1
|
Zhang Y, He S, Wang X, Wang X, He MY, Yu XX, Xu CR. ACSS2 mediates an epigenetic pathway to regulate β-cell adaptation during gestation in mice. Nat Commun 2025; 16:4697. [PMID: 40393969 PMCID: PMC12092658 DOI: 10.1038/s41467-025-58322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/12/2025] [Indexed: 05/22/2025] Open
Abstract
Maternal pancreatic β-cells undergo adaptive changes to meet the metabolic demands of pregnancy, and disruptions in this adaptation can lead to gestational diabetes mellitus. However, the mechanisms governing this adaptation remain largely unexplored. Using single-cell transcriptome combined with genetic analyses, we identified a precise process of β-cell adaptation in mice, characterized by progressive metabolic stress-related β-cell dysfunction, increased acetyl-CoA biosynthesis, and gene element-specific histone acetylation. STAT3 recruits p300 to promote histone acetylation of pregnancy-associated genes, a process enhanced by Acetyl-CoA Synthetase 2 (ACSS2). High-fat feeding induces hyperacetylation of chromatin regions specifically opened during pregnancy, leading to the overexpression of genes that impair β-cell function. However, these impairments can be rescued by β-cell-specific deletion of Acss2. Notably, ACSS2 is functionally implicated in the early establishment of β-cell adaptation in HFD-fed mice but does not appear to play a role in standard diet-fed mice until after the initiation of adaptation. Our study uncovers a finely regulated β-cell adaptation process at the single-cell level during pregnancy and identifies a specific epigenetic pathway that governs this process. These findings provide insights into β-cell plasticity and potential therapeutic strategies for gestational diabetes mellitus.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuang He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xi Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mao-Yang He
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
- PKU-Tsinghua-NIBS Graduate Program; Peking University, Beijing, 100871, China
| | - Xin-Xin Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Chen X, Shao J, Brandenburger I, Qian W, Hahnefeld L, Bonnavion R, Cho H, Wang S, Hidalgo J, Wettschureck N, Geisslinger G, Gurke R, Wang Z, Offermanns S. FFAR4-mediated IL-6 release from islet macrophages promotes insulin secretion and is compromised in type-2 diabetes. Nat Commun 2025; 16:3422. [PMID: 40210633 PMCID: PMC11986018 DOI: 10.1038/s41467-025-58706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The function of islet macrophages is poorly understood. They promote glucose-stimulated insulin secretion (GSIS) in lean mice, however, the underlying mechanism has remained unclear. We show that activation of the free fatty acid receptor FFAR4 on islet macrophages leads to interleukin-6 (IL-6) release and that IL-6 promotes β-cell function. This mechanism is required for GSIS in lean male mice, but does not function anymore in islets from people with obesity and obese type 2 diabetic male mice. In islets from obese mice, FFAR4 downstream signaling in macrophages is strongly reduced, resulting in impaired FFAR4-mediated IL-6 release. However, IL-6 treatment can still improve GSIS in islets from people with obesity and obese type 2 diabetic mice. These data show that a defect in FFAR4-mediated macrophage activation contributes to reduced GSIS in type 2 diabetes and suggest that reactivating islet macrophage FFAR4 and promoting or mimicking IL-6 release from islet macrophages improves GSIS in type 2 diabetes.
Collapse
Affiliation(s)
- Xinyi Chen
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Isabell Brandenburger
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an, China
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Rémy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Haaglim Cho
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, China
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology, and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an, China
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, China.
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany.
| |
Collapse
|
3
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
4
|
Marucci A, Menzaghi C, Dodesini AR, Albizzi M, Acquafredda A, Fini G, Trischitta V, Paola RD. Rare forms of monogenic diabetes in non-European individuals. First reports of CEL and RFX6 mutations from the Indian subcontinent. Acta Diabetol 2025; 62:323-328. [PMID: 39190183 DOI: 10.1007/s00592-024-02357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
AIMS Monogenic diabetes is one of the few examples in metabolic diseases in which a real precision medicine approach can be implemented in daily clinical work. Unfortunately, most of what is known today comes from studies in Whites, thus leaving much uncertainty about the genetics and the clinical presentation of monogenic diabetes in non-Europeans. To fill this gap, we report here two pedigrees from Bangladesh with CEL- and RFX6- diabetes, two rare types of monogenic diabetes which have never been described so far in individuals of the Indian subcontinent. METHODS Next generation, Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) were performed. Variants' interpretation was according to the American College of Medical Genetics and Genomics guidelines. RESULTS In the pedigree with CEL-diabetes, a large and never described deletion of exon 2-11 of CEL (confirmed by MLPA) affecting the entire catalytic domain and being likely pathogenic (LP) was observed in both the proband (who had diabetes at 16) and his mother (diabetes at 31), but not in relatives with normoglycemia. In the pedigree with RFX6-diabetes, a LP protein truncation variant (PTV, p.Tyr192*) in RFX6 was found in both the proband (diabetes at 9) and his mother (diabetes at 30), thus suggesting high heterogeneity in disease onset. Normoglycemic relatives were not available for genetic testing. CONCLUSIONS We report genetic features and clinical presentation of the first two cases of CEL- and RFX6-diabetes from the Indian subcontinent, thus contributing to fill the gap of knowledge on monogenic diabetes in non-Europeans.
Collapse
Affiliation(s)
- Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Alessandro Roberto Dodesini
- Endocrine and Diabetology Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, 24127, Italy
| | - Mascia Albizzi
- Endocrine and Diabetology Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, 24127, Italy
- Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Angelo Acquafredda
- Unit of Pediatrics and Neonatology, "G. Tatarella" Hospital, Cerignola, Foggia, Italy
| | - Grazia Fini
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy.
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy.
| |
Collapse
|
5
|
Shah A, Bush CO, Perry RJ. Genetic underpinnnings of type 2 diabetes. ADVANCES IN GENETICS 2025; 113:54-75. [PMID: 40409800 DOI: 10.1016/bs.adgen.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Aditya Shah
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Woodbridge Academy Magnet School, Middlesex County, NJ, United States
| | - Clancy O Bush
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Brain Cognition and Brain Diseases Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States.
| |
Collapse
|
6
|
Aldous N, Elsayed AK, Memon B, Ijaz S, Hayat S, Abdelalim EM. Deletion of RFX6 impairs iPSC-derived islet organoid development and survival, with no impact on PDX1 +/NKX6.1 + progenitors. Diabetologia 2024; 67:2786-2803. [PMID: 39080045 PMCID: PMC11604831 DOI: 10.1007/s00125-024-06232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear. Here, we aimed to understand the mechanisms underlying the impairment of pancreatic islet development and subsequent hypoplasia due to loss-of-function mutations in RFX6. METHODS We examined regulatory factor X6 (RFX6) expression during human embryonic stem cell (hESC) differentiation into pancreatic islets and re-analysed a single-cell RNA-seq dataset to identify RFX6-specific cell populations during islet development. Furthermore, induced pluripotent stem cell (iPSC) lines lacking RFX6 were generated using CRISPR/Cas9. Various approaches were then employed to explore the consequences of RFX6 loss across different developmental stages. Subsequently, we evaluated transcriptional changes resulting from RFX6 loss through RNA-seq of pancreatic progenitors (PPs) and endocrine progenitors (EPs). RESULTS RFX6 expression was detected in PDX1+ cells in the hESC-derived posterior foregut (PF). However, in the PPs, RFX6 did not co-localise with pancreatic and duodenal homeobox 1 (PDX1) or NK homeobox 1 (NKX6.1) but instead co-localised with neurogenin 3, NK2 homeobox 2 and islet hormones in the EPs and islets. Single-cell analysis revealed high RFX6 expression levels in endocrine clusters across various hESC-derived pancreatic differentiation stages. Upon differentiating iPSCs lacking RFX6 into pancreatic islets, a significant decrease in PDX1 expression at the PF stage was observed, although this did not affect PPs co-expressing PDX1 and NKX6.1. RNA-seq analysis showed the downregulation of essential genes involved in pancreatic endocrine differentiation, insulin secretion and ion transport due to RFX6 deficiency. Furthermore, RFX6 deficiency resulted in the formation of smaller islet organoids due to increased cellular apoptosis, linked to reduced catalase expression, implying a protective role for RFX6. Overexpression of RFX6 reversed defective phenotypes in RFX6-knockout PPs, EPs and islets. CONCLUSIONS/INTERPRETATION These findings suggest that pancreatic hypoplasia and reduced islet cell formation associated with RFX6 mutations are not due to alterations in PDX1+/NKX6.1+ PPs but instead result from cellular apoptosis and downregulation of pancreatic endocrine genes. DATA AVAILABILITY RNA-seq datasets have been deposited in the Zenodo repository with accession link (DOI: https://doi.org/10.5281/zenodo.10656891 ).
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed K Elsayed
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
7
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
8
|
Kadhim AZ, Vanderkruk B, Mar S, Dan M, Zosel K, Xu EE, Spencer RJ, Sasaki S, Cheng X, Sproul SLJ, Speckmann T, Nian C, Cullen R, Shi R, Luciani DS, Hoffman BG, Taubert S, Lynn FC. Transcriptional coactivator MED15 is required for beta cell maturation. Nat Commun 2024; 15:8711. [PMID: 39379383 PMCID: PMC11461855 DOI: 10.1038/s41467-024-52801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Mediator, a co-regulator complex required for RNA Polymerase II activity, interacts with tissue-specific transcription factors to regulate development and maintain homeostasis. We observe reduced Mediator subunit MED15 expression in endocrine hormone-producing pancreatic islets isolated from people living with type 2 diabetes and sought to understand how MED15 and Mediator control gene expression programs important for the function of insulin-producing β-cells. Here we show that Med15 is expressed during mouse β-cell development and maturation. Knockout of Med15 in mouse β-cells causes defects in β-cell maturation without affecting β-cell mass or insulin expression. ChIP-seq and co-immunoprecipitation analyses found that Med15 binds β-cell transcription factors Nkx6-1 and NeuroD1 to regulate key β-cell maturation genes. In support of a conserved role during human development, human embryonic stem cell-derived β-like cells, genetically engineered to express high levels of MED15, express increased levels of maturation markers. We provide evidence of a conserved role for Mediator in β-cell maturation and demonstrate an additional layer of control that tunes β-cell transcription factor function.
Collapse
Affiliation(s)
- Alex Z Kadhim
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ben Vanderkruk
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha Mar
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Meixia Dan
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Katarina Zosel
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Eric E Xu
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Rachel J Spencer
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shannon L J Sproul
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Thilo Speckmann
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cuilan Nian
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Robyn Cullen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Dan S Luciani
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Bradford G Hoffman
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Francis C Lynn
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. FASEB J 2024; 38:e23885. [PMID: 39139039 PMCID: PMC11378476 DOI: 10.1096/fj.202401078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for β-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dorka Nagy
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Cui Z, Fu Y, Zhou M, Feng H, Zhang L, Ma S, Chen C. Pan-cancer investigation of RFX family and associated genes identifies RFX8 as a therapeutic target in leukemia. Heliyon 2024; 10:e35368. [PMID: 39170430 PMCID: PMC11336603 DOI: 10.1016/j.heliyon.2024.e35368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Several transcription factors and co-factors are encoded by the RFX (Regulatory Factor X) family (RFX1-8) and associated genes (RFXAP and RFXANK). Increasing evidence suggests that the RFX family and associated genes are involved in the development and progression of cancer. However, no prior research has focused on a multi-omic analysis of these genes to evaluate their role in tumor progression. Methods Using combined TCGA and GTEx pan-cancer data, we investigated the expression patterns and survival profiles of these ten genes. We then focused on RFX8 to analyze its clinicopathological and therapeutic features. Finally, we conducted experimental validation of RFX8 function in acute myeloid leukemia (AML). Results RFX5 and RFXANK showed higher expression levels, while RFX6 showed lower expression levels in most types of cancer, with RFX8 being the most upregulated in LAML. RFX2 and RFXAP demonstrated prognostic significance in eight types of cancer, and RFX8 showed significance in six types of cancer. The expression of these ten genes exhibited specific characteristics in immune subtypes, tumor microenvironment, and stemness. The expression of RFX8 was correlated with various tumor stages, microsatellite instability (MSI), tumor mutation burden (TMB), immune cell infiltration, and immune-checkpoint expression. Additionally, RFX8 was found to regulate tumorigenesis and sensitivity to chelerythrine in AML. Conclusions Our work delineated the landscape of the RFX family and associated genes in the pan-cancer context and the specific role of RFX8 in AML. These findings might offer cues for further investigations of these genes in cancer biology.
Collapse
Affiliation(s)
- Zelong Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Hasballa I, Maggi D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int J Mol Sci 2024; 25:8790. [PMID: 39201476 PMCID: PMC11354648 DOI: 10.3390/ijms25168790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown etiology, suggesting that the genetic landscape is still to be explored. Recently, novel potentially MODY-causal genes, involved in the differentiation and function of β-cells, have been identified, such as RFX6, NKX2.2, NKX6.1, WFS1, PCBD1, MTOR, TBC1D4, CACNA1E, MNX1, AKT2, NEUROG3, EIF2AK3, GLIS3, HADH, and PTF1A. Genetic and clinical features of MODY variants remain highly heterogeneous, with no direct genotype-phenotype correlation, especially in the low-penetrant subtypes. This is a narrative review of the literature aimed at describing the current state-of-the-art of the novel likely MODY-associated variants. For a deeper understanding of MODY complexity, we also report some related controversies concerning the etiological role of some of the well-known pathological genes and MODY inheritance pattern, as well as the rare association of MODY with autoimmune diabetes. Due to the limited data available, the assessment of MODY-related genes pathogenicity remains challenging, especially in the setting of rare and low-penetrant subtypes. In consideration of the crucial importance of an accurate diagnosis, prognosis and management of MODY, more studies are warranted to further investigate its genetic landscape and the genotype-phenotype correlation, as well as the pathogenetic contribution of the nongenetic modifiers in this cohort of patients.
Collapse
Affiliation(s)
- Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Diabetes Clinic, IRCCS Ospedale Policlinico San Martino Genoa, 16132 Genoa, Italy
| |
Collapse
|
12
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
13
|
Pierantoni M, Grassilli S, Brugnoli F, Dell'Aira M, Bertagnolo V. Insights into the development of insulin-producing cells: Precursors correlated involvement of microRNA panels. Life Sci 2024; 350:122762. [PMID: 38843994 DOI: 10.1016/j.lfs.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by the destruction of pancreatic β cells, recently estimated to affect approximately 8.75 million individuals worldwide. At variance with conventional management of T1D, which relies on exogenous insulin replacement and insulinotropic drugs, emerging therapeutic strategies include transplantation of insulin-producing cells (IPCs) derived from stem cells or fully reprogrammed differentiated cells. Through the in-depth analysis of the microRNAs (miRNAs) involved in the differentiation of human embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs), into insulin-producing cells, this review provides a comprehensive overview of the molecular mechanisms orchestrating the transformation of precursors to cells producing insulin. In addition to miR-375, involved in all differentiation processes, and to miR-7, mir-145 and miR-9, common to the generation of insulin-producing cells from at least two different sources, the literature reveals panels of miRNAs closely related to precursor cells and associated with specific events of the physiological β cell maturation. Since the forced modulation of miRNAs can direct cells development towards insulin-producing cells or modify their fate, a more comprehensive knowledge of the miRNAs involved in the cellular events leading to obtain efficient β cells could improve the diagnostic, prognostic, and therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Grassilli
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marcello Dell'Aira
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
14
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Spezani R, Reis-Barbosa PH, Mandarim-de-Lacerda CA. Update on the transdifferentiation of pancreatic cells into functional beta cells for treating diabetes. Life Sci 2024; 346:122645. [PMID: 38614297 DOI: 10.1016/j.lfs.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Guo T, Zhang H, Luo Y, Yang X, Wang L, Zhang G. Global Trends and Frontier in Research on Pancreatic Alpha Cells: A Bibliometric Analysis from 2013 to 2023. CLIN INVEST MED 2024; 47:23-39. [PMID: 38958477 DOI: 10.3138/cim-2024-2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE Over the past 20 years, much of the research on diabetes has focused on pancreatic beta cells. In the last 10 years, interest in the important role of pancreatic alpha cells in the pathogenesis of diabetes, which had previously received little attention, has grown. We aimed to summarize and visualize the hotspot and development trends of pancreatic alpha cells through bibliometric analysis and to provide research direction and future ideas for the treatment of diabetes and other islet-related diseases. METHODS We used two scientometric software packages (CiteSpace 6.1.R6 and VOSviewer1.6.18) to visualize the information and connection of countries, institutions, authors, and keywords in this field. RESULTS A total of 532 publications, published in 752 institutions in 46 countries and regions, were included in this analysis. The United States showed the highest output, accounting for 39.3% of the total number of published papers. The most active institution was Vanderbilt University, and the authors with highest productivity came from Ulster University. In recent years, research hotspots have concentrated on transdifferentiation, gene expression, and GLP-1 regulatory function. Visualization analysis shows that research hotspots mainly focus on clinical diseases as well as physiological and pathological mechanisms and related biochemical indicators. CONCLUSIONS This study provides a review and summary of the literature on pancreatic alpha cells through bibliometric and visual methods and shows research hotspot and development trends, which can guide future directions for research.
Collapse
Affiliation(s)
- Teng Guo
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Haoling Zhang
- Institute of Clinical Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunpeng Luo
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Yang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lidan Wang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangde Zhang
- Department of Endocrinology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593867. [PMID: 38798508 PMCID: PMC11118353 DOI: 10.1101/2024.05.13.593867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for β-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
|
19
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
20
|
Idevall-Hagren O, Incedal Nilsson C, Sanchez G. Keeping pace: the primary cilium as the conducting baton of the islet. Diabetologia 2024; 67:773-782. [PMID: 38353726 PMCID: PMC10955035 DOI: 10.1007/s00125-024-06096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024]
Abstract
Primary cilia are rod-like sensory organelles that protrude from the surface of most mammalian cells, including the cells of the islet, and mounting evidence supports important roles of these structures in the regulation of beta cell function and insulin secretion. The sensory abilities of the cilium arise from local receptor activation that is coupled to intrinsic signal transduction, and ciliary signals can propagate into the cell and influence cell function. Here, we review recent advances and studies that provide insights into intra-islet cues that trigger primary cilia signalling; how second messenger signals are generated and propagated within cilia; and how ciliary signalling affects beta cell function. We also discuss the potential involvement of primary cilia and ciliary signalling in the development and progression of type 2 diabetes, identify gaps in our current understanding of islet cell cilia function and provide suggestions on how to further our understanding of this intriguing structure.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Coykendall VM, Qian MF, Tellez K, Bautista A, Bevacqua RJ, Gu X, Hang Y, Neukam M, Zhao W, Chang C, MacDonald PE, Kim SK. RFX6 Maintains Gene Expression and Function of Adult Human Islet α-Cells. Diabetes 2024; 73:448-460. [PMID: 38064570 PMCID: PMC10882151 DOI: 10.2337/db23-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024]
Abstract
Mutations in the gene encoding the transcription factor regulatory factor X-box binding 6 (RFX6) are associated with human diabetes. Within pancreatic islets, RFX6 expression is most abundant in islet α-cells, and α-cell RFX6 expression is altered in diabetes. However, the roles of RFX6 in regulating gene expression, glucagon output, and other crucial human adult α-cell functions are not yet understood. We developed a method for selective genetic targeting of human α-cells and assessed RFX6-dependent α-cell function. RFX6 suppression with RNA interference led to impaired α-cell exocytosis and dysregulated glucagon secretion in vitro and in vivo. By contrast, these phenotypes were not observed with RFX6 suppression across all islet cells. Transcriptomics in α-cells revealed RFX6-dependent expression of genes governing nutrient sensing, hormone processing, and secretion, with some of these exclusively expressed in human α-cells. Mapping of RFX6 DNA-binding sites in primary human islet cells identified a subset of direct RFX6 target genes. Together, these data unveil RFX6-dependent genetic targets and mechanisms crucial for regulating adult human α-cell function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | - Martin Neukam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Charles Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
22
|
Teerawattanapong N, Tangjarusritaratorn T, Narkdontri T, Santiprabhob J, Tangjittipokin W. Investigation of Monogenic Diabetes Genes in Thai Children with Autoantibody Negative Diabetes Requiring Insulin. Diabetes Metab Syndr Obes 2024; 17:795-808. [PMID: 38375489 PMCID: PMC10875177 DOI: 10.2147/dmso.s409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Purpose The objective of this study was to clarify the phenotypic characteristics of monogenic diabetes abnormalities in Thai children with autoantibody-negative insulin. Patients and Methods Two hundred and thirty-one Thai type 1 diabetes (T1D) patients out of 300 participants with recent-onset diabetes were analyzed for GAD65 and IA2 pancreatic autoantibodies. A total of 30 individuals with T1D patients with negative autoantibody were screened for 32 monogenic diabetes genes by whole-exome sequencing (WES). Results All participants were ten men and twenty women. The median age to onset of diabetes was 8 years and 3 months. A total of 20 people with monogenic diabetes carried genes related to monogenic diabetes. The PAX4 (rs2233580) in ten patients with monogenic diabetes was found. Seven variants of WFS1 (Val412Ala, Glu737Lys, Gly576Ser, Cys673Tyr, Arg456His, Lys424Glu, and Gly736fs) were investigated in patients in this study. Furthermore, the pathogenic variant, rs115099192 (Pro407Gln) in the GATA4 gene was found. Most patients who carried PAX4 (c.575G>A, rs2233580) did not have a history of DKA. The pathogenic variant GATA4 variant (c.1220C>A, rs115099192) was found in a patient with a history of DKA. Conclusion This study demonstrated significant genetic overlap between autoantibody-negative diabetes and monogenic diabetes using WES. All candidate variants were considered disease risk with clinically significant variants. WES screening was the first implemented to diagnose monogenic diabetes in Thai children, and fourteen novel variants were identified in this study and need to be investigated in the future.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanida Tangjarusritaratorn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Tassanee Narkdontri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jeerunda Santiprabhob
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Endocrinology & Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
23
|
Nakamura T, Fujikura J, Ito R, Keidai Y, Inagaki N. Human RFX6 regulates endoderm patterning at the primitive gut tube stage. PNAS NEXUS 2024; 3:pgae001. [PMID: 38239755 PMCID: PMC10794167 DOI: 10.1093/pnasnexus/pgae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Transcriptional factor RFX6 is known to be a causal gene of Mitchell-Riley syndrome (MRS), an autosomal recessive neonatal diabetes associated with pancreatic hypoplasia and intestinal atresia/malformation. The morphological defects are limited to posterior foregut and mid-hindgut endodermal lineages and do not occur in the anterior foregut lineage; the mechanism remains to be fully elucidated. In this study, we generated RFX6+/eGFP heterozygous knockin and RFX6eGFP/eGFP homozygous knockin/knockout human-induced pluripotent stem cell (hiPSC) lines and performed in vitro endoderm differentiation to clarify the role of RFX6 in early endoderm development. RFX6 expression was found to surge at the primitive gut tube (PGT) stage in comparison with that in the undifferentiated or definitive endoderm stage. At the PGT stage, the expression of PDX1 and CDX2, posterior foregut and mid-hindgut master regulators, respectively, was decreased by the RFX6 deficit. PDX1+ and CDX2+ cells were mostly green fluorescent protein (GFP)+ in RFX6+/eGFP hiPSCs, but their cell number was markedly decreased in RFX6eGFP/eGFP hiPSCs. The expression of SOX2, an anterior foregut marker, was not affected by the RFX6 deficit. In addition, we found a putative RFX6-binding X-box motif using cap analysis of gene expression-seq and the motif-containing sequences in the enhancer regions of PDX1 and CDX2 bound to RFX6 in vitro. Thus, RFX6 regulates the ParaHox genes PDX1 and CDX2 but does not affect SOX2 in early endodermal differentiation, suggesting that defects in early stage endoderm patterning account for the morphological pathology of MRS.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Ito
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
24
|
Walker JT, Saunders DC, Rai V, Chen HH, Orchard P, Dai C, Pettway YD, Hopkirk AL, Reihsmann CV, Tao Y, Fan S, Shrestha S, Varshney A, Petty LE, Wright JJ, Ventresca C, Agarwala S, Aramandla R, Poffenberger G, Jenkins R, Mei S, Hart NJ, Phillips S, Kang H, Greiner DL, Shultz LD, Bottino R, Liu J, Below JE, Parker SCJ, Powers AC, Brissova M. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature 2023; 624:621-629. [PMID: 38049589 PMCID: PMC11374460 DOI: 10.1038/s41586-023-06693-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/28/2023] [Indexed: 12/06/2023]
Abstract
Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet β cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and β cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by β cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the β cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by β cells. RFX6 perturbation in primary human islet cells alters β cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivek Rai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasminye D Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Conrad V Reihsmann
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yicheng Tao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simin Fan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa Ventresca
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samir Agarwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Mei
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Rita Bottino
- Imagine Pharma, Devon, PA, USA
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
25
|
Weng C, Gu A, Zhang S, Lu L, Ke L, Gao P, Liu X, Wang Y, Hu P, Plummer D, MacDonald E, Zhang S, Xi J, Lai S, Leskov K, Yuan K, Jin F, Li Y. Single cell multiomic analysis reveals diabetes-associated β-cell heterogeneity driven by HNF1A. Nat Commun 2023; 14:5400. [PMID: 37669939 PMCID: PMC10480445 DOI: 10.1038/s41467-023-41228-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Broad heterogeneity in pancreatic β-cell function and morphology has been widely reported. However, determining which components of this cellular heterogeneity serve a diabetes-relevant function remains challenging. Here, we integrate single-cell transcriptome, single-nuclei chromatin accessibility, and cell-type specific 3D genome profiles from human islets and identify Type II Diabetes (T2D)-associated β-cell heterogeneity at both transcriptomic and epigenomic levels. We develop a computational method to explicitly dissect the intra-donor and inter-donor heterogeneity between single β-cells, which reflect distinct mechanisms of T2D pathogenesis. Integrative transcriptomic and epigenomic analysis identifies HNF1A as a principal driver of intra-donor heterogeneity between β-cells from the same donors; HNF1A expression is also reduced in β-cells from T2D donors. Interestingly, HNF1A activity in single β-cells is significantly associated with lower Na+ currents and we nominate a HNF1A target, FXYD2, as the primary mitigator. Our study demonstrates the value of investigating disease-associated single-cell heterogeneity and provides new insights into the pathogenesis of T2D.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shanshan Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuntong Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peinan Hu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Dylan Plummer
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Elise MacDonald
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saixian Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kyle Yuan
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
Lagou V, Jiang L, Ulrich A, Zudina L, González KSG, Balkhiyarova Z, Faggian A, Maina JG, Chen S, Todorov PV, Sharapov S, David A, Marullo L, Mägi R, Rujan RM, Ahlqvist E, Thorleifsson G, Gao Η, Εvangelou Ε, Benyamin B, Scott RA, Isaacs A, Zhao JH, Willems SM, Johnson T, Gieger C, Grallert H, Meisinger C, Müller-Nurasyid M, Strawbridge RJ, Goel A, Rybin D, Albrecht E, Jackson AU, Stringham HM, Corrêa IR, Farber-Eger E, Steinthorsdottir V, Uitterlinden AG, Munroe PB, Brown MJ, Schmidberger J, Holmen O, Thorand B, Hveem K, Wilsgaard T, Mohlke KL, Wang Z, Shmeliov A, den Hoed M, Loos RJF, Kratzer W, Haenle M, Koenig W, Boehm BO, Tan TM, Tomas A, Salem V, Barroso I, Tuomilehto J, Boehnke M, Florez JC, Hamsten A, Watkins H, Njølstad I, Wichmann HE, Caulfield MJ, Khaw KT, van Duijn CM, Hofman A, Wareham NJ, Langenberg C, Whitfield JB, Martin NG, Montgomery G, Scapoli C, Tzoulaki I, Elliott P, Thorsteinsdottir U, Stefansson K, Brittain EL, McCarthy MI, Froguel P, Sexton PM, Wootten D, Groop L, Dupuis J, Meigs JB, Deganutti G, Demirkan A, Pers TH, Reynolds CA, Aulchenko YS, Kaakinen MA, Jones B, Prokopenko I. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat Genet 2023; 55:1448-1461. [PMID: 37679419 PMCID: PMC10484788 DOI: 10.1038/s41588-023-01462-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/27/2023] [Indexed: 09/09/2023]
Abstract
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Ulrich
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Liudmila Zudina
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Karla Sofia Gutiérrez González
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Molecular Diagnostics, Clinical Laboratory, Clinica Biblica Hospital, San José, Costa Rica
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
| | - Alessia Faggian
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Jared G Maina
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Petar V Todorov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Letizia Marullo
- Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roxana-Maria Rujan
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | - Ηe Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Εvangelos Εvangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases and Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Jing Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Toby Johnson
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Schmidberger
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristian Hveem
- K G Jebsen Centre for Genetic Epdiemiology, Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aleksey Shmeliov
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Mark Haenle
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore and Department of Endocrinology, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, UK
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, the Hague, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial College London Biomedical Research Centre, Imperial College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Evan L Brittain
- Vanderbilt University Medical Center and the Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - James B Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Deganutti
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Ayse Demirkan
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher A Reynolds
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Yurii S Aulchenko
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France.
| |
Collapse
|
27
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
28
|
Brooks EP, Sussel L. Not the second fiddle: α cell development, identity, and function in health and diabetes. J Endocrinol 2023; 258:e220297. [PMID: 37171828 PMCID: PMC10524258 DOI: 10.1530/joe-22-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
31
|
Mawla AM, van der Meulen T, Huising MO. Chromatin accessibility differences between alpha, beta, and delta cells identifies common and cell type-specific enhancers. BMC Genomics 2023; 24:202. [PMID: 37069576 PMCID: PMC10108528 DOI: 10.1186/s12864-023-09293-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND High throughput sequencing has enabled the interrogation of the transcriptomic landscape of glucagon-secreting alpha cells, insulin-secreting beta cells, and somatostatin-secreting delta cells. These approaches have furthered our understanding of expression patterns that define healthy or diseased islet cell types and helped explicate some of the intricacies between major islet cell crosstalk and glucose regulation. All three endocrine cell types derive from a common pancreatic progenitor, yet alpha and beta cells have partially opposing functions, and delta cells modulate and control insulin and glucagon release. While gene expression signatures that define and maintain cellular identity have been widely explored, the underlying epigenetic components are incompletely characterized and understood. However, chromatin accessibility and remodeling is a dynamic attribute that plays a critical role to determine and maintain cellular identity. RESULTS Here, we compare and contrast the chromatin landscape between mouse alpha, beta, and delta cells using ATAC-Seq to evaluate the significant differences in chromatin accessibility. The similarities and differences in chromatin accessibility between these related islet endocrine cells help define their fate in support of their distinct functional roles. We identify patterns that suggest that both alpha and delta cells are poised, but repressed, from becoming beta-like. We also identify patterns in differentially enriched chromatin that have transcription factor motifs preferentially associated with different regions of the genome. Finally, we not only confirm and visualize previously discovered common endocrine- and cell specific- enhancer regions across differentially enriched chromatin, but identify novel regions as well. We compiled our chromatin accessibility data in a freely accessible database of common endocrine- and cell specific-enhancer regions that can be navigated with minimal bioinformatics expertise. CONCLUSIONS Both alpha and delta cells appear poised, but repressed, from becoming beta cells in murine pancreatic islets. These data broadly support earlier findings on the plasticity in identity of non-beta cells under certain circumstances. Furthermore, differential chromatin accessibility shows preferentially enriched distal-intergenic regions in beta cells, when compared to either alpha or delta cells.
Collapse
Affiliation(s)
- Alex M Mawla
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Wortham M, Liu F, Harrington AR, Fleischman JY, Wallace M, Mulas F, Mallick M, Vinckier NK, Cross BR, Chiou J, Patel NA, Sui Y, McGrail C, Jun Y, Wang G, Jhala US, Schüle R, Shirihai OS, Huising MO, Gaulton KJ, Metallo CM, Sander M. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. J Clin Invest 2023; 133:e165208. [PMID: 36821378 PMCID: PMC10104905 DOI: 10.1172/jci165208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Adaptation of the islet β cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in β cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. β Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Johanna Y. Fleischman
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Martina Wallace
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Medhavi Mallick
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nicholas K. Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Benjamin R. Cross
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nisha A. Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Carolyn McGrail
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Gaowei Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Ulupi S. Jhala
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Roland Schüle
- Department of Urology, University of Freiburg Medical Center, Freiburg, Germany
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, and Physiology and Membrane Biology, School of Medicine, UCD, Davis, California, USA
| | - Kyle J. Gaulton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | | | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| |
Collapse
|
33
|
Mattis KK, Krentz NAJ, Metzendorf C, Abaitua F, Spigelman AF, Sun H, Ikle JM, Thaman S, Rottner AK, Bautista A, Mazzaferro E, Perez-Alcantara M, Manning Fox JE, Torres JM, Wesolowska-Andersen A, Yu GZ, Mahajan A, Larsson A, MacDonald PE, Davies B, den Hoed M, Gloyn AL. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023; 66:674-694. [PMID: 36633628 PMCID: PMC9947029 DOI: 10.1007/s00125-022-05856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Christoph Metzendorf
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Mazzaferro
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason M Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
34
|
Bohuslavova R, Fabriciova V, Lebrón-Mora L, Malfatti J, Smolik O, Valihrach L, Benesova S, Zucha D, Berkova Z, Saudek F, Evans SM, Pavlinkova G. ISL1 controls pancreatic alpha cell fate and beta cell maturation. Cell Biosci 2023; 13:53. [PMID: 36899442 PMCID: PMC9999528 DOI: 10.1186/s13578-023-01003-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Jessica Malfatti
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Sylvia M Evans
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
35
|
Hong-Le T, Crouse WL, Keele GR, Holl K, Seshie O, Tschannen M, Craddock A, Das SK, Szalanczy AM, McDonald B, Grzybowski M, Klotz J, Sharma NK, Geurts AM, Key CCC, Hawkins G, Valdar W, Mott R, Solberg Woods LC. Genetic Mapping of Multiple Traits Identifies Novel Genes for Adiposity, Lipids, and Insulin Secretory Capacity in Outbred Rats. Diabetes 2023; 72:135-148. [PMID: 36219827 PMCID: PMC9797320 DOI: 10.2337/db22-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.
Collapse
Affiliation(s)
- Thu Hong-Le
- Genetics Institute, University College London, London, U.K
| | - Wesley L. Crouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Katie Holl
- Medical College of Wisconsin, Milwaukee, WI
| | - Osborne Seshie
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Ann Craddock
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Swapan K. Das
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexandria M. Szalanczy
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bailey McDonald
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | | | - Neeraj K. Sharma
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Chia-Chi Chuang Key
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gregory Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard Mott
- Genetics Institute, University College London, London, U.K
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
36
|
Circulating microRNAs Showed Specific Responses according to Metabolic Syndrome Components and Sex of Adults from a Population-Based Study. Metabolites 2022; 13:metabo13010002. [PMID: 36676927 PMCID: PMC9861536 DOI: 10.3390/metabo13010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate several metabolic pathways and are potential biomarkers for early risk prediction of metabolic syndrome (MetS). Our aim was to evaluate the levels of 21 miRNAs in plasma according to MetS components and sex in adults. We employed a cross-sectional study of 192 adults aged 20 to 59 years old from the 2015 Health Survey of São Paulo with Focus in Nutrition. Data showed reduced levels of miR-16 and miR-363 in women with MetS; however, men with one or more risk factors showed higher levels of miR-let-7c and miR-30a. Individuals with raised waist circumference showed higher levels of miR-let-7c, miR-122, miR-30a, miR-146a, miR-15a, miR-30d and miR-222. Individuals with raised blood pressure had higher miR-30a, miR-122 and miR-30a levels. Plasma levels of four miRNAs (miR-16, miR-363, miR-375 and miR-486) were lower in individuals with low HDL-cholesterol concentrations. In addition, plasma levels of five miRNAs (miR-122, miR-139, miR-let-7c, miR-126 and miR-30a) were increased in individuals with high fasting plasma glucose and/or insulin resistance. Our results suggest that the pattern of miRNA levels in plasma may be a useful early biomarker of cardiometabolic components of MetS and highlight the sex differences in the plasma levels of miRNAs in individuals with MetS.
Collapse
|
37
|
Zandi Shafagh R, Youhanna S, Keulen J, Shen JX, Taebnia N, Preiss LC, Klein K, Büttner FA, Bergqvist M, van der Wijngaart W, Lauschke VM. Bioengineered Pancreas-Liver Crosstalk in a Microfluidic Coculture Chip Identifies Human Metabolic Response Signatures in Prediabetic Hyperglycemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203368. [PMID: 36285680 PMCID: PMC9731722 DOI: 10.1002/advs.202203368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/05/2022] [Indexed: 05/19/2023]
Abstract
Aberrant glucose homeostasis is the most common metabolic disturbance affecting one in ten adults worldwide. Prediabetic hyperglycemia due to dysfunctional interactions between different human tissues, including pancreas and liver, constitutes the largest risk factor for the development of type 2 diabetes. However, this early stage of metabolic disease has received relatively little attention. Microphysiological tissue models that emulate tissue crosstalk offer emerging opportunities to study metabolic interactions. Here, a novel modular multitissue organ-on-a-chip device is presented that allows for integrated and reciprocal communication between different 3D primary human tissue cultures. Precisely controlled heterologous perfusion of each tissue chamber is achieved through a microfluidic single "synthetic heart" pneumatic actuation unit connected to multiple tissue chambers via specific configuration of microchannel resistances. On-chip coculture experiments of organotypic primary human liver spheroids and intact primary human islets demonstrate insulin secretion and hepatic insulin response dynamics at physiological timescales upon glucose challenge. Integration of transcriptomic analyses with promoter motif activity data of 503 transcription factors reveals tissue-specific interacting molecular networks that underlie β-cell stress in prediabetic hyperglycemia. Interestingly, liver and islet cultures show surprising counter-regulation of transcriptional programs, emphasizing the power of microphysiological coculture to elucidate the systems biology of metabolic crosstalk.
Collapse
Affiliation(s)
- Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
| | - Jibbe Keulen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
| | - Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, 64293, Darmstadt, Germany
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
| | - Florian A Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
| | - Mikael Bergqvist
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17711, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
| |
Collapse
|
38
|
Paganos P, Ronchi P, Carl J, Mizzon G, Martinez P, Benvenuto G, Arnone MI. Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins. Front Cell Dev Biol 2022; 10:991664. [PMID: 36060803 PMCID: PMC9437490 DOI: 10.3389/fcell.2022.991664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jil Carl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Giulia Mizzon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pedro Martinez
- Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain,Genetics Department, University of Barcelona, Barcelona, Spain
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn (SZN), Naples, Italy,*Correspondence: Maria Ina Arnone,
| |
Collapse
|
39
|
Hammelman J, Patel T, Closser M, Wichterle H, Gifford D. Ranking reprogramming factors for cell differentiation. Nat Methods 2022; 19:812-822. [PMID: 35710610 PMCID: PMC10460539 DOI: 10.1038/s41592-022-01522-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, MIT, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - David Gifford
- Computational and Systems Biology, MIT, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
40
|
Dang Le Q, Rodprasert W, Kuncorojakti S, Pavasant P, Osathanon T, Sawangmake C. In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Rep 2022; 12:9127. [PMID: 35650303 PMCID: PMC9160001 DOI: 10.1038/s41598-022-13114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFβ inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFβ inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.
Collapse
Affiliation(s)
- Quynh Dang Le
- International Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
41
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Todero JE, Koch-Laskowski K, Shi Q, Kanke M, Hung YH, Beck R, Styblo M, Sethupathy P. Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis. Arch Toxicol 2022; 96:1685-1699. [PMID: 35314868 PMCID: PMC9095563 DOI: 10.1007/s00204-022-03263-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is a pervasive environmental toxin that is listed as the top priority for investigation by the Agency for Toxic Substance and Disease Registry. While chronic exposure to arsenic is associated with type 2 diabetes (T2D), the underlying mechanisms are largely unknown. We have recently demonstrated that arsenic treatment of INS-1 832/13 pancreatic beta cells impairs glucose-stimulated insulin secretion (GSIS), a T2D hallmark. We have also shown that arsenic alters the microRNA profile of beta cells. MicroRNAs have a well-established post-transcriptional regulatory role in both normal beta cell function and T2D pathogenesis. We hypothesized that there are microRNA master regulators that shape beta cell gene expression in pathways pertinent to GSIS after exposure to arsenicals. To test this hypothesis, we first treated INS-1 832/13 beta cells with either inorganic arsenic (iAsIII) or monomethylarsenite (MAsIII) and confirmed GSIS impairment. We then performed multi-omic analysis using chromatin run-on sequencing, RNA-sequencing, and small RNA-sequencing to define profiles of transcription, gene expression, and microRNAs, respectively. Integrating across these data sets, we first showed that genes downregulated by iAsIII treatment are enriched in insulin secretion and T2D pathways, whereas genes downregulated by MAsIII treatment are enriched in cell cycle and critical beta cell maintenance factors. We also defined the genes that are subject primarily to post-transcriptional control in response to arsenicals and demonstrated that miR-29a is the top candidate master regulator of these genes. Our results highlight the importance of microRNAs in arsenical-induced beta cell dysfunction and reveal both shared and unique mechanisms between iAsIII and MAsIII.
Collapse
Affiliation(s)
- Jenna E Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kieran Koch-Laskowski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rowan Beck
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse. Cells 2022; 11:cells11111737. [PMID: 35681432 PMCID: PMC9179272 DOI: 10.3390/cells11111737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/−) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/− mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/− mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.
Collapse
|
44
|
Darden CM, Vasu S, Mattke J, Liu Y, Rhodes CJ, Naziruddin B, Lawrence MC. Calcineurin/NFATc2 and PI3K/AKT signaling maintains β-cell identity and function during metabolic and inflammatory stress. iScience 2022; 25:104125. [PMID: 35402865 PMCID: PMC8983383 DOI: 10.1016/j.isci.2022.104125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic islets respond to metabolic and inflammatory stress by producing hormones and other factors that induce adaptive cellular and systemic responses. Here we show that intracellular Ca2+ ([Ca2+]i) and ROS signals generated by high glucose and cytokine-induced ER stress activate calcineurin (CN)/NFATc2 and PI3K/AKT to maintain β-cell identity and function. This was attributed in part by direct induction of the endocrine differentiation gene RFX6 and suppression of several β-cell "disallowed" genes, including MCT1. CN/NFATc2 targeted p300 and HDAC1 to RFX6 and MCT1 promoters to induce and suppress gene transcription, respectively. In contrast, prolonged exposure to stress, hyperstimulated [Ca2+]i, or perturbation of CN/NFATc2 resulted in downregulation of RFX6 and induction of MCT1. These findings reveal that CN/NFATc2 and PI3K/AKT maintain β-cell function during acute stress, but β-cells dedifferentiate to a dysfunctional state upon loss or exhaustion of Ca2+/CN/NFATc2 signaling. They further demonstrate the utility of targeting CN/NFATc2 to restore β-cell function.
Collapse
Affiliation(s)
- Carly M. Darden
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Srividya Vasu
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Jordan Mattke
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Yang Liu
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL 60637, USA
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD 20878, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
45
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
46
|
Memon B, Abdelalim EM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:704-714. [PMID: 35640144 PMCID: PMC9299517 DOI: 10.1093/stcltm/szac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 11/14/2022] Open
Abstract
Although genome profiling provides important genetic and phenotypic details for applying precision medicine to diabetes, it is imperative to integrate in vitro human cell models, accurately recapitulating the genetic alterations associated with diabetes. The absence of the appropriate preclinical human models and the unavailability of genetically relevant cells substantially limit the progress in developing personalized treatment for diabetes. Human pluripotent stem cells (hPSCs) provide a scalable source for generating diabetes-relevant cells carrying the genetic signatures of the patients. Remarkably, allogenic hPSC-derived pancreatic progenitors and β cells are being used in clinical trials with promising preliminary results. Autologous hiPSC therapy options exist for those with monogenic and type 2 diabetes; however, encapsulation or immunosuppression must be accompanied with in the case of type 1 diabetes. Furthermore, genome-wide association studies-identified candidate variants can be introduced in hPSCs for deciphering the associated molecular defects. The hPSC-based disease models serve as excellent resources for drug development facilitating personalized treatment. Indeed, hPSC-based diabetes models have successfully provided valuable knowledge by modeling different types of diabetes, which are discussed in this review. Herein, we also evaluate their strengths and shortcomings in dissecting the underlying pathogenic molecular mechanisms and discuss strategies for improving hPSC-based disease modeling investigations.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Essam M Abdelalim
- Corresponding author: Essam M. Abdelalim, Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa, University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. Tel: +974 445 46432; Fax: +974 445 41770;
| |
Collapse
|
47
|
Kim GL, Kwak SH, Yu J. A case of monogenic diabetes mellitus caused by a novel heterozygous RFX6 nonsense mutation in a 14-year-old girl. J Pediatr Endocrinol Metab 2021; 34:1619-1622. [PMID: 34416793 DOI: 10.1515/jpem-2021-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Monogenic diabetes mellitus (DM) is a single gene disorder, primarily characterized by impairment in the development or function of pancreatic beta cells. CASE PRESENTATION A 14-year-old girl was initially diagnosed with type 2 DM. The patient did not have any anti-islet autoantibody and showed acanthosis nigricans. She was managed with long-acting insulin and oral hypoglycemic agent, but HbA1c was still 9.3% after 1 year of management. Her mother already had type 2 DM at 46-year-old and was on medication. Under the possibility of familial monogenic DM, targeted exome sequencing was performed which included 29 genes associated with monogenic DM. Nonsense mutation of the gene RFX6 (c.2661T>A, p.Tyr887∗) was found. After adding Glucagon-like peptide-1 (GLP-1) receptor agonist, HbA1c improved from 8.8 to 6.8% and body mass index (BMI) also improved from 31.0 to 29.2 kg/m2. CONCLUSIONS It may be worth investigating genetic etiology in early-onset autoantibody-negative DM for specific genetic diagnosis and better management.
Collapse
Affiliation(s)
- Goo Lyeon Kim
- Department of Pediatrics, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeesuk Yu
- Department of Pediatrics, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
48
|
Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, Zhang X, Nair GG, Seufferlein T, Hebrok M, Sander M, Julier C, Kleger A, Costa IG. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol 2021; 4:1298. [PMID: 34789845 PMCID: PMC8599846 DOI: 10.1038/s42003-021-02818-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.
Collapse
Affiliation(s)
- Sandra Heller
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zhijian Li
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, Bioinformatics, Berlin, Germany
| | - Ryan Geusz
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Markus Breunig
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Xi Zhang
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gopika G. Nair
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Thomas Seufferlein
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Matthias Hebrok
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Maike Sander
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Cécile Julier
- grid.4444.00000 0001 2112 9282Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
49
|
Campbell SA, Bégin J, McDonald CL, Vanderkruk B, Stephan TL, Hoffman BG. H3K4 Trimethylation Is Required for Postnatal Pancreatic Endocrine Cell Functional Maturation. Diabetes 2021; 70:2568-2579. [PMID: 34376477 DOI: 10.2337/db20-1214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
During pancreas development, endocrine progenitors differentiate into the islet cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated, and glucose exposure increases the insulin response as β-cells mature. We investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets, and the mice displayed elevated nonfasting and fasting glycemia as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jocelyn Bégin
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Lien YC, Lu XM, Won KJ, Wang PZ, Osei-Bonsu W, Simmons RA. The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology 2021; 162:6360893. [PMID: 34467975 PMCID: PMC8455347 DOI: 10.1210/endocr/bqab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Islet function is critical for normal glucose homeostasis. Unlike adult β cells, fetal and neonatal islets are more proliferative and have decreased insulin secretion in response to stimuli. However, the underlying mechanisms governing functional maturity of islets have not been completely elucidated. Pancreatic islets comprise different cell types. The microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. Thus, the study of intact islets is optimal to identify novel molecular mechanisms controlling islet functional development. Transcriptomes and genome-wide histone landscapes of H3K4me3, H3K27me3, and H3K27Ac from intact islets isolated from 2- and 10-week-old Sprague-Dawley rats were integrated to elucidate genes and pathways modulating islet development, as well as the contribution of epigenetic regulation. A total of 4489 differentially expressed genes were identified; 2289 and 2200 of them were up- and down-regulated in 10-week islets, respectively. Ingenuity Pathway Analysis revealed critical pathways regulating functional maturation of islets, including nutrient sensing, neuronal function, immune function, cell replication, and extracellular matrix. Furthermore, we identified significant changes in enrichment of H3K4me3, H3K27me3, and H3K27Ac marks, which correlated with expression changes of genes critical for islet function. These histone marks were enriched at critical transcription factor-binding motifs, such as Hoxa9, C/EBP-β, Gata1, Foxo1, E2f1, E2f3, and Mafb. In addition, our chromatin immunoprecipitation sequencing data revealed multiple potential bivalent genes whose poised states changed with maturation. Collectively, our current study identified critical novel pathways for mature islet function and suggested a role for histone modifications in regulating islet development and maturation.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy Osei-Bonsu
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: Rebecca A. Simmons, MD, BRB II/III, 13th Floor, Rm 1308, 421 Curie Blvd, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|