1
|
Kihara M, Okuda R, Okada A, Ojima-Kato T, Nakano H. Evaluation of antibody variants using a ribosome display and Brevibacillus choshinensis secretion system. J Biosci Bioeng 2025; 139:457-464. [PMID: 40121162 DOI: 10.1016/j.jbiosc.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
In antibody engineering, the development of rapid and efficient strategies for improving affinity is highly necessary. In this study, we aimed to establish a method to efficiently enrich and analyze high-affinity antibody variants by combining protein synthesis using recombinant elements (PURE) ribosome display with next-generation sequencing (NGS) and Brevibacillus choshinensis secretion system using the NZ-1 antibody, which targets the PA tag peptide (GVAMPGAEDDVV) as a model antibody. From the mutated scFab library designed based on the structure, we performed a single-round of PURE ribosome display selection and analyzed the data by NGS to obtain high-affinity scFab candidates with high enrichment factor and high read counts. Subsequently, the most promising candidate was produced as a Fab in the B. choshinensis secretion system, and the purified Fab had an affinity (KD = 1.6 × 10-9 M) similar to the wild type. Overall, this study highlights the potential of the integrated PURE ribosome display with NGS analysis and the B. choshinensis secretion system for the rapid identification and analysis of high-affinity antibody variants.
Collapse
Affiliation(s)
- Monami Kihara
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Rio Okuda
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Anri Okada
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
Finney J, Kuraoka M, Song S, Watanabe A, Liang X, Liao D, Moody MA, Walter EB, Harrison SC, Kelsoe G. Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases. Vaccine 2025; 56:127157. [PMID: 40262372 DOI: 10.1016/j.vaccine.2025.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface. The cell lines are barcoded with fluorescent proteins, enabling high-throughput, 16-plex analyses of antibody binding with commonly available flow cytometers. The cell lines were at least as efficient as a Luminex multiplex binding assay at identifying NA antibodies from a library of unselected clonal IgGs derived from human memory B cells. The cell lines were also useful for measuring the magnitude and breadth of the serum antibody response elicited by experimental infection of rhesus macaques with influenza virus. The membrane-anchored NAs are catalytically active and are compatible with established sialidase activity assays. NA-expressing K530 cell lines therefore represent a useful tool for studying NA immunity and evaluating influenza vaccine efficacy.
Collapse
Affiliation(s)
- Joel Finney
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Shengli Song
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - M Anthony Moody
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Emmanuel B Walter
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Rao VN, Coelho CH. Public antibodies: convergent signatures in human humoral immunity against pathogens. mBio 2025; 16:e0224724. [PMID: 40237455 PMCID: PMC12077206 DOI: 10.1128/mbio.02247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The human humoral immune system has evolved to recognize a vast array of pathogenic threats. This ability is primarily driven by the immense diversity of antibodies generated by gene rearrangement during B cell development. However, different people often produce strikingly similar antibodies when exposed to the same antigen-known as public antibodies. Public antibodies not only reflect the immune system's ability to consistently select for optimal B cells but can also serve as signatures of the humoral responses triggered by infection and vaccination. In this Minireview, we examine and compare public antibody identification methods, including the identification criteria used based on V(D)J gene usage and similarity in the complementarity-determining region three sequences, and explore the molecular features of public antibodies elicited against common pathogens, including viruses, protozoa, and bacteria. Finally, we discuss the evolutionary significance and potential applications of public antibodies in informing the design of germline-targeting vaccines, predicting escape mutations in emerging viruses, and providing insights into the process of affinity maturation. The ongoing discovery of public antibodies in response to emerging pathogens holds the potential to improve pandemic preparedness, accelerate vaccine design efforts, and deepen our understanding of human B cell biology.
Collapse
Affiliation(s)
- Vishal N. Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
4
|
Molinos-Albert LM, Baquero E, Planchais C, Doceul V, El Costa H, Mottez E, Mallet V, Pol S, Albert ML, Pavio N, Alanio C, Dimitrov JD, Mouquet H. Structural basis for hepatitis E virus neutralization by potent human antibodies. SCIENCE ADVANCES 2025; 11:eadu8811. [PMID: 40333967 PMCID: PMC12057666 DOI: 10.1126/sciadv.adu8811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Antibodies targeting the hepatitis E virus (HEV) surface capsid protein (CA) are essential for infection control and resolution, yet their molecular and functional attributes remain largely elusive. We characterized 144 human HEV-CA-specific monoclonal antibodies cloned from the memory B cells of HEV-exposed individuals. Most human anti-CA antibodies cross-reacted with all HEV genotype variants, and a subset also recognized the zoonotic rat hepatitis E virus. HEV antibody repertoire was diverse and contained highly potent neutralizing antibodies binding to the CA protruding (P) domain. Structural analyses of CA protein complexed with three potent and broad HEV antibodies uncovered a neutralizing site located on monomeric P domain loops at the apex of the viral spike. These findings provide valuable insights into the protective humoral response to HEV and offer a framework for the rational design of HEV vaccines and immunotherapies.
Collapse
Affiliation(s)
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Virginie Doceul
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM-CNRS-University Toulouse III, 31024 Toulouse, France
| | - Estelle Mottez
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Vincent Mallet
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Stanislas Pol
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Matthew L. Albert
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Nicole Pavio
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Cécile Alanio
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
5
|
Wang XD, Ma BY, Lai SY, Cai XJ, Cong YG, Xu JF, Zhang PF. High-throughput strategies for monoclonal antibody screening: advances and challenges. J Biol Eng 2025; 19:41. [PMID: 40340930 PMCID: PMC12063422 DOI: 10.1186/s13036-025-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Antibodies characterized by high affinity and specificity, developed through high-throughput screening and rapid preparation, are crucial to contemporary biomedical industry. Traditional antibody preparation via the hybridoma strategy faces challenges like low efficiency, long manufacturing cycles, batch variability and labor intensity. Advances in molecular biology and gene editing technologies offer revolutionary improvements in antibody production. New high-throughput technologies like antibody library display, single B cell antibody technologies, and single-cell sequencing have significantly cut costs and boosted the efficiency of antibody development. These innovations accelerate commercial applications of antibodies, meeting the biopharmaceutical industry's evolving demands. This review explores recent advancements in high-throughput development of antibody, highlighting their potential advantages over traditional methods and their promising future.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China
| | - Bao-Ying Ma
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shi-Ying Lai
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xiang-Jing Cai
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yan-Guang Cong
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jun-Fa Xu
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China.
| | - Peng-Fei Zhang
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
6
|
Schleich FA, Bale S, Guenaga J, Ozorowski G, Àdori M, Lin X, Castro Dopico X, Wilson R, Chernyshev M, Cotgreave AT, Mandolesi M, Cluff J, Doyle ED, Sewall LM, Lee WH, Zhang S, O'Dell S, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Irvine DJ, Doria-Rose NA, Corcoran M, Carnathan D, Silvestri G, Wilson IA, Ward AB, Karlsson Hedestam GB, Wyatt RT. Vaccination of nonhuman primates elicits a broadly neutralizing antibody lineage targeting a quaternary epitope on the HIV-1 Env trimer. Immunity 2025:S1074-7613(25)00173-6. [PMID: 40339576 DOI: 10.1016/j.immuni.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 05/10/2025]
Abstract
The elicitation of cross-neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) by vaccination remains a major challenge. Here, we immunized previously Env-immunized nonhuman primates with a series of near-native trimers that possessed N-glycan deletions proximal to the conserved CD4 binding site (CD4bs) to focus B cells to this region. Following heterologous boosting with fully glycosylated trimers, we detected tier 2 cross-neutralizing activity in the serum of several animals. Isolation of 185 matched heavy- and light-chain sequences from Env-binding memory B cells from an early responder identified a broadly neutralizing antibody lineage, LJF-0034, which neutralized nearly 70% of an 84-member HIV-1 global panel. High-resolution cryoelectron microscopy (cryo-EM) structures revealed a bifurcated binding mode that bridged the CD4bs to V3 across the gp120:120 interface on two adjacent protomers, evading the proximal N276 glycan impediment to the CD4bs, allowing neutralization breadth. This quaternary epitope defines a potential target for future HIV-1 vaccine development.
Collapse
Affiliation(s)
| | - Shridhar Bale
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Javier Guenaga
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaohe Lin
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Richard Wilson
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alma Teresia Cotgreave
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jocelyn Cluff
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Esmeralda D Doyle
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Leigh M Sewall
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Wen-Hsin Lee
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Shiyu Zhang
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon S Healy
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Deuk Lim
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa R Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elana Ben-Akiva
- MIT, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Cambridge, MA, USA
| | - Darrell J Irvine
- MIT, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Cambridge, MA, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Diane Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ian A Wilson
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Andrew B Ward
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | | | - Richard T Wyatt
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA.
| |
Collapse
|
7
|
Mantus GE, Cerutti G, Chambers M, Gillespie RA, Shimberg GD, Spangler A, Gorman J, Zhou T, Shen CH, Kanekiyo M, Kwong PD, Shapiro L, Andrews SF. Distinct binding modes drive the broad neutralization profile of two persistent influenza hemagglutinin stem-specific antibody lineages. Structure 2025; 33:869-877.e7. [PMID: 40112805 PMCID: PMC12049187 DOI: 10.1016/j.str.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Elicitation of antibodies to the influenza hemagglutinin stem is a critical part of universal influenza vaccine strategies. While numerous broadly reactive stem antibodies have been isolated, our understanding of how these antibodies mature within the human B cell repertoire is limited. Here, we isolated and tracked two stem-specific antibody lineages over a decade in a single participant that received multiple seasonal and pandemic influenza vaccinations. Despite similar binding and neutralization profiles, antibodies from these lineages utilized fundamentally different interactions to engage the central epitope on the influenza stem. Structural analysis of an unmutated common ancestor from one lineage identified critical residues that were the main drivers of increased affinity and breadth to group 1 influenza subtypes. These observations demonstrate the heterogeneous pathways by which stem-specific antibodies can mature within the human B cell repertoire.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Influenza Vaccines/immunology
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Crystallography, X-Ray
Collapse
Affiliation(s)
- Grace E Mantus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abby Spangler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Li H, Pham MC, Teng J, O'Connor KC, Noviello CM, Hibbs RE. Autoimmune mechanisms elucidated through muscle acetylcholine receptor structures. Cell 2025; 188:2390-2406.e20. [PMID: 40203823 DOI: 10.1016/j.cell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Skeletal muscle contraction is triggered by acetylcholine (ACh) binding to its ionotropic receptors (AChRs) at neuromuscular junctions. In myasthenia gravis (MG), autoantibodies target AChRs, disrupting neurotransmission and causing muscle weakness. While treatments exist, variable patient responses suggest pathogenic heterogeneity. Progress in understanding the molecular basis of MG has been limited by the absence of structures of intact human muscle AChRs. Here, we present high-resolution cryoelectron microscopy (cryo-EM) structures of the human adult AChR in different functional states. Using six MG patient-derived monoclonal antibodies, we mapped distinct epitopes involved in diverse pathogenic mechanisms, including receptor blockade, internalization, and complement activation. Electrophysiological and binding assays revealed how these autoantibodies directly inhibit AChR channel activation. These findings provide critical insights into MG immunopathogenesis, uncovering unrecognized antibody epitope diversity and modes of receptor inhibition, and provide a framework for developing personalized therapies targeting antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Kobiyama K, Utsumi D, Kaku Y, Sasaki E, Yasui F, Okamura T, Onodera T, Tobuse AJ, Sakkour A, Amiry AF, Hayashi T, Temizoz B, Liu K, Negishi H, Toyama-Sorimachi N, Kohara M, Sawasaki T, Takagi J, Sato K, Takahashi Y, Yasutomi Y, Ishii KJ. Immunological analysis of LC16m8 vaccine: preclinical and early clinical insights into mpox. EBioMedicine 2025; 115:105703. [PMID: 40239465 PMCID: PMC12020844 DOI: 10.1016/j.ebiom.2025.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The global mpox outbreak (2022-2024) highlights the need for effective and safe vaccines, particularly for vulnerable populations. The LC16m8 vaccine, an attenuated vaccinia virus strain for smallpox, shows promise in inducing immunity against the monkeypox virus (MPXV). METHODS We conducted a comprehensive immunological evaluation of LC16m8 in mice, non-human primates, and humans. FINDINGS LC16m8 induced strong humoural responses in BALB/c, C57BL/6J, and CAST/EiJ mice, targeting MPXV H3, A35, and M1R antigens, promoting germinal centre B cells and follicular helper T cells, essential for long-term immunity. Vaccinated CAST/EiJ mice showed reduced lung MPXV viral loads, demonstrating efficacy. In humans, LC16m8 enhanced neutralising antibodies against multiple MPXV clades, suggesting broad protection. In cynomolgus monkeys, systemic administration caused localised pox lesions without significantly affecting weight, temperature, or haematological parameters. INTERPRETATION This cross-species immunological analysis provides preclinical and early clinical insights into LC16m8's efficacy and safety against mpox. While LC16m8 enhanced antibody responses against MPXV clade Ia and Ib, further studies are required to evaluate its efficacy, particularly in naive and immunocompromised populations. FUNDING This research was supported by AMED under Grant Numbers JP243fa727002, JP243fa727001s0703, and JP243fa627001h0003 (K.J.I), JP24jf0126002, JP24fk0108690, JP243fa627001h0003, and JP243fa727002 (K.S), JP243fa727002 (Y.T.), JP243fa727002 and JP243fa627007h0003 (Y.Y.), and by the Research Support Project for Life Science and Drug Discovery (BINDS) from AMED under Grant Number JP23ama121011 (J.T.), and JP23ama121010 (T.S.), and by the Ministry of Education, Culture, Sports, Science and Technology in Japan under Grant Number 23K06577 (E.S.). AMED under Grant Number JP233fa827017 and JP243fa827017 (F.Y.), JP22fk0108501 (M.K.).
Collapse
Affiliation(s)
- Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Utsumi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Yu Kaku
- Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asuka Joy Tobuse
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Areej Sakkour
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ahmad Faisal Amiry
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaiwen Liu
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Negishi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kei Sato
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Durham ND, Jain A, Howard A, Luban J, Munro JB. Molecular basis for the increased fusion activity of the Ebola virus glycoprotein epidemic variant A82V: Insights from simulations and experiments. Cell Rep 2025; 44:115521. [PMID: 40186866 PMCID: PMC12087377 DOI: 10.1016/j.celrep.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic in Western Africa, an A82V mutation emerged in the envelope glycoprotein (GP) that persisted in most circulating isolates. Previous studies demonstrated that A82V increased GP-mediated membrane fusion and altered its dependence on host factors. The mechanistic basis for these observations, in particular the impact of A82V on the conformational changes in GP that are needed for membrane fusion, has not been evaluated in molecular detail. Here, using molecular dynamics simulations, fluorescence correlation spectroscopy, and single-molecule Förster resonance energy transfer imaging, we specify the molecular mechanism by which A82V alters GP conformation to enhance viral entry. In so doing, we identify an allosteric network of interactions that links the receptor-binding site to the fusion loop of GP. Thus, the naturally occurring A82V mutation can tune the conformational dynamics of EBOV GP to enhance fusion loop mobility and subsequent viral fusion and infectivity in human cells.
Collapse
Affiliation(s)
- Natasha D Durham
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Aastha Jain
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Angela Howard
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James B Munro
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Sun B, Fernandes D, Soltys J, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin LB, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O’Connor KC, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints license pathogenic memory B cells in CASPR2-antibody encephalitis. SCIENCE ADVANCES 2025; 11:eadr9986. [PMID: 40238887 PMCID: PMC12002137 DOI: 10.1126/sciadv.adr9986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the development of disease-causing B cells and autoantibodies. Convention suggests that such autoreactivities are generated during germinal center reactions. Here, we explore earlier immune checkpoints, focusing on patients with contactin-associated protein-like 2 (CASPR2)-autoantibody encephalitis. In both disease and health, high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with pathogenic effects in neuronal cultures and mice. The unmutated, precursor memory B cell receptors showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results identify permissive central tolerance, defective peripheral tolerance, and autoantigen-specific tolerance thresholds in humans as sequential steps that license CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches, with an experimental paradigm applicable across autoimmunity.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - John Soltys
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L. Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Miriam L. Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Robert F. Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Robyn Williams
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, 0X1 3QU, UK
- UK Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John V. Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ray Owens
- Rosalind Franklin Institute, Harwell Science Campus, Didcot, OX11 0QX, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R. Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C. O’Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R. Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
12
|
Hu M, Oliveira APBN, Fang Z, Feng Y, Miranda M, Kowli S, Arunachalam PS, Vasudevan G, Hui HSY, Grifoni A, Sette A, Litvack M, Rouphael N, Suthar MS, Ji X, Maecker HT, Hagan T, Dhillon G, Nicolls MR, Pulendran B. Altered baseline immunological state and impaired immune response to SARS-CoV-2 mRNA vaccination in lung transplant recipients. Cell Rep Med 2025; 6:102050. [PMID: 40187358 PMCID: PMC12047491 DOI: 10.1016/j.xcrm.2025.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
The effectiveness of COVID-19 mRNA vaccines is diminished in organ transplant patients. Using a multi-omics approach, we investigate the immunological state of lung transplant (LTX) recipients at baseline and after SARS-CoV-2 mRNA vaccination compared to healthy controls (HCs). LTX patients exhibit a baseline immune profile resembling severe COVID-19 and sepsis, characterized by elevated pro-inflammatory cytokines (e.g., EN-RAGE [also known as S100A12], interleukin [IL]-6), reduced human leukocyte antigen (HLA)-DR expression on monocytes and dendritic cells, impaired cytokine production, and increased plasma microbial products. Single-cell RNA sequencing identifies an enriched monocyte cluster in LTX patients marked by high S100A family expression and reduced cytokine and antigen presentation genes. Post vaccination, LTX patients show diminished antibody, B cell, and T cell responses, along with blunted innate immune signatures. Integrative analysis links these altered baseline immunological features to impaired vaccine responses. These findings provide critical insights into the immunosuppressed condition of LTX recipients and their reduced vaccine-induced adaptive and innate immune responses.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Ana Paula B N Oliveira
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Molly Miranda
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Gowri Vasudevan
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Harold Sai-Yin Hui
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Litvack
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Xuhuai Ji
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gundeep Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Anraku Y, Kita S, Onodera T, Sato A, Tadokoro T, Ito S, Adachi Y, Kotaki R, Suzuki T, Sasaki J, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Kobayashi S, Kazuki Y, Oshimura M, Nomura T, Sasaki M, Orba Y, Suzuki T, Sawa H, Hashiguchi T, Fukuhara H, Takahashi Y, Maenaka K. Structural and virological identification of neutralizing antibody footprint provides insights into therapeutic antibody design against SARS-CoV-2 variants. Commun Biol 2025; 8:483. [PMID: 40121330 PMCID: PMC11929858 DOI: 10.1038/s42003-025-07827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Medical treatments using potent neutralizing SARS-CoV-2 antibodies have achieved remarkable improvements in clinical symptoms, changing the situation for the severity of COVID-19 patients. We previously reported an antibody, NT-108 with potent neutralizing activity. However, the structural and functional basis for the neutralizing activity of NT-108 has not yet been understood. Here, we demonstrated the therapeutic effects of NT-108 in a hamster model and its protective effects at low doses. Furthermore, we determined the cryo-EM structure of NT-108 in complex with SARS-CoV-2 spike. The single-chain Fv construction of NT-108 improved the cryo-EM maps because of the prevention of preferred orientations induced by Fab orientation. The footprints of NT-108 illuminated how escape mutations such as E484K evade from class 2 antibody recognition without ACE2 affinity attenuation. The functional and structural basis for the potent neutralizing activity of NT-108 provides insights into the rational design of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souta Kobayashi
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Patel PN, Diouf A, Dickey TH, Tang WK, Hopp CS, Traore B, Long CA, Miura K, Crompton PD, Tolia NH. A strain-transcending anti-AMA1 human monoclonal antibody neutralizes malaria parasites independent of direct RON2L receptor blockade. Cell Rep Med 2025; 6:101985. [PMID: 40020675 PMCID: PMC11970402 DOI: 10.1016/j.xcrm.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Plasmodium falciparum apical membrane antigen 1 (AMA1) binds a loop in rhoptry neck protein 2 (RON2L) during red cell invasion and is a target for vaccines and therapeutic antibodies against malaria. Here, we report a panel of AMA1-specific naturally acquired human monoclonal antibodies (hmAbs) derived from individuals living in malaria-endemic regions. Two neutralizing hmAbs engage AMA1 independent of the RON2L-binding site. The hmAb 75B10 demonstrates potent strain-transcending neutralization that is independent of RON2L blockade, emphasizing that epitopes outside the RON2L-binding site elicit broad protection against variant parasite strains. The combination of these hmAbs synergistically enhances parasite neutralization. Vaccination with a structure-based design (SBD1) that mimics the AMA1-RON2L complex elicited antibodies similar to the two neutralizing hmAbs connecting vaccination to naturally acquired immunity in humans. The structural definition of a strain-transcending epitope on AMA1 targeted by naturally acquired hmAb establishes paradigms for developing AMA1-based vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine S Hopp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Point G, Bamako 1805, Mali
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Schulz SR, Menzel SR, Wittner J, Ulbricht C, Grofe AT, Roth E, Mann-Nüttel R, Scheu S, Kueh AJ, Jäck A, Herold MJ, Hauser AE, Pracht K, Schuh W, Jäck HM. Decoding plasma cell maturation dynamics with BCMA. Front Immunol 2025; 16:1539773. [PMID: 40134424 PMCID: PMC11932843 DOI: 10.3389/fimmu.2025.1539773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Plasma cells provide protective antibodies following an infection or vaccination. A network of intrinsic and extrinsic factors fine-tunes the generation of a heterogenous plasma cell pool with varying metabolic requirements, transcriptional profiles and lifespans. Among these, the B cell maturation antigen (BCMA) has been implicated in the APRIL-mediated survival of long-lived plasma cells. To characterize the terminal maturation of plasma cells, we constructed a BCMA reporter mouse (BCMA:Tom) that exclusively labeled antibody-secreting cells and revealed that BCMA:Tom expression varied by IgH isotype and increased with plasma cell maturity. The BCMA reporter, used alongside the Blimp1-GFP reporter, also allowed detailed tracking of plasma cell development and highlighted the importance of the in vivo microenvironment to complete plasma cell maturation. Therefore, the BCMA:Tom reporter mouse provides a valuable tool for tracking plasma cell development and maturation with flow cytometry or advanced imaging techniques, enabling a deeper understanding of the mechanisms regulating plasma cell heterogeneity and longevity.
Collapse
Affiliation(s)
- Sebastian R. Schulz
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R. Menzel
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Ulbricht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alina T. Grofe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Edith Roth
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Institute of Immunology, University Medical Center Rostock, Rostock, Germany
| | - Andrew J. Kueh
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander Jäck
- Department of Neurology University Hospital, LMU Munich, Munich, Germany
| | - Marco J. Herold
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anja E. Hauser
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine 3, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Rao V, Sapse I, Cohn H, Yoo DK, Tong P, Clark J, Bozarth B, Chen Y, Srivastava K, Singh G, Krammer F, Simon V, Wesemann D, Bajic G, Coelho CH. Convergent and clonotype-enriched mutations in the light chain drive affinity maturation of a public antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642041. [PMID: 40161664 PMCID: PMC11952319 DOI: 10.1101/2025.03.07.642041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Public antibodies that recognize conserved epitopes are critical for vaccine development, and identifying somatic hypermutations (SHMs) that enhance antigen affinity in these public responses is key to guiding vaccine design for better protection. We propose that affinity-enhancing SHMs are selectively enriched in public antibody clonotypes, surpassing the background frequency seen in antibodies carrying the same V genes, but with different epitope specificities. Employing a human IGHV4-59/IGKV3-20 public antibody as a model, we compare SHM signatures in antibodies also using these V genes, but recognizing other epitopes. Critically, this comparison identified clonotype-enriched mutations in the light chain. Our analyses also show that these SHMs, in combination, enhance binding to a previously uncharacterized viral epitope, with antibody responses to it increasing after multiple vaccinations. Our findings offer a framework for identifying affinity-enhancing SHMs in public antibodies based on convergence and clonotype-enrichment and can help guide vaccine design aimed to elicit public antibodies.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hallie Cohn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Duck-Kyun Yoo
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Pei Tong
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bailey Bozarth
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuexing Chen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Duane Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Yu L, Wang Y, Liu Y, Xing X, Li C, Wang X, Shi J, Ma W, Li J, Chen Y, Qiao R, Zhao X, Tian S, Gao M, Wen S, Xue Y, Qiu T, Yu H, Guan Y, Chu H, Sun L, Wang P. Potent and broadly neutralizing antibodies against sarbecoviruses elicited by single ancestral SARS-CoV-2 infection. Commun Biol 2025; 8:378. [PMID: 40050417 PMCID: PMC11885566 DOI: 10.1038/s42003-025-07769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The emergence of various SARS-CoV-2 variants presents challenges for antibody therapeutics, emphasizing the need for more potent and broadly neutralizing antibodies. Here, we employed an unbiased screening approach and successfully isolated two antibodies from individuals with only exposure to ancestral SARS-CoV-2. One of these antibodies, CYFN1006-1, exhibited robust cross-neutralization against a spectrum of SARS-CoV-2 variants, including the latest KP.2, KP.3 and XEC, with consistent IC50 values ranging from ~1 to 5 ng/mL. It also displayed broad neutralization activity against SARS-CoV and related sarbecoviruses. Structural analysis revealed that these antibodies target shared hotspot but mutation-resistant epitopes, with their Fabs locking receptor binding domains (RBDs) in the "down" conformation through interactions with adjacent Fabs and RBDs, and cross-linking Spike trimers into di-trimers. In vivo studies conducted in a JN.1-infected hamster model validated the protective efficacy of CYFN1006-1. These findings suggest that antibodies with cross-neutralization activities can be identified from individuals with exclusively ancestral virus exposure.
Collapse
Affiliation(s)
- Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yajie Wang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaomin Xing
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Shilei Tian
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Ming Gao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuhua Wen
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China
| | - Yingxue Xue
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yongjun Guan
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China.
- Antibody BioPharm, Inc., Gaithersburg, MD, USA.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Kushwaha S, Jawahar V, Kumar A, Griffin L, Rothstein TL, Sehgal D, Khan N. Complete primer set for amplification and expression of full-length recombinant human monoclonal antibodies from single human B cells. J Immunol Methods 2025; 538:113823. [PMID: 39892828 DOI: 10.1016/j.jim.2025.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Human monoclonal antibodies (mAbs) are an important segment in precision therapeutics. Various methodologies are available for generating them. Recombinant human mAbs expression from sorted single B cells is preferred for its rapid expression using mammalian vectors while maintaining in vivo immunoglobulin (Ig) pairing. The success rate of generating recombinant mAbs from single sorted human B cells directly relies on Ig heavy (IgH) and light (IgL) gene coverage of the PCR primers. Existing primer sets fail to cover all functional human Ig gene rearrangements, exhibit high degeneracy leading to non-specific amplifications and mutations arising from primer mismatch/degeneracy, and require high amplification cycles. Some existing primer sets have high coverage but are not designed for expression as recombinant mAbs. Here, we have designed a primer set to amplify all functional V(D)J transcripts in human B cell repertoire using a nested RT-PCR approach. The resultant amplicons can be cloned into mammalian vectors for expression of recombinant mAb. Non-specific amplifications were minimized using isotype-specific primers for cDNA synthesis and limiting primer degeneracy. We validated the designed primers on single sorted B cells, bulk sorted B cells and peripheral blood mononuclear cells. We were successfully able to amplify paired heavy and light chain transcripts in 38.46 % (80/208) from naive, memory and B1 B cell subsets sorted as single B cells. Paired Ig transcripts from five single B cells were cloned into expression vectors and purified from mammalian cells as recombinant mAbs. Thus, our new primer set offers significant advantages over existing primers as it allows amplification of all functional V(D)J rearrangements, facilitating rapid generation of antigen-specific recombinant antibodies from diverse human B cell repertoires following vaccinations and infections previously inaccessible due to primer limitations.
Collapse
Affiliation(s)
- Sachin Kushwaha
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Varsha Jawahar
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lauren Griffin
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA; Department of Investigative Medicine, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA; Department of Investigative Medicine, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
19
|
Wu Q, Wu H, Hu Y, Zheng X, Chang F, Liu Y, Pan Z, Wang Q, Tang F, Qian J, Li Y, Huang B, Chen K, Xu J, Wang Y, Xie X, Zhao P, Wu X, Qu X, Li YP. Immune evasion of Omicron variants JN.1, KP.2, and KP.3 to the polyclonal and monoclonal antibodies from COVID-19 convalescents and vaccine recipients. Antiviral Res 2025; 235:106092. [PMID: 39864525 DOI: 10.1016/j.antiviral.2025.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The Omicron BA.2.86 subvariants, JN.1, KP.2, and KP.3, have become predominant globally, raising concerns about their immune evasion from vaccines and monoclonal antibody (mAb) treatments. These variants harbor more receptor-binding domain (RBD) mutations than the XBB and EG.5 sub-lineages, which are already known to compromise vaccine and therapeutic efficacy. We evaluated sera from individuals vaccinated with inactivated vaccines, with or without breakthrough infections, as well as COVID-19 convalescents. Our results showed a substantial decrease in serum neutralizing activity against the JN.1, KP.2, XBB.1.5, and EG.5.1 variants compared to BA.2. Additionally, we developed 19 neutralizing antibodies from memory B cells, with some retaining efficacy against earlier Omicron variants. However, potency was notably diminished against newer subvariants like BF.7, BQ.1, XBB.1.5, and BA.2.86. Of mAbs, those isolated from COVID-19 convalescents, particularly SA-3, exhibited exceptional potency across ten variants from BA.2 to KP.2, with IC50 values ranging from 0.006 to 2.546 μg/mL. However, SA-3 had lost neutralizing activity against the KP.3 due to the Q493E mutation, but the KP.3 became susceptible to neutralization by the other mAb, SA-6. In contrast, SA-6 was unable to neutralize KP.2 because of the presence of R346T mutation. Our findings underscore the importance of continuous surveillance of viral evolution and the need for updated vaccines and therapeutics to combat the ongoing evolution of SARS-CoV-2, particularly in the context of emerging variants that escape both vaccine-induced immunity and monoclonal antibody treatments.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hairuo Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China; Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang 422099, China; Xinning Country People's Hospital, Shaoyang 422099, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuezhou Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Huang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Keqiu Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Xu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Xiangping Xie
- The Central Hospital of Shaoyang, Shaoyang 422099, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, Hengyang Medical School, University of South China, No. 30, Jiefang Road, Shigu District, Hengyang 421000, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Fujisawa M, Onodera T, Kuroda D, Kewcharoenwong C, Sasaki M, Itakura Y, Yumoto K, Nithichanon A, Ito N, Takeoka S, Suzuki T, Sawa H, Lertmemongkolchai G, Takahashi Y. Molecular convergence of neutralizing antibodies in human revealed by repeated rabies vaccination. NPJ Vaccines 2025; 10:39. [PMID: 39988605 PMCID: PMC11847937 DOI: 10.1038/s41541-025-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rabies vaccines require repeated immunization to robustly elicit neutralizing antibodies that prevent fatal diseases. Here, we analyzed rabies glycoprotein antibody repertoires at both polyclonal and monoclonal levels following repeated vaccination. Booster vaccination dramatically elevated the neutralizing activity of recalled antibodies, primarily targeting an immunodominant site III epitope with hydrophilic and rugged structures. Strikingly, the majority of site III-directed antibodies in the recall response used a convergent VH gene (IGHV3-30), and they exhibited more hydrophilic and shorter paratopes than non-site III antibodies, providing physicochemical advantages for binding to site III. Additionally, several amino acids on heavy chain CDR3 were identified as key sites for acquiring an ultrapotent neutralizing activity through site III binding. Our in-depth analysis of antibody repertoires revealed the molecular signatures of neutralizing antibodies generated by repeated rabies vaccination, possibly as a result of adaptive convergence.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control (IIZC), Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
21
|
Joyce MG, Bu W, Chen WH, Gillespie RA, Andrews SF, Wheatley AK, Tsybovsky Y, Jensen JL, Stephens T, Prabhakaran M, Fisher BE, Narpala SR, Bagchi M, McDermott AB, Nabel GJ, Kwong PD, Mascola JR, Cohen JI, Kanekiyo M. Structural basis for complement receptor engagement and virus neutralization through Epstein-Barr virus gp350. Immunity 2025; 58:295-308.e5. [PMID: 39909035 DOI: 10.1016/j.immuni.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with malignancies in humans. Viral infection of B cells is initiated by the viral glycoprotein 350 (gp350) binding to complement receptor 2 (CR2). Despite decades of effort, no vaccines or curative agents have been developed, partly due to lack of atomic-level understanding of the virus-host interface. Here, we determined the 1.7 Å structure of gp350 in complex with CR2. CR2 binding of gp350 utilized the same set of Arg residues required for recognition of its natural ligand, complement C3d. We further determined the structures of gp350 in complex with three potently neutralizing antibodies (nAbs) obtained from vaccinated macaques and EBV-infected individuals. Like the CR2 interaction, these nAbs targeted the acidic pocket within the CR2-binding site on gp350 using Arg residues. Our results illustrate two axes of molecular mimicry-gp350 versus C3d and CR2 versus EBV nAbs-offering insights for EBV vaccines and therapeutics development.
Collapse
Affiliation(s)
- M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Hung Chen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jaime L Jensen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghna Bagchi
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Kramer M, Mele F, Jovic S, Fernandez BM, Jarrossay D, Low JS, Sokollik C, Filipowicz Sinnreich M, Ferrari-Lacraz S, Mieli-Vergani G, Vergani D, Lanzavecchia A, Cassotta A, Terziroli Beretta-Piccoli B, Sallusto F. Clonal analysis of SepSecS-specific B and T cells in autoimmune hepatitis. J Clin Invest 2025; 135:e183776. [PMID: 39817450 PMCID: PMC11735102 DOI: 10.1172/jci183776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Autoimmune hepatitis (AIH) is a rare chronic inflammatory liver disease characterized by the presence of autoantibodies, including those targeting O-phosphoseryl-tRNA:selenocysteine-tRNA synthase (SepSecS), also known as soluble liver antigen (SLA). Anti-SepSecS antibodies have been associated with a more severe phenotype, suggesting a key role for the SepSecS autoantigen in AIH. To analyze the immune response to SepSecS in patients with AIH at the clonal level, we combined sensitive high-throughput screening assays with the isolation of monoclonal antibodies (mAbs) and T cell clones. The anti-SepSecS mAbs isolated were primarily IgG1, affinity-matured compared with their germline versions, and recognized at least 3 nonoverlapping epitopes. SepSecS-specific CD4+ T cell clones were found in patients with AIH who were anti-SLA-positive and anti-SLA-negative,and, to a lesser extent, in patients with non-AIH liver diseases and in healthy individuals. SepSecS-specific T cell clones from patients with AIH produced IFN-γ, IL-4, and IL-10, targeted multiple SepSecS epitopes, and, in one patient, were clonally expanded in both blood and liver biopsy. Finally, SepSecS-specific B cell clones, but not those of unrelated specificities, were able to present soluble SepSecS to specific T cells. Collectively, our study provides the first detailed analysis of B and T cell repertoires targeting SepSecS in patients with AIH, offering a rationale for improved targeted therapies.
Collapse
Affiliation(s)
- Michael Kramer
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | | | - David Jarrossay
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Jun Siong Low
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit & National Laboratory of Immunogenetics, Division of Nephrology, Department of Diagnostic, University Hospital Geneva, Geneva, Switzerland
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Benedetta Terziroli Beretta-Piccoli
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Epatocentro Ticino, Lugano, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
23
|
Amen A, Yoo R, Fabra-García A, Bolscher J, Stone WJR, Bally I, Dergan-Dylon S, Kucharska I, de Jong RM, de Bruijni M, Bousema T, King CR, MacGill RS, Sauerwein RW, Julien JP, Poignard P, Jore MM. Target-agnostic identification of human antibodies to Plasmodium falciparum sexual forms reveals cross-stage recognition of glutamate-rich repeats. eLife 2025; 13:RP97865. [PMID: 39817720 PMCID: PMC11737873 DOI: 10.7554/elife.97865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.
Collapse
Affiliation(s)
- Axelle Amen
- CNRS, Université Grenoble Alpes, CEA, UMR5075, Institut de Biologie StructuraleGrenobleFrance
- CHU Grenoble AlpesGrenobleFrance
| | - Randy Yoo
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Amanda Fabra-García
- Department of Medical Microbiology, Radboud University Medical CenterNijmegenNetherlands
| | | | - William JR Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabelle Bally
- CNRS, Université Grenoble Alpes, CEA, UMR5075, Institut de Biologie StructuraleGrenobleFrance
| | - Sebastián Dergan-Dylon
- CNRS, Université Grenoble Alpes, CEA, UMR5075, Institut de Biologie StructuraleGrenobleFrance
| | - Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Roos M de Jong
- Department of Medical Microbiology, Radboud University Medical CenterNijmegenNetherlands
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical CenterNijmegenNetherlands
| | - C Richter King
- Center for Vaccine Innovation and Access, PATHWashington D.C.United States
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATHWashington D.C.United States
| | | | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| | - Pascal Poignard
- CNRS, Université Grenoble Alpes, CEA, UMR5075, Institut de Biologie StructuraleGrenobleFrance
- CHU Grenoble AlpesGrenobleFrance
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical CenterNijmegenNetherlands
| |
Collapse
|
24
|
Sun B, Fernandes D, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin L, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O'Connor KC, Soltys J, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints licence pathogenic memory B cells in CASPR2-antibody encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.631703. [PMID: 39868113 PMCID: PMC11760777 DOI: 10.1101/2025.01.14.631703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood. We address this concept in patients with CASPR2-autoantibody encephalitis and healthy controls. In both groups, comparable and high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with heterogenous binding kinetics. These effector molecules possessed epitope-dependent pathogenic effects in vitro neuronal cultures and in vivo. The unmutated common ancestors of these memory B cells showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results are the first to propose mechanisms underlying autoantigen-specific tolerance in humans. We identify permissive central tolerance, defective peripheral tolerance and heterogenous autoantibody binding properties as sequential pathogenic steps which licence CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches in CASPR2-antibody diseases. This paradigm is applicable across autoimmune conditions.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney; Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Miriam L Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Robert F Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Robyn Williams
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - John V Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn Dustin
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ray Owens
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - John Soltys
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
25
|
Dacon C, Moskovitz R, Swearingen K, Pereira LDS, Flores-Garcia Y, Aleshnick M, Kanatani S, Flynn B, Molina-Cruz A, Wollenberg K, Traver M, Kirtley P, Purser L, Dillon M, Bonilla B, Franco A, Petros S, Kritzberg J, Tucker C, Paez GG, Gupta P, Shears MJ, Pazzi J, Edgar JM, Teng AA, Belmonte A, Oda K, Doumbo S, Krymskaya L, Skinner J, Li S, Ghosal S, Kayentao K, Ongoiba A, Vaughan A, Campo JJ, Traore B, Barillas-Mury C, Wijayalath W, Idris A, Crompton PD, Sinnis P, Wilder BK, Zavala F, Seder RA, Wilson IA, Tan J. Protective antibodies target cryptic epitope unmasked by cleavage of malaria sporozoite protein. Science 2025; 387:eadr0510. [PMID: 39745947 PMCID: PMC11804177 DOI: 10.1126/science.adr0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the Plasmodium falciparum circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines. MAD21-101, the most potent mAb in this class, confers sterile protection against Pf infection in a human liver-chimeric mouse model. These findings reveal a site of vulnerability on the sporozoite surface that can be targeted by next-generation antimalarial interventions.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Re’em Moskovitz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kurt Wollenberg
- Bioinformatics & Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adriano Franco
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Samantha Petros
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jake Kritzberg
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Gonzalo Gonzalez Paez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Priya Gupta
- Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Melanie J. Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joseph Pazzi
- Antigen Discovery, Incorporated, Irvine, CA 92618, USA
| | | | - Andy A. Teng
- Antigen Discovery, Incorporated, Irvine, CA 92618, USA
| | - Arnel Belmonte
- General Dynamics Information Technology, Inc, Falls Church, 3150 Fairview Park Drive, Falls Church, VA 22042, USA
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, Maryland, MD 20910, USA
| | - Kyosuke Oda
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, Maryland, MD 20910, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Dr, Bethesda, MD 20817, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ludmila Krymskaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Suman Ghosal
- Bioinformatics & Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ashley Vaughan
- Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | | | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Wathsala Wijayalath
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, Maryland, MD 20910, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Dr, Bethesda, MD 20817, USA
| | - Azza Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 20139, USA
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brandon K. Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
26
|
Finney J, Kuraoka M, Song S, Watanabe A, Liang X, Liao D, Moody MA, Walter EB, Harrison SC, Kelsoe G. Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631020. [PMID: 39803488 PMCID: PMC11722430 DOI: 10.1101/2025.01.01.631020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface. The cell lines are barcoded with fluorescent proteins, enabling high-throughput, 16-plex analyses of antibody binding with commonly available flow cytometers. The cell lines were at least as efficient as a Luminex multiplex binding assay at identifying NA antibodies from a library of unselected clonal IgGs derived from human memory B cells. The membrane-anchored NAs are catalytically active and are compatible with established small-molecule catalytic activity assays. NA-expressing K530 cell lines therefore represent a useful tool for studying NA immunity and evaluating influenza vaccine efficacy.
Collapse
Affiliation(s)
- Joel Finney
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Shengli Song
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - M. Anthony Moody
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Emmanuel B. Walter
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
27
|
Mantus GE, Chopde AJ, Gorman J, Cominsky LY, Ourahmane A, Creanga A, Shimberg GD, Gillespie RA, Van Wazer DJ, Zhou T, Gajjala SR, Williams C, Maestle E, Reed DS, Serebryannyy L, Costner P, Holman L, Casazza JP, Koup RA, Dropulic LK, Kwong PD, McDermott AB, Kanekiyo M, Andrews SF. Vaccination with different group 2 influenza subtypes alters epitope targeting and breadth of hemagglutinin stem-specific human B cells. Sci Transl Med 2025; 17:eadr8373. [PMID: 39742506 DOI: 10.1126/scitranslmed.adr8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The conserved influenza hemagglutinin stem, which is a target of cross-neutralizing antibodies, is now used in vaccine strategies focused on protecting against influenza pandemics. Antibody responses to group 1 stem have been extensively characterized, but little is known about group 2. Here, we characterized the stem-specific repertoire of individuals vaccinated with one of three group 2 influenza subtypes (H3, H7, or H10). Epitope mapping revealed two epitope supersites on the group 2 stem. Antibodies targeting the central epitope were broadly cross-reactive, whereas antibodies targeting the lower epitope had narrower breadth but higher potency against H3 subtypes. The ratio of B cells targeting each of the supersites varied with the vaccine subtype, leading to differences in the cross-reactivity of the B cell response. Our findings suggest that vaccine strategies targeting both group 2 stem epitopes would be complementary, eliciting broader and more potent protection against both seasonal and pandemic influenza strains.
Collapse
Affiliation(s)
- Grace E Mantus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ankita J Chopde
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Amine Ourahmane
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Suprabhath R Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emma Maestle
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Pamela Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lasonji Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lesia K Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| |
Collapse
|
28
|
Kochayoo P, Moriyama S, Kotaki R, Thawornpan P, Malee C, Leepiyasakulchai C, Ntumngia FB, Adams JH, Takahashi Y, Chootong P. Atypical memory B cells from natural malaria infection produced broadly neutralizing antibodies against Plasmodium vivax variants. PLoS Pathog 2025; 21:e1012866. [PMID: 39847574 PMCID: PMC11756785 DOI: 10.1371/journal.ppat.1012866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown. Here, P. vivax Duffy Binding Protein II (PvDBPII) probes were generated to detect the development and durability of specific aMBCs, and to demonstrate the capacity of these cells to produce neutralizing antibodies following natural infections. PvDBPII-specific aMBCs were elicited during malaria illness, and they persisted through the recovery phase of infections. To address biology and function of P. vivax-specific aMBCs in producing protective antibodies, a single MBC was cultured, and the secreted IgG was tested for binding and inhibition activity. The aMBC-derived clones produced antibodies with variable levels of anti-PvDBPII IgG in cultures, and some produced high antibody levels comparable to classical MBC clones. Thus, we focused our attention on the function of aMBCs in producing neutralizing antibodies. Among the aMBC clones, A1F12 and B4E11 produced broadly neutralizing antibodies against a panel of PvDBPII variants. Notably, B cell receptors (BCRs) of PvDBPII-specific aMBCs expressed unique IGHV genes, with similar usage of IGHV1-3, comparable to classical MBCs. The somatic hypermutation (SHM) rate and CDR3 length of VH and Vκ in these two MBC subsets were not significantly different. Together, our findings revealed that P. vivax infections elicited the development and persistence of P. vivax-specific aMBCs. The accumulation of aMBCs during and following infections might play an important role in producing protective antibodies against malaria.
Collapse
Affiliation(s)
- Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Rollenske T, Murugan R, Wardemann H, Busse CE. Expression Cloning of Antibodies from Single Human B Cells. Methods Mol Biol 2025; 2865:103-124. [PMID: 39424722 DOI: 10.1007/978-1-0716-4188-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in B-cell chronic lymphocytic leukemia (CLL) have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows for unbiased characterization of the human antibody repertoire on single-cell level through the generation of recombinant monoclonal antibodies from primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells to the RT-PCR-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information about the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Tim Rollenske
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Rajagopal Murugan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Stoler-Barak L, Sarusi-Portuguez A, Shulman Z. Repertoires and Tumor-Reactivity Analysis of B Cell Immunoglobulins Derived from Cancer Patients. Methods Mol Biol 2025; 2864:263-279. [PMID: 39527227 DOI: 10.1007/978-1-0716-4184-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tumor-infiltrating B cells have emerged in recent years as key markers of patient prognosis and responsiveness to immunotherapy. Recent technical advances, such as single-cell RNA sequencing and B cell receptor immune profiling, revealed diverse subsets and the immunoglobulin landscape of B cells located within human tumors. Secreted antibodies in solid tumors exhibit multiple effector functions, with the potential to significantly impact distinct immune responses, clinical outcomes, and patient survival. Nonetheless, a few studies examine the tumor reactivity and specificity of these immunoglobulins. Here we describe our current methodology for retrieving single B cells from human primary solid tumors for single-cell RNA sequencing followed by computational analysis to identify B cell subpopulations and immunoglobulin receptor repertoires. Furthermore, we provide a technique for evaluating and quantifying the tumor-binding capabilities of expressed antibodies. This approach holds promise for future immunotherapies and enhances our understanding of their potential clinical applications.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi-Portuguez
- Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Zhou J, Greenfield AL, Loudermilk RP, Bartley CM, Chen C, Chen X, Leroux MA, Lu Y, Necula D, Ngo TT, Tran BT, Honma PS, Lauderdale K, Zhao C, Zhou X, Wang H, Nicoll RA, Wang C, Paz JT, Palop JJ, Wilson MR, Pleasure SJ. Disrupted callosal connectivity underlies long-lasting sensory-motor deficits in an NMDA receptor antibody encephalitis mouse model. J Clin Invest 2024; 135:e173493. [PMID: 39739422 PMCID: PMC11870732 DOI: 10.1172/jci173493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
N-methyl-d-aspartate (NMDA) receptor-mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long-term effects of exposure to a patient-derived GluN1-specific mAb during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity. This complexity was associated with paroxysmal recruitment of neurons in S1 in response to callosal stimulation. Particularly during complex motor tasks, mAb3-treated mice exhibited significantly reduced interhemispheric functional connectivity between S1 regions, consistent with pronounced sensory-motor behavioral deficits. These findings suggest that transient exposure to anti-GluN1 mAb during a critical developmental window may lead to irreversible morphological and functional changes in callosal axons, which could significantly impair sensory-motor integration and contribute to long-lasting sensory-motor deficits. Our study establishes a new model of NMDAR-AE and identifies novel cellular and network-level mechanisms underlying persistent sensory-motor deficits in this context. These insights lay the foundation for future research into molecular mechanisms and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurology
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
| | | | | | - Christopher M. Bartley
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, California, USA
| | - Chun Chen
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Xiumin Chen
- Department of Neurology and Institute of Neuroscience of Soochow University, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | | | - Yujun Lu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Pudong New Area, Shanghai, China
| | - Deanna Necula
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
- Neuroscience Graduate Program, UCSF, San Francisco, California, USA
| | - Thomas T. Ngo
- Department of Neurology
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
| | - Baouyen T. Tran
- Department of Neurology
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
| | - Patrick S. Honma
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
- Neuroscience Graduate Program, UCSF, San Francisco, California, USA
| | - Kelli Lauderdale
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Chao Zhao
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Hong Wang
- Department of Neurology
- Weill Institute for Neurosciences
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology. Department of Physiology, UCSF, San Francisco, California, USA
| | - Cong Wang
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Jeanne T. Paz
- Department of Neurology
- Weill Institute for Neurosciences
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
- Neuroscience Graduate Program, UCSF, San Francisco, California, USA
| | - Jorge J. Palop
- Department of Neurology
- Weill Institute for Neurosciences
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
- Neuroscience Graduate Program, UCSF, San Francisco, California, USA
| | - Michael R. Wilson
- Department of Neurology
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
| | - Samuel J. Pleasure
- Department of Neurology
- Weill Institute for Neurosciences
- Center for Encephalitis and Meningitis, and
- Programs in Neuroscience and Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, San Francisco, California, USA
| |
Collapse
|
32
|
Cale EM, Shen CH, Olia AS, Radakovich NA, Rawi R, Yang Y, Ambrozak DR, Bennici AK, Chuang GY, Crooks ED, Driscoll JI, Lin BC, Louder MK, Madden PJ, Messina MA, Osawa K, Stewart-Jones GBE, Verardi R, Vrakas Z, Xie D, Zhang B, Binley JM, Connors M, Koup RA, Pierson TC, Doria-Rose NA, Kwong PD, Mascola JR, Gorman J. A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies. Cell Rep 2024; 43:115010. [PMID: 39675002 DOI: 10.1016/j.celrep.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.01 in complex with the Env trimer reveals binding to the same gp120-gp41 interface site of vulnerability as antibody 35O22 from a different HIV-1-infected donor. In addition to having similar angles of approach and extensive contacts with glycans N88 and N625, VRC44 and 35O22 derive from the same IGHV1-18 gene and share convergent mutations, indicating these two antibodies to be members of the only known highly glycan-dependent multidonor class. Strikingly, both lineages achieved almost 100% neutralization breadth against virus strains displaying high-mannose glycans. The high breadth and reproducible elicitation of VRC44 and 35O22 lineages validate germline-based methods of immunogen design for targeting the HIV-1 gp120-gp41 interface.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony K Bennici
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma D Crooks
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick J Madden
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zoe Vrakas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Xie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, Weston, MA 02493, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
33
|
Albus A, Kreer C, Klein F, Rybniker J, Simonis A. Protocol for developing Pseudomonas aeruginosa type III secretion system-neutralizing monoclonal antibodies from human B cells. STAR Protoc 2024; 5:103440. [PMID: 39520687 PMCID: PMC11585742 DOI: 10.1016/j.xpro.2024.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Monoclonal antibodies (mAbs) targeting bacterial virulence factors may represent promising therapeutics in the fight against severe bacterial infections. Here, we present an approach for developing human-derived antibodies targeting the type III secretion system (T3SS) of Pseudomonas aeruginosa (PA) by neutralizing the function of the T3SS-tip protein PcrV. The protocol involves identifying individuals with protective antibodies, isolating PcrV-specific B cells from these individuals, and producing and testing anti-PcrV mAbs derived from single B cells. For complete details on the use and execution of this protocol, please refer to Simonis et al.1.
Collapse
Affiliation(s)
- Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
| | - Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany.
| |
Collapse
|
34
|
Ado S, Dong C, Attaf N, Moussa M, Carrier A, Milpied P, Navarro JM. FB5P-seq-mAbs: monoclonal antibody production from FB5P-seq libraries for integrative single-cell analysis of B cells. Front Immunol 2024; 15:1505971. [PMID: 39742275 PMCID: PMC11685048 DOI: 10.3389/fimmu.2024.1505971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Parallel analysis of phenotype, transcriptome and antigen receptor sequence in single B cells is a useful method for tracking B cell activation and maturation during immune responses. However, in most cases, the specificity and affinity of the B cell antigen receptor cannot be inferred from its sequence. Antibody cloning and expression from single B cells is then required for functional assays. Here we propose a method that integrates FACS-based 5'-end single-cell RNA sequencing (FB5P-seq) and monoclonal antibody cloning for integrative analysis of single B cells. Starting from a cell suspension, single B cells are FACS-sorted into 96-well plates for reverse transcription, cDNA barcoding and amplification. A fraction of the single-cell cDNA is used for preparing 5'-end RNA-seq libraries that are sequenced for retrieving transcriptome-wide gene expression and paired BCR sequences. The archived cDNA of selected cells of interest is used as input for cloning heavy and light chain variable regions into antibody expression plasmid vectors. The corresponding monoclonal antibodies are produced by transient transfection of a eukaryotic producing cell line and purified for functional assays. We provide detailed step-by-step instructions and describe results obtained on ovalbumin-specific murine germinal center B cells after immunization. Our method is robust, flexible, cost-effective, and applicable to different B cell types and species. We anticipate it will be useful for mapping antigen specificity and affinity of rare B cell subsets characterized by defined gene expression and/or antigen receptor sequence.
Collapse
Affiliation(s)
- Sakina Ado
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Noudjoud Attaf
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Myriam Moussa
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Agathe Carrier
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Paris-Saclay University, Inserm, Gustave Roussy, Tumour Immunology and Anti-Cancer Immunotherapy, Villejuif, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Jean-Marc Navarro
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
35
|
Rexhepaj M, Asarnow D, Perruzza L, Park YJ, Guarino B, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Corti D, Starr TN, Benigni F, Veesler D. Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses. Immunity 2024; 57:2914-2927.e7. [PMID: 39488210 DOI: 10.1016/j.immuni.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Collapse
Affiliation(s)
- Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lisa Perruzza
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Mathew Mccallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Katja Culap
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Giada Leoni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessio Balmelli
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Miles S Dickinson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Fabio Benigni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
37
|
Rubben K, Vander Plaetsen AS, Almey R, Tytgat O, Deserranno K, Debaere J, Acar DD, Meuleman P, Deforce D, Van Nieuwerburgh F. High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:426-436. [PMID: 39206935 DOI: 10.1080/21691401.2024.2395815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.
Collapse
Affiliation(s)
- Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ruben Almey
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Koen Deserranno
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jamie Debaere
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Kerkman PF, de Vor L, van der Vaart TW, ten Doesschate T, Muts RM, Depelteau JS, Scheepmaker L, Ruyken M, de Haas CJ, Aerts PC, Marijnissen R, Schuurman J, Beurskens FJ, Gorlani A, Bardoel B, Rooijakkers SH. Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1644-1655. [PMID: 39451041 PMCID: PMC7616744 DOI: 10.4049/jimmunol.2300858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.
Collapse
Affiliation(s)
- Priscilla F. Kerkman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas W. van der Vaart
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jamie S. Depelteau
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla J.C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | - Bart Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
39
|
McKenzie CI, Reinwald S, Averso B, Spurrier B, Satz A, von Borstel A, Masinovic S, Varese N, Aui PM, Wines BD, Hogarth PM, Hew M, Rolland JM, O'Hehir RE, van Zelm MC. Subcutaneous immunotherapy for bee venom allergy induces epitope spreading and immunophenotypic changes in allergen-specific memory B cells. J Allergy Clin Immunol 2024; 154:1511-1522. [PMID: 39218358 DOI: 10.1016/j.jaci.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only disease-modifying treatment for allergic disorders. We have recently discovered that allergen-specific memory B cells (Bmem) are phenotypically altered after 4 months of sublingual AIT for ryegrass pollen allergy. Whether these effects are shared with subcutaneous allergen immunotherapy (SCIT) and affect the epitope specificity of Bmem remain unknown. OBJECTIVE The study aimed to evaluate the phenotype and antigen receptor sequences of Bmem specific to the major bee venom (BV) allergen Api m 1 before and after ultra-rush SCIT for BV allergy. METHODS Recombinant Api m 1 protein tetramers were generated to evaluate basophil activation in a cohort of individuals with BV allergy before and after BV SCIT. Comprehensive flow cytometry was performed to evaluate and purify Api m 1-specific Bmem. Immunoglobulin genes from single Api m 1-specific Bmem were sequenced and structurally modeled onto Api m 1. RESULTS SCIT promoted class switching of Api m 1-specific Bmem to IgG2 and IgG4 with increased expression of CD23 and CD29. Furthermore, modeling of Api m 1-specific immunoglobulin from Bmem identified a suite of possible new and diverse allergen epitopes on Api m 1 and highlighted epitopes that may preferentially be bound by immunoglobulin after SCIT. CONCLUSIONS AIT induces shifting of epitope specificity and phenotypic changes in allergen-specific Bmem.
Collapse
Affiliation(s)
- Craig I McKenzie
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Simone Reinwald
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | | | | | | | - Anouk von Borstel
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Sabina Masinovic
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Nirupama Varese
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Pei Mun Aui
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - P Mark Hogarth
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jennifer M Rolland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Omejec S, Tompa M, Kovač V, Šerbec VČ. Optimizing the method for expressing human monoclonal antibodies from a single peripheral blood cell from vaccinated donors. J Immunol Methods 2024; 534:113747. [PMID: 39214236 DOI: 10.1016/j.jim.2024.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human monoclonal antibodies are essential diagnostic and research tools and one of the most promising therapeutics. In the past years, single B cell technologies have evolved and over-come conventional methods' limitations, enabling the isolation of scarce B cell populations with desirable characteristics. In this study, we describe a simple and efficient method to isolate anti-gen-specific plasmablasts and memory B cells from hepatitis B virus vaccinated donors' peripheral blood and consequently amplification of immunoglobulin variable region genes. Amplified immunoglobulin variable region genes were cloned into expression vectors and transfected into a human cell line to produce human recombinant monoclonal antibodies. Major challenges in this protocol were isolation of antigen-specific B cells based on surface markers, recovering mRNA from a single cell for efficient amplification, and cloning the correct insert into a desired expression vector. The essential feature of our protocol was the separation of B cells from peripheral blood mononuclear cells before sorting. We identified antigen-specific binding B cells based on the expression of surface markers CD19, CD27, IgG, and binding to hepatitis B surface antigen. Efficient single-cell reverse transcription and polymerase chain reaction (RT-PCR) were achieved using a random primer mix and Kapa Hifi Hot Start Polymerase. Amplification efficiency differed among heavy and light chain variable regions (highest at heavy chain (68 %) and lowest at lambda light chain (22 %)). After co-transfection of HEK293T/17 with successfully cloned heavy and light chain vectors, 70 % of transfected cells produced recombinant monoclonal antibodies at a concentration ∼ 4 μg/ml and 7 % of them showed binding to HBsAg. Human monoclonal antibodies from peripheral blood have advantages over antibodies of mouse origin or phage display libraries, because of their high specificity and self-tolerance. Using the described protocol, we can generate fully human monoclonal antibodies to any other antigen for application in immunotherapy or basic research.
Collapse
Affiliation(s)
- Sandra Omejec
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Manuela Tompa
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia.
| | - Valerija Kovač
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia.
| | - Vladka Čurin Šerbec
- Centre for Immunology and Developement, Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
41
|
Ende Z, Mishina M, Kauffman RC, Kumar A, Kumari R, Knight PR, Sambhara S. Human monoclonal antibody cloning and expression with overlap extension PCR and short DNA fragments. J Immunol Methods 2024; 534:113768. [PMID: 39447635 PMCID: PMC11585411 DOI: 10.1016/j.jim.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Monoclonal antibodies are powerful therapeutic, diagnostic, and research tools. Methods utilized to generate monoclonal antibodies are evolving rapidly. We created a transfectable linear antibody expression cassette from a 2-h high-fidelity overlapping PCR reaction from synthesized DNA fragments. We coupled heavy and light chains into a single linear sequence with a promoter, self-cleaving peptide, and poly(A) signal to increase the flexibility of swapping variable regions from any sequence available in silico. Transfection of the linear cassette tended to generate similar levels to the two-plasmid system and generated an average of 47 μg (14-98 μg) after 5 days in 2 ml cultures with 15 unique antibody sequences. The levels of antibodies produced were sufficient for most downstream applications in less than a week. The method presented here reduces the time, cost, and complexity of cloning steps.
Collapse
Affiliation(s)
- Zachary Ende
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Margarita Mishina
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rashmi Kumari
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Paul R Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
42
|
Scharffenberger SC, Wan YH, Homad LJ, Kher G, Haynes AM, Poudel B, Sinha IR, Aldridge N, Pai A, Bibby M, Chhan CB, Davis AR, Moodie Z, Palacio MB, Escolano A, McElrath MJ, Boonyaratanakornkit J, Pancera M, McGuire AT. Targeting RSV-neutralizing B cell receptors with anti-idiotypic antibodies. Cell Rep 2024; 43:114811. [PMID: 39383036 PMCID: PMC11496930 DOI: 10.1016/j.celrep.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections with significant morbidity and mortality at the extremes of age. Vaccines based on the viral fusion protein are approved for adults over 60, but infant protection relies on passive immunity via antibody transfer or maternal vaccination. An infant vaccine that rapidly elicits protective antibodies would fulfill a critical unmet need. Antibodies arising from the VH3-21/VL1-40 gene pairing can neutralize RSV without the need for affinity maturation, making them attractive to target through vaccination. Here, we develop an anti-idiotypic monoclonal antibody (ai-mAb) immunogen that is specific for unmutated VH3-21/VL1-40 B cell receptors (BCRs). The ai-mAb efficiently engages B cells with bona fide target BCRs and does not activate off-target non-neutralizing B cells, unlike recombinant pre-fusion (preF) protein used in current RSV vaccines. These results establish proof of concept for using an ai-mAb-derived vaccine to target B cells hardwired to produce RSV-neutralizing antibodies.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Animals
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Humans
- Antibodies, Anti-Idiotypic/immunology
- Antibodies, Anti-Idiotypic/pharmacology
- Mice
- B-Lymphocytes/immunology
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Viruses/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Female
- Respiratory Syncytial Virus, Human/immunology
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Samuel C Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Austin M Haynes
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Bibhav Poudel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Irika R Sinha
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas Aldridge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ayana Pai
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Madeleine Bibby
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maria Belen Palacio
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Amelia Escolano
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Wang Z, Shi P, Wang S, Lin Z, Wang Z, Zhang C, Zhao L, Suolang S, Zou J, Zhou H. Generation of canine neutralizing antibodies against canine parvovirus by single B cell antibody technology. Arch Virol 2024; 169:225. [PMID: 39424661 DOI: 10.1007/s00705-024-06156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024]
Abstract
Canine parvovirus (CPV) is a significant threat to canines and is widely distributed worldwide. While vaccination is currently the most effective preventive measure, existing vaccines are not able to offer comprehensive and dependable protection against CPV infection. Hence, there is a need to explore alternative or complementary strategies to tackle this problem. In this study, we present an approach for the efficient screening of canine antibodies targeting CPV using a single B cell antibody technique. We sorted single IgM- IgG+ CPV+ B cells from canine peripheral blood mononuclear cells using fluorescence-activated cell sorting (FACS) and obtained the variable region genes of heavy and light chains (VH and VL) by nested PCR amplification. Canine monoclonal antibodies were expressed in HEK293 cells, and a total of 60 antibodies were obtained, five of which demonstrated neutralizing activity against CPV. Those findings demonstrate the effectiveness of the method for obtaining canine monoclonal antibodies, which in turn aids in the identification and screening of neutralizing antibodies against various canine pathogens.
Collapse
Affiliation(s)
- Zhihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Pengfei Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Sheng Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Zhipeng Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Zhichen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
- Hubei Hongshan Laboratory, Wuhan, Hubei, P.R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, P.R. China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Nyingchi, Tibet, P.R. China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Nyingchi, Tibet, P.R. China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, P.R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, P.R. China.
| |
Collapse
|
44
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
45
|
Moirangthem R, Cordela S, Khateeb D, Shor B, Kosik I, Schneidman-Duhovny D, Mandelboim M, Jönsson F, Yewdell JW, Bruel T, Bar-On Y. Dual neutralization of influenza virus hemagglutinin and neuraminidase by a bispecific antibody leads to improved antiviral activity. Mol Ther 2024; 32:3712-3728. [PMID: 39086132 PMCID: PMC11489563 DOI: 10.1016/j.ymthe.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Mice
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/virology
- Neutralization Tests
- Dogs
- Disease Models, Animal
- Madin Darby Canine Kidney Cells
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Female
Collapse
Affiliation(s)
- Romila Moirangthem
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Dina Khateeb
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Ben Shor
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology; Inserm UMR1222, Paris 75015, France; CNRS, Paris 75015, France
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité; CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
46
|
Baum ML, Bartley CM. Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. Trends Neurosci 2024; 47:753-765. [PMID: 39242246 PMCID: PMC11656492 DOI: 10.1016/j.tins.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.
Collapse
Affiliation(s)
- Matthew L Baum
- Brigham and Women's Hospital, Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Christopher M Bartley
- Translational Immunopsychiatry Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen IV FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 PMCID: PMC11542851 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B. Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
48
|
Paparoditis PCG, Fruehwirth A, Bevc K, Low JS, Jerak J, Terzaghi L, Foglierini M, Fernandez B, Jarrossay D, Corti D, Sallusto F, Lanzavecchia A, Cassotta A. Site-specific serology unveils cross-reactive monoclonal antibodies targeting influenza A hemagglutinin epitopes. Eur J Immunol 2024; 54:e2451045. [PMID: 39031535 DOI: 10.1002/eji.202451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Efficient identification of human monoclonal antibodies targeting specific antigenic sites is pivotal for advancing vaccines and immunotherapies against infectious diseases and cancer. Existing screening techniques, however, limit our ability to discover monoclonal antibodies with desired specificity. In this study, we introduce a novel method, blocking of binding (BoB) enzyme-linked immunoassay (ELISA), enabling the detection of high-avidity human antibodies directed to defined epitopes. Leveraging BoB-ELISA, we analyzed the antibody response to known epitopes of influenza A hemagglutinin (HA) in the serum of vaccinated donors. Our findings revealed that serum antibodies targeting head epitopes were immunodominant, whereas antibodies against the stem epitope, although subdominant, were highly prevalent. Extending our analysis across multiple HA strains, we examined the cross-reactive antibody response targeting the stem epitope. Importantly, employing BoB-ELISA we identified donors harboring potent heterosubtypic antibodies targeting the HA stem. B-cell clonal analysis of these donors revealed three novel, genealogically independent monoclonal antibodies with broad cross-reactivity to multiple HAs. In summary, we demonstrated that BoB-ELISA is a sensitive technique for measuring B-cell epitope immunogenicity, enabling the identification of novel monoclonal antibodies with implications for enhanced vaccine development and immunotherapies.
Collapse
Affiliation(s)
- Philipp C G Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Kajetana Bevc
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laura Terzaghi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Blanca Fernandez
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
- National Institute of Molecular Genetics, Milano, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
49
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
50
|
Paciello I, Pierleoni G, Pantano E, Antonelli G, Pileri P, Maccari G, Cardamone D, Realini G, Perrone F, Neto MM, Pozzessere S, Fabbiani M, Panza F, Rancan I, Tumbarello M, Montagnani F, Medini D, Maes P, Temperton N, Simon-Loriere E, Schwartz O, Rappuoli R, Andreano E. Antigenic sin and multiple breakthrough infections drive converging evolution of COVID-19 neutralizing responses. Cell Rep 2024; 43:114645. [PMID: 39207904 PMCID: PMC11422482 DOI: 10.1016/j.celrep.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort. Repertoire analysis shows that the original Wuhan antigenic sin drives the convergent expansion of the same B cell germlines in vaccinated and SH cohorts. Only Omicron breakthrough infections expand previously unseen germ lines and generate broadly nAbs by restoring IGHV3-53/3-66 germ lines. Our analyses find that B cells initially expanded by the original antigenic sin continue to play a fundamental role in the evolution of the immune response toward an evolving virus.
Collapse
Affiliation(s)
- Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Dario Cardamone
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giulia Realini
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Federica Perrone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Simone Pozzessere
- Department of Cellular Therapies, Hematology, and Laboratory Medicine, University Hospital of Siena, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Panza
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Mario Tumbarello
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piet Maes
- KU Leuven, Rega Institute, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; Vaccine Research Institute, Creteil, France
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy; Fondazione Biotecnopolo di Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
| |
Collapse
|