and Mucosal Administration in BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041375. [PMID: 35209158 PMCID: PMC8880535 DOI: 10.3390/molecules27041375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Dietary food components have the ability to affect immune function; following absorption, specifically orally ingested dietary food containing lectins can systemically modulate the immune cells and affect the response to self- and co-administered food antigens. The mannose-binding lectins from garlic (Allium sativum agglutinins; ASAs) were identified as immunodulatory proteins in vitro. The objective of the present study was to assess the immunogenicity and adjuvanticity of garlic agglutinins and to evaluate whether they have adjuvant properties in vivo for a weak antigen ovalbumin (OVA). Garlic lectins (ASA I and ASA II) were administered by intranasal (50 days duration) and intradermal (14 days duration) routes, and the anti-lectin and anti-OVA immune (IgG) responses in the control and test groups of the BALB/c mice were assessed for humoral immunogenicity. Lectins, co-administered with OVA, were examined for lectin-induced anti-OVA IgG response to assess their adjuvant properties. The splenic and thymic indices were evaluated as a measure of immunomodulatory functions. Intradermal administration of ASA I and ASA II had showed a four-fold and two-fold increase in anti-lectin IgG response, respectively, vs. the control on day 14. In the intranasal route, the increases were 3-fold and 2.4-fold for ASA I and ASA II, respectively, on day 50. No decrease in the body weights of animals was noticed; the increases in the spleen and thymus weights, as well as their indices, were significant in the lectin groups. In the adjuvanticity study by intranasal administration, ASA I co-administered with ovalbumin (OVA) induced a remarkable increase in anti-OVA IgG response (~six-fold; p < 0.001) compared to the control, and ASA II induced a four-fold increase vs. the control on day 50. The results indicated that ASA was a potent immunogen which induced mucosal immunogenicity to the antigens that were administered intranasally in BALB/c mice. The observations made of the in vivo study indicate that ASA I has the potential use as an oral and mucosal adjuvant to deliver candidate weak antigens. Further clinical studies in humans are required to confirm its applicability.
Collapse
Affiliation(s)
- Shruthishree D. Padiyappa
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Hemavathi Avalappa
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Madhusudana Somegowda
- Department of Plant Biochemistry, University of Agriculture and Horticulture Science, Shivamogga 577 204, India;
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, University of Agriculture and Horticulture Science, Shivamogga 577 204, India;
| | - Yeldur P. Venkatesh
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India;
| | - Bettadatunga T. Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Siddanakoppalu N. Pramod
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Correspondence: (S.N.P.); (H.O.E.)
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Shadi Shokralla
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ashraf M. M. Abdelbacki
- Applied Studies and Community Service College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.N.P.); (H.O.E.)
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| |
Collapse
|
2
|
Butle AB, Talmale SA, Jadhao VV, Patil MB, Lambat TL. Immunostimulatory and anti-allergic potential of novel heterotrimeric lectin from seeds of Zizyphus mauritiana Lam. Int J Biol Macromol 2021; 171:389-397. [PMID: 33428960 DOI: 10.1016/j.ijbiomac.2021.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Zizyphus mauritiana Lam. seeds (ZMS) have been used medicinally as sedative or hypnotic drugs in most of Asian countries. ZMS has significant benefits to the human health. Therefore, we have evaluated immunomodulatory effect of lectin extracted from these ZMSL in both in vitro and in vivo study. Anaphylaxis is a severe life-threatening allergic reaction and Arthus reaction is deposition of immune complex and complement system activation, so we hypothesized that if ZMSL can protect these severe allergic diseases. We have studied the effect of ZMSL on macrophages and Wistar albino rats and confirmed its protective effect against anaphylaxis and Arthus reaction. Results of this study suggest ZMSL have immunostimulatory and antiallergic activity.
Collapse
Affiliation(s)
- Ashwin B Butle
- Department of Biochemistry, RashtrasantTukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India.
| | - Suhas A Talmale
- Department of Biochemistry, RashtrasantTukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Vivek V Jadhao
- Department of Biochemistry, RashtrasantTukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Mandakini B Patil
- Department of Biochemistry, RashtrasantTukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India.
| | - Trimurti L Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, dist-Gondia 441901, Maharashtra, India.
| |
Collapse
|
3
|
Song JG, Lee SH, Han HK. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization. J Nanobiotechnology 2021; 19:15. [PMID: 33422063 PMCID: PMC7796596 DOI: 10.1186/s12951-020-00750-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background There is a strong need for non-invasive and patient-friendly delivery systems of protein drugs for long-term therapy. However, oral delivery of protein drugs is a big challenge due to many barriers including instability in the gastrointestinal (GI) tract and low permeability. To overcome the absorption barriers in GI tract and improve the patient compliance, this study aimed to develop an M cell targeted-nanocomposite delivery system of protein drugs. Results An aminoclay-protein core complex (AC-Ins) was prepared by using insulin as a model protein and then sequentially coated with Ulex europaeus agglutinin 1 (UEA-1) for M-cell targeting and the pH sensitive polymer, Eudragit® L100 (EUAC-Ins). All nanoparticles were obtained with a high entrapment efficiency (> 90%) and their structural characteristics were confirmed by Fourier transform-infrared spectroscopy, energy dispersive X-ray spectroscopy, and circular dichroism. Among the developed nanoparticles, EUAC-Ins effectively suppressed drug release at pH 1.2, while rapidly released drugs at pH 6.8 due to dissolution of the outer coating layer. The conformational stability of insulin entrapped in EUAC-Ins was well maintained in the presence of proteolytic enzymes. Compared to free insulin, EUAC-Ins increased the membrane transport of insulin by 4.4-fold in M cells. In parallel, oral administration of EUAC-Ins in mice enhanced insulin uptake by 4.1-fold in the intestinal Peyer’s patches and 2.6-fold in intestinal epithelium tissues with normal villi, compared to free insulin. Orally administered EUAC-Ins decreased significantly the blood glucose level in diabetic mice, while the effect of oral insulin solution was negligible. Conclusion An M cell targeted-ternary nanocomposite system obtained by dual coating of the aminoclay-protein core complex with UEA-1 and a pH dependent polymer is promising as an effective oral protein delivery carrier. ![]()
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Sang Hoon Lee
- BK21 FOUR Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Korea.
| |
Collapse
|
4
|
Lemoine C, Thakur A, Krajišnik D, Guyon R, Longet S, Razim A, Górska S, Pantelić I, Ilić T, Nikolić I, Lavelle EC, Gamian A, Savić S, Milicic A. Technological Approaches for Improving Vaccination Compliance and Coverage. Vaccines (Basel) 2020; 8:E304. [PMID: 32560088 PMCID: PMC7350210 DOI: 10.3390/vaccines8020304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Vaccination has been well recognised as a critically important tool in preventing infectious disease, yet incomplete immunisation coverage remains a major obstacle to achieving disease control and eradication. As medical products for global access, vaccines need to be safe, effective and inexpensive. In line with these goals, continuous improvements of vaccine delivery strategies are necessary to achieve the full potential of immunisation. Novel technologies related to vaccine delivery and route of administration, use of advanced adjuvants and controlled antigen release (single-dose immunisation) approaches are expected to contribute to improved coverage and patient compliance. This review discusses the application of micro- and nano-technologies in the alternative routes of vaccine administration (mucosal and cutaneous vaccination), oral vaccine delivery as well as vaccine encapsulation with the aim of controlled antigen release for single-dose vaccination.
Collapse
Affiliation(s)
- Céline Lemoine
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland;
- Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Stephanie Longet
- Virology & Pathogenesis Group, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, UK;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Tanja Ilić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ed C. Lavelle
- The Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, DO2R590 Dublin, Ireland;
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| |
Collapse
|
5
|
Kelm M, Lehoux S, Azcutia V, Cummings RD, Nusrat A, Parkos CA, Brazil JC. Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. FASEB J 2019; 34:2326-2343. [PMID: 31907993 DOI: 10.1096/fj.201902542r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well-described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N-linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation-dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N-glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN-associated tissue damage in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthias Kelm
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
6
|
Tran TH, Tran TTP, Truong DH, Nguyen HT, Pham TT, Yong CS, Kim JO. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomater 2019; 94:82-96. [PMID: 31129358 DOI: 10.1016/j.actbio.2019.05.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
The expression of Toll-like receptors (TLRs) on antigen presenting cells, especially dendritic cells, offers several sensitive mediators to trigger an adaptive immune response, which potentially can be exploited to detect and eliminate pathogenic objects. Consequently, numerous agonists that target TLRs are being used clinically either alone or in combination with other therapies to strengthen the immune system in the battle against cancer. This review summarizes the roles of TLRs in tumor biology, and focuses on relevant TLR-dependent antitumor pathways and the conjugation of TLR agonists as adjuvants to nano- and micro-particles for boosting responses leading to cancer suppression and eradication. STATEMENT OF SIGNIFICANCE: Toll-like receptors (TLRs), which express on antigen presenting cells, such as dendritic cells and macrophages, play an important role in sensing pathogenic agents and inducing adaptive immunity. As a result, several TLR agonists have been investigating as therapeutic agents individually or in combination with other treatment modalities for cancer treatment through boosting the immune system. This review aims to focus on the roles of TLRs in cancer and TLR-dependent antitumor pathways as well as the use of different nano- or micro-particles bearing TLR agonists for tumor inhibition and elimination.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Jiang Y, Li X, Wu Y, Zhou L, Wang Z, Xiao W. Effect of Lentinan on Peyer's patch structure and function in an immunosuppressed mouse model. Int J Biol Macromol 2019; 137:169-176. [PMID: 31255627 DOI: 10.1016/j.ijbiomac.2019.06.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Lentinan (LNT), a polysaccharide isolated from Lentinus edodes, has been shown to stimulate immune response. Despite its widespread use owing to its health benefits, epidemiologic and experimental studies that address the biological activities of LNT after oral administration to animals or humans are rare. In this study, the effects of LNT on the intestinal mucosal immune system of immunosuppressed mice were investigated. The number and size of the Peyer's patches (PPs), proliferation ability of PP lymphocytes, T and B lymphocyte percentage, and T-cell activation proportion, as well as the number of M-like cells in PPs, were determined. The antigen transfer ability of M-like cells and intestinal secretory immunoglobulin A (IgA) levels were also detected. After oral administration of LNT for 7 days, the number of PPs, lymphocytes in PPs, and the level of intestinal soluble IgA in immunosuppressed mice were increased. LNT maintained the percentage of T and B lymphocytes and upregulated the proportion of activated T cells in PPs. Furthermore, the number of M-like cells, which were differentiated from intestinal epithelial cells, and their antigen transfer ability were enhanced. These results indicate that orally administered LNT can improve the immune status of the intestinal mucosa in immunosuppressed mice.
Collapse
Affiliation(s)
- Yiping Jiang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Xiangling Li
- R & D Department, Guangdong Hybribio Technology Co. Ltd, No. 71, Fengsan Road, Huangpu District, Guangzhou, Guangdong 510520, China
| | - Yun Wu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Lian Zhou
- Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou, Guangdong 510006, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China.
| |
Collapse
|
8
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
9
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
Affiliation(s)
- Miao Wang
- a State Key Laboratory of Veterinary Etiological Biology; National Foot-and-Mouse Disease Reference Laboratory; Lanzhou Veterinary Research Institute; CAAS ; Lanzhou , Gansu , China
| | | | | | | | | |
Collapse
|
10
|
Pavot V, Berthet M, Rességuier J, Legaz S, Handké N, Gilbert SC, Paul S, Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond) 2015; 9:2703-18. [PMID: 25529572 DOI: 10.2217/nnm.14.156] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.
Collapse
Affiliation(s)
- Vincent Pavot
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Gupta PN. Mucosal Vaccine Delivery and M Cell Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 2014; 6:401-18. [PMID: 17542755 DOI: 10.1586/14760584.6.3.401] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although polymeric nanoparticles/microparticles are well established for the mucosal administration of conventional drugs, they have not yet been developed commercially for vaccine delivery. The limitation of the mucosal (particularly oral) route of delivery, including low pH, gastric enzymes, rapid transit and poor absorption of large molecules, has made mucosal vaccine delivery challenging. Nevertheless, several polymeric delivery systems for mucosal vaccine delivery are currently being evaluated. The polymer-based approaches are designed to protect the antigen in the gut, to target the antigen to the gut-associated lymphoid tissue or to increase the residence time of the antigen in the gut through bioadhesion. M-cell targeting is a potential approach for mucosal vaccine delivery, which can be achieved using M-cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before targeted mucosal vaccine delivery becomes a practical reality, this is a potential area of research that has important implications for future vaccine development. This review comprises various aspects that could be decisive in the development of polymer based mucosal vaccine delivery systems.
Collapse
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470003 (M.P.), India.
| | | |
Collapse
|
14
|
Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P, Brown GD, Tiraby G, Roblin X, Verrier B, Genin C, Corthésy B, Paul S. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLoS Biol 2013; 11:e1001658. [PMID: 24068891 PMCID: PMC3775721 DOI: 10.1371/journal.pbio.1001658] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/08/2013] [Indexed: 01/27/2023] Open
Abstract
This work reports the long-awaited identification of Dectin-1 and Siglec-5 as the M cell co-receptors that mediate the reverse transcytosis of secretory IgA molecules to mount a gut immune response. Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases. Secretory IgA (SIgA) antibodies are secreted into the gut lumen and are considered to be a first line of defense in protecting the intestinal epithelium from gut pathogens. SIgA patrol the mucus and are usually known to help immune tolerance via entrapping dietary antigens and microorganisms and other mechanisms. SIgA, in complex with its antigens, can also be taken back up by the intestinal epithelium in a process known as reverse transcytosis. SIgA can thereby promote the uptake and delivery of antigens from the intestinal lumen to the Gut-Associated Lymphoid Tissues (GALT), influencing inflammatory responses. This reverse transcytosis of SIgA is mediated by specialized epithelial M cells. Because M cells possess the ability to take up antigens and are therefore important to the local immune system, they are a key target for the specific delivery of novel mucosal vaccines against various diseases. M cell receptors that take up the SIgA-antigen complexes, which serve as mucosal vaccine vehicles, represent an important aspect of this vaccine strategy. The identification of SIgA receptor(s) on the surface of M cells has, however, remained elusive for more than a decade. In this study, we now identify Dectin-1 and Siglec-5 as the key receptors for M cell–mediated reverse transcytosis of SIgA complexes. We further find that the glycosylation modification, and particularly sialylation, of SIgA is required for its uptake by M cells. We show that, when administered orally in complex with SIgA, the HIV p24 antigen is taken up in a strictly Dectin-1-dependent manner to stimulate a mucosal and systemic antibody response. These findings are considered important for understanding gut immunity.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/immunology
- Antigen-Antibody Complex/metabolism
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- CHO Cells
- CX3C Chemokine Receptor 1
- Caco-2 Cells
- Cell Adhesion Molecules/metabolism
- Cell Line
- Cricetulus
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Glycosylation
- HIV Core Protein p24/immunology
- HeLa Cells
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin A, Secretory/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Lectins/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Acetylneuraminic Acid/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Chemokine/metabolism
- Transcytosis/immunology
Collapse
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | | | | | - Vincent Pavot
- Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Université de Lyon, France
| | - Pierre Redelinghuys
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Xavier Roblin
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Université de Lyon, France
| | - Christian Genin
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
15
|
Casteleyn C, Van den Broeck W, Gebert A, Tambuyzer BR, Van Cruchten S, Van Ginneken C. M cell specific markers in man and domestic animals: Valuable tools in vaccine development. Comp Immunol Microbiol Infect Dis 2013; 36:353-64. [DOI: 10.1016/j.cimid.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
|
16
|
Abstract
Hepatitis B is a necroinflammatory liver disease manifested with subacute to acute symptoms, liver cirrhosis, and mortality. Parenteral alum-adsorbed hepatitis B surface antigenic (HBsAg) vaccination, although available, poses serious concerns regarding inability to induce both cell-mediated and mucosal immune response. In this context, oral delivery may be a prospective solution to the issues associated with conventional vaccination. However, the strategy is detrimental to the antigenic substances, suffers various physical/chemical barriers, and impedes poor transcytosis via mucosal route. Therefore, surface-engineered novel carrier-based approaches are reportedly promising for effective HBsAg oral vaccine delivery. This review focuses on the efforts for developing oral mucosal vaccine against hepatitis B, with considerable attention on novel drug delivery systems for spatial distribution of antigenic substance to the immune effector cells and organs.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | | |
Collapse
|
17
|
Terahara K, Nochi T, Yoshida M, Takahashi Y, Goto Y, Hatai H, Kurokawa S, Jang MH, Kweon MN, Domino SE, Hiroi T, Yuki Y, Tsunetsugu-Yokota Y, Kobayashi K, Kiyono H. Distinct fucosylation of M cells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem Biophys Res Commun 2011; 404:822-8. [PMID: 21172308 DOI: 10.1016/j.bbrc.2010.12.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/26/2022]
Abstract
The intestinal epithelium contains columnar epithelial cells (ECs) and M cells, and fucosylation of the apical surface of ECs and M cells is involved in distinguishing the two populations and in their response to commensal flora and environmental stress. Here, we show that fucosylated ECs (F-ECs) were induced in the mouse small intestine by the pro-inflammatory agents dextran sodium sulfate and indomethacin, in addition to an enteropathogen derived cholera toxin. Although F-ECs showed specificity for the M cell-markers, lectin Ulex europaeus agglutinin-1 and our monoclonal antibody NKM 16-2-4, these cells also retained EC-phenotypes including an affinity for the EC-marker lectin wheat germ agglutinin. Interestingly, fucosylation of Peyer's patch M cells and F-ECs was distinctly regulated by α(1,2)fucosyltransferase Fut1 and Fut2, respectively. These results indicate that Fut2-mediated F-ECs share M cell-related fucosylated molecules but maintain distinctive EC characteristics, Fut1 is, therefore, a reliable marker for M cells.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tiwari S, Agrawal GP, Vyas SP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond) 2010; 5:1617-40. [DOI: 10.2217/nnm.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system, the primary portal for entry of most prevalent and devastating pathogens, is guarded by the special lymphoid tissues (mucosally associated lymphoid tissues) for immunity. Mucosal immune infection results in induction of IgA-manifested humoral immunity. Cell-mediated immunity may also be generated, marked by the presence of CD4+ Th1 and CD8+ cells. Furthermore, the immunity generated at the mucosal site is transported to the distal mucosal site as well as to systemic tissues. An understanding of the molecular basis of the mucosal immune system provides a unique platform for designing a mucosal vaccine. Coadministration of immunostimulatory molecules further accelerates functioning of the immune system. Mimicking receptor-mediated binding of the pathogen may be achieved by direct conjugation of antigen with an immunostimulatory molecule or encapsulation in a carrier followed by anchoring of a ligand having affinity to the cells of the mucosal immune system. Nanotechnology has played a significant role in mucosal vaccine development and among the available options liposomes are the most promising. Liposomes are phospholipid bilayered vesicles that can encapsulate protein as well as DNA-based vaccines and offer coencapsulation of adjuvant along with the antigen. At the same, time ligand-conjugated liposomes augment interaction of antigen with the cells of the mucosal immune system and thereby serve as suitable candidates for the mucosal delivery of vaccines. This article exhaustively explores strategies involved in the generation of mucosal immunity and also provides an insight to the progress that has been made in the development of liposome-based mucosal vaccine.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | - Govind P Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | | |
Collapse
|
19
|
|
20
|
Yoo MK, Kang SK, Choi JH, Park IK, Na HS, Lee HC, Kim EB, Lee NK, Nah JW, Choi YJ, Cho CS. Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 2010; 31:7738-47. [DOI: 10.1016/j.biomaterials.2010.06.059] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/28/2010] [Indexed: 11/29/2022]
|
21
|
Sun J, Zhou TT, Le GW, Shi YH. Association of Lactobacillus acidophilus with mice Peyer's patches. Nutrition 2010; 26:1008-13. [PMID: 20392597 DOI: 10.1016/j.nut.2009.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To clarify the adhesion mechanism of Lactobacillus acidophilus to Peyer's patches. METHODS Adhesion of L. acidophilus FN001 to mice Peyer's patches was studied in vitro using a fluorescent quantization method. The nature of adhesion mediator was studied by the differing effects of physical, chemical, and enzymatic pre-treatments of the bacteria and the inhibitory effects of sugars on the adhesion. The presence of lectin-like proteins on the cell surface was determined by hemagglutination assay. The effect of L. acidophilus FN001 on the inhibition of adhesion of pathogens to Peyer's patches was also studied. RESULTS The adhesion of L. acidophilus FN001 was strongly inhibited in the presence of D-mannose and methyl-α-D-mannoside. Pretreatment of L. acidophilus FN001 with pepsin and trypsin decreased the adhesive capacity indicating that some cell surface proteins might be involved in the adhesion. L. acidophilus FN001 showed agglutinating activity toward the rabbit red cells in a mannose specific manner, which was decreased after protease pretreatment, suggesting possible occurrence of mannose specific lectin(s) on the L. acidophilus FN001 surface. In adhesion inhibition assay, L. acidophilus NF001, when applied to Peyer's patches first or at the same time with pathogen, significantly inhibited adhesion of Escherichia coli ATCC25922 to Peyer's patches. CONCLUSION L. acidophilus FN001 contains some mannose-specific protein(s) on its surface that mediates its adhesion to the Peyer's patches. FN001 inhibits the adhesion of E. coli, which also contains mannose specific lectin.
Collapse
Affiliation(s)
- Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | | | | | | |
Collapse
|
22
|
Cashman SB, Morgan JG. Transcriptional analysis of Toll-like receptors expression in M cells. Mol Immunol 2009; 47:365-72. [PMID: 19781788 DOI: 10.1016/j.molimm.2009.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/03/2009] [Indexed: 02/06/2023]
Abstract
M cells are located in the follicle associated epithelium (FAE) of Peyer's patches (PPs) in the small intestine, where they mediate the uptake and transcytosis of luminal antigens to the underlying lymphoid tissue. Toll-like receptors (TLRs) have emerged as key mediators in the innate immune response by recognising pathogen associated molecular patterns (PAMPs) expressed by microorganisms. TLRs have previously been shown to be differentially expressed in the gastrointestinal tract. In this study PP were harvested from BALB/c mice. Ulex europaeus agglutinin 1 (UAE-1) positive M cells were isolated from FAE and the expression of TLR1-9 transcripts in M cells, FAE and villus epithelium (VE) was compared by quantitative real-time PCR. Transcripts for TLR1, TLR2 and TLR4 were found to be expressed at a high level in M cells in comparison to VE, with no transcripts being detected in the FAE. TLR3 and TLR6 were not found to be expressed in M cells or in the FAE. TLR5 and TLR7 were found to be expressed at a higher level in FAE compared to M cells. TLR9, which recognises unmethylated CpG DNA of bacteria and viruses and TLR8, which recognises ssRNA, were found to be preferentially expressed in M cells compared to FAE and VE.
Collapse
|
23
|
Reuter F, Bade S, Hirst TR, Frey A. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis. J Control Release 2009; 137:98-103. [DOI: 10.1016/j.jconrel.2009.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/16/2009] [Accepted: 03/22/2009] [Indexed: 11/26/2022]
|
24
|
Misumi S, Masuyama M, Takamune N, Nakayama D, Mitsumata R, Matsumoto H, Urata N, Takahashi Y, Muneoka A, Sukamoto T, Fukuzaki K, Shoji S. Targeted delivery of immunogen to primate m cells with tetragalloyl lysine dendrimer. THE JOURNAL OF IMMUNOLOGY 2009; 182:6061-70. [PMID: 19414757 DOI: 10.4049/jimmunol.0802928] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effective uptake of Ags by specialized M cells of gut-associated lymphoid tissues is an important step in inducing efficient immune responses after oral vaccination. Although stable nontoxic small molecule mimetics of lectins, such as synthetic multivalent polygalloyl derivatives, may have potential in murine M cell targeting, it remains unclear whether synthetic multivalent polygalloyl derivatives effectively target nonhuman and human M cells. In this study, we evaluated the ability of a tetragalloyl derivative, the tetragalloyl-D-lysine dendrimer (TGDK), to target M cells in both in vivo nonhuman primate and in vitro human M-like cell culture models. TGDK was efficiently transported from the lumen of the intestinal tract into rhesus Peyer's patches by M cells and then accumulated in germinal centers. Oral administration of rhesus CCR5-derived cyclopeptide conjugated with TGDK in rhesus macaque resulted in a statistically significant increase in stool IgA response against rhesus CCR5-derived cyclopeptide and induced a neutralizing activity against SIV infection. Furthermore, TGDK was specifically bound to human M-like cells and efficiently transcytosed from the apical side to the basolateral side in the M-like cell model. Thus, the TGDK-mediated vaccine delivery system represents a potential approach for enabling M cell-targeted mucosal vaccines in primates.
Collapse
Affiliation(s)
- Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens. Infect Immun 2009; 77:2962-70. [PMID: 19380476 DOI: 10.1128/iai.01522-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant.
Collapse
|
26
|
Transport of mistletoe lectin by M cells in human intestinal follicle-associated epithelium (FAE) In vitro. Arch Pharm Res 2008; 31:1613-21. [DOI: 10.1007/s12272-001-2159-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/05/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
|
27
|
Abstract
BACKGROUND M (microfold or membranous) cells are specialised epithelial cells responsible for antigen sampling at the interface of mucosal surfaces and the environment. Their high transcytotic ability make M cells an attractive target for mucosally delivered vaccines and therapeutics. OBJECTIVE This brief review discusses the current state of M cell-targeted mucosal delivery systems and the potential of such delivery systems for the development of new vaccines and therapeutics against mucosal infectious and inflammatory diseases. SCOPE A variety of synthetic microparticles/nanoparticles have been developed and tested as vehicles for M cell-targeted mucosal drug and vaccine delivery. beta1 integrins, pathogen recognition receptors, specific carbohydrate residues and other M cell surface antigens have been exploited as potential targets for the delivery of mucosal vaccines and therapeutics. CONCLUSION Despite a considerable body of literature, much work still needs to be done before an effective M cell-targeted vaccine or therapeutic is developed.
Collapse
Affiliation(s)
- Rhonda Kuolee
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
28
|
Morroni M, Cangiotti AM, Cinti S. Brush cells in the human duodenojejunal junction: an ultrastructural study. J Anat 2007; 211:125-131. [PMID: 17509089 PMCID: PMC2375792 DOI: 10.1111/j.1469-7580.2007.00738.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2007] [Indexed: 11/30/2022] Open
Abstract
Brush cells have been identified in the respiratory and gastrointestinal tract mucosa of many mammalian species. In humans they are found in the respiratory tract and the gastrointestinal apparatus, in both the stomach and the gallbladder. The function of brush cells is unknown, and most morphological data have been obtained in rodents. To extend our knowledge of human brush cells, we performed an ultrastructural investigation of human small intestine brush cells. Six brush cells identified in five out of more than 300 small intestine biopsies performed for gastrointestinal tract disorders were examined by transmission electron microscopy. Five brush cells were located on the surface epithelium and one in a crypt. The five surface brush cells were characterized by a narrow apical pole from which emerged microvilli that were longer and thicker than those of enterocytes. The filamentous core extended far into the cell body without forming the terminal web. Caveolae were abundant. Filaments were in the form of microfilaments and intermediate filaments. Cytoplasmic projections containing filaments were found on the basolateral surface of brush cells. In a single cell, axons containing vesicles and dense core granules were in close contact both with the basal and the lateral surface of the cell. The crypt brush cell appeared less mature. We concluded that human small intestine brush cells share a similar ultrastructural biology with those of other mammals. They are polarized and well-differentiated cells endowed with a distinctive cytoskeleton. The observation of nerve fibres closely associated with brush cells, never previously described in humans, lends support to the hypothesis of a receptor role for these cells.
Collapse
Affiliation(s)
- Manrico Morroni
- Institute of Normal Human Morphology, School of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | | | | |
Collapse
|
29
|
Abstract
It is well-established that most pathogens that cause infectious diseases enter the host via mucosal membranes of the respiratory, digestive and genital tracts. Some parenterally administered vaccines induce protection against mucosal pathogens. However, there is increasing evidence that mucosal protection is better afforded by mucosal vaccination, particularly for the induction of memory responses. Mucosal vaccines must pass several difficult hurdles before entering the host and inducing an effective and protective immune response. This review deals with present and past efforts in devising effective mucosal vaccines using delivery systems and immunopotentiating adjuvants for protein-based vaccines. The paper will conclude with the authors' opinion on how the field will or should progress in the future and what will be the required components of ideal future mucosal vaccines that can induce immunological memory.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
30
|
Abdul-Salam F, Mansour MH, Al-Shemary T. The selective expression of distinct fucosylated glycoproteins on murine T and B lymphocyte subsets. Immunobiology 2006; 210:695-708. [PMID: 16323706 DOI: 10.1016/j.imbio.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The putative expression of distinct terminally fucosylated glycoconjugates among murine lymphocyte subpopulations was sought using Ulex europaeus agglutinin-I (UEA-I) and Anguilla anguilla agglutinin (AAA), each with a distinctive primary binding preference to type II and type I blood group H oligosaccharide determinants, respectively. In newly born and adult mice, direct labeling of isolated lymphocyte subsets in suspension, as well as immunohistochemical assays were indicative of the age-regulated co-expression of the UEA-I-reactive ligand among thymic epithelial cells and a subset of the mature (PNA-), medullary thymocytes. In the spleen, UEA-I-ligand expression was selectively confined to a subset of the CD4+ T lymphocytes scattered around red pulp sinuses in newly born mice, but distinctively localized within the T cell-dependent periarteriolar lymphoid sheath compartment in adult mice. Among thymocytes of adult mice, two-dimensional Western blots demonstrated the expression of the UEA-I-reactive ligand among multiple isoforms of three major 50, 114 and 180kDa acidic glycoproteins, of which, heterogeneous weight and charge variants of the 114kDa component were also evident among splenocytes. The expression of the AAA-reactive ligand was, on the other hand, restricted to a single major 120 kDa acidic glycoprotein, in addition to a minor molecular weight variant of 115kDa, associated with a subset of immature IgM+ B lymphocytes localized within the red pulp, in both newly born and adult mice. The significance of these findings is discussed in relation to mechanisms that govern lymphocyte maturation, selection and migration.
Collapse
Affiliation(s)
- Fatma Abdul-Salam
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat
| | | | | |
Collapse
|
31
|
Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 2005; 1:141-63. [PMID: 16296726 DOI: 10.1517/17425247.1.1.141] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Particle uptake by Peyer's patches offers the possibility of tailoring vaccines that can be delivered orally. However, particle uptake by the follicle-associated epithelium in the gastrointestinal tract depends on several different factors that are the physicochemical properties of the particles, the physiopathological state of the animal, the analytical method used to evaluate the uptake and finally the experimental model. These parameters do not allow a clear idea about the optimal conditions to target the Peyer's patches. The goal of this review is to clarify the role of each factor in this uptake.
Collapse
Affiliation(s)
- Monjed Shakweh
- University of Paris-South, Faculty of Pharmacy, UMR CNRS 8612, 5 rue Jean-Batiste Clement, 92290 Chatenay-Malabry Cedex, France
| | | | | |
Collapse
|
32
|
Heinrich EL, Welty LAY, Banner LR, Oppenheimer SB. Direct targeting of cancer cells: a multiparameter approach. Acta Histochem 2005; 107:335-44. [PMID: 16181664 PMCID: PMC1857334 DOI: 10.1016/j.acthis.2005.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/22/2022]
Abstract
Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches.
Collapse
|
33
|
Wang X, Kochetkova I, Haddad A, Hoyt T, Hone DM, Pascual DW. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope. Vaccine 2005; 23:3836-42. [PMID: 15893622 DOI: 10.1016/j.vaccine.2005.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 12/28/2004] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.
Collapse
Affiliation(s)
- Xinhai Wang
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 2005; 294:247-59. [PMID: 15814248 DOI: 10.1016/j.ijpharm.2005.01.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 01/10/2005] [Accepted: 01/17/2005] [Indexed: 01/03/2023]
Abstract
The aim of this study was to design and characterize lectin-modified liposomes containing insulin and to evaluate the potential of these modified colloidal carriers for oral administration of peptide and protein drugs. Wheat germ agglutinin (WGA), tomato lectin (TL), or Ulex europaeus agglutinin 1 (UEA1) were conjugated by coupling their amino groups to carbodiimide-activated carboxylic groups of N-glutaryl-phosphatidylethanolamine (N-glut-PE). Insulin liposomes dispersions were prepared by the reverse-phase evaporation technique and modified with the lectin-N-glut-PE conjugates. Lectin-modified liposomes were characterized according to particles size, zeta potential and entrapment efficiency. The hypoglycemic effect indicated by pharmacological bioavailability of insulin liposomes modified with WGA, TL and UEA1 were 21.40, 16.71 and 8.38% in diabetic mice as comparison with abdominal cavity injection of insulin, respectively. After oral administration of the insulin liposomes modified with WGA, TL and UEA1 to rats, the relative pharmacological bioavailabilities were 8.47, 7.29 and 4.85%, the relative bioavailability were 9.12, 7.89 and 5.37% in comparison with subcutaneous injection of insulin, respectively. In the two cases, no remarkable hypoglycemic effects were observed with the conventional insulin liposomes. These results confirmed that lectin-modified liposomes promote the oral absorption of insulin due to the specific-site combination on GI cell membrane.
Collapse
Affiliation(s)
- Na Zhang
- The Pharmaceutical College, Shandong University, 44 Wen Hua Xi Lu, Ji'nan, Shandong Province, China
| | | | | | | |
Collapse
|
35
|
Qaddoumi M, Lee VHL. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res 2005; 21:1160-6. [PMID: 15290855 DOI: 10.1023/b:pham.0000033002.93967.5f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. METHODS Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. RESULTS The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. CONCLUSION Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.
Collapse
Affiliation(s)
- Mohamed Qaddoumi
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
36
|
|
37
|
|
38
|
Bronchus-Associated Lymphoid Tissues. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Jepson MA, Clark MA, Hirst BH. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv Drug Deliv Rev 2004; 56:511-25. [PMID: 14969756 DOI: 10.1016/j.addr.2003.10.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 10/14/2003] [Indexed: 12/11/2022]
Abstract
Bioadhesins are a recognised method of enhancing the absorption of drugs and vaccines at mucosal surfaces. Additionally, bioadhesins allow for cell specific targeting. Lectin-mediated targeting and delivery exploits unique surface carbohydrates on mucosal epithelial cells. The antigen-sampling M cells offer a portal for absorption of colloidal and particulate delivery vehicles, including bacteria, viruses and inert microparticles. We review work supporting the use of lectins to aid targeting to intestinal M cells. Consideration is also given to lectin-mediated targeting in non-intestinal sites and to the potential application of other bioadhesins to enhance M cell transport. While substantial hurdles must be overcome before mucosal bioadhesins can guarantee consistent, safe, effective mucosal delivery, this strategy offers novel opportunities for drug and vaccine formulation.
Collapse
Affiliation(s)
- Mark A Jepson
- Cell Imaging Facility and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
40
|
McKenzie BS, Brady JL, Lew AM. Mucosal immunity: overcoming the barrier for induction of proximal responses. Immunol Res 2004; 30:35-71. [PMID: 15258310 DOI: 10.1385/ir:30:1:035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vaccination represents one of the most efficacious and cost-effective medical interventions. It is the only medical intervention proven to eliminate disease at a global level. Many of the pathogens against which we most require adequate vaccines infect via the highly exposed mucosal surfaces. For this reason the mucosa is often considered the first, and sometimes only, line of defense. Therefore, responses that protect the local mucosa are vital. In this review, we first explore the immunological mechanisms that protect the mucosa. We then review the literature of mucosal vaccines within the principles of antigenic composition, dose, and danger, highlighting the need and niche for the next generation of mucosal vaccines.
Collapse
Affiliation(s)
- Brent S McKenzie
- The Walter and Eliza Hall Institute of Medical Research and Co-operative Research Centre for Vaccine Technology, 1G Royal Parade, Parkville, 3050, Australia
| | | | | |
Collapse
|
41
|
Medina-Bolivar F, Wright R, Funk V, Sentz D, Barroso L, Wilkins TD, Petri W, Cramer CL. A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine 2003; 21:997-1005. [PMID: 12547614 DOI: 10.1016/s0264-410x(02)00551-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RicinB, the non-toxic galactose/N-acetylgalactosamine-binding subunit of ricin, was fused to a model antigen, green fluorescent protein (GFP), and expressed in tobacco plants and hairy root cultures to test for utility in mucosal vaccine delivery/adjuvancy. The fusion protein retained both GFP fluorescence and galactose/galactosamine-binding activity. Intranasal immunization of mice with galactosamine-affinity purified ricinB:GFP recovered from tobacco root cultures triggered significant increases in GFP-specific serum IgGs. This strong humoral response was comparable to that observed following GFP immunization with cholera toxin adjuvant. GFP at the same concentrations but without an adjuvant was non-immunogenic. Induction of higher levels of IgG(1) than IgG(2a) following ricinB:GFP immunization suggested the presence of a Th2 response. Serum and fecal anti-GFP IgA were also induced by immunization with ricinB:GFP. Our data suggest that ricinB can be used as an adjuvant and antigen carrier to the mucosa and is efficient in eliciting systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Fabricio Medina-Bolivar
- Fralin Biotechnology Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061-0346, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kelsall A, FitzGerald AJ, Howard CV, Evans RC, Singh R, Rhodes JM, Goodlad RA. Dietary lectins can stimulate pancreatic growth in the rat. Int J Exp Pathol 2002; 83:203-8. [PMID: 12485464 PMCID: PMC2517680 DOI: 10.1046/j.1365-2613.2002.00230.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lectins are proteins or glycoproteins of nonimmune origin, which bind specifically to carbohydrate structures. They are widespread in the human diet, and many are resistant to digestion. High doses of lectins have been shown to stimulate intestinal and pancreatic growth. The aim of the present study was to investigate the long-term actions of low doses of lectins on the rat intestine and pancreas. A long-term carcinogenesis study was performed using low levels (40 micro g/rat/day) of peanut (PNA) or mushroom lectin (ABA) which bind to O-linked (mucin-type) oligosaccharides in the gut. While this was primarily designed as a colon carcinogenesis study, the pancreas was also investigated. No significant changes in colon carcinogenesis were seen, however, the colons were slightly heavier in the lectin treated groups. The weight of the pancreas was significantly greater (by 18 and 23%) in both lectin treated groups (P < 0.03/0.001). The weights of the acini and septal tissue were also increased by 39-46% in PNA and ABA fed animals, respectively (P < 0.002); there was no significant change in the endocrine pancreas. In conclusion, long-term feeding of low doses of lectin can influence pancreatic growth, and this trophic action may have potential adverse implications for the development of pancreatic cancer in humans.
Collapse
Affiliation(s)
- Angela Kelsall
- Foetal & Infant Toxico-Pathology, University of Liverpool, Liverpool L69 7ZA, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Zuercher AW, Coffin SE, Thurnheer MC, Fundova P, Cebra JJ. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1796-803. [PMID: 11823512 DOI: 10.4049/jimmunol.168.4.1796] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peyer's patches are known as mucosal inductive sites for humoral and cellular immune responses in the gastrointestinal tract. In contrast, functionally equivalent structures in the respiratory tract remain elusive. It has been suggested that nasal-associated lymphoid tissue (NALT) might serve as a mucosal inductive site in the upper respiratory tract. However, typical signs of mucosal inductive sites like development of germinal center reactions after Ag stimulation and isotype switching of naive B cells to IgA production have not been directly demonstrated. Moreover, it is not known whether CTL can be generated in NALT. To address these issues, NALT was structurally and functionally analyzed using a model of intranasal infection of C3H mice with reovirus. FACS and histological analyses revealed development of germinal centers in NALT in parallel with generation and expansion of IgA(+) and IgG2a(+) B cells after intranasal reovirus infection. Reovirus-specific IgA was produced in both the upper respiratory and the gastrointestinal tract, whereas production of reovirus-specific IgG2a was restricted to NALT, submandibular, and mesenteric lymph nodes. Moreover, virus-specific CTL were detected in NALT. Limiting dilution analysis showed a 5- to 6-fold higher precursor CTL frequency in NALT compared with a cervical lymph node. Together these data provide direct evidence that NALT is a mucosal inductive site for humoral and cellular immune responses in the upper respiratory tract.
Collapse
Affiliation(s)
- Adrian W Zuercher
- Department of Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Koshi R, Mustafa Y, Perry ME. Vimentin, cytokeratin 8 and cytokeratin 18 are not specific markers for M-cells in human palatine tonsils. J Anat 2001; 199:663-74. [PMID: 11787820 PMCID: PMC1468384 DOI: 10.1046/j.1469-7580.2001.19960663.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Standard immunohistochemical methods were used to detect the presence of vimentin, cytokeratin 8, cytokeratin 18, macrophages and Langerhans cells in the human tonsillar epithelium in formalin-fixed and frozen tissue specimens. Vimentin detection was restricted to infiltrating cells of the lymphoid series, dendritic and vascular endothelial cells. All epithelial cells were negative. Cytokeratin 8 and 18 were readily detected in a large proportion of epithelial cells lining the crypt, but these cells bore no resemblance to the intestinal M-cells. Langerhans cells and macrophages were seen in both the oropharyngeal and crypt epithelium and were more common in the latter. This study confirms the presence of antigen-presenting cells, macrophages and Langerhans cells in the tonsillar epithelium and shows that intermediate filament proteins, vimentin, cytokeratin 8 and 18 are unreliable markers for human tonsillar M-cells, if indeed such cells exist in human tonsils.
Collapse
Affiliation(s)
- R Koshi
- Christian Medical College, Vellore, India.
| | | | | |
Collapse
|
45
|
Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 2001; 20:208-17. [PMID: 11567766 DOI: 10.1016/s0264-410x(01)00258-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to their transcytotic capability, intestinal M cells may represent an efficient potential route for oral vaccine delivery. We previously demonstrated that the lectin Ulex europaeus agglutinin 1 (UEA1, specific for alpha-L-fucose residues) selectively binds to mouse Peyer's patch M cells and targets 0.5 microm polystyrene microparticles to these cells. Using a gut loop model we now demonstrate that covalently-membrane-bound UEA1 similarly targets polymerised liposomes (Orasomes, approximately 200 nm diameter), potential biocompatable oral vaccine delivery vehicles, to mouse M cells. Targeting was inhibited by alpha-L-fucose while the co-entrapped adjuvant, monophosphoryl Lipid A (MPL), failed to exert any detrimental effect on UEA1-mediated M cell targeting. Lectin-mediated M cell targeting may thus permit the efficacy of mucosal vaccines to be enhanced if cellular relationship between particle binding and immune outcome can be established.
Collapse
Affiliation(s)
- M A Clark
- Department of Physiological Sciences, Medical School, University of Newcastle, NE2 4HH, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
46
|
Domino SE, Zhang L, Lowe JB. Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J Biol Chem 2001; 276:23748-56. [PMID: 11323419 DOI: 10.1074/jbc.m100735200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucosylated oligosaccharides have been proposed to be involved in multiple cell-cell interactions, including mouse blastocyst adhesion and intestine-microbe interactions. To begin to define the regulation and function of terminal alpha(1,2)fucosylated carbohydrates in these and other tissues, we isolated and characterized a 85-kilobase (kb) genomic region of mouse chromosome 7, 23.2 centimorgans analogous to human chromosome 19q13.3 that encodes three alpha(1,2)fucosyltransferases. Gene-specific DNA probes from the open reading frames of the mouse fucosyltransferase genes corresponding to human FUT1, FUT2, and SEC1 demonstrate distinct tissue-specific expression patterns by Northern blot analyses. Flow cytometry profiles of cultured cells transfected with DNA segments containing the open reading frames of the mouse genes confirm that each encodes an alpha(1,2)fucosyltransferase. In uterus and colon, a 3.3-kb FUT2 mRNA represents the major fucosyltransferase gene expressed. Steady-state FUT2 mRNA levels are cyclically regulated during the estrus cycle, increasing 10-fold from early diestrus to a relative maximum in proestrus. In contrast, SEC1 and FUT1 do not show prominently regulated expression in uterus. FUT2 expression localizes to luminal uterine epithelium by in situ hybridization, implying that this gene determines expression of cell surface Fucalpha1-->2Galbeta epitopes proposed to mediate blastocyst adhesion.
Collapse
Affiliation(s)
- S E Domino
- Department of Obstetrics and Gynecology, Howard Hughes Medical Institute, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0650, USA.
| | | | | |
Collapse
|
47
|
Alpan O, Rudomen G, Matzinger P. The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4843-52. [PMID: 11290760 DOI: 10.4049/jimmunol.166.8.4843] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although induction of T cell responses to fed Ag (oral tolerance) is thought to happen within the organized lymphoid tissue of the gut, we found that mice lacking Peyer's patches, B cells, and the specialized Ag-handling M cells had no defect in the induction of T cell responses to fed Ag, whether assayed in vitro by T cell proliferation or cytokine production, or in vivo by delayed-type hypersensitivity or bystander suppression against mycobacterial Ags in CFA. Feeding of Ag had a major influence on dendritic cells from fed wild-type or muMT mice, such that these APCs were able to elicit a different class of response from naive T cells in vitro. These results suggest that systemic immune responses to soluble oral Ags do not require an organized gut-associated lymphoid tissue but are most likely induced by gut-conditioned dendritic cells that function both to initiate the gut-oriented response and to impart the characteristic features that discriminate it from responses induced parenterally.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigen-Presenting Cells/immunology
- Antigens/administration & dosage
- Antigens/immunology
- B-Lymphocytes/immunology
- Dendritic Cells/immunology
- Diet
- Dose-Response Relationship, Immunologic
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Immune Tolerance/genetics
- Immunoglobulin mu-Chains/genetics
- Injections, Intradermal
- Interphase/genetics
- Interphase/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred A
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- O Alpan
- Ghost Lab, Section on T-Cell Tolerance and Memory, Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
48
|
Lavelle EC, Grant G, Pusztai A, Pfüller U, O'Hagan DT. The identification of plant lectins with mucosal adjuvant activity. Immunology 2001; 102:77-86. [PMID: 11168640 PMCID: PMC1783150 DOI: 10.1046/j.1365-2567.2001.01157.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To date, the most potent mucosal vaccine adjuvants to be identified have been bacterial toxins. The present data demonstrate that the type 2 ribosome-inactivating protein (type 2 RIP), mistletoe lectin I (ML-I) is a strong mucosal adjuvant of plant origin. A number of plant lectins were investigated as intranasal (i.n.) coadjuvants for a bystander protein, ovalbumin (OVA). As a positive control, a potent mucosal adjuvant, cholera toxin (CT), was used. Co-administration of ML-I or CT with OVA stimulated high titres of OVA-specific serum immunoglobulin G (IgG) in addition to OVA-specific IgA in mucosal secretions. CT and ML-I were also strongly immunogenic, inducing high titres of specific serum IgG and specific IgA at mucosal sites. None of the other plant lectins investigated significantly boosted the response to co-administered OVA. Immunization with phytohaemagglutinin (PHA) plus OVA elicited a lectin-specific response but did not stimulate an enhanced response to OVA compared with the antigen alone. Intranasal delivery of tomato lectin (LEA) elicited a strong lectin-specific systemic and mucosal antibody response but only weakly potentiated the response to co-delivered OVA. In contrast, administration of wheatgerm agglutinin (WGA) or Ulex europaeus lectin 1 (UEA-I) with OVA stimulated a serum IgG response to OVA while the lectin-specific responses (particularly for WGA) were relatively low. Thus, there was not a direct correlation between immunogenicity and adjuvanticity although the strongest adjuvants (CT, ML-I) were also highly immunogenic.
Collapse
Affiliation(s)
- E C Lavelle
- Institute for Immunology, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | | | |
Collapse
|
49
|
Takata S, Ohtani O, Watanabe Y. Lectin binding patterns in rat nasal-associated lymphoid tissue (NALT) and the influence of various types of lectin on particle uptake in NALT. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:305-12. [PMID: 11073062 DOI: 10.1679/aohc.63.305] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the binding of four types of lectin to follicle-associated epithelium overlying the nasal-associated lymphoid tissue (NALT) of rats in order to identify M-cell specific surface markers and to determine the influence of lectin administration to NALT on the uptake of a particulate antigen. The NALT tissues were incubated with a panel of four types of lectin conjugated to horseradish peroxidase (HRP). Ulex europaeus-1 (UEA-1) and Dolichos biflorus (DBA) lectin stained the surface of M-cells and goblet cells. Uniform staining by Triticum vulgaris (WGA) was detected in the M-cells, ciliated cells and goblet cells. In contrast, staining of Griffonia simplicifolia I isolectin-B4 (GSI-B4) was almost exclusively M-cell specific. The administration of M-cell specific lectin (GS I-B4) to NALT suppressed the uptake of baker's yeast particles administered later, whereas the non-specific one (UEA-1) had no influence on the uptake. These results indicate that GS I-B4 is a useful marker for the identification of rat NALT M-cells and that such a specific expression of surface glycoconjugates by M-cells may permit the targeting of vaccines and drugs to the antigen sampling sites of the nose. It also appears possible to block the uptake of pathogens by an administration of M-cell specific lectin to NALT.
Collapse
Affiliation(s)
- S Takata
- Department of Anatomy, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Japan
| | | | | |
Collapse
|
50
|
Abstract
Absorption of drugs and vaccines at mucosal surfaces may be enhanced by conjugation to appropriate bioadhesins which bind to mucosal epithelia. Bioadhesins might also permit cell- and site-selective targeting. One approach is to exploit surface carbohydrates on mucosal epithelial cells for lectin-mediated delivery. We review work supporting the use of lectins as mucosal bioadhesins in the gastrointestinal and respiratory tracts, the oral cavity and the eye. The gastrointestinal tract is particularly favoured for mucosal delivery. Many studies have demonstrated that the antigen sampling intestinal M cells offer a portal for absorption of colloidal delivery vehicles. Evidence is presented that M cell targeting may be achieved using M cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before mucosal bioadhesins can guarantee consistent, safe, effective mucosal delivery, this is an exciting area of research that has important implications for future drug and vaccine formulation.
Collapse
Affiliation(s)
- M A Clark
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | | | |
Collapse
|