1
|
Lende SSF, Rothemejer FH, Andreas M, Pedersen ML, Traberg-Nyborg L, Iversen EF, Juhl AK, Søgaard OS, Schleimann MH, Tolstrup M. Vectored long-term co-delivery of antibodies for SARS-CoV-2, RSV and Influenza prophylaxis. Virology 2025; 610:110573. [PMID: 40413832 DOI: 10.1016/j.virol.2025.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/28/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
Immunocompromised patients are at greater risk of severe courses of common respiratory infections like SARS-CoV-2, RSV and Influenza, while simultaneously benefitting less from protective vaccinations. Monoclonal antibodies (mAbs) against SARS-CoV-2, RSV and Influenza are effective at disease treatment, but costly and impractical as long-term prophylaxis. Vectored immunoprophylaxis is an attractive alternative, allowing continuous production of mAbs by the recipient's own cells. Here, we show that the anti-SARS-CoV-2 mAb A23.58.1 delivered through an adeno-associated virus serotype 8 (AAV8) viral vector intramuscularly leads to dose-dependent sustained antibody expression, protecting mice from SARS-CoV-2 infection. Further, we demonstrate that AAV8-vectored co-delivery of A23.58.1, alongside anti-RSV mAb Nirsevimab, and anti-Influenza mAb 1000-3B04, at a physiologically relevant level for viral protection, is possible. This approach could be a valuable alternative to mAb treatment in immunocompromised populations by conferring long-term antibody expression and prophylaxis following a single intramuscular injection. Further, co-delivery of several antibodies simultaneously demonstrates the feasibility of generating broad and robust antiviral gene therapies in the future.
Collapse
Affiliation(s)
- Stine Sofie Frank Lende
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Malthe Andreas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Emma Falling Iversen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Karina Juhl
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane Høgsbjerg Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Sidhu JK, Siggins MK, Liew F, Russell CD, Uruchurtu ASS, Davis C, Turtle L, Moore SC, Hardwick HE, Oosthuyzen W, Thomson EC, Semple MG, Baillie JK, Openshaw PJM, Thwaites RS. Delayed Mucosal Antiviral Responses Despite Robust Peripheral Inflammation in Fatal COVID-19. J Infect Dis 2024; 230:e17-e29. [PMID: 38134401 PMCID: PMC11272059 DOI: 10.1093/infdis/jiad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. METHODS We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days after symptom onset) or late (6-20 days after symptom onset) phase. RESULTS Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. CONCLUSIONS Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19.
Collapse
Affiliation(s)
- Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clark D Russell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley S S Uruchurtu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher Davis
- Medical Research Council Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Lance Turtle
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool Health Partners, Liverpool, United Kingdom
| | - Shona C Moore
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Hayley E Hardwick
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Wilna Oosthuyzen
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emma C Thomson
- Medical Research Council Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Malcolm G Semple
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary, and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Yayan J, Saleh D, Franke KJ. Potential association between COVID-19 infections and the declining incidence of lung cancers. J Infect Public Health 2024; 17:102458. [PMID: 38823085 DOI: 10.1016/j.jiph.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has significantly impacted global health and prompted studies on its effects across various diseases. Recent data suggest a potential correlation between COVID-19 and a decrease in lung cancer incidence. This study examines the association between COVID-19 infection and changes in lung cancer cases. MATERIAL AND METHODS We conducted a retrospective analysis of medical records from Clinic Lüdenscheid, Germany, from January 1, 2018, to December 31, 2021, comparing lung cancer cases before and during the pandemic. Demographic characteristics and cancer stages were also assessed. RESULTS We evaluated 523 patients; 269 pre-COVID and 254 during COVID. While the overall number of cases declined, a significant increase in advanced stage cancers was noted during COVID (P = 0.04). The adjusted incidence rates showed a nuanced decrease from approximately 33 cases per 100,000 pre-COVID to 31 during COVID. CONCLUSION This retrospective study suggests a modest decline in lung cancer incidence and an increase in advanced stages during COVID. Further comparisons with national data indicate a similar trend across Germany, with a decrease of about 3 % in lung cancer diagnoses post-2020, highlighting potential pandemic impacts on cancer detection.
Collapse
Affiliation(s)
- Josef Yayan
- Witten/Herdecke University, Witten, Märkische Clinics Health Holding Ltd., Clinic Lüdenscheid, Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Germany.
| | - Diana Saleh
- Witten/Herdecke University, Witten, Märkische Clinics Health Holding Ltd., Clinic Lüdenscheid, Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Germany
| | - Karl-Josef Franke
- Witten/Herdecke University, Witten, Märkische Clinics Health Holding Ltd., Clinic Lüdenscheid, Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Germany
| |
Collapse
|
5
|
Maino A, Amen A, Plumas J, Bouquet L, Deschamps M, Saas P, Chaperot L, Manches O. Development of a New Off-the-Shelf Plasmacytoid Dendritic Cell-Based Approach for the Expansion and Characterization of SARS-CoV-2-Specific T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:825-833. [PMID: 38214610 DOI: 10.4049/jimmunol.2300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Global vaccination against COVID-19 has been widely successful; however, there is a need for complementary immunotherapies in severe forms of the disease and in immunocompromised patients. Cytotoxic CD8+ T cells have a crucial role in disease control, but their function can be dysregulated in severe forms of the disease. We report here a cell-based approach using a plasmacytoid dendritic cell line (PDC*line) to expand in vitro specific CD8+ responses against COVID-19 Ags. We tested the immunogenicity of eight HLA-A*02:01 restricted peptides derived from diverse SARS-Cov-2 proteins, selected by bioinformatics analyses in unexposed and convalescent donors. Higher ex vivo frequencies of specific T cells against these peptides were found in convalescent donors compared with unexposed donors, suggesting in situ T cell expansion upon viral infection. The peptide-loaded PDC*line induced robust CD8+ responses with total amplification rates that led up to a 198-fold increase in peptide-specific CD8+ T cell frequencies for a single donor. Of note, six of eight selected peptides provided significant amplifications, all of which were conserved between SARS-CoV variants and derived from the membrane, the spike protein, the nucleoprotein, and the ORF1ab. Amplified and cloned antiviral CD8+ T cells secreted IFN-γ upon peptide-specific activation. Furthermore, specific TCR sequences were identified for two highly immunogenic Ags. Hence, PDC*line represents an efficient platform to identify immunogenic viral targets for future immunotherapies.
Collapse
Affiliation(s)
- Anthony Maino
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Axelle Amen
- Laboratoire d'Immunologie, Centre Hospitalier Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, UMR 5075, Institut de Biologie Structurale, Grenoble, France
| | - Joël Plumas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- PDC*line Pharma SAS, Grenoble, France
| | - Lucie Bouquet
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Marina Deschamps
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Philippe Saas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Manches
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
6
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Hernandez GM, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. Cell Rep 2024; 43:113596. [PMID: 38117652 PMCID: PMC10860710 DOI: 10.1016/j.celrep.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matteo Gentili
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew R Bauer
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
7
|
Baerends EAM, Reekie J, Andreasen SR, Stærke NB, Raben D, Nielsen H, Petersen KT, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Iversen MB, Benfield T, Iversen KK, Larsen FD, Andersen SD, Juhl AK, Dietz LL, Hvidt AK, Ostrowski SR, Krause TG, Østergaard L, Søgaard OS, Lundgren J, Tolstrup M. Omicron Variant-Specific Serological Imprinting Following BA.1 or BA.4/5 Bivalent Vaccination and Previous SARS-CoV-2 Infection: A Cohort Study. Clin Infect Dis 2023; 77:1511-1520. [PMID: 37392436 PMCID: PMC10686961 DOI: 10.1093/cid/ciad402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outpaces monovalent vaccine cross-protection to new viral variants. Consequently, bivalent coronavirus disease 2019 (COVID-19) vaccines including Omicron antigens were developed. The contrasting immunogenicity of the bivalent vaccines and the impact of prior antigenic exposure on new immune imprinting remains to be clarified. METHODS In the large prospective ENFORCE cohort, we quantified spike-specific antibodies to 5 Omicron variants (BA.1 to BA.5) before and after BA.1 or BA.4/5 bivalent booster vaccination to compare Omicron variant-specific antibody inductions. We evaluated the impact of previous infection and characterized the dominant antibody responses. RESULTS Prior to the bivalent fourth vaccine, all participants (N = 1697) had high levels of Omicron-specific antibodies. Antibody levels were significantly higher in individuals with a previous polymerase chain reaction positive (PCR+) infection, particularly for BA.2-specific antibodies (geometric mean ratio [GMR] 6.79, 95% confidence interval [CI] 6.05-7.62). Antibody levels were further significantly boosted in all individuals by receiving either of the bivalent vaccines, but greater fold inductions to all Omicron variants were observed in individuals with no prior infection. The BA.1 bivalent vaccine generated a dominant response toward BA.1 (adjusted GMR 1.31, 95% CI 1.09-1.57) and BA.3 (1.32, 1.09-1.59) antigens in individuals with no prior infection, whereas the BA.4/5 bivalent vaccine generated a dominant response toward BA.2 (0.87, 0.76-0.98), BA.4 (0.85, 0.75-0.97), and BA.5 (0.87, 0.76-0.99) antigens in individuals with a prior infection. CONCLUSIONS Vaccination and previous infection leave a clear serological imprint that is focused on the variant-specific antigen. Importantly, both bivalent vaccines induce high levels of Omicron variant-specific antibodies, suggesting broad cross-protection of Omicron variants.
Collapse
Affiliation(s)
- Eva A M Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Signe R Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K Iversen
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Fredrikke D Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tyra G Krause
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Hvidt AK, Guo H, Andersen R, Lende SSF, Vibholm LK, Søgaard OS, Schleimann MH, Russell V, Cheung AMW, Paramithiotis E, Olesen R, Tolstrup M. Long-term humoral and cellular immunity after primary SARS-CoV-2 infection: a 20-month longitudinal study. BMC Immunol 2023; 24:45. [PMID: 37974069 PMCID: PMC10652616 DOI: 10.1186/s12865-023-00583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2 remains a world-wide health issue. SARS-CoV-2-specific immunity is induced upon both infection and vaccination. However, defining the long-term immune trajectory, especially after infection, is limited. In this study, we aimed to further the understanding of long-term SARS-CoV-2-specific immune response after infection. RESULTS We conducted a longitudinal cohort study among 93 SARS-CoV-2 recovered individuals. Immune responses were continuously monitored for up to 20 months after infection. The humoral responses were quantified by Spike- and Nucleocapsid-specific IgG levels. T cell responses to Spike- and non-Spike epitopes were examined using both intercellular cytokine staining (ICS) assay and Activation-Induced marker (AIM) assay with quantification of antigen-specific IFNγ production. During the 20 months follow-up period, Nucleocapsid-specific antibody levels and non-Spike-specific CD4 + and CD8 + T cell frequencies decreased in the blood. However, a majority of participants maintained a durable immune responses 20 months after infection: 59% of the participants were seropositive for Nucleocapsid-specific IgG, and more than 70% had persisting non-Spike-specific T cells. The Spike-specific response initially decreased but as participants were vaccinated against COVID-19, Spike-specific IgG levels and T cell frequencies were boosted reaching similar or higher levels compared to 1 month post-infection. The trajectory of infection-induced SARS-CoV-2-specific immunity decreases, but for the majority of participants it persists beyond 20 months. The T cell response displays a greater durability. Vaccination boosts Spike-specific immune responses to similar or higher levels as seen after primary infection. CONCLUSIONS For most participants, the response persists 20 months after infection, and the cellular response appears to be more long-lived compared to the circulating antibody levels. Vaccination boosts the S-specific response but does not affect the non-S-specific response. Together, these findings support the understanding of immune contraction, and with studies showing the immune levels required for protection, adds to the knowledge of durability of protection against future SARS-CoV-2.
Collapse
Affiliation(s)
- Astrid Korning Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Rebecca Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Sofie Frank Lende
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line Khalidan Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne Hoegsbjerg Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Victoria Russell
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Angela Man-Wei Cheung
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Lende SSF, Barnkob NM, Hansen RW, Bansia H, Vestergaard M, Rothemejer FH, Worsaae A, Brown D, Pedersen ML, Rahimic AHF, Juhl AK, Gjetting T, Østergaard L, Georges AD, Vuillard LM, Schleimann MH, Koefoed K, Tolstrup M. Discovery of neutralizing SARS-CoV-2 antibodies enriched in a unique antigen specific B cell cluster. PLoS One 2023; 18:e0291131. [PMID: 37729215 PMCID: PMC10511142 DOI: 10.1371/journal.pone.0291131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants. Through screening of 455 monoclonal antibodies for SARS-CoV-2 variant binding and virus neutralization, we identified a cluster of activated B cells highly enriched for SARS-CoV-2 neutralizing antibodies. Epitope binning and Cryo-EM structure analysis identified the majority of neutralizing antibodies having epitopes overlapping with the ACE2 receptor binding motif (class 1 binders). Extensive functional antibody characterization identified two potent neutralizing antibodies, one retaining SARS-CoV-1 neutralizing capability, while both bind major common variants of concern and display prophylactic efficacy in vivo. The transcriptomic signature of activated B cells harboring broadly binding neutralizing antibodies with therapeutic potential identified here, may be a guide in future efforts of rapid therapeutic antibody discovery.
Collapse
Affiliation(s)
- Stine Sofie Frank Lende
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Harsh Bansia
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
| | | | - Frederik Holm Rothemejer
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Deijona Brown
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
| | - Maria Lange Pedersen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Torben Gjetting
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
- Antibody Technology, Novo Nordisk A/S, Måløv, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Amédée Des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, United States of America
- PhD Programs in Biochemistry, and Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | | | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Baerends EA, Hvidt AK, Reekie J, Søgaard OS, Stærke NB, Raben D, Nielsen H, Petersen KT, Juhl MR, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Knudsen LS, Iversen MB, Benfield T, Iversen KK, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Fischer TK, Erikstrup C, Valentiner-Branth P, Lundgren J, Østergaard L, Tolstrup M. SARS-CoV-2 vaccine-induced antibodies protect against Omicron breakthrough infection. iScience 2023; 26:107621. [PMID: 37682631 PMCID: PMC10481355 DOI: 10.1016/j.isci.2023.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV-2 Omicron quickly spread globally, also in regions with high vaccination coverage, emphasizing the importance of exploring the immunological requirements for protection against Omicron breakthrough infection. The test-negative matched case-control study (N = 964) characterized Omicron breakthrough infections in triple-vaccinated individuals from the ENFORCE cohort. Within 60 days before a PCR test spike-specific IgG levels were significantly lower in cases compared to controls (GMR [95% CI] for BA.2: 0.83 [0.73-0.95], p = 0.006). Multivariable logistic regression showed significant associations between high antibody levels and lower odds of infection (aOR [95% CI] for BA.2 spike-specific IgG: 0.65 [0.48-0.88], p = 0.006 and BA.2 ACE2-blocking antibodies: 0.46 [0.30-0.69], p = 0.0002). A sex-stratified analysis showed more pronounced associations for females than males. High levels of vaccine-induced antibodies provide partial protection against Omicron breakthrough infections. This is important knowledge to further characterize a threshold for protection against new variants and to estimate the necessity and timing of booster vaccination.
Collapse
Affiliation(s)
- Eva A.M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lene S. Knudsen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B. Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea K. Fischer
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hillerød, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Hansen KS, Jørgensen SE, Skouboe MK, Agergaard J, Schiøttz-Christensen B, Vibholm LK, Tolstrup M, Østergaard L, Leth S, Mogensen TH. Examination of autoantibodies to type I interferon in patients suffering from long COVID. J Med Virol 2023; 95:e29089. [PMID: 37698062 DOI: 10.1002/jmv.29089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Long COVID (LC) is an emerging global health concern. The underlying mechanism and pathophysiology remain unclear. Presence of neutralizing autoantibodies against type 1 interferons (IFN) has been established as a predictor of critical COVID-19. We hypothesized that persistent autoimmune activity with autoantibodies against type 1 IFN may contribute to symptoms in patients with LC. Plasma samples and clinical information were obtained from a Danish LC cohort consisting of adult patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Information on symptoms and quality of life was derived from an LC-specific questionnaire and the EQ-5D-5L questionnaire. Detection of type 1 IFN autoantibodies in plasma were performed by ELISA. Samples collected between June, 2020, and September, 2021, from 279 patients were analyzed and compared to a control group of 94 individuals with prior mild SARS-CoV-2 infection who did not develop LC symptoms. In total, five LC patients (1.8%) and 3 (3.2%) of the controls had detectable circulating type 1 IFN autoantibodies. Collectively, prevalence of autoantibodies against type 1 IFN subtypes in our LC cohort were primarily driven by men and did not exceed the prevalence in controls. Thus, in our cohort, anti-type I IFN autoantibodies are unlikely to drive LC symptoms.
Collapse
Affiliation(s)
- Kristoffer Skaalum Hansen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jane Agergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Berit Schiøttz-Christensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Research Unit of General Practice, University of Southern Denmark, Odense, Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Leth
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases & Internal Medicine, Gødstrup Regional Hospital, Herning, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Kalk A, Sturmberg J, Van Damme W, Brown GW, Ridde V, Zizi M, Paul E. Surfing Corona waves - instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Res 2023; 11:337. [PMID: 37576385 PMCID: PMC10412939 DOI: 10.12688/f1000research.110593.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/15/2023] Open
Abstract
In the first two years of the pandemic, COVID-19 response policies have aimed to break Corona waves through non-pharmaceutical interventions and mass vaccination. However, for long-term strategies to be effective and efficient, and to avoid massive disruption and social harms, it is crucial to introduce the role of natural immunity in our thinking about COVID-19 (or future "Disease-X") control and prevention. We argue that any Corona or similar virus control policy must appropriately balance five key elements simultaneously: balancing the various fundamental interests of the nation, as well as the various interventions within the health sector; tailoring the prevention measures and treatments to individual needs; limiting social interaction restrictions; and balancing the role of vaccinations against the role of naturally induced immunity. Given the high infectivity of SARS-CoV-2 and its differential impact on population segments, we examine this last element in more detail and argue that an important aspect of 'living with the virus' will be to better understand the role of naturally induced immunity in our overall COVID-19 policy response. In our eyes, a policy approach that factors natural immunity should be considered for persons without major comorbidities and those having 'encountered' the antigen in the past.
Collapse
Affiliation(s)
- Andreas Kalk
- Kinshasa Country Office, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Kinshasa, Democratic Republic of the Congo
| | - Joachim Sturmberg
- Foundation President – International Society for Systems and Complexity Sciences for Health, Australia, Callaghan, Australia
- A/Prof of General Practice, College of Health, Medicine and Wellbeing, University of Newcastle, Australia, Callaghan, Australia
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Antwerp, Belgium
| | | | - Valéry Ridde
- CEPED, IRD-Université de Paris, ERL INSERM SAGESUD, Institute for Research on Sustainable Development (IRD), Paris, France
| | - Martin Zizi
- Aerendir Mobile Inc., Mountain View, California, USA
| | - Elisabeth Paul
- School of Public Health, Université libre de Bruxelles, Brussels, 1070, Belgium
| |
Collapse
|
15
|
Li D, Xu M, Hooper AT, Rofail D, Mohammadi KA, Chen Y, Ali S, Norton T, Weinreich DM, Musser BJ, Hamilton JD, Geba GP. Casirivimab + imdevimab accelerates symptom resolution linked to improved COVID-19 outcomes across susceptible antibody and risk profiles. Sci Rep 2023; 13:12784. [PMID: 37550377 PMCID: PMC10406852 DOI: 10.1038/s41598-023-39681-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Severe, protracted symptoms are associated with poor outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In a placebo-controlled study of casirivimab and imdevimab (CAS + IMD) in persons at high risk of severe coronavirus disease 2019 (COVID-19; n = 3816), evolution of individual symptoms was assessed for resolution patterns across risk factors, and baseline SARS-CoV-2-specific antibody responses against S1 and N domains. CAS + IMD versus placebo provided statistically significant resolution for 17/23 symptoms, with greater response linked to absence of endogenous anti-SARS-CoV-2 immunoglobulin (Ig)G, IgA, or specific neutralizing antibodies at baseline, or high baseline viral load. Resolution of five key symptoms (onset days 3-5)-dyspnea, cough, feeling feverish, fatigue, and loss of appetite-independently correlated with reduced hospitalization and death (hazard ratio range: 0.31-0.56; P < 0.001-0.043), and was more rapid in CAS + IMD-treated patients lacking robust early antibody responses. Those who seroconverted late still benefited from treatment. Thus, highly neutralizing COVID-19-specific antibodies provided by CAS + IMD treatment accelerated key symptom resolution associated with hospitalization and death in those at high risk for severe disease as well as in those lacking early, endogenous neutralizing antibody responses.
Collapse
Affiliation(s)
- Dateng Li
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Meng Xu
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Andrea T Hooper
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Diana Rofail
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kusha A Mohammadi
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yiziying Chen
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shazia Ali
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Thomas Norton
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David M Weinreich
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Bret J Musser
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jennifer D Hamilton
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gregory P Geba
- Global Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
16
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542482. [PMID: 37398281 PMCID: PMC10312465 DOI: 10.1101/2023.05.26.542482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.
Collapse
|
17
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
19
|
Kapten K, Orczyk K, Smolewska E. Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Arch Immunol Ther Exp (Warsz) 2023; 71:7. [PMID: 36810662 PMCID: PMC9943048 DOI: 10.1007/s00005-023-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its mechanisms have been thoroughly studied by researchers all over the world with the hope of finding answers that may aid the discovery of new treatment options or effective means of prevention. Still, over 2 years into the pandemic that is an immense burden on health care and economic systems, there seem to be more questions than answers. The character and multitude of immune responses elicited in coronavirus disease 2019 (COVID-19) vary from uncontrollable activation of the inflammatory system, causing extensive tissue damage and consequently leading to severe or even fatal disease, to mild or asymptomatic infections in the majority of patients, resulting in the unpredictability of the current pandemic. The aim of the study was to systematize the available data regarding the immune response to SARS-CoV-2, to provide some clarification among the abundance of the knowledge available. The review contains concise and current information on the most significant immune reactions to COVID-19, including components of both innate and adaptive immunity, with an additional focus on utilizing humoral and cellular responses as effective diagnostic tools. Moreover, the authors discussed the present state of knowledge on SARS-CoV-2 vaccines and their efficacy in cases of immunodeficiency.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Krzysztof Orczyk
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| |
Collapse
|
20
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
21
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
22
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
23
|
Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, Nielsen H, Johansen IS, Wiese L, Benfield TL, Iversen KK, Mustafa AB, Juhl MR, Petersen KT, Ostrowski SR, Lindvig SO, Rasmussen LD, Schleimann MH, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Lundgren J, Østergaard L, Tolstrup M, the ENFORCE Study Group. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front Med (Lausanne) 2022; 9:994160. [PMID: 36262278 PMCID: PMC9574042 DOI: 10.3389/fmed.2022.994160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,*Correspondence: Astrid K. Hvidt,
| | - Eva A. M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Eva A. M. Baerends,
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas L. Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Deparment of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Ahmed B. Mustafa
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse R. Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Line D. Rasmussen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
24
|
Norddahl GL, Melsted P, Gunnarsdottir K, Halldorsson GH, Olafsdottir TA, Gylfason A, Kristjansson M, Magnusson OT, Sulem P, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Stefansson K. Effect of booster vaccination against Delta and Omicron SARS-CoV-2 variants in Iceland. Nat Commun 2022; 13:5701. [PMID: 36171188 PMCID: PMC9517986 DOI: 10.1038/s41467-022-33076-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
By the end of July 2021, the majority of the Icelandic population had received vaccination against COVID-19. In mid-July a wave of SARS-CoV-2 infections, dominated by the Delta variant, spread through the population, followed by an Omicron wave in December. A booster vaccination campaign was initiated to curb the spread of the virus. We estimate the risk of infection for different vaccine combinations using vaccination data from 276,028 persons and 963,557 qPCR tests for 277,687 persons. We measure anti-Spike-RBD antibody levels and ACE2-Spike binding inhibitory activity in 371 persons who received one of four recommended vaccination schedules with or without an mRNA vaccine booster. Overall, we find different antibody levels and inhibitory activity in recommended vaccination schedules, reflected in the observed risk of SARS-CoV-2 infections. We observe an increased protection following mRNA boosters, against both Omicron and Delta variant infections, although BNT162b2 boosters provide greater protection against Omicron than mRNA-1273 boosters. Iceland has used four different SARS-CoV-2 vaccines in various combinations. Here, the authors describe differences in the immune responses elicited by different initial/booster vaccine combinations, and then use population-level data to assess the effects of booster doses against Delta and Omicron infection.
Collapse
Affiliation(s)
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Mar Kristjansson
- Internal Medicine and Rehabilitation Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
25
|
Jia M, Wang X, Gong W, Zhong J, Leng Z, Ren L, Feng L, Guo L, Gao L, Liang X, Chen E, Tang W, Huang Q, Zhang Q, Jiang G, Zhao S, Liu Z, Feng Y, Qi L, Ma L, Huang T, Yue Y, Wang J, Jiang B, Xu L, Wang J, Yang W, Wang C. Humoral responses after inactivated COVID-19 vaccination in individuals with and without prior SARS-CoV-2 infection: A prospective cohort study. J Med Virol 2022; 94:5746-5757. [PMID: 35941840 PMCID: PMC9537985 DOI: 10.1002/jmv.28055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023]
Abstract
We evaluated and compared humoral immune responses after inactivated coronavirus disease 2019 (COVID-19) vaccination among naïve individuals, asymptomatically infected individuals, and recovered patients with varying severity. In this multicenter, prospective cohort study, blood samples from 666 participants were collected before and after 2 doses of inactivated COVID-19 vaccination. Among 392 severe acute respiratory syndrome coronavirus 2-naïve individuals, the seroconversion rate increased significantly from 51.8% (median antispike protein pan-immunoglobulins [S-Igs] titer: 0.8 U/ml) after the first dose to 96% (median S-Igs titer: 79.5 U/ml) after the second dose. Thirty-two percent of naïve individuals had detectable neutralizing antibodies (NAbs) against the original strain but all of them lost neutralizing activity against the Omicron variant. In 274 individuals with natural infection, humoral immunity was significantly improved after a single vaccine dose, with median S-Igs titers of 596.7, 1176, 1086.5, and 1828 U/ml for asymptomatic infections, mild cases, moderate cases, and severe/critical cases, respectively. NAb titers also improved significantly. However, the second dose did not substantially increase antibody levels. Although a booster dose is needed for those without infection, our findings indicate that recovered patients should receive only a single dose of the vaccine, regardless of the clinical severity, until there is sufficient evidence to confirm the benefits of a second dose.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Wensheng Gong
- Xiangyang Center for Disease Control & PreventionXiangyangChina
| | - Jingchuan Zhong
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Zhiwei Leng
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Luzhao Feng
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and PreventionChangshaChina,Hunan Workstation for Emerging Infectious Disease Control and PreventionChinese Academy of Medical SciencesBeijingChina
| | - Xian Liang
- Chengdu Center for Disease Control and PreventionChengduChina
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and PreventionZhejiangChina
| | - Wenge Tang
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Qiangru Huang
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Qiao Zhang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | | | - Shanlu Zhao
- Hunan Provincial Center for Disease Control and PreventionChangshaChina,Hunan Workstation for Emerging Infectious Disease Control and PreventionChinese Academy of Medical SciencesBeijingChina
| | - Zhu Liu
- Chengdu Center for Disease Control and PreventionChengduChina
| | - Yan Feng
- Zhejiang Provincial Center for Disease Control and PreventionZhejiangChina
| | - Li Qi
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Libing Ma
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Tingxuan Huang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Yong Yue
- Chengdu Center for Disease Control and PreventionChengduChina
| | - Ju Wang
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Binshan Jiang
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Liuhui Xu
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical SciencesBeijingChina
| | - Weizhong Yang
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chen Wang
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina,National Center for Respiratory MedicineBeijingChina,Chinese Academy of EngineeringBeijingChina
| |
Collapse
|
26
|
Safont G, Latorre I, Villar-Hernández R, Stojanovic Z, Marín A, Pérez-Cano C, Lacoma A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Cendón A, Sokalchuk L, Tolosa G, Casas I, Rosell A, Domínguez J. Measuring T-Cell Responses against SARS-CoV-2 Is of Utility for Disease and Vaccination Management. J Clin Med 2022; 11:5103. [PMID: 36079033 PMCID: PMC9457376 DOI: 10.3390/jcm11175103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The measurement of specific T-cell responses can be a useful tool for COVID-19 diagnostics and clinical management. In this study, we evaluated the IFN-γ T-cell response against the main SARS-CoV-2 antigens (spike, nucleocapsid and membrane) in acute and convalescent individuals classified according to severity, and in vaccinated and unvaccinated controls. IgG against spike and nucleocapsid were also measured. Spike antigen triggered the highest number of T-cell responses. Acute patients showed a low percentage of positive responses when compared to convalescent (71.6% vs. 91.7%, respectively), but increased during hospitalization and with severity. Some convalescent patients showed an IFN-γ T-cell response more than 200 days after diagnosis. Only half of the vaccinated individuals displayed an IFN-γ T-cell response after the second dose. IgG response was found in a higher percentage of individuals compared to IFN-γ T-cell responses, and moderate correlations between both responses were seen. However, in some acute COVID-19 patients specific T-cell response was detected, but not IgG production. We found that the chances of an IFN-γ T-cell response against SARS-CoV-2 is low during acute phase, but may increase over time, and that only half of the vaccinated individuals had an IFN-γ T-cell response after the second dose.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irene Latorre
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Villar-Hernández
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Lacoma
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Bárbara Molina-Moya
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Arnau Cendón
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Liliya Sokalchuk
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Guillermo Tolosa
- Diagnostic and Research in Immunodeficiencies Jeffrey Modell Center, Cytometry and Cellular Culture Area, La Frontera University, Temuco 01145, Chile
| | - Irma Casas
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - José Domínguez
- Institut d’Investigació Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Lin Y, Zhu J, Liu Z, Li C, Guo Y, Wang Y, Chen K. Kinetics of severe acute respiratory syndrome coronavirus 2 infection antibody responses. Front Immunol 2022; 13:864278. [PMID: 35990623 PMCID: PMC9389018 DOI: 10.3389/fimmu.2022.864278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world, causing severe morbidity and mortality. Since the first reports of Coronavirus disease 2019 (COVID-19) in late 2019, research on the characteristics of specific humoral immunity against SARS-CoV-2 in patients with COVID-19 has made great progress. However, our knowledge of persistent humoral immunity to SARS-CoV-2 infection is limited. The existence of protective immunity after infection will affect future transmission and disease severity. Therefore, it is important to gather knowledge about the kinetics of antibody responses. In this review, we summarize the information obtained so far on the characteristics and kinetics of the SARS-CoV-2 infection of specific humoral immune response, especially in neutralizing antibodies and their relationship with disease severity. In addition, with the emergence of variants of concern, we summarize the neutralizing effect of specific humoral immunity on variants of concern after the initial SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Yajie Lin
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zongming Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Cancer Centre of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ying Wang, ; Keda Chen,
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Keda Chen,
| |
Collapse
|
28
|
Kratzer B, Schlax LC, Gattinger P, Waidhofer‐Söllner P, Trapin D, Tauber PA, Sehgal ANA, Körmöczi U, Rottal A, Feichter M, Oberhofer T, Grabmeier‐Pfistershammer K, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Mühl B, Kropfmüller A, Negrin B, Kundi M, Valenta R, Pickl WF. Combined assessment of S- and N-specific IL-2 and IL-13 secretion and CD69 neo-expression for discrimination of post-infection and post-vaccination cellular SARS-CoV-2-specific immune response. Allergy 2022; 77:3408-3425. [PMID: 35690994 PMCID: PMC9348018 DOI: 10.1111/all.15406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Larissa C. Schlax
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Pia Gattinger
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Petra Waidhofer‐Söllner
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Doris Trapin
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Peter A. Tauber
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Al Nasar Ahmed Sehgal
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Ulrike Körmöczi
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Arno Rottal
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Melanie Feichter
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Teresa Oberhofer
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | | | - Kristina Borochova
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Yulia Dorofeeva
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Inna Tulaeva
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria,I. M. Sechenov First Moscow State Medical University (Sechenov University)Department of Clinical Immunology and AllergologyLaboratory for ImmunopathologyMoscowRussia
| | - Milena Weber
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | | | | | - Bettina Negrin
- Österreichische Gesundheitskasse, Klinikum PeterhofBadenAustria
| | - Michael Kundi
- Medical University of ViennaCenter for Public HealthDepartment for Environmental HealthViennaAustria
| | - Rudolf Valenta
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria,I. M. Sechenov First Moscow State Medical University (Sechenov University)Department of Clinical Immunology and AllergologyLaboratory for ImmunopathologyMoscowRussia,NRC Institute of Immunology FMBA of RussiaMoscowRussia,Karl Landsteiner University of Health SciencesKremsAustria
| | - Winfried F. Pickl
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria,Karl Landsteiner University of Health SciencesKremsAustria
| |
Collapse
|
29
|
Immunity after COVID-19 Recovery and Vaccination: Similarities and Differences. Vaccines (Basel) 2022; 10:vaccines10071068. [PMID: 35891232 PMCID: PMC9322013 DOI: 10.3390/vaccines10071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with a robust immune response. The development of systemic inflammation leads to a hyperinflammatory state due to cytokine release syndrome during severe COVID-19. The emergence of many new SARS-CoV-2 variants across the world deteriorates the protective antiviral immunity induced after infection or vaccination. The innate immune response to SARS-CoV-2 is crucial for determining the fate of COVID-19 symptomatology. T cell-mediated immunity is the main factor of the antiviral immune response; moreover, SARS-CoV-2 infection initiates a rapid B-cell response. In this paper, we present the current state of knowledge on immunity after COVID-19 infection and vaccination. We discuss the mechanisms of immune response to various types of vaccines (nucleoside-modified, adenovirus-vectored, inactivated virus vaccines and recombinant protein adjuvanted formulations). This includes specific aspects of vaccination in selected patient populations with altered immune activity (the elderly, children, pregnant women, solid organ transplant recipients, patients with systemic rheumatic diseases or malignancies). We also present diagnostic and research tools available to study the anti-SARS-CoV-2 cellular and humoral immune responses.
Collapse
|
30
|
Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou CH, Mettelman RC, Allison KJ, Lin CY, Brice DC, Zhu X, Vegesana K, Wu G, Trivedi S, Kottapalli P, Darnell D, McNeely S, Olsen SR, Schultz-Cherry S, Estepp JH, McGargill MA, Wolf J, Thomas PG. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8 + T cells. Nat Immunol 2022; 23:781-790. [PMID: 35383307 PMCID: PMC9106845 DOI: 10.1038/s41590-022-01184-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
Abstract
Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.
Collapse
Affiliation(s)
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim J Allison
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xun Zhu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Information Services, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne McNeely
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremie H Estepp
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Maideen NMP, Balasubramaniam R, Manavalan G, Balasubramanian K, Nivedhitha S, Thirumal M, Kumar S V. An Insight of Clinical Evidences of Ayurveda Interventions in the Management of COVID-19 Patients. Infect Disord Drug Targets 2022; 22:74-82. [PMID: 35319399 DOI: 10.2174/1871526522666220321152504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused Coronavirus disease 2019 (COVID-19) and the patients with COVID-19 might be managed with traditional medicine like Ayurveda alone or in combination with standard allopathic treatment as Ayurveda is one of the oldest traditional medicinal systems followed by millions around the globe. METHODS The literature was searched in databases such as LitCOVID, Google Scholar, Science Direct, EBSCO, Scopus, Web of science, EMBASE, and reference lists to identify articles relevant to the use of Ayurvedic medicines in the management of COVID-19. RESULTS Several clinical studies have determined the efficacy of Ayurvedic medicines and formulations in the management of patients with COVID-19. CONCLUSION The Ayurvedic medicines and formulations having antiviral, antioxidant, anti-inflammatory, and immunomodulatory properties could be used along with standard allopathic medicines to assist in the earlier clearance of virus, speedy recovery of patients with COVID-19, faster discharge from hospitals, and the prevention of further deterioration.
Collapse
Affiliation(s)
| | | | - Gobinath Manavalan
- Department of Pharmaceutical Chemistry, Ratnam Institute of Pharmacy, Nellore, AP, India
| | | | - Nivedhitha S
- Department of Pharmacognosy, Ratnam Institute of Pharmacy, Nellore, AP, India
| | - Thirumal M
- Department of Pharmacognosy, SRM College of Pharmacy, Chennai, TN, India
| | - Vasanth Kumar S
- Department of Pharmaceutics, KK College of Pharmacy, Gerugambakkam, TN, India
| |
Collapse
|
32
|
Søgaard OS, Reekie J, Johansen IS, Nielsen H, Benfield T, Wiese L, Stærke NB, Iversen K, Fogh K, Bodilsen J, Iversen M, Knudsen LS, Klastrup V, Larsen FD, Andersen SD, Hvidt AK, Andreasen SR, Madsen LW, Lindvig SO, Øvrehus A, Ostrowski SR, Abildgaard C, Matthews C, Jensen TO, Raben D, Erikstrup C, Fischer TK, Tolstrup M, Østergaard L, Lundgren J. Characteristics associated with serological COVID-19 vaccine response and durability in an older population with significant comorbidity: the Danish Nationwide ENFORCE Study. Clin Microbiol Infect 2022; 28:1126-1133. [PMID: 35283313 PMCID: PMC8913025 DOI: 10.1016/j.cmi.2022.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/03/2023]
Abstract
Objectives To identify individual characteristics associated with serological COVID-19 vaccine responsiveness and the durability of vaccine-induced antibodies. Methods Adults without history of SARS-CoV-2 infection from the Danish population scheduled for SARS-CoV-2 vaccination were enrolled in this parallel group, phase 4 study. SARS-CoV-2 Spike IgG and Spike-ACE2-receptor-blocking antibodies were measured at days 0, 21, 90, and 180. Vaccine responsiveness was categorized according to Spike IgG and Spike-ACE2-receptor-blocking levels at day 90 after first vaccination. Nondurable vaccine response was defined as day-90 responders who no longer had significant responses by day 180. Results Of 6544 participants completing two vaccine doses (median age 64 years; interquartile range: 54–75), 3654 (55.8%) received BTN162b2, 2472 (37.8%) mRNA-1273, and 418 (6.4%) ChAdOx1 followed by an mRNA vaccine. Levels of both types of antibodies increased from baseline to day 90 and then decreased to day 180. The decrease was more pronounced for levels of Spike-ACE2-receptor-blocking antibodies than for Spike IgG. Proportions with vaccine hyporesponsiveness and lack of durable response were 5.0% and 12.1% for Spike IgG and 12.7% and 39.6% for Spike-ACE2-receptor-blocking antibody levels, respectively. Male sex, vaccine type, and number of comorbidities were associated with all four outcomes. Additionally, age ≥75 years was associated with hyporesponsiveness for Spike-ACE2-receptor-blocking antibodies (adjusted odds ratio: 1.59; 95% confidence interval: 1.25–2.01) but not for Spike IgG. Discussion Comorbidity, male sex, and vaccine type were risk factors for hyporesponsiveness and nondurable response to COVID-19 vaccination. The functional activity of vaccine-induced antibodies declined with increasing age and had waned to pre-second-vaccination levels for most individuals after 6 months.
Collapse
Affiliation(s)
- Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology Herlev Hospital, Herlev, Denmark; Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Kamille Fogh
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mette Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | | | - Vibeke Klastrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Fredrikke Dam Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan Olaf Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christiane Abildgaard
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte Matthews
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tomas O Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Thea K Fischer
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Research, North Zealand University Hospital, Hillerød, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Jing X, Xu M, Song D, Yue T, Wang Y, Zhang P, Zhong Y, Zhang M, Lam TTY, Faria NR, De Clercq E, Li G. Association between inflammatory cytokines and anti-SARS-CoV-2 antibodies in hospitalized patients with COVID-19. Immun Ageing 2022; 19:12. [PMID: 35248063 PMCID: PMC8897556 DOI: 10.1186/s12979-022-00271-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND COVID-19 patients may experience "cytokine storm" when human immune system produces excessive cytokines/chemokines. However, it remains unclear whether early responses of inflammatory cytokines would lead to high or low titers of anti-SARS-CoV-2 antibodies. METHODS This retrospective study enrolled a cohort of 272 hospitalized patients with laboratory-confirmed SARS-CoV-2. Laboratory assessments of serum cytokines (IL-2R, IL-6, IL-8, IL-10, TNF-α), anti-SARS-CoV-2 IgG/IgM antibodies, and peripheral blood biomarkers were conducted during hospitalization. RESULTS At hospital admission, 36.4% patients were severely ill, 51.5% patients were ≥ 65 years, and 60.3% patients had comorbidities. Higher levels of IL-2R and IL-6 were observed in older patients (≥65 years). Significant differences of IL-2R (week 2 to week ≥5 from symptom onset), IL-6 (week 1 to week ≥5), IL-8 (week 2 to week ≥5), and IL-10 (week 1 to week 3) were observed between moderately-ill and severely ill patients. Anti-SARS-CoV-2 IgG titers were significantly higher in severely ill patients than in moderately ill patients, but such difference was not observed for IgM. High titers of early-stage IL-6, IL-8, and TNF-α (≤2 weeks after symptom onset) were positively correlated with high titers of late-stage IgG (≥5 weeks after symptom onset). Deaths were mostly observed in severely ill older patients (45.9%). Survival analyses revealed risk factors of patient age, baseline COVID-19 severity, and baseline IL-6 that affected survival time, especially in severely ill older patients. CONCLUSION Early responses of elevated cytokines such as IL-6 reflect the active immune responses, leading to high titers of IgG antibodies against COVID-19.
Collapse
Affiliation(s)
- Xixi Jing
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Min Xu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Deye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tingting Yue
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Pan Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Min Zhang
- Institute of Hepatology and Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nuno Rodrigues Faria
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
34
|
T cell responses to SARS-CoV-2 in humans and animals. J Microbiol 2022; 60:276-289. [PMID: 35157219 PMCID: PMC8852923 DOI: 10.1007/s12275-022-1624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, first emerged in 2019. Antibody responses against SARS-CoV-2 have been given a lot of attention. However, the armamentarium of humoral and T cells may have differing roles in different viral infections. Though the exact role of T cells in COVID-19 remains to be elucidated, prior experience with human coronavirus has revealed an essential role of T cells in the outcomes of viral infections. Moreover, an increasing body of evidence suggests that T cells might be effective against SARS-CoV-2. This review summarizes the role of T cells in mouse CoV, human pathogenic respiratory CoV in general and SARS-CoV-2 in specific.
Collapse
|
35
|
Mohn KGI, Bredholt G, Zhou F, Madsen A, Onyango TB, Fjelltveit EB, Jalloh SL, Brokstad KA, Cantoni D, Mayora-Neto M, Temperton N, Langeland N, Cox RJ, on behalf of Bergen COVID-19 research group. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PLoS One 2022; 17:e0261979. [PMID: 35192617 PMCID: PMC8863217 DOI: 10.1371/journal.pone.0261979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neutralizing antibodies are important for protection against the pandemic SARS-CoV-2 virus, and long-term memory responses determine the risk of re-infection or boosting after vaccination. T-cellular responses are considered important for partial protection against novel variants of concern. Methods A prospective cohort of hospitalized (n = 14) and community (n = 38) patients with rt-PCR confirmed SARS-CoV-2 infection were recruited. Blood samples and clinical data were collected when diagnosed and at 6 months. Serum samples were analyzed for SARS-CoV-2-spike specific antibodies using ELISA (IgG, IgA, IgM), pseudotype neutralization and microneutralization assays. Peripheral blood mononuclear cells were investigated for virus-specific T-cell responses in the interferon-γ and interleukin-2 fluorescent-linked immunosorbent spot (FluroSpot) assay. Results We found durable SARS-CoV-2 spike- and internal protein specific T-cellular responses in patients with persistent antibodies at 6 months. Significantly higher IL-2 and IFN-γ secreting T-cell responses as well as SARS-CoV-2 specific IgG and neutralizing antibodies were detected in hospitalized compared to community patients. The immune response was impacted by age, gender, comorbidity and severity of illness, reflecting clinical observations. Conclusions SARS-CoV-2 specific T-cellular and antibody responses persisted for 6 months post confirmed infection. In previously infected patients, re-exposure or vaccination will boost long-term immunity, possibly providing protection against re-infection with variant viruses.
Collapse
Affiliation(s)
- Kristin G.-I. Mohn
- Influenza Centre, Bergen, Norway
- Department of Medicine, Bergen, Norway
- * E-mail:
| | | | - Fan Zhou
- Influenza Centre, Bergen, Norway
| | | | | | | | | | - Karl A. Brokstad
- Department of Clinical Science, Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Nina Langeland
- Influenza Centre, Bergen, Norway
- Department of Medicine, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Bergen, Norway
| | - Rebecca J. Cox
- Influenza Centre, Bergen, Norway
- Department of Microbiology, Bergen, Norway
| | | |
Collapse
|
36
|
Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou CH, Mettelman RC, Allison KJ, Lin CY, Brice DC, Zhu X, Vegesana K, Wu G, Trivedi S, Kottapalli P, Darnell D, McNeely S, Olsen SR, Schultz-Cherry S, Estepp JH, the SJTRC Study Team, McGargill MA, Wolf J, Thomas PG. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8 T cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.07.12.21260227. [PMID: 34341799 PMCID: PMC8328067 DOI: 10.1101/2021.07.12.21260227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the ex vivo profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection. We found that the order of exposure determined the relative distribution between spike- and non-spike-specific responses, with vaccination after infection leading to further expansion of spike-specific T cells and differentiation to a CCR7-CD45RA+ effector phenotype. In contrast, individuals experiencing a breakthrough infection mount vigorous non-spike-specific responses. In-depth analysis of over 4,000 epitope-specific T cell receptor sequences demonstrates that all types of exposures elicit diverse repertoires characterized by shared, dominant TCR motifs, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and that current vaccination protocols continue to expand and differentiate spike-specific memory responses.
Collapse
Affiliation(s)
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Allison M. Kirk
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kim J. Allison
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Xun Zhu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kasi Vegesana
- Information Services, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Suzanne McNeely
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jeremie H. Estepp
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
37
|
Møhlenberg M, Monrad I, Vibholm LK, Nielsen SSF, Frattari GS, Schleimann MH, Olesen R, Kjolby M, Gunst JD, Søgaard OS, O'Brien TR, Tolstrup M, Hartmann R. The Impact of IFNλ4 on the Adaptive Immune Response to SARS-CoV-2 Infection. J Interferon Cytokine Res 2021; 41:407-414. [PMID: 34788130 DOI: 10.1089/jir.2021.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic polymorphisms at the IFNL4 loci are known to influence the clinical outcome of several different infectious diseases. Best described is the association between the IFNL4 genotype and hepatitis C virus clearance. However, an influence of the IFNL4 genotype on the adaptive immune system was suggested by several studies but never investigated in humans. In this cross-sectional study, we have genotyped 201 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive participants for 3 IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) and stratified them according to the IFNλ4 activity. Based on this stratification, we investigated the association between the IFNL4 genotype and the antibody as well as the CD8+ T cell response in the acute phase of the SARS-CoV-2 infection. We observed no differences in the genotype distribution compared with a Danish reference cohort or the 1,000 Genome Project, and we were not able to link the IFNL4 genotype to changes in either the antibody or CD8+ T cell responses of these patients.
Collapse
Affiliation(s)
- Michelle Møhlenberg
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Line K Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Stine S F Nielsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Mads Kjolby
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.,DANDRITE, Deptarment of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aalborg, Denmark.,University of Dundee, Scotland, United Kingdom
| | | | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
38
|
Jearanaiwitayakul T, Apichirapokey S, Chawengkirttikul R, Limthongkul J, Seesen M, Jakaew P, Trisiriwanich S, Sapsutthipas S, Sunintaboon P, Ubol S. Peritoneal Administration of a Subunit Vaccine Encapsulated in a Nanodelivery System Not Only Augments Systemic Responses against SARS-CoV-2 but Also Stimulates Responses in the Respiratory Tract. Viruses 2021; 13:v13112202. [PMID: 34835008 PMCID: PMC8617950 DOI: 10.3390/v13112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic has currently created an unprecedented threat to human society and global health. A rapid mass vaccination to create herd immunity against SARS-CoV-2 is a crucial measure to ease the spread of this disease. Here, we investigated the immunogenicity of a SARS-CoV-2 subunit vaccine candidate, a SARS-CoV-2 spike glycoprotein encapsulated in N,N,N-trimethyl chitosan particles or S-TMC NPs. Upon intraperitoneal immunization, S-TMC NP-immunized mice elicited a stronger systemic antibody response, with neutralizing capacity against SARS-CoV-2, than mice receiving the soluble form of S-glycoprotein. S-TMC NPs were able to stimulate the circulating IgG and IgA as found in SARS-CoV-2-infected patients. In addition, spike-specific T cell responses were drastically activated in S-TMC NP-immunized mice. Surprisingly, administration of S-TMC NPs via the intraperitoneal route also stimulated SARS-CoV-2-specific immune responses in the respiratory tract, which were demonstrated by the presence of high levels of SARS-CoV-2-specific IgG and IgA in the lung homogenates and bronchoalveolar lavages of the immunized mice. We found that peritoneal immunization with spike nanospheres stimulates both systemic and respiratory mucosal immunity.
Collapse
Affiliation(s)
- Tuksin Jearanaiwitayakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Suttikarn Apichirapokey
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Runglawan Chawengkirttikul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Phissinee Jakaew
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Sakalin Trisiriwanich
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.T.); (S.S.)
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.T.); (S.S.)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand;
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
- Correspondence:
| |
Collapse
|
39
|
Mild SARS-CoV-2 Illness Is Not Associated with Reinfections and Provides Persistent Spike, Nucleocapsid, and Virus-Neutralizing Antibodies. Microbiol Spectr 2021; 9:e0008721. [PMID: 34468184 PMCID: PMC8557889 DOI: 10.1128/spectrum.00087-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncertainty exists whether mild COVID-19 confers immunity to reinfection. Questions also remain regarding the persistence of antibodies against SARS-CoV-2 after mild infection. We prospectively followed at-risk individuals with and without SARS-CoV-2 for reinfection and monitored the spike and nucleocapsid antibodies. This prospective cohort study was conducted over two visits, 3 to 6 months apart, between May 2020 and February 2021. Adults with and without COVID-19, verified by FDA EUA-approved SARS-CoV-2 RT-PCR assays, were screened for spike and nucleocapsid antibody responses using FDA EUA-approved immunoassays and for pseudoviral neutralization activity. The subjects were monitored for symptoms, exposure to COVID-19, COVID-19 testing, seroconversion, reinfection, and vaccination. A total of 653 subjects enrolled; 129 (20%) had a history of COVID-19 verified by RT-PCR at enrollment. Most had mild disease, with only three requiring hospitalization. No initially seropositive subjects experienced a subsequent COVID-19 infection during the follow-up versus 15 infections among initially seronegative subjects (infection rates of 0.00 versus 2.05 per 10,000 days at risk [P = 0.0485]). In all, 90% of SARS-CoV-2-positive subjects produced spike and nucleocapsid responses, and all but one of these had persistent antibody levels at follow-up. Pseudoviral neutralization activity was widespread among participants, did not decrease over time, and correlated with clinical antibody assays. Reinfection with SARS-CoV-2 was not observed among individuals with mild clinical COVID-19, while infections continued in a group without known prior infection. Spike and nucleocapsid COVID-19 antibodies were associated with almost all infections and persisted at stable levels for the study duration. IMPORTANCE This article demonstrates that people who have mild COVID-19 illnesses and produce antibodies are protected from reinfection for up to 6 months afterward. The antibodies that people produce in this situation are stable for up to 6 months as well. Clinical antibody assays correlate well with evidence of antibody-related viral neutralization activity.
Collapse
|
40
|
Tiyo BT, Schmitz GJH, Ortega MM, da Silva LT, de Almeida A, Oshiro TM, Duarte AJDS. What Happens to the Immune System after Vaccination or Recovery from COVID-19? Life (Basel) 2021; 11:1152. [PMID: 34833028 PMCID: PMC8619084 DOI: 10.3390/life11111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to its leading role in fighting infections, the human immune system has been the focus of many studies in the context of Coronavirus disease 2019 (COVID-19). In a worldwide effort, the scientific community has transitioned from reporting about the effects of the novel coronavirus on the human body in the early days of the pandemic to exploring the body's many immunopathological and immunoprotecting properties that have improved disease treatment and enabled the development of vaccines. The aim of this review is to explain what happens to the immune system after recovery from COVID-19 and/or vaccination against SARS-CoV-2, the virus that causes the disease. We detail the way in which the immune system responds to a SARS-CoV-2 infection, including innate and adaptive measures. Then, we describe the role of vaccination, the main types of COVID-19 vaccines and how they protect us. Further, we explain the reason why immunity after COVID-19 infection plus a vaccination appears to induce a stronger response compared with virus exposure alone. Additionally, this review reports some correlates of protection from SARS-CoV-2 infection. In conclusion, we reinforce that vaccination is safe and important in achieving herd immunity.
Collapse
|
41
|
Glöckner S, Hornung F, Baier M, Weis S, Pletz MW, Deinhardt-Emmer S, Löffler B, the CoNAN Study Group. Robust Neutralizing Antibody Levels Detected after Either SARS-CoV-2 Vaccination or One Year after Infection. Viruses 2021; 13:v13102003. [PMID: 34696428 PMCID: PMC8537517 DOI: 10.3390/v13102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Humoral immunity after infection or after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been attributed a key part in mitigating the further transmission of the virus. In this study, we used a commercial anti-Spike immunoglobulin G (S-IgG) assay and developed a cell culture-based neutralization assay to understand the longitudinal course of neutralizing antibodies in both SARS-CoV2 infected or vaccinated individuals. We show that even more than one year after infection, about 78% of observed study participants remained seropositive concerning S-IgG antibodies. In addition, the serum of the individuals had stable neutralization capacity in a neutralization assay against a SARS-CoV-2 patient isolate from March 2020. We also examined volunteers after either homologous BNT162b2 prime-boost vaccination or heterologous AZD1222 prime/mRNA-based booster vaccination. Both the heterologous and the homologous vaccination regimens induced higher levels of neutralizing antibodies in healthy subjects when compared to subjects after a mild infection, showing the high effectiveness of available vaccines. In addition, we could demonstrate the reliability of S-IgG levels in predicting neutralization capacity, with 94.8% of seropositive samples showing a neutralization titer of ≥10, making it a viable yet cheap and easy-to-determine surrogate parameter for neutralization capacity.
Collapse
Affiliation(s)
- Stefan Glöckner
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.H.); (M.B.); (S.D.-E.); (B.L.)
- Correspondence:
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.H.); (M.B.); (S.D.-E.); (B.L.)
| | - Michael Baier
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.H.); (M.B.); (S.D.-E.); (B.L.)
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (S.W.); (M.W.P.)
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (S.W.); (M.W.P.)
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.H.); (M.B.); (S.D.-E.); (B.L.)
- Leibniz Centre for Photonics in Infection Research (LPI), 07747 Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.H.); (M.B.); (S.D.-E.); (B.L.)
| | | |
Collapse
|
42
|
Tsatsakis A, Vakonaki E, Tzatzarakis M, Flamourakis M, Nikolouzakis TK, Poulas K, Papazoglou G, Hatzidaki E, Papanikolaou NC, Drakoulis N, Iliaki E, Goulielmos GN, Kallionakis M, Lazopoulos G, Kteniadakis S, Alegkakis A, Farsalinos K, Spandidos DA. Immune response (IgG) following full inoculation with BNT162b2 COVID‑19 mRNA among healthcare professionals. Int J Mol Med 2021; 48:200. [PMID: 34515322 PMCID: PMC8448546 DOI: 10.3892/ijmm.2021.5033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Soon after the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in December, 2019, numerous research teams, assisted by vast capital investments, achieved vaccine development in a fraction of time. However, almost 8 months following the initiation of the European vaccination programme, the need for prospective monitoring of the vaccine-induced immune response, its determinants and related side-effects remains a priority. The present study aimed to quantify the immune response following full vaccination with the BNT162b2 coronavirus disease 2019 (COVID-19) mRNA vaccine by measuring the levels of immunoglobulin G (IgG) titers in healthcare professionals. Moreover, common side-effects and factors associated with IgG titers were identified. For this purpose, blood samples from 517 individuals were obtained and analysed. Blood sampling was performed at a mean period of 69.0±23.5 days following the second dose of the vaccine. SARS-CoV-2 IgG titers had an overall mean value of 4.23±2.76. Females had higher titers than males (4.44±2.70 and 3.89 ±2.84, respectively; P=0.007), while non-smokers had higher titers than smokers (4.48±2.79 and 3.80±2.64, respectively; P=0.003). An older age was also associated with lower antibody titers (P<0.001). Moreover, the six most prevalent adverse effects were pain at the injection site (72.1%), generalized fatigue (40.5%), malaise (36.3%), myalgia (31,0%), headache (25.8%) and dizziness/weakness (21.6%). The present study demonstrated that the immune response after receiving the BNT162b2 COVID-19 mRNA vaccine is dependent on various modifiable and non-modifiable factors. Overall, the findings of the present study highlight two key aspects of the vaccination programs: First, the need for prospective immunosurveillance studies in order to estimate the duration of immunity, and second, the need to identify those individuals who are at a greater risk of developing low IgG titers in order to evaluate the need for a third dose of the vaccine.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Matthaios Flamourakis
- Department of General Surgery, Venizeleion General Hospital, 71409 Heraklion, Greece
| | | | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500 Rio‑Patras, Greece
| | - Georgios Papazoglou
- Department of Emergency Medicine, Venizeleion General Hospital, 71409 Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit, University Hospital of Heraklion, 71500 Heraklion, Greece
| | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Evangelia Iliaki
- Department of Internal Medicine, Venizeleion General Hospital, 71409 Heraklion, Greece
| | - Georgios N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Manolis Kallionakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiothoracic Surgery, University Hospital of Heraklion, 71500 Heraklion, Greece
| | | | - Athanasios Alegkakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Konstantinos Farsalinos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500 Rio‑Patras, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
43
|
Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Front Immunol 2021; 12:730051. [PMID: 34566990 PMCID: PMC8455995 DOI: 10.3389/fimmu.2021.730051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.
Collapse
Affiliation(s)
- Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
44
|
Paul E, Brown GW, Dechamps M, Kalk A, Laterre PF, Rentier B, Ridde V, Zizi M. COVID-19: an 'extraterrestrial' disease? Int J Infect Dis 2021; 110:155-159. [PMID: 34325044 PMCID: PMC8312087 DOI: 10.1016/j.ijid.2021.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Since the beginning of the pandemic, COVID-19 has been regarded as an exceptional disease. Control measures have exclusively focused on 'the virus', while failing to account for other biological and social factors that determine severe forms of the disease. AIM We argue that although COVID-19 was initially considered a new challenge, justifying extraordinary response measures, this situation has changed - and so should our response. MAIN ARGUMENTS We now know that COVID-19 shares many features of common infectious respiratory diseases, and can now ascertain that SARS-CoV-2 has not suddenly presented new problems. Instead, it has exposed and exacerbated existing problems in health systems and the underlying health of the population. COVID-19 is evidently not an 'extraterrestrial' disease. It is a complex zoonotic disease, and it needs to be managed as such, following long-proven principles of medicine and public health. CONCLUSION A complex disease cannot be solved through a simple, magic-bullet cure or vaccine. The heterogeneity of population profiles susceptible to developing a severe form of COVID-19 suggests the need to adopt varying, targeted measures that are able to address risk profiles in an appropriate way. The critical role of comorbidities in disease severity calls for short-term, virus-targeted interventions to be complemented with medium-term policies aimed at reducing the burden of comorbidities, as well as mitigating the risk of transition from infection to disease. Strategies required include upstream prevention, early treatment, and consolidation of the health system.
Collapse
Affiliation(s)
- Elisabeth Paul
- School of Public Health, Université Libre de Bruxelles, Brussels, Belgium.
| | | | - Mélanie Dechamps
- Cardiovascular ICU, St-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Andreas Kalk
- Kinshasa Country Office, Deutsche Gesellschaft für Internationale Zusammenarbeit, Kinshasa, Democratic Republic of the Congo
| | - Pierre-François Laterre
- Department of Critical Care Medicine, St-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Rentier
- Rector Emeritus, Prof. Em. Virology & Viral Immunology, Université de Liège, Belgium
| | - Valéry Ridde
- CEPED, Institute for Research on Sustainable Development (IRD), IRD-Université de Paris, ERL INSERM SAGESUD, Paris, France
| | - Martin Zizi
- CEO, Aerendir Mobile Inc., Mountain View, CA, USA; formerly Prof. at VUB (Brussels) and KULeuven, ex-CSO Belgian Ministry of Defense
| |
Collapse
|
45
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Quadeer AA, Ahmed SF, McKay MR. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell Rep Med 2021; 2:100312. [PMID: 34056627 PMCID: PMC8139281 DOI: 10.1016/j.xcrm.2021.100312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.
Collapse
Affiliation(s)
- Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
47
|
Monrad I, Sahlertz SR, Nielsen SSF, Pedersen LØ, Petersen MS, Kobel CM, Tarpgaard IH, Storgaard M, Mortensen KL, Schleimann MH, Tolstrup M, Vibholm LK. Persistent Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Immunocompromised Host Displaying Treatment Induced Viral Evolution. Open Forum Infect Dis 2021; 8:ofab295. [PMID: 34258320 PMCID: PMC8244814 DOI: 10.1093/ofid/ofab295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
We report a coronavirus disease 2019 case with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persisting beyond 333 days in an immunocompromised patient with chronic lymphocytic leukemia, asymptomatically carrying infectious SARS-CoV-2 at day 197 postdiagnosis. In addition, viral sequencing indicates major changes in the spike protein over time, temporally associated with convalescent plasma treatment.
Collapse
Affiliation(s)
- Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Stine Sofie Frank Nielsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Carl Mathias Kobel
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line K Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|