1
|
Spunde K, Korotkaja K, Sominskaya I, Zajakina A. Genetic adjuvants: A paradigm shift in vaccine development and immune modulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102536. [PMID: 40336572 PMCID: PMC12056970 DOI: 10.1016/j.omtn.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The COVID-19 pandemic underscored the urgency of developing effective vaccines to combat infectious diseases, especially in vulnerable populations such as the elderly and immunocompromised. While recombinant protein vaccines offer safety, their poor immunogenicity highlights the need for advanced vaccination platforms. New genetic/nucleic acid vaccine formulations like plasmid DNA and mRNA showed efficiency and safety in preclinical and clinical studies; however, they demand innovative adjuvants because their mechanism of action differs from traditional protein vaccines. Genetic adjuvants-encoded by nucleic acids within DNA, RNA, or viral vectors-emerge as a promising solution by targeting and modulating specific immune pathways, including antigen presentation, T cell activation, and memory formation. These innovative adjuvants enhance vaccine efficacy by fine-tuning innate and adaptive immune responses, overcoming immune senescence, and addressing the challenges of CD8+ T cell activation in immunocompromised populations. This review explores the potential of genetically encoded adjuvants, including cytokines, chemokines, and other immune modulators. By comparing these adjuvants to traditional formulations, we highlight their capacity to address the limitations of modern vaccines while discussing their integration with emerging technologies like RNA-based vaccines. As genetic adjuvants advance toward clinical application, understanding their mechanisms and optimizing their delivery is pivotal to unlocking next-generation immunization strategies.
Collapse
Affiliation(s)
- Karina Spunde
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Ksenija Korotkaja
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Irina Sominskaya
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k. 1, LV-1067 Riga, Latvia
| |
Collapse
|
2
|
Wei L, Zhu W, Dong C, Kim JK, Ma Y, Denning TL, Kang SM, Wang BZ. Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice. Biomaterials 2025; 317:123039. [PMID: 39724768 DOI: 10.1016/j.biomaterials.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination. The adjuvant mRNA encodes a novel fusion cytokine GIFT4 comprising GM-CSF and IL-4. We found that the adjuvanted mRNA LNP vaccine induced high levels of humoral antibodies and systemic T cell responses against heterologous influenza antigens and protected immunized mice against influenza A viral infections. Also, the adjuvanted mRNA LNP vaccine elicited early germinal center reactions in draining lymph nodes and promoted antibody-secreting B cell responses. In addition, we generated another adjuvant mRNA encoding CCL27, which enhanced systemic immune responses. We found the two adjuvant mRNAs both showed effective adjuvanticity in enhancing humoral and cellular responses in mice. Interestingly, intradermal immunizations of GIFT4 or CCL27 mRNA adjuvanted mRNA LNP vaccines induced significant lung tissue-resident T cells. Our findings demonstrate that the cytokine mRNA can be a promising adjuvant flexibly formulated into mRNA LNP vaccines to provoke strong immunity against viral variants.
Collapse
Affiliation(s)
- Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Liaw K, Konrath KM, Trachtman AR, Tursi NJ, Gary EN, Livingston C, Flowers K, Chu JD, Hojecki CE, Laenger N, McCanna ME, Agostino CJ, Chokkalingam N, Bayruns K, Kriete S, Kim A, Park J, Monastra C, Pardo LA, Jenison S, Huang J, Mulka K, Patel A, Kulp DW, Weiner DB. DNA co-delivery of seasonal H1 influenza hemagglutinin nanoparticle vaccines with chemokine adjuvant CTACK induces potent immunogenicity for heterologous protection in vivo. Vaccine 2025; 59:127231. [PMID: 40398322 DOI: 10.1016/j.vaccine.2025.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Current influenza vaccines induce mostly strain-specific immunity necessitating annual reformulation and dosing. Here, we developed an improved seasonal influenza vaccine based on A/H1N1/Wisconsin/588/2019. We designed a DNA-launched self-assembling nanoparticle that displayed seven Wisconsin/588/2019 hemagglutinin (HA) head domains (WI19-7mer). WI19-7mer nanovaccine improved heterologous HAI titers and CD8+ cellular responses in mice than DNA encoded HA trimer (WI19 HA). In human antibody repertoire mice, WI19-7mer induced superior breadth to a diverse panel of H1 HAs compared to WI19 HA immunized animals. Cross-reactive HAI titers were maintained better in mice immunized with WI19-7mer than WI19 HA. The WI19-7mer induced improved antibody binding breadth and provided superior protection in a heterologous challenge compared to challenge-matched HA trimer. Addition of the cytokine adjuvant (CTACK) to WI19-7mer significantly improved breadth, HAI, peripheral responses, and protection in heterologous challenge. These data demonstrate that combining nucleic acid delivery, immune focusing, low valency nanoparticle, and mucosal adjuvant for enhanced vaccine effectiveness has broader applications for other viruses.
Collapse
Affiliation(s)
- Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abigail R Trachtman
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Cory Livingston
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kaitlyn Flowers
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline D Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey E Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Niklas Laenger
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Biology Department, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Madison E McCanna
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Colby J Agostino
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kelly Bayruns
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sinja Kriete
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amber Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Joyce Park
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Cara Monastra
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lucas A Pardo
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sarah Jenison
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jinwei Huang
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kathleen Mulka
- Penn Vet Comparative Pathology Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Alrasheed AR, Awadalla M, Alnajran H, Alammash MH, Almaqati AM, Qadri I, Alosaimi B. Harnessing immunotherapeutic molecules and diagnostic biomarkers as human-derived adjuvants for MERS-CoV vaccine development. Front Immunol 2025; 16:1538301. [PMID: 40181980 PMCID: PMC11965926 DOI: 10.3389/fimmu.2025.1538301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
The pandemic potential of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) highlights the critical need for effective vaccines due to its high fatality rate of around 36%. In this review, we identified a variety of immunotherapeutic molecules and diagnostic biomarkers that could be used in MERS vaccine development as human-derived adjuvants. We identified immune molecules that have been incorporated into standard clinical diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the complement proteins Ca3 and Ca5. Utilization of different human monoclonal antibodies in the treatment of MERS-CoV patients demonstrates promising outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H, 3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051, REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have shown significant improvements in immune responses, underscoring their potential to bolster both systemic and mucosal immunity. In conclusion, we believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer significant advantages over synthetic options in vaccine development, underscoring the need for clinical trials to validate their efficacy.
Collapse
Affiliation(s)
- Abdullah R. Alrasheed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Hadeel Alnajran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Adil M. Almaqati
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Soontara C, Uchuwittayakul A, Kayansamruaj P, Amparyup P, Wongpanya R, Srisapoome P. Adjuvant Effects of a CC Chemokine for Enhancing the Efficacy of an Inactivated Streptococcus agalactiae Vaccine in Nile Tilapia ( Oreochromis niloticus). Vaccines (Basel) 2024; 12:641. [PMID: 38932370 PMCID: PMC11209360 DOI: 10.3390/vaccines12060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the ability of a CC chemokine (On-CC1) adjuvant to enhance the efficacy of a formalin-killed Streptococcus agalactiae vaccine (WC) in inducing immune responses against S. agalactiae in Nile tilapia was investigated through immune-related gene expression analysis, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing, and challenge tests. Significantly higher S. agalactiae-specific IgM levels were detected in fish in the WC+CC group than in the WC alone or control groups at 8 days postvaccination (dpv). The WC vaccine group exhibited increased specific IgM levels at 15 dpv, comparable to those of the WC+CC group, with sustained higher levels observed in the latter group at 29 dpv and after challenge with S. agalactiae for 14 days. Immune-related gene expression analysis revealed upregulation of all target genes in the control group compared to those in the vaccinated groups, with notable differences between the WC and WC+CC groups at various time intervals. Additionally, transcriptome analysis revealed differential gene expression profiles between the vaccinated (24 and 96 hpv) and control groups, with notable upregulation of immune-related genes in the vaccinated fish. Differential gene expression (DGE) analysis revealed significant upregulation of immunoglobulin and other immune-related genes in the control group compared to those in the vaccinated groups (24 and 96 hpv), with distinct patterns observed between the WC and WC+CC vaccine groups. Finally, challenge with a virulent strain of S. agalactiae resulted in significantly higher survival rates for fish in the WC and WC+CC groups compared to fish in the control group, with a notable increase in survival observed in fish in the WC+CC group.
Collapse
Affiliation(s)
- Chayanit Soontara
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Khlong Luang 12120, Thailand;
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Liu C, Xue RY, Li GC, Zhang Y, Wu WY, Liu JY, Feng R, Jin Z, Deng Y, Jin ZL, Cheng H, Mao L, Zou QM, Li HB. pGM-CSF as an adjuvant in DNA vaccination against SARS-CoV-2. Int J Biol Macromol 2024; 264:130660. [PMID: 38460634 DOI: 10.1016/j.ijbiomac.2024.130660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Department of Pharmacy, Chinese People's Liberation Army Unit 32265, Guangzhou 510310, PR China
| | - Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zi-Li Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
7
|
Pagliari S, Dema B, Sanchez-Martinez A, Montalvo Zurbia-Flores G, Rollier CS. DNA Vaccines: History, Molecular Mechanisms and Future Perspectives. J Mol Biol 2023; 435:168297. [PMID: 37797831 DOI: 10.1016/j.jmb.2023.168297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The history of DNA vaccine began as early as the 1960s with the discovery that naked DNA can transfect mammalian cells in vivo. In 1992, the evidence that such transfection could lead to the generation of antigen-specific antibody responses was obtained and supported the development of this technology as a novel vaccine platform. The technology then attracted immense interest and high hopes in vaccinology, as evidence of high immunogenicity and protection against virulent challenges accumulated from several animal models for several diseases. In particular, the capacity to induce T-cell responses was unprecedented in non-live vaccines. However, the technology suffered its major knock when the success in animals failed to translate to humans, where DNA vaccine candidates were shown to be safe but remained poorly immunogenic, or not associated with clinical benefit. Thanks to a thorough exploration of the molecular mechanisms of action of these vaccines, an impressive range of approaches have been and are currently being explored to overcome this major challenge. Despite limited success so far in humans as compared with later genetic vaccine technologies such as viral vectors and mRNA, DNA vaccines are not yet optimised for human use and may still realise their potential.
Collapse
Affiliation(s)
- Sthefany Pagliari
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Dema
- Pandemic Science Institute, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Oxford, UK
| | | | | | - Christine S Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
8
|
Advances in chemokines of teleost fish species. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Yan Y, Hu K, Fu M, Deng X, Guan X, Luo S, Zhang M, Liu Y, Hu Q. CCL28 Enhances HSV-2 gB-Specific Th1-Polarized Immune Responses against Lethal Vaginal Challenge in Mice. Vaccines (Basel) 2022; 10:vaccines10081291. [PMID: 36016177 PMCID: PMC9415327 DOI: 10.3390/vaccines10081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmid DNA (pDNA) represents a promising “genetic vaccine platform” capable of overcoming major histocompatibility complex barriers. We previously demonstrated that low-to-moderate doses of mucosae-associated epithelial chemokine (MEC or CCL28) as an immunomodulatory adjuvant can trigger effective and long-lasting systemic and mucosal HSV-2 gD-specific immune responses, whereas mice immunized with gD in combination with high-dose CCL28 showed toxicity and lost their immunoprotective effects after lethal HSV-2 challenge. The exact causes underlying high-dose, CCL28-induced lesions remain unknown. In an intramuscularly immunized mouse model, we investigated the immune-enhancement mechanisms of low-dose CCL28 as a molecular adjuvant combined with the relatively weak immunogen HSV-2 gB. Compared with the plasmid gB antigen group, we found that a low-dose of plasmid CCL28 (pCCL28) codelivered with pgB induced increased levels of gB-specific serum IgG and vaginal fluid IgA, serum neutralizing antibodies (NAb), Th1-polarized IgG2a, and cytokine IL-2 (>5-fold). Furthermore, low-dose pCCL28 codelivery with pgB enhanced CCL28/CCR10-axis responsive CCR10− plus CCR10+ B-cell (~1.2-fold) and DC pools (~4-fold) in the spleen, CCR10− plus CCR10+ T-cell pools (~2-fold) in mesenteric lymph nodes (MLNs), and the levels of IgA-ASCs in colorectal mucosal tissues, leading to an improved protective effect against a lethal dose of HSV-2 challenge. Findings in this study provide a basis for the development of CCL28-adjuvant vaccines against viral mucosal infections.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People’s Hospital of Wuxi, Wuxi Affiliated Clinical Academy of Nantong University, Wuxi 214016, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sukun Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK
- Correspondence:
| |
Collapse
|
10
|
Gary EN, Tursi NJ, Warner B, Parzych EM, Ali AR, Frase D, Moffat E, Embury-Hyatt C, Smith TRF, Broderick KE, Humeau L, Kobasa D, Patel A, Kulp DW, Weiner DB. Mucosal chemokine adjuvant enhances synDNA vaccine-mediated responses to SARS-CoV-2 and provides heterologous protection in vivo. Cell Rep Med 2022; 3:100693. [PMID: 35839767 PMCID: PMC9237025 DOI: 10.1016/j.xcrm.2022.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has claimed more than 5 million lives. Emerging variants of concern (VOCs) continually challenge viral control. Directing vaccine-induced humoral and cell-mediated responses to mucosal surfaces may enhance vaccine efficacy. Here we investigate the immunogenicity and protective efficacy of optimized synthetic DNA plasmids encoding wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (pS) co-formulated with the plasmid-encoded mucosal chemokine cutaneous T cell-attracting chemokine (pCTACK; CCL27). pCTACK-co-immunized animals exhibit increased spike-specific antibodies at the mucosal surface and increased frequencies of interferon gamma (IFNγ)+ CD8+ T cells in the respiratory mucosa. pCTACK co-immunization confers 100% protection from heterologous Delta VOC challenge. This study shows that mucosal chemokine adjuvants can direct vaccine-induced responses to specific immunological sites and have significant effects on heterologous challenge. Further study of this unique chemokine-adjuvanted vaccine approach in the context of SARS-CoV-2 vaccines is likely important.
Collapse
Affiliation(s)
- Ebony N Gary
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nicholas J Tursi
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryce Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Elizabeth M Parzych
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ali R Ali
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Drew Frase
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Estella Moffat
- National Center for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Carissa Embury-Hyatt
- National Center for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | | | | | | | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ami Patel
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Daniel W Kulp
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - David B Weiner
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Li H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Two bicistronic DNA vaccines against Vibrio anguillarum and the immune effects on flounder Paralichthys olivaceus. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 40:786-804. [PMID: 35018224 PMCID: PMC8739378 DOI: 10.1007/s00343-021-1092-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Chemokines are cytokines that can promote the activation and migration of immune cells, and increase the recognition of antigen by antigen-presenting cells (APC). Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization. To explore the improvement of chemokines on the efficiency of OmpK vaccine, two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescent assay (IFA), H&E staining, flow cytometry (FCM), and quantificational real-time polymerase chain reaction (qRT-PCR). pBudCE4.1 plasmid as an expression vector, bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene (p-OmpK-CCL4), or Ompk gene and CC-motif ligand 19 gene (p-OmpK-CCL19) were successfully constructed. The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of flounder both in vitro and in vivo. After immunization, a large number of leucocytes in muscle were recruited at the injection site in treatment groups. The constructed vaccines induced significant increases in CD4-1+ and CD4-2+ T lymphocytes, and sIgM+ B lymphocytes in peripheral blood, spleen, and head kidney. The percentage of T lymphocytes peaked on the 14th post-vaccination day whereas that of B lymphocytes peaked in the 6th post-vaccination week. Moreover, the expression profiles of 10 immune-related genes increased in muscles around the injection site, spleen, and head kidney. After the challenge, p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival (RPS) of 74.1% and 63.3%, respectively, higher than p-OmpK alone (40.8%). In conclusion, both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity. CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.
Collapse
Affiliation(s)
- Hanlin Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
12
|
CCL19 and CCL28 Assist Herpes Simplex Virus 2 Glycoprotein D To Induce Protective Systemic Immunity against Genital Viral Challenge. mSphere 2021; 6:6/2/e00058-21. [PMID: 33910988 PMCID: PMC8092132 DOI: 10.1128/msphere.00058-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. Potent systemic immunity is important for recalled mucosal immune responses, but in the defense against mucosal viral infections, it usually remains low at mucosal sites. Based on our previous findings that enhanced immune responses can be achieved by immunization with an immunogen in combination with a molecular adjuvant, here we designed chemokine-antigen (Ag) fusion constructs (CCL19- or CCL28-herpes simplex virus 2 glycoprotein D [HSV-2 gD]). After intramuscular (i.m.) immunization with different DNA vaccines in a prime and boost strategy, BALB/c mice were challenged with a lethal dose of HSV-2 through the genital tract. Ag-specific immune responses and chemokine receptor-specific lymphocytes were analyzed to determine the effects of CCL19 and CCL28 in strengthening humoral and cellular immunity. Both CCL19 and CCL28 were efficient in inducing long-lasting HSV-2 gD-specific systemic immunity. Compared to CCL19, less CCL28 was required to elicit HSV-2 gD-specific serum IgA responses, Th1- and Th2-like responses of immunoglobulin (Ig) subclasses and cytokines, and CCR3+ T cell enrichment (>8.5-fold) in spleens. These findings together demonstrate that CCL28 tends to assist an immunogen to induce more potently protective immunity than CCL19. This work provides information for the application potential of a promising vaccination strategy against mucosal infections caused by HSV-2 and other sexually transmitted viruses. IMPORTANCE An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. In addition to eliciting robust humoral immune responses, the chemokine-Ag fusion construct also induced Th1- and Th2-like immune responses characterized by the secretion of multiple Ig subclasses and cytokines that were able to be recalled after HSV-2 challenge, while CCL28 appeared to be more effective than CCL19 in promoting gD-elicited immune responses as well as the migration of T cells to secondary lymph tissues. Of importance, both CCL19 and CCL28 significantly facilitated gD to induce protective mucosal immune responses in the genital tract. The above-described findings together highlight the potential of CCL19 or CCL28 in combination with gD as a vaccination strategy to control HSV-2 infection.
Collapse
|
13
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
14
|
Gary EN, Kathuria N, Makurumidze G, Curatola A, Ramamurthi A, Bernui ME, Myles D, Yan J, Pankhong P, Muthumani K, Haddad E, Humeau L, Weiner DB, Kutzler MA. CCR10 expression is required for the adjuvant activity of the mucosal chemokine CCL28 when delivered in the context of an HIV-1 Env DNA vaccine. Vaccine 2020; 38:2626-2635. [PMID: 32057572 PMCID: PMC10681704 DOI: 10.1016/j.vaccine.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
An effective prophylactic vaccine targeting HIV must induce a robust humoral response and must direct the bulk of this response to the mucosa-the primary site of HIV transmission. The chemokine, CCL28, is secreted by epithelial cells at mucosal surfaces and recruits' cells expressing its receptor CCR10. CCR10 is predominantly expressed by IgA + ASCs. We hypothesized that co-immunization with plasmid DNA encoding consensus envelope antigens with plasmid-encoded CCL28 would enhance anti-HIV IgA responses at mucosal surfaces. Indeed, animals receiving pCCL28 and pEnvA/C had significantly increased HIV-specific IgA in fecal extract. Surprisingly, CCL28 co-immunization induced a significant increase in anti-HIV IgG in the serum in mice compared to those receiving pEnvA/C alone. These robust antibody responses were not associated with changes in the frequency of germinal center B cells but depended upon the expression of CCR10, as these responses we abolished in CCR10-deficient animals. Finally, immunization with CCL28 led to increased frequencies in HIV-specific CCR10 + and CCR10 + IgA + B cells in the small intestine and Peyer's patches of vaccinated animals as compared to those receiving pEnvA/C alone. These data indicate that CCL28 administration can enhance antigen-specific humoral responses systemically and at mucosal surfaces.
Collapse
Affiliation(s)
- E N Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - N Kathuria
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - G Makurumidze
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Curatola
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Ramamurthi
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - M E Bernui
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - D Myles
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - J Yan
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - P Pankhong
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - K Muthumani
- The Wistar Institute, Philadelphia, PA, United States
| | - E Haddad
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - L Humeau
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - D B Weiner
- The Wistar Institute, Philadelphia, PA, United States
| | - M A Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. The effects of CCL3, CCL4, CCL19 and CCL21 as molecular adjuvants on the immune response to VAA DNA vaccine in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103492. [PMID: 31494219 DOI: 10.1016/j.dci.2019.103492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
The magnitude of the immune response induced by DNA vaccines depends on the amount and type of antigen-presenting cells attracted to the injection site. In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and shown to confer moderate protection against V. anguillarum challenge. To augment the protective efficacy of the VAA DNA vaccine and compare the adjuvant effects of CCL3, CCL4, CCL19 and CCL21, four bicistronic DNA plasmids containing the VAA gene of V. anguillarum together with the gene encoding the CCL3/CCL4/CCL19/CCL21 chemokines of flounder were successfully constructed and administered to fish, and the immune response of the animals and the enhancement of immunoprotection by the four chemokines were investigated. Vaccinated with pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA, flounder showed relative percent survivals of 62.16%, 83.78%, 78.38% and 72.97%, respectively, higher than the relative survival of flounder immunized with pVAA (40.54%). Compared with the pVAA group, the percentages of sIgM+, CD4-1+, and CD4-2+ lymphocytes and the levels of specific antibodies increased in pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA injection groups; CCL4 and CCL19 induced significantly higher levels of these parameters than CCL3 and CCL21 did. The amount of V. anguillarum in liver, spleen and kidney of pCCL3-VAA-, pCCL4-VAA-, pCCL19-VAA- and pCCL21-VAA-immunized flounder after V. anguillarum challenge was reduced compared to that in the pVAA group. Moreover, the co-expression of CCL3/CCL4/CCL19/CCL21 up-regulated immune-related gene expression associated with the local immune response. Our results indicate that CCL4 and CCL19 are promising adjuvants for use in VAA DNA vaccine against V. anguillarum.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|
16
|
Aldon Y, Kratochvil S, Shattock RJ, McKay PF. Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non-Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae. THE JOURNAL OF IMMUNOLOGY 2020; 204:903-913. [PMID: 31915263 PMCID: PMC6994839 DOI: 10.4049/jimmunol.1901184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023]
Abstract
Plasmid DNA is a promising vaccine platform that together with electroporation can elicit significant systemic Ab responses; however, immunity at mucosal sites remains low. In this study, we sought to program T and B cells to home to the gastrointestinal and vaginal mucosae using genetic chemokine adjuvants and assessed their impact on immune homeostasis in various distinct immune compartments. BALB/c mice were immunized i.m. with plasmid DNA encoding a model Ag HIV-1 Env gp140 and selected chemokines/cytokine and boosted intravaginally with gp140 recombinant protein. Isolated splenocytes, intestinal lymphocytes, and genital lymphocytes as well as serum and intestinal luminal contents were assessed for Ag-specific reactivity. In addition, flow cytometric analysis was performed to determine the impact on immune homeostasis at these sites. Different molecular chemokine/cytokine adjuvants effected significant alterations to the recruitment of B and T cells to the spleen, vaginal and intestinal mucosae, for example CCL25 enhanced splenic and vaginal Ag-specific T cell responses whereas CCL28 increased the levels of specific T cells only in the vaginal mucosa. The levels of Ab could be modulated in the systemic circulation, as well as the vaginal vault and intestinal lumen, with CCL20 playing a central role. Our data demonstrate that the CCL20, CCL25, and CCL28 genetic chemokine adjuvants enhance the vaccine Ag-specific humoral and cellular responses and induce homing to the intestinal and female genital mucosae.
Collapse
Affiliation(s)
- Yoann Aldon
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Sven Kratochvil
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Paul F McKay
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
17
|
Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol 2019; 211:75-84. [DOI: 10.1016/j.vetimm.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
|
18
|
Gary EN, Kutzler MA. Defensive Driving: Directing HIV-1 Vaccine-Induced Humoral Immunity to the Mucosa with Chemokine Adjuvants. J Immunol Res 2018; 2018:3734207. [PMID: 30648120 PMCID: PMC6311813 DOI: 10.1155/2018/3734207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
A myriad of pathogens gain access to the host via the mucosal route; thus, vaccinations that protect against mucosal pathogens are critical. Pathogens such as HIV, HSV, and influenza enter the host at mucosal sites such as the intestinal, urogenital, and respiratory tracts. All currently licensed vaccines mediate protection by inducing the production of antibodies which can limit pathogen replication at the site of infection. Unfortunately, parenteral vaccination rarely induces the production of an antigen-specific antibody at mucosal surfaces and thus relies on transudation of systemically generated antibody to mucosal surfaces to mediate protection. Mucosa-associated lymphoid tissues (MALTs) consist of a complex network of immune organs and tissues that orchestrate the interaction between the host, commensal microbes, and pathogens at these surfaces. This complexity necessitates strict control of the entry and exit of lymphocytes in the MALT. This control is mediated by chemoattractant chemokines or cytokines which recruit immune cells expressing the cognate receptors and adhesion molecules. Exploiting mucosal chemokine trafficking pathways to mobilize specific subsets of lymphocytes to mucosal tissues in the context of vaccination has improved immunogenicity and efficacy in preclinical models. This review describes the novel use of MALT chemokines as vaccine adjuvants. Specific attention will be placed upon the use of such adjuvants to enhance HIV-specific mucosal humoral immunity in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- The Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Liu J, Ren Z, Wang H, Zhao Y, Wilker PR, Yu Z, Sun W, Wang T, Feng N, Li Y, Wang H, Ji X, Li N, Yang S, He H, Qin C, Gao Y, Xia X. Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses. Int Immunopharmacol 2018; 63:119-128. [PMID: 30081250 DOI: 10.1016/j.intimp.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/01/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses cause significant morbidity and mortality and pose a substantial threat to public health. Vaccination represents the principle means of preventing influenza virus infection. Current vaccine approaches are hindered by the need to routinely reformulate vaccine compositions in an effort to account for the progressive antigenic changes that occur as influenza viruses circulate in the human population. In this study, we evaluated chimeric virus-like particle (cVLP) vaccines containing conserved elements of influenza proteins (HL5M2e (HA stem gene with 5M2e gene inserted) and NP), with or without glycosylphosphatidylinositol-anchored CCL28 (GPI-CCL28) and/or GM-CSF (GPI-GM-CSF) fusion proteins as molecular adjuvants. cVLPs elicited strong humoral and cellular immune responses against homologous and heterologous viruses, and improved survival following lethal challenge with both homologous and heterologous viruses. Inclusion of GPI-anchored adjuvants in cVLP vaccines augmented the generation of influenza-specific humoral and cellular immune responses in mice in comparison to the non-adjuvanted cVLP vaccines. VLPs containing GPI-anchored adjuvants reduced morbidity and improved survival to lethal challenge with homologous and heterologous influenza viruses. This work suggests that VLP vaccines incorporating conserved influenza virus proteins and GPI-anchored molecular adjuvants may serve as a platform for a broadly protective "universal" influenza vaccine.
Collapse
Affiliation(s)
- Jing Liu
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medicine, Kaifeng 475004, China; Henan University, Kaifeng, Hennan Province, China
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Peter R Wilker
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Xianliang Ji
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Chuan Qin
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xianzhu Xia
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
|
21
|
Mohan T, Deng L, Wang BZ. CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. Int Immunopharmacol 2017; 51:165-170. [PMID: 28843907 PMCID: PMC5755716 DOI: 10.1016/j.intimp.2017.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Chemokines are an extensive family of small proteins which, in conjunction with their receptors, guide the chemotactic activity of various immune cells throughout the body. CCL28, β- or CC chemokine, is involved in the host immunity at various epithelial and mucosal linings. The unique roles of CCL28 in several facets of immune responses have attracted considerable attention and may represent a promising approach to combat various infections. CCL28 displays a broad spectrum of antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi. Here, we will summarize various research findings regarding the antimicrobial activity of CCL28 and the relevant mechanisms behind it. We will explore how the structure of CCL28 is involved with this activity and how this function may have evolved. CCL28 displays strong homing capabilities for B and T cells at several mucosal and epithelial sites, and orchestrates the trafficking and functioning of lymphocytes. The chemotactic and immunomodulatory features of CCL28 through the interactions with its chemokine receptors, CCR10 and CCR3, will also be discussed in detail. Thus, in this review, we emphasize the dual properties of CCL28 and suggest its role as an anchoring point bridging the innate and adaptive immunity. Chemokines play a vital role in cell migration in response to a chemical gradient by a process known as chemotaxis. CCL28 is a β- or CC chemokine that is involved in host immunity through the interactions with its chemokine receptors, CCR10 and CCR3. CCL28 is constitutively expressed in a wide variety of tissues including exocrine glands and is inducible through inflammation and infections. CCL28 has been shown to exhibit broad spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and some fungi. CCL28 displays strong homing capabilities for B and T cells and orchestrates the trafficking and functioning of lymphocytes. In this review, we emphasize the antimicrobial and immunomodulatory feature of CCL28 and its role as bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA.
| |
Collapse
|
22
|
Cytokines Elevated in HIV Elite Controllers Reduce HIV Replication In Vitro and Modulate HIV Restriction Factor Expression. J Virol 2017; 91:JVI.02051-16. [PMID: 28053103 DOI: 10.1128/jvi.02051-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies.IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells.
Collapse
|
23
|
Mohan T, Berman Z, Luo Y, Wang C, Wang S, Compans RW, Wang BZ. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses. Sci Rep 2017; 7:40226. [PMID: 28067290 PMCID: PMC5220311 DOI: 10.1038/srep40226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza virus is a significant cause of morbidity and mortality, with worldwide seasonal epidemics. The duration and quality of humoral immunity and generation of immunological memory to vaccines is critical for protective immunity. In the current study, we examined the long-lasting protective efficacy of chimeric VLPs (cVLPs) containing influenza HA and GPI-anchored CCL28 as antigen and mucosal adjuvant, respectively, when immunized intranasally in mice. We report that the cVLPs induced significantly higher and sustainable levels of virus-specific antibody responses, especially IgA levels and hemagglutination inhibition (HAI) titers, more than 8-month post-vaccination compared to influenza VLPs without CCL28 or influenza VLPs physically mixed with sCCL28 (soluble) in mice. After challenging the vaccinated animals at month 8 with H3N2 viruses, the cVLP group also demonstrated strong recall responses. On day 4 post-challenge, we measured increased antibody levels, ASCs and HAI titers with reduced viral load and inflammatory responses in the cVLP group. The animals vaccinated with the cVLP showed 20% cross-protection against drifted (Philippines) and 60% protection against homologous (Aichi) H3N2 viruses. Thus, the results suggest that the GPI-anchored CCL28 induces significantly higher mucosal antibody responses, involved in providing long-term cross-protection against H3N2 influenza virus when compared to other vaccination groups.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Zachary Berman
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yuan Luo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Shelly Wang
- Department of Microbiology & Immunology, School of Medicine Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Richard W. Compans
- Department of Microbiology & Immunology, School of Medicine Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
24
|
El Bissati K, Chentoufi AA, Krishack PA, Zhou Y, Woods S, Dubey JP, Vang L, Lykins J, Broderick KE, Mui E, Suzuki Y, Sa Q, Bi S, Cardona N, Verma SK, Fraczek L, Reardon CA, Sidney J, Alexander J, Sette A, Vedvick T, Fox C, Guderian JA, Reed S, Roberts CW, McLeod R. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii. JCI Insight 2016; 1:e85955. [PMID: 27699241 DOI: 10.1172/jci.insight.85955] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell-eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Aziz A Chentoufi
- Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Ying Zhou
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Lo Vang
- PaxVax Inc., San Diego, California, USA
| | - Joseph Lykins
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Kate E Broderick
- Department of Research and Development, Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | - Ernest Mui
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Stephanie Bi
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Nestor Cardona
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Shiv K Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Laura Fraczek
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Tom Vedvick
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Chris Fox
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | - Steven Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rima McLeod
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing. Vaccine 2016; 34:5132-5140. [PMID: 27593157 DOI: 10.1016/j.vaccine.2016.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022]
Abstract
Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity. Potential CD8(+) T cell epitopes in H56 were predicted using the NetMHC3.4/ANN program. Mice were immunized with H56 cDNA using dermal DNA tattoo immunization and epitope candidates were tested for recognition by responding CD8(+) T cells in ex vivo assays. Seven novel CD8(+) T cell epitopes were identified. H56 immunogenicity could be substantially enhanced by two strategies: (i) fusion of the H56 sequence to cDNA of proteins that modify intracellular antigen processing or provide CD4(+) T cell help, (ii) by substitution of the epitope's hydrophobic C-terminal flanking residues for polar glutamic acid, which facilitated their proteasome-mediated generation. We conclude that this whole strategy of in silico prediction of potential CD8(+) T cell epitopes in novel antigens, followed by fusion to sequences with immunogenicity-enhancing properties or modification of epitope flanking sequences to improve proteasome-mediated processing, may be exploited to design novel vaccines against emerging or 'hard to treat' intracellular pathogens.
Collapse
|
26
|
Mohan T, Kim J, Berman Z, Wang S, Compans RW, Wang BZ. Co-delivery of GPI-anchored CCL28 and influenza HA in chimeric virus-like particles induces cross-protective immunity against H3N2 viruses. J Control Release 2016; 233:208-19. [PMID: 27178810 DOI: 10.1016/j.jconrel.2016.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Influenza infection typically initiates at respiratory mucosal surfaces. Induction of immune responses at the sites where pathogens initiate replication is crucial for the prevention of infection. We studied the adjuvanticity of GPI-anchored CCL28 co-incorporated with influenza HA-antigens in chimeric virus-like particles (cVLPs), in boosting strong protective immune responses through an intranasal (i.n.) route in mice. We compared the immune responses to that from influenza VLPs without CCL28, or physically mixed with soluble CCL28 at systemic and various mucosal compartments. The cVLPs containing GPI-CCL28 showed in-vitro chemotactic activity towards spleen and lung cells expressing CCR3/CCR10 chemokine receptors. The cVLPs induced antigen specific endpoint titers and avidity indices of IgG in sera and IgA in tracheal, lung, and intestinal secretions, significantly higher (4-6 fold) than other formulations. Significantly higher (3-5 fold) hemagglutination inhibition titers and high serum neutralization against H3N2 viruses were also detected with CCL28-containing VLPs compared to other groups. The CCL28-containing VLPs showed complete and 80% protection, when vaccinated animals were challenged with A/Aichi/2/1968/H3N2 (homologous) and A/Philippines/2/1982/H3N2 (heterologous) viruses, respectively. Thus, GPI-anchored CCL28 in influenza VLPs act as a strong immunostimulator at both systemic and mucosal sites, boosting significant cross-protection in animals against heterologous viruses across a large distance.
Collapse
Affiliation(s)
- Teena Mohan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jongrok Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Zachary Berman
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
27
|
Chemokine-adjuvanted electroporated DNA vaccine induces substantial protection from simian immunodeficiency virus vaginal challenge. Mucosal Immunol 2016; 9:13-23. [PMID: 25943275 PMCID: PMC4636490 DOI: 10.1038/mi.2015.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/11/2015] [Indexed: 02/07/2023]
Abstract
There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG responses in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P<0.01) remained either uninfected or had aborted infection compared with only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where six of nine animals had aborted infection and two remained uninfected, leading to 89% protection (P<0.001). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection.
Collapse
|
28
|
An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates. J Virol 2015; 89:9154-66. [PMID: 26085155 DOI: 10.1128/jvi.00652-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4(+) and CD8(+) T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine regimen due to the resource-limited setting in which the HIV pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of diversity included in a vaccine due to the ease of manufacturing multiple plasmids and formulating them as a single immunization. By increasing the number of Envs within a formulation, we were able to show an increased breadth of responses as well as improved functionality induced in a nonhuman primate model. This increased breadth could be built upon, leading to better coverage against circulating strains with broader vaccine-induced protection.
Collapse
|
29
|
Tapping the Potential of DNA Delivery with Electroporation for Cancer Immunotherapy. Curr Top Microbiol Immunol 2015; 405:55-78. [PMID: 25682101 DOI: 10.1007/82_2015_431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a worldwide leading cause of death, and current conventional therapies are limited. The search for alternative preventive or therapeutic solutions is critical if we are going to improve outcomes for patients. The potential for DNA vaccines in the treatment and prevention of cancer has gained great momentum since initial findings almost 2 decades ago that revealed that genetically engineered DNA can elicit an immune response. The combination of adjuvants and an effective delivery method such as electroporation is overcoming past setbacks for naked plasmid DNA (pDNA) as a potential preventive or therapeutic approach to cancer in large animals and humans. In this chapter, we aim to focus on the novel advances in recent years for DNA cancer vaccines, current preclinical data, and the importance of adjuvants and electroporation with emphasis on prostate, melanoma, and cervical cancer.
Collapse
|
30
|
|
31
|
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity. Vaccines (Basel) 2014; 2:196-215. [PMID: 26344618 PMCID: PMC4494262 DOI: 10.3390/vaccines2020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022] Open
Abstract
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.
Collapse
|
32
|
HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One 2013; 8:e84234. [PMID: 24391921 PMCID: PMC3877240 DOI: 10.1371/journal.pone.0084234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023] Open
Abstract
An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs), and the elicitation of antibody-dependent cellular cytotoxicity (ADCC). Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP). However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.
Collapse
|
33
|
Cu Y, Broderick KE, Banerjee K, Hickman J, Otten G, Barnett S, Kichaev G, Sardesai NY, Ulmer JB, Geall A. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ. Vaccines (Basel) 2013; 1:367-83. [PMID: 26344119 PMCID: PMC4494232 DOI: 10.3390/vaccines1030367] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/06/2023] Open
Abstract
Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA), and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA.
Collapse
Affiliation(s)
- Yen Cu
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | | | - Kaustuv Banerjee
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Julie Hickman
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Gillis Otten
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Susan Barnett
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Gleb Kichaev
- Inovio Pharmaceuticals, Blue Bell, PA 19422, USA
| | | | - Jeffrey B Ulmer
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Andrew Geall
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, Du T, Yan Y, He S, Griffin GE, Shattock RJ, Hu Q. CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:1935-47. [DOI: 10.4049/jimmunol.1300120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Söbirk SK, Mörgelin M, Egesten A, Bates P, Shannon O, Collin M. Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro. PLoS One 2013; 8:e58129. [PMID: 23533582 PMCID: PMC3606167 DOI: 10.1371/journal.pone.0058129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.
Collapse
Affiliation(s)
- Sara K Söbirk
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
37
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Kathuria N, Kraynyak KA, Carnathan D, Betts M, Weiner DB, Kutzler MA. Generation of antigen-specific immunity following systemic immunization with DNA vaccine encoding CCL25 chemokine immunoadjuvant. Hum Vaccin Immunother 2012; 8:1607-19. [PMID: 23151454 DOI: 10.4161/hv.22574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A significant hurdle in vaccine development for many infectious pathogens is the ability to generate appropriate immune responses at the portal of entry, namely mucosal sites. The development of vaccine approaches resulting in secretory IgA and mucosal cellular immune responses against target pathogens is of great interest and in general, requires live viral infection at mucosal sites. Using HIV-1 and influenza A antigens as models, we report here that a novel systemically administered DNA vaccination strategy utilizing co-delivery of the specific chemokine molecular adjuvant CCL25 (TECK) can produce antigen-specific immune responses at distal sites including the lung and mesenteric lymph nodes in mice. The targeted vaccines induced infiltration of cognate chemokine receptor, CCR9+/CD11c+ immune cells to the site of immunization. Furthermore, data shows enhanced IFN-λ secretion by antigen-specific CD3+/CD8+ and CD3+/CD4+ T cells, as well as elevated HIV-1-specific IgG and IgA responses in secondary lymphoid organs, peripheral blood, and importantly, at mucosal sites. These studies have significance for the development of vaccines and therapeutic strategies requiring mucosal immune responses and represent the first report of the use of plasmid co-delivery of CCL25 as part of the DNA vaccine strategy to boost systemic and mucosal immune responses following intramuscular injection.
Collapse
Affiliation(s)
- Noshin Kathuria
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Connolly RJ, Chapman T, Hoff AM, Kutzler MA, Jaroszeski MJ, Ugen KE. Non-contact helium-based plasma for delivery of DNA vaccines. Enhancement of humoral and cellular immune responses. Hum Vaccin Immunother 2012; 8:1729-33. [PMID: 22894954 DOI: 10.4161/hv.21624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-viral in vivo administration of plasmid DNA for vaccines and immunotherapeutics has been hampered by inefficient delivery. Methods to enhance delivery such as in vivo electroporation (EP) have demonstrated effectiveness in circumventing this difficulty. However, the contact-dependent nature of EP has resulting side effects in animals and humans. Noncontact delivery methods should, in principle, overcome some of these obstacles. This report describes a helium plasma-based delivery system that enhanced humoral and cellular antigen-specific immune responses in mice against an intradermally administered HIV gp120-expressing plasmid vaccine (pJRFLgp120). The most efficient plasma delivery parameters investigated resulted in the generation of geometric mean antibody-binding titers that were 19-fold higher than plasmid delivery alone. Plasma mediated delivery of pJRFLgp120 also resulted in a 17-fold increase in the number of interferon-gamma spot-forming cells, a measure of CD8+ cytotoxic T cells, compared with non-facilitated plasmid delivery. This is the first report demonstrating the ability of this contact-independent delivery method to enhance antigen-specific immune responses against a protein generated by a DNA vaccine.
Collapse
Affiliation(s)
- Richard J Connolly
- Center for Molecular Delivery, University of South Florida; Tampa, FL, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Rainone V, Dubois G, Temchura V, Überla K, Clivio A, Nebuloni M, Lauri E, Trabattoni D, Veas F, Clerici M. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles. PLoS One 2011; 6:e26979. [PMID: 22066023 PMCID: PMC3205026 DOI: 10.1371/journal.pone.0026979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB) Virus-like particles (VLPs). Mice receiving either HIV-1(IIIB) VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+) splenocytes of HIV-1(IIIB) VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB) VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.
Collapse
Affiliation(s)
- Veronica Rainone
- Department of Clinical Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc Natl Acad Sci U S A 2011; 108:E1035-44. [PMID: 21969568 DOI: 10.1073/pnas.1100156108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemokine receptor CCR10 is expressed by all intestinal IgA-producing plasma cells and is suggested to play an important role in positioning these cells in the lamina propria for proper IgA production to maintain intestinal homeostasis and protect against infection. However, interfering with CCR10 or its ligand did not impair intestinal IgA production under homeostatic conditions or during infection, and the in vivo function of CCR10 in the intestinal IgA response remains unknown. We found that an enhanced generation of IgA(+) cells in isolated lymphoid follicles of intestines offset defective intestinal migration of IgA(+) cells in CCR10-KO mice, resulting in the apparently normal IgA production under homeostatic conditions and in primary response to pathogen infection. However, the compensatorily generated IgA(+) cells in CCR10-KO mice carried fewer hypermutations in their Ig heavy chain alleles than those of WT mice, indicating that their IgA repertoires are qualitatively different, which might impact the intestinal homeostasis of microflora. In addition, CCR10-deficient long-lived IgA-producing plasma cells and IgA(+) memory B cells generated against the pathogen infection could not be maintained properly in intestines. Consequently, IgA memory responses to the pathogen reinfection were severely impaired in CCR10-KO mice. These findings elucidate critical roles of CCR10 in regulating the intestinal IgA response and memory maintenance and could help in design of vaccines against intestinal and possibly other mucosal pathogens.
Collapse
|
42
|
Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br J Nutr 2011; 107:876-84. [PMID: 21899798 DOI: 10.1017/s000711451100420x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study investigated the ability of Bifidobacterium animalis ssp. lactis (BB-12®) and Lactobacillus paracasei ssp. paracasei (L. casei 431®) to modulate the immune system using a vaccination model in healthy subjects. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 211 subjects (56 % females, mean age 33·2 (sd 13·1) years). Subjects consumed a minimum of 10⁹ colony-forming units of BB-12® (capsule) or L. casei 431® (dairy drink) or a matching placebo once daily for 6 weeks. After 2 weeks, a seasonal influenza vaccination was given. Plasma and saliva samples were collected at baseline and after 6 weeks for the analysis of antibodies, cytokines and innate immune parameters. Changes from baseline in vaccine-specific plasma IgG, IgG1 and IgG3 were significantly greater in both probiotic groups v. the corresponding placebo group (L. casei 431®, P = 0·01 for IgG; P < 0·001 for remaining comparisons). The number of subjects obtaining a substantial increase in specific IgG (defined as ≥ 2-fold above baseline) was significantly greater in both probiotic groups v. placebo (BB-12®, P < 0·001 for IgG, IgG1 and IgG3; L. casei 431®, P < 0·001 for IgG1 and IgG3). Significantly greater mean fold increases for vaccine-specific secretory IgA in saliva were observed in both probiotic groups v. placebo (BB-12®, P = 0·017; L. casei 431®, P = 0·035). Similar results were observed for total antibody concentrations. No differences were found for plasma cytokines or innate immune parameters. Data herein show that supplementation with BB-12® or L. casei 431® may be an effective means to improve immune function by augmenting systemic and mucosal immune responses to challenge.
Collapse
|
43
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
44
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
45
|
Muthumani K, Shedlock DJ, Choo DK, Fagone P, Kawalekar OU, Goodman J, Bian CB, Ramanathan AA, Atman P, Tebas P, Chattergoon MA, Choo AY, Weiner DB. HIV-mediated phosphatidylinositol 3-kinase/serine-threonine kinase activation in APCs leads to programmed death-1 ligand upregulation and suppression of HIV-specific CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2932-43. [PMID: 21856939 DOI: 10.4049/jimmunol.1100594] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence demonstrates that HIV-1 infection leads to the attenuation of cellular immune responses, which has been correlated with the increased expression of programmed death (PD)-1 on virus-specific CD8(+) T cells. PD-1 is induced upon T cell activation, and its prolonged expression facilitates CD8(+) T cell inhibitory signals when bound to its B7 family ligands, PD-ligand (L)1/2, which are expressed on APCs. Importantly, early reports demonstrated that blockade of the PD-1/PD-L interaction by Abs may help to counter the development of immune exhaustion driven by HIV viral persistence. To better understand the regulation of the PD-1 pathway during HIV infection, we examined the ability of the virus to induce PD-L expression on macrophages and dendritic cells. We found a direct relationship between the infection of APCs and the expression of PD-L1 in which virus-mediated upregulation induced a state of nonresponsiveness in uninfected HIV-specific T cells. Furthermore, this exhaustion phenotype was revitalized by the blockade of PD-L1, after which T cells regained their capacity for proliferation and the secretion of proinflammatory cytokines IFN-γ, IL-2, and IL-12 upon restimulation. In addition, we identify a critical role for the PI3K/serine-threonine kinase signaling pathway in PD-L1 upregulation of APCs by HIV, because inhibition of these intracellular signal transducer enzymes significantly reduced PD-L1 induction by infection. These data identify a novel mechanism by which HIV exploits the immunosuppressive PD-1 pathway and suggest a new role for virus-infected cells in the local corruption of immune responses required for viral suppression.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li N, Peng LH, Chen X, Nakagawa S, Gao JQ. Transcutaneous vaccines: Novel advances in technology and delivery for overcoming the barriers. Vaccine 2011; 29:6179-90. [DOI: 10.1016/j.vaccine.2011.06.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
|
47
|
Abstract
DNA-based vaccines, while highly immunogenic in mice, generate significantly weaker responses in primates. Therefore, current efforts are aimed at increasing their immunogenicity, which include optimizing the plasmid/gene, the vaccine formulation and method of delivery. For example, co-immunization with molecular adjuvants encoding an immunomodulatory protein has been shown to improve the antigen (Ag)-specific immune response. Thus, the incorporation of enhancing elements, such as these, may be particularly important in the influenza model in which high titered antibody (Ab) responses are critical for protection. In this regard, we compared the ability of plasmid-encoded high-mobility group box 1 protein (HMGB1), a novel cytokine in which we have previously mutated in order to increase DNA vaccine immunogenicity, with boost Ag-specific immune responses during DNA vaccination with influenza A/PR/8/34 nucleoprotein or the hemagglutinin of A novel H1N1/09. We show that the HMGB1 adjuvant is capable of enhancing adaptive effector and memory immune responses. Although Ag-specific antibodies were detected in all vaccinated animals, a greater neutralizing Ab response was associated with the HMGB1 adjuvant. Furthermore, these responses improved CD8 T+-cell effector and memory responses and provided protection against a lethal mucosal influenza A/PR/8/34 challenge. Thus, co-immunization with HMGB1 has strong in vivo adjuvant activity during the development of immunity against plasmid-encoded Ag.
Collapse
|
48
|
Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, Ferraro B, Stabenow J, Vijayachari P, Sundaram SG, Muruganandam N, Sarangan G, Srikanth P, Khan AS, Lewis MG, Kim JJ, Sardesai NY, Muthumani K, Weiner DB. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis 2011; 5:e928. [PMID: 21264351 PMCID: PMC3019110 DOI: 10.1371/journal.pntd.0000928] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 11/30/2010] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines. Chikungunya fever epidemics are sustained by a cycle of human-mosquito-human transmission, with the epidemic cycle being similar to those of dengue and urban yellow fever. While the threat of a pandemic continues to engage the public's attention, the peculiar problems associated with the more immediate and very real seasonal epidemics are also worthy of consideration. Specifically, there are limited viral strains that have been characterized and available for laboratory study as well as limited knowledge of immune responses induced to the virus. In this study, we isolated CHIKV virus from an acutely infected human patient and used this new virus to develop a neutralization assay and a challenge stock, which is effective in a mouse model. Furthermore, we analyzed the ability of an envelope-based synthetic DNA-based vaccine to impact viral disease in the mouse model and to generate protective levels of immune responses in nonhuman primates. We observed that this novel vaccine approach generated protective levels of immune responses in both mouse and non-human primate models. We believe that these studies advance the field of Chikungunya vaccine research as well as the study of immune protection to CHIKV.
Collapse
Affiliation(s)
- Karthik Mallilankaraman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Devon J. Shedlock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Huihui Bao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Omkar U. Kawalekar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paolo Fagone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Aarthi A. Ramanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bernadette Ferraro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Stabenow
- Regional Biocontainment Lab, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Paluru Vijayachari
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Senthil G. Sundaram
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Nagarajan Muruganandam
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Gopalsamy Sarangan
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Amir S. Khan
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, United States of America
| | - Mark G. Lewis
- Bioqual Inc, Rockville, Maryland, United States of America
| | - J. Joseph Kim
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, United States of America
| | | | - Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Oosterhuis K, van den Berg JH, Schumacher TN, Haanen JBAG. DNA vaccines and intradermal vaccination by DNA tattooing. Curr Top Microbiol Immunol 2010; 351:221-50. [PMID: 21107792 DOI: 10.1007/82_2010_117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.
Collapse
Affiliation(s)
- K Oosterhuis
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|