1
|
|
Belloso Daza MV, Scarsi A, Gatto F, Rocchetti G, Pompa PP, Cocconcelli PS. Role of Platinum Nanozymes in the Oxidative Stress Response of Salmonella Typhimurium. Antioxidants (Basel) 2023; 12:1029. [PMID: 37237895 DOI: 10.3390/antiox12051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Platinum nanoparticles (PtNPs) are being intensively explored as efficient nanozymes due to their biocompatibility coupled with excellent catalytic activities, which make them potential candidates as antimicrobial agents. Their antibacterial efficacy and the precise mechanism of action are, however, still unclear. In this framework, we investigated the oxidative stress response of Salmonella enterica serovar Typhimurium cells when exposed to 5 nm citrate coated PtNPs. Notably, by performing a systematic investigation that combines the use of a knock-out mutant strain 12023 HpxF- with impaired response to ROS (ΔkatE ΔkatG ΔkatN ΔahpCF ΔtsaA) and its respective wild-type strain, growth experiments in both aerobic and anaerobic conditions, and untargeted metabolomic profiling, we were able to disclose the involved antibacterial mechanisms. Interestingly, PtNPs exerted their biocidal effect mainly through their oxidase-like properties, though with limited antibacterial activity on the wild-type strain at high particle concentrations and significantly stronger action on the mutant strain, especially in aerobic conditions. The untargeted metabolomic analyses of oxidative stress markers revealed that 12023 HpxF- was not able to cope with PtNPs-based oxidative stress as efficiently as the parental strain. The observed oxidase-induced effects comprise bacterial membrane damage as well as lipid, glutathione and DNA oxidation. On the other hand, in the presence of exogenous bactericidal agents such as hydrogen peroxide, PtNPs display a protective ROS scavenging action, due to their efficient peroxidase mimicking activity. This mechanistic study can contribute to clarifying the mechanisms of PtNPs and their potential applications as antimicrobial agents.
Collapse
Affiliation(s)
- Mireya Viviana Belloso Daza
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Anna Scarsi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso, 16146 Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DiANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
2
|
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2023;:1-27. [PMID: 37046039 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
3
|
|
Li Y, Wang P, Chen M, Chen J, Huang W, Xiang S, Zhao S, Fu F, Liu X. A facile and scalable strategy for constructing Janus cotton fabric with persistent antibacterial activity. Int J Biol Macromol 2023; 236:123946. [PMID: 36889617 DOI: 10.1016/j.ijbiomac.2023.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Natural cotton fibers have attached considerable attention due to their excellent wearing comfort, breathability and warmth. However, it remains a challenge to devise a scalable and facile strategy to retrofit natural cotton fibers. Here, the cotton fiber surface was oxidized by sodium periodate with a mist process, then [2-(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was co-polymerized with hydroxyethyl acrylate (HA) to obtain an antibacterial cationic polymer (DMC-co-HA). The self-synthesized polymer was covalently grafted onto the aldehyde-functionalized cotton fibers via an acetal reaction between hydroxyl groups of the polymer and aldehyde groups of the oxidized cotton surface. Finally, the resulted Janus functionalized cotton fabric (JanCF) revealed robust and persistent antimicrobial activity. The antibacterial test showed that when the molar ratio of DMC/HA was 50: 1, JanCF possessed the best BR (bacterial reduction) values of 100 % against Escherichia coli and Staphylococcus aureus. Furthermore, the BR values could be maintained over 95 % even after the durability test. In addition, JanCF exhibited excellent antifungal activity against Candida albicans. The cytotoxicity assessment confirmed that JanCF exhibited a reliable safety effect on human skin. Particularly, the intrinsic outstanding characteristics (strength, flexibility, etc.) of the cotton fabric were not considerably deteriorated compared to the control samples.
Collapse
Affiliation(s)
- Yong Li
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pei Wang
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maoshuang Chen
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinlin Chen
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenjia Huang
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuangfei Xiang
- Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, People's Republic of China
| | - Shujun Zhao
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
|
Althobaiti F, Abu Ali OA, Kamal I, Alfaifi MY, Shati AA, Fayad E, Elbehairi SEI, Elshaarawy RFM, El-Fattah WA. New Ionic Liquid Microemulsion-Mediated Synthesis of Silver Nanoparticles for Skin Bacterial Infection Treatments. Antibiotics (Basel) 2023; 12. [PMID: 36830157 DOI: 10.3390/antibiotics12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This work reports a new approach for the synthesis of extremely small monodispersed silver nanoparticles (AgNPs) (2.9-1.5) by reduction of silver nitrate in a new series of benzyl alkyl imidazolium ionic liquids (BAIILs)-based microemulsions (3a-f) as media and stabilizing agents. Interestingly, AgNPs isolated from the IILMEs bearing the bulkiest substituents (tert-butyl and n-butyl) (3f) displayed almost no nanoparticle agglomeration. In an in vitro antibacterial test against ESKAPE pathogens, all AgNPs-BAIILs had potent antibiotic activity, as reflected by antibacterial efficiency indices. Furthermore, when compared to other nanoparticles, these were the most effective in preventing biofilm formation by the tested bacterial strains. Moreover, the MTT assay was used to determine the cytotoxicity of novel AgNPs-BAIILs on healthy human skin fibroblast (HSF) cell lines. The MTT assay revealed that novel AgNPs-BAIILs showed no significant toxic effects on the healthy cells. Thus, the novel AgNPs-BAIILs microemulsions could be used as safe antibiotics for skin bacterial infection treatments. AgNPs isolated from BAIIL (3c) was found to be the most effective antibiotic of the nanoparticles examined.
Collapse
|
5
|
|
Zhao M, Liu M, Yao J, Li W, Li C, Zhang Q, Zhang Z, Wang W. Preparation of a Bi(6)O(5)(OH)(3)(NO(3))(5)·2H(2)O/AgBr composite and its long-lasting antibacterial efficacy. RSC Adv 2023; 13:1216-22. [PMID: 36686931 DOI: 10.1039/d2ra07447h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A novel Bi6O5(OH)3(NO3)5·2H2O/AgBr (6535BBN/AgBr) composite with long-lasting antibacterial efficacy was prepared. The microstructure of the composite was characterized. AgBr nanoparticles (NPs) were sandwiched in 6535BBN nanosheets (NSs) or loaded on their surfaces. The utilization of 6535BBN as carriers contributed to the long-term lasting antibacterial activity of the composite after storage in water or 0.9% NaCl. The antibacterial activity was evaluated by inhibition zones against E. coli. The inhibition zone diameters of 6535BBN/AgBr stored in water for 0 h, 8 h, 16 h, and 48 h were measured as 22.50, 21.71, 20.43, and 20.29 mm, respectively. The activity of the composite after storage in water for 48 h remained 90.2% of that in the beginning. After storing in 0.9% NaCl for 16 h, the activity was determined to be 90.1% of that in the beginning. In comparison with the rapid decrease in the antibacterial activity of pure AgBr, the slow reduction of 6535BBN/AgBr after storage indicates long-lasting efficacy. The excellent dispersion states of 6535BBN/AgBr powders after storage in solutions were revealed, and the positive relationship between the dispersion state and its long-lasting antibacterial activity was suggested. Based on the unique load-on-carrier (LOC) structure, the long-lasting antibacterial performance was promoted by the synergy of the sharp-edge-cutting effect of 6535BBN NSs, prolonged ROS antibacterial effect, and restrained sterilization effects of silver ions caused by their slow release.
Collapse
Affiliation(s)
- Mei Zhao
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Mengchen Liu
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Jinfeng Yao
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Wenyu Li
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Chengdong Li
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Qian Zhang
- College of Materials Science and Engineering, Qingdao University of Science and TechnologyQingdao 266042China
| | - Zhihua Zhang
- School of Materials Science and Engineering, Dalian Jiaotong UniversityDalian 116028China
| | - Wenjun Wang
- Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijing 100190China
| |
Collapse
|
6
|
|
Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics 2022; 14. [PMID: 36559152 DOI: 10.3390/pharmaceutics14122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The widespread occurrence of bacterial infections and their increased resistance to antibiotics has led to the development of antimicrobial coatings for multiple medical implants. Owing to their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents. This systematic investigation sought to analyze the antibacterial effects of implant material surfaces modified with AuNPs. The data from 27 relevant studies were summed up. The included articles were collected from September 2011 to September 2021. According to the retrieved literature, we found that medical implants modified by AuNPs have good antibacterial effects against gram-positive and gram-negative bacteria, and the antibacterial effects would be improved by near-infrared (NIR) radiation.
Collapse
Affiliation(s)
- Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jianglong Yan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| |
Collapse
|
7
|
|
Naskar A, Kim K. Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications. Pharmaceutics 2022; 14:2343. [PMID: 36365161 DOI: 10.3390/pharmaceutics14112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Photo-stimuli-responsive therapeutic nanomaterials have gained widespread attention as frontline materials for biomedical applications. The photoactivation strategies are classified as single-modality (based on either reactive oxygen species (ROS)-based photodynamic therapy (PDT), hyperthermia-based photothermal therapy (PTT)), or dual-modality (which combines PDT and PTT). Due to its minimal invasiveness, phototherapy has been extensively applied as an efficient therapeutic platform for many diseases, including skin cancers. However, extensive implementation of phototherapy to address the emergence of multidrug-resistant (MDR) bacterial infections remains challenging. This review focuses on copper sulfide (CuS) nanomaterials as efficient and cost-effective PDT and PTT therapeutic nanomaterials with antibacterial activity. The features and merits of CuS nanomaterials as therapeutics are compared to those of other nanomaterials. Control of the dimensions and morphological complexity of CuS nanomaterials through judicious synthesis is then introduced. Both the in vitro antibacterial activity and the in vivo therapeutic effect of CuS nanomaterials and derivative nanocomposites composed of 2D nanomaterials, polymers, metals, metal oxides, and proteins are described in detail. Finally, the perspective of photo-stimuli-responsive CuS nanomaterials for future clinical antibacterial applications is highlighted. This review illustrates that CuS nanomaterials are highly effective, low-toxic, and environmentally friendly antibacterial agents or platform nanomaterials for combatting MDR bacterial infections.
Collapse
|
8
|
|
Fathi P, Roslend A, Alafeef M, Moitra P, Dighe K, Esch MB, Pan D. In Situ Surface-Directed Assembly of 2D Metal Nanoplatelets for Drug-Free Treatment of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2022; 11:e2102567. [PMID: 35856392 DOI: 10.1002/adhm.202102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of antibiotic resistance among bacterial strains is a major global public health concern. To address this, drug-free antibacterial approaches are needed. Copper surfaces have long been known for their antibacterial properties. In this work, a one-step surface modification technique is used to assemble 2D copper chloride nanoplatelets directly onto copper surfaces such as copper tape, transmission electron microscopy (TEM) grids, electrodes, and granules. The nanoplatelets are formed using copper ions from the copper surfaces, enabling their direct assembly onto these surfaces in a one-step process that does not require separate nanoparticle synthesis. The synthesis of the nanoplatelets is confirmed with TEM, scanning electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Antibacterial properties of the Cu nanoplatelets are demonstrated in multidrug-resistant (MDR) Escherichia coli, MDR Acinetobacter baumannii, MDR Staphylococcus aureus, E. coli, and Streptococcus mutans. Nanoplatelets lead to a marked improvement in antibacterial properties compared to the copper surfaces alone, affecting bacterial cell morphology, preventing bacterial cell division, reducing their viability, damaging bacterial DNA, and altering protein expression. This work presents a robust method to directly assemble copper nanoplatelets onto any copper surface to imbue it with improved antibacterial properties.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maha Alafeef
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Parikshit Moitra
- Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Mandy B Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
|
Red’ko YA, Ol’shannikova SS, Holyavka MG, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Development of a Method for Obtaining Bromelain Associates with Chitosan Micro- and Nanoparticles. Pharm Chem J 2022; 56:984-988. [DOI: 10.1007/s11094-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
|
Schabikowski M, Laskowska M, Kowalczyk P, Fedorchuk A, Szőri-dorogházi E, Németh Z, Kuźma D, Gawdzik B, Wypych A, Kramkowski K, Laskowski Ł. Functionalised Anodised Aluminium Oxide as a Biocidal Agent. Int J Mol Sci 2022; 23:8327. [PMID: 35955460 DOI: 10.3390/ijms23158327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this article, we describe the antimicrobial properties of a new composite based on anodic aluminium oxide (AAO) membranes containing propyl-copper-phosphonate units arranged at a predetermined density inside the AAO channels. The samples were prepared with four concentrations of copper ions and tested as antimicrobial drug on four different strains of Escherichia coli (K12, R2, R3 and R4). For comparison, the same strains were tested with three types of antibiotics using the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than antibiotics such as ciprofloxacin, bleomycin and cloxacillin. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA. We have also observed that the intermolecular distances between the functional units play an important role for the antimicrobial properties of the used material. Hence, we utilised the idea of the 2D solvent to tailor them.
Collapse
|
11
|
|
Abstract
Nanotechnology sculptures the current scenario of science and technology. The word nano refers ‘small’ which ranges from 10 to 100 nm in size. Silver and gold nanoparticles can be synthesized at nanoscale and have unique biological properties like antibacterial, antifungal, antiviral, antiparasitic, antiplatelet, anti-inflammatory, and anti-tumor activity. In this mini review, we shall discuss the various applications of silver and gold nanoparticles (AuNPs) in the field of therapy, imaging, biomedical devices and in cancer diagnosis. The usage of silver nanoparticles(AgNPs) in dentistry and dental implants, therapeutic abilities like wound dressings, silver impregnated catheters, ventricular drainage catheters, combating orthopedic infections, and osteointegration will be elaborated. Gold nanoparticles in recent years have garnered large importance in bio medical applications. They are being used in diagnosis and have recently seen a surge in therapeutics. In this mini review, we shall see about the various applications of AuNP and AgNP, and highlight their evolution in theranostics.
Collapse
Affiliation(s)
- R Sakthi Devi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - M Siddharth
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
12
|
|
Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Kang Lu
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
13
|
|
Abstract
Bacterial infections have seriously threatened human health and the abuse of natural or artificial antibiotics leads to bacterial resistance, so development of a new generation of antibacterial agents and treatment methods is urgent. 2D molybdenum sulfide (MoS2 ) has good biocompatibility, high specific surface area to facilitate surface modification and drug loading, adjustable energy bandgap, and high near-infrared photothermal conversion efficiency (PCE), so it is often used for antibacterial application through its photothermal or photodynamic effects. This review comprehensively summarizes and discusses the fabrication processes, structural characteristics, antibacterial performance, and the corresponding mechanisms of MoS2 -based materials as well as their representative antibacterial applications. In addition, the outlooks on the remaining challenges that should be addressed in the field of MoS2 are also proposed.
Collapse
Affiliation(s)
- Fangqian Chen
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yue Luo
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yufeng Zheng
- School of Materials Science & Engineering Peking University Beijing 100871 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science Quanzhou Normal University Quanzhou Fujian Province 362000 China
| | - Shuilin Wu
- School of Materials Science & Engineering Peking University Beijing 100871 China
| |
Collapse
|